1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2014 Facebook. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/stacktrace.h> 8 #include "ctree.h" 9 #include "disk-io.h" 10 #include "locking.h" 11 #include "delayed-ref.h" 12 #include "ref-verify.h" 13 14 /* 15 * Used to keep track the roots and number of refs each root has for a given 16 * bytenr. This just tracks the number of direct references, no shared 17 * references. 18 */ 19 struct root_entry { 20 u64 root_objectid; 21 u64 num_refs; 22 struct rb_node node; 23 }; 24 25 /* 26 * These are meant to represent what should exist in the extent tree, these can 27 * be used to verify the extent tree is consistent as these should all match 28 * what the extent tree says. 29 */ 30 struct ref_entry { 31 u64 root_objectid; 32 u64 parent; 33 u64 owner; 34 u64 offset; 35 u64 num_refs; 36 struct rb_node node; 37 }; 38 39 #define MAX_TRACE 16 40 41 /* 42 * Whenever we add/remove a reference we record the action. The action maps 43 * back to the delayed ref action. We hold the ref we are changing in the 44 * action so we can account for the history properly, and we record the root we 45 * were called with since it could be different from ref_root. We also store 46 * stack traces because that's how I roll. 47 */ 48 struct ref_action { 49 int action; 50 u64 root; 51 struct ref_entry ref; 52 struct list_head list; 53 unsigned long trace[MAX_TRACE]; 54 unsigned int trace_len; 55 }; 56 57 /* 58 * One of these for every block we reference, it holds the roots and references 59 * to it as well as all of the ref actions that have occurred to it. We never 60 * free it until we unmount the file system in order to make sure re-allocations 61 * are happening properly. 62 */ 63 struct block_entry { 64 u64 bytenr; 65 u64 len; 66 u64 num_refs; 67 int metadata; 68 int from_disk; 69 struct rb_root roots; 70 struct rb_root refs; 71 struct rb_node node; 72 struct list_head actions; 73 }; 74 75 static struct block_entry *insert_block_entry(struct rb_root *root, 76 struct block_entry *be) 77 { 78 struct rb_node **p = &root->rb_node; 79 struct rb_node *parent_node = NULL; 80 struct block_entry *entry; 81 82 while (*p) { 83 parent_node = *p; 84 entry = rb_entry(parent_node, struct block_entry, node); 85 if (entry->bytenr > be->bytenr) 86 p = &(*p)->rb_left; 87 else if (entry->bytenr < be->bytenr) 88 p = &(*p)->rb_right; 89 else 90 return entry; 91 } 92 93 rb_link_node(&be->node, parent_node, p); 94 rb_insert_color(&be->node, root); 95 return NULL; 96 } 97 98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr) 99 { 100 struct rb_node *n; 101 struct block_entry *entry = NULL; 102 103 n = root->rb_node; 104 while (n) { 105 entry = rb_entry(n, struct block_entry, node); 106 if (entry->bytenr < bytenr) 107 n = n->rb_right; 108 else if (entry->bytenr > bytenr) 109 n = n->rb_left; 110 else 111 return entry; 112 } 113 return NULL; 114 } 115 116 static struct root_entry *insert_root_entry(struct rb_root *root, 117 struct root_entry *re) 118 { 119 struct rb_node **p = &root->rb_node; 120 struct rb_node *parent_node = NULL; 121 struct root_entry *entry; 122 123 while (*p) { 124 parent_node = *p; 125 entry = rb_entry(parent_node, struct root_entry, node); 126 if (entry->root_objectid > re->root_objectid) 127 p = &(*p)->rb_left; 128 else if (entry->root_objectid < re->root_objectid) 129 p = &(*p)->rb_right; 130 else 131 return entry; 132 } 133 134 rb_link_node(&re->node, parent_node, p); 135 rb_insert_color(&re->node, root); 136 return NULL; 137 138 } 139 140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2) 141 { 142 if (ref1->root_objectid < ref2->root_objectid) 143 return -1; 144 if (ref1->root_objectid > ref2->root_objectid) 145 return 1; 146 if (ref1->parent < ref2->parent) 147 return -1; 148 if (ref1->parent > ref2->parent) 149 return 1; 150 if (ref1->owner < ref2->owner) 151 return -1; 152 if (ref1->owner > ref2->owner) 153 return 1; 154 if (ref1->offset < ref2->offset) 155 return -1; 156 if (ref1->offset > ref2->offset) 157 return 1; 158 return 0; 159 } 160 161 static struct ref_entry *insert_ref_entry(struct rb_root *root, 162 struct ref_entry *ref) 163 { 164 struct rb_node **p = &root->rb_node; 165 struct rb_node *parent_node = NULL; 166 struct ref_entry *entry; 167 int cmp; 168 169 while (*p) { 170 parent_node = *p; 171 entry = rb_entry(parent_node, struct ref_entry, node); 172 cmp = comp_refs(entry, ref); 173 if (cmp > 0) 174 p = &(*p)->rb_left; 175 else if (cmp < 0) 176 p = &(*p)->rb_right; 177 else 178 return entry; 179 } 180 181 rb_link_node(&ref->node, parent_node, p); 182 rb_insert_color(&ref->node, root); 183 return NULL; 184 185 } 186 187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid) 188 { 189 struct rb_node *n; 190 struct root_entry *entry = NULL; 191 192 n = root->rb_node; 193 while (n) { 194 entry = rb_entry(n, struct root_entry, node); 195 if (entry->root_objectid < objectid) 196 n = n->rb_right; 197 else if (entry->root_objectid > objectid) 198 n = n->rb_left; 199 else 200 return entry; 201 } 202 return NULL; 203 } 204 205 #ifdef CONFIG_STACKTRACE 206 static void __save_stack_trace(struct ref_action *ra) 207 { 208 ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2); 209 } 210 211 static void __print_stack_trace(struct btrfs_fs_info *fs_info, 212 struct ref_action *ra) 213 { 214 if (ra->trace_len == 0) { 215 btrfs_err(fs_info, " ref-verify: no stacktrace"); 216 return; 217 } 218 stack_trace_print(ra->trace, ra->trace_len, 2); 219 } 220 #else 221 static void inline __save_stack_trace(struct ref_action *ra) 222 { 223 } 224 225 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info, 226 struct ref_action *ra) 227 { 228 btrfs_err(fs_info, " ref-verify: no stacktrace support"); 229 } 230 #endif 231 232 static void free_block_entry(struct block_entry *be) 233 { 234 struct root_entry *re; 235 struct ref_entry *ref; 236 struct ref_action *ra; 237 struct rb_node *n; 238 239 while ((n = rb_first(&be->roots))) { 240 re = rb_entry(n, struct root_entry, node); 241 rb_erase(&re->node, &be->roots); 242 kfree(re); 243 } 244 245 while((n = rb_first(&be->refs))) { 246 ref = rb_entry(n, struct ref_entry, node); 247 rb_erase(&ref->node, &be->refs); 248 kfree(ref); 249 } 250 251 while (!list_empty(&be->actions)) { 252 ra = list_first_entry(&be->actions, struct ref_action, 253 list); 254 list_del(&ra->list); 255 kfree(ra); 256 } 257 kfree(be); 258 } 259 260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info, 261 u64 bytenr, u64 len, 262 u64 root_objectid) 263 { 264 struct block_entry *be = NULL, *exist; 265 struct root_entry *re = NULL; 266 267 re = kzalloc(sizeof(struct root_entry), GFP_KERNEL); 268 be = kzalloc(sizeof(struct block_entry), GFP_KERNEL); 269 if (!be || !re) { 270 kfree(re); 271 kfree(be); 272 return ERR_PTR(-ENOMEM); 273 } 274 be->bytenr = bytenr; 275 be->len = len; 276 277 re->root_objectid = root_objectid; 278 re->num_refs = 0; 279 280 spin_lock(&fs_info->ref_verify_lock); 281 exist = insert_block_entry(&fs_info->block_tree, be); 282 if (exist) { 283 if (root_objectid) { 284 struct root_entry *exist_re; 285 286 exist_re = insert_root_entry(&exist->roots, re); 287 if (exist_re) 288 kfree(re); 289 } 290 kfree(be); 291 return exist; 292 } 293 294 be->num_refs = 0; 295 be->metadata = 0; 296 be->from_disk = 0; 297 be->roots = RB_ROOT; 298 be->refs = RB_ROOT; 299 INIT_LIST_HEAD(&be->actions); 300 if (root_objectid) 301 insert_root_entry(&be->roots, re); 302 else 303 kfree(re); 304 return be; 305 } 306 307 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root, 308 u64 parent, u64 bytenr, int level) 309 { 310 struct block_entry *be; 311 struct root_entry *re; 312 struct ref_entry *ref = NULL, *exist; 313 314 ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL); 315 if (!ref) 316 return -ENOMEM; 317 318 if (parent) 319 ref->root_objectid = 0; 320 else 321 ref->root_objectid = ref_root; 322 ref->parent = parent; 323 ref->owner = level; 324 ref->offset = 0; 325 ref->num_refs = 1; 326 327 be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root); 328 if (IS_ERR(be)) { 329 kfree(ref); 330 return PTR_ERR(be); 331 } 332 be->num_refs++; 333 be->from_disk = 1; 334 be->metadata = 1; 335 336 if (!parent) { 337 ASSERT(ref_root); 338 re = lookup_root_entry(&be->roots, ref_root); 339 ASSERT(re); 340 re->num_refs++; 341 } 342 exist = insert_ref_entry(&be->refs, ref); 343 if (exist) { 344 exist->num_refs++; 345 kfree(ref); 346 } 347 spin_unlock(&fs_info->ref_verify_lock); 348 349 return 0; 350 } 351 352 static int add_shared_data_ref(struct btrfs_fs_info *fs_info, 353 u64 parent, u32 num_refs, u64 bytenr, 354 u64 num_bytes) 355 { 356 struct block_entry *be; 357 struct ref_entry *ref; 358 359 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); 360 if (!ref) 361 return -ENOMEM; 362 be = add_block_entry(fs_info, bytenr, num_bytes, 0); 363 if (IS_ERR(be)) { 364 kfree(ref); 365 return PTR_ERR(be); 366 } 367 be->num_refs += num_refs; 368 369 ref->parent = parent; 370 ref->num_refs = num_refs; 371 if (insert_ref_entry(&be->refs, ref)) { 372 spin_unlock(&fs_info->ref_verify_lock); 373 btrfs_err(fs_info, "existing shared ref when reading from disk?"); 374 kfree(ref); 375 return -EINVAL; 376 } 377 spin_unlock(&fs_info->ref_verify_lock); 378 return 0; 379 } 380 381 static int add_extent_data_ref(struct btrfs_fs_info *fs_info, 382 struct extent_buffer *leaf, 383 struct btrfs_extent_data_ref *dref, 384 u64 bytenr, u64 num_bytes) 385 { 386 struct block_entry *be; 387 struct ref_entry *ref; 388 struct root_entry *re; 389 u64 ref_root = btrfs_extent_data_ref_root(leaf, dref); 390 u64 owner = btrfs_extent_data_ref_objectid(leaf, dref); 391 u64 offset = btrfs_extent_data_ref_offset(leaf, dref); 392 u32 num_refs = btrfs_extent_data_ref_count(leaf, dref); 393 394 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); 395 if (!ref) 396 return -ENOMEM; 397 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root); 398 if (IS_ERR(be)) { 399 kfree(ref); 400 return PTR_ERR(be); 401 } 402 be->num_refs += num_refs; 403 404 ref->parent = 0; 405 ref->owner = owner; 406 ref->root_objectid = ref_root; 407 ref->offset = offset; 408 ref->num_refs = num_refs; 409 if (insert_ref_entry(&be->refs, ref)) { 410 spin_unlock(&fs_info->ref_verify_lock); 411 btrfs_err(fs_info, "existing ref when reading from disk?"); 412 kfree(ref); 413 return -EINVAL; 414 } 415 416 re = lookup_root_entry(&be->roots, ref_root); 417 if (!re) { 418 spin_unlock(&fs_info->ref_verify_lock); 419 btrfs_err(fs_info, "missing root in new block entry?"); 420 return -EINVAL; 421 } 422 re->num_refs += num_refs; 423 spin_unlock(&fs_info->ref_verify_lock); 424 return 0; 425 } 426 427 static int process_extent_item(struct btrfs_fs_info *fs_info, 428 struct btrfs_path *path, struct btrfs_key *key, 429 int slot, int *tree_block_level) 430 { 431 struct btrfs_extent_item *ei; 432 struct btrfs_extent_inline_ref *iref; 433 struct btrfs_extent_data_ref *dref; 434 struct btrfs_shared_data_ref *sref; 435 struct extent_buffer *leaf = path->nodes[0]; 436 u32 item_size = btrfs_item_size_nr(leaf, slot); 437 unsigned long end, ptr; 438 u64 offset, flags, count; 439 int type, ret; 440 441 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 442 flags = btrfs_extent_flags(leaf, ei); 443 444 if ((key->type == BTRFS_EXTENT_ITEM_KEY) && 445 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 446 struct btrfs_tree_block_info *info; 447 448 info = (struct btrfs_tree_block_info *)(ei + 1); 449 *tree_block_level = btrfs_tree_block_level(leaf, info); 450 iref = (struct btrfs_extent_inline_ref *)(info + 1); 451 } else { 452 if (key->type == BTRFS_METADATA_ITEM_KEY) 453 *tree_block_level = key->offset; 454 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 455 } 456 457 ptr = (unsigned long)iref; 458 end = (unsigned long)ei + item_size; 459 while (ptr < end) { 460 iref = (struct btrfs_extent_inline_ref *)ptr; 461 type = btrfs_extent_inline_ref_type(leaf, iref); 462 offset = btrfs_extent_inline_ref_offset(leaf, iref); 463 switch (type) { 464 case BTRFS_TREE_BLOCK_REF_KEY: 465 ret = add_tree_block(fs_info, offset, 0, key->objectid, 466 *tree_block_level); 467 break; 468 case BTRFS_SHARED_BLOCK_REF_KEY: 469 ret = add_tree_block(fs_info, 0, offset, key->objectid, 470 *tree_block_level); 471 break; 472 case BTRFS_EXTENT_DATA_REF_KEY: 473 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 474 ret = add_extent_data_ref(fs_info, leaf, dref, 475 key->objectid, key->offset); 476 break; 477 case BTRFS_SHARED_DATA_REF_KEY: 478 sref = (struct btrfs_shared_data_ref *)(iref + 1); 479 count = btrfs_shared_data_ref_count(leaf, sref); 480 ret = add_shared_data_ref(fs_info, offset, count, 481 key->objectid, key->offset); 482 break; 483 default: 484 btrfs_err(fs_info, "invalid key type in iref"); 485 ret = -EINVAL; 486 break; 487 } 488 if (ret) 489 break; 490 ptr += btrfs_extent_inline_ref_size(type); 491 } 492 return ret; 493 } 494 495 static int process_leaf(struct btrfs_root *root, 496 struct btrfs_path *path, u64 *bytenr, u64 *num_bytes) 497 { 498 struct btrfs_fs_info *fs_info = root->fs_info; 499 struct extent_buffer *leaf = path->nodes[0]; 500 struct btrfs_extent_data_ref *dref; 501 struct btrfs_shared_data_ref *sref; 502 u32 count; 503 int i = 0, tree_block_level = 0, ret = 0; 504 struct btrfs_key key; 505 int nritems = btrfs_header_nritems(leaf); 506 507 for (i = 0; i < nritems; i++) { 508 btrfs_item_key_to_cpu(leaf, &key, i); 509 switch (key.type) { 510 case BTRFS_EXTENT_ITEM_KEY: 511 *num_bytes = key.offset; 512 fallthrough; 513 case BTRFS_METADATA_ITEM_KEY: 514 *bytenr = key.objectid; 515 ret = process_extent_item(fs_info, path, &key, i, 516 &tree_block_level); 517 break; 518 case BTRFS_TREE_BLOCK_REF_KEY: 519 ret = add_tree_block(fs_info, key.offset, 0, 520 key.objectid, tree_block_level); 521 break; 522 case BTRFS_SHARED_BLOCK_REF_KEY: 523 ret = add_tree_block(fs_info, 0, key.offset, 524 key.objectid, tree_block_level); 525 break; 526 case BTRFS_EXTENT_DATA_REF_KEY: 527 dref = btrfs_item_ptr(leaf, i, 528 struct btrfs_extent_data_ref); 529 ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr, 530 *num_bytes); 531 break; 532 case BTRFS_SHARED_DATA_REF_KEY: 533 sref = btrfs_item_ptr(leaf, i, 534 struct btrfs_shared_data_ref); 535 count = btrfs_shared_data_ref_count(leaf, sref); 536 ret = add_shared_data_ref(fs_info, key.offset, count, 537 *bytenr, *num_bytes); 538 break; 539 default: 540 break; 541 } 542 if (ret) 543 break; 544 } 545 return ret; 546 } 547 548 /* Walk down to the leaf from the given level */ 549 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, 550 int level, u64 *bytenr, u64 *num_bytes) 551 { 552 struct btrfs_fs_info *fs_info = root->fs_info; 553 struct extent_buffer *eb; 554 u64 block_bytenr, gen; 555 int ret = 0; 556 557 while (level >= 0) { 558 if (level) { 559 struct btrfs_key first_key; 560 561 block_bytenr = btrfs_node_blockptr(path->nodes[level], 562 path->slots[level]); 563 gen = btrfs_node_ptr_generation(path->nodes[level], 564 path->slots[level]); 565 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 566 path->slots[level]); 567 eb = read_tree_block(fs_info, block_bytenr, gen, 568 level - 1, &first_key); 569 if (IS_ERR(eb)) 570 return PTR_ERR(eb); 571 if (!extent_buffer_uptodate(eb)) { 572 free_extent_buffer(eb); 573 return -EIO; 574 } 575 btrfs_tree_read_lock(eb); 576 btrfs_set_lock_blocking_read(eb); 577 path->nodes[level-1] = eb; 578 path->slots[level-1] = 0; 579 path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING; 580 } else { 581 ret = process_leaf(root, path, bytenr, num_bytes); 582 if (ret) 583 break; 584 } 585 level--; 586 } 587 return ret; 588 } 589 590 /* Walk up to the next node that needs to be processed */ 591 static int walk_up_tree(struct btrfs_path *path, int *level) 592 { 593 int l; 594 595 for (l = 0; l < BTRFS_MAX_LEVEL; l++) { 596 if (!path->nodes[l]) 597 continue; 598 if (l) { 599 path->slots[l]++; 600 if (path->slots[l] < 601 btrfs_header_nritems(path->nodes[l])) { 602 *level = l; 603 return 0; 604 } 605 } 606 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]); 607 free_extent_buffer(path->nodes[l]); 608 path->nodes[l] = NULL; 609 path->slots[l] = 0; 610 path->locks[l] = 0; 611 } 612 613 return 1; 614 } 615 616 static void dump_ref_action(struct btrfs_fs_info *fs_info, 617 struct ref_action *ra) 618 { 619 btrfs_err(fs_info, 620 " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", 621 ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent, 622 ra->ref.owner, ra->ref.offset, ra->ref.num_refs); 623 __print_stack_trace(fs_info, ra); 624 } 625 626 /* 627 * Dumps all the information from the block entry to printk, it's going to be 628 * awesome. 629 */ 630 static void dump_block_entry(struct btrfs_fs_info *fs_info, 631 struct block_entry *be) 632 { 633 struct ref_entry *ref; 634 struct root_entry *re; 635 struct ref_action *ra; 636 struct rb_node *n; 637 638 btrfs_err(fs_info, 639 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d", 640 be->bytenr, be->len, be->num_refs, be->metadata, 641 be->from_disk); 642 643 for (n = rb_first(&be->refs); n; n = rb_next(n)) { 644 ref = rb_entry(n, struct ref_entry, node); 645 btrfs_err(fs_info, 646 " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", 647 ref->root_objectid, ref->parent, ref->owner, 648 ref->offset, ref->num_refs); 649 } 650 651 for (n = rb_first(&be->roots); n; n = rb_next(n)) { 652 re = rb_entry(n, struct root_entry, node); 653 btrfs_err(fs_info, " root entry %llu, num_refs %llu", 654 re->root_objectid, re->num_refs); 655 } 656 657 list_for_each_entry(ra, &be->actions, list) 658 dump_ref_action(fs_info, ra); 659 } 660 661 /* 662 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr 663 * 664 * This will add an action item to the given bytenr and do sanity checks to make 665 * sure we haven't messed something up. If we are making a new allocation and 666 * this block entry has history we will delete all previous actions as long as 667 * our sanity checks pass as they are no longer needed. 668 */ 669 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info, 670 struct btrfs_ref *generic_ref) 671 { 672 struct ref_entry *ref = NULL, *exist; 673 struct ref_action *ra = NULL; 674 struct block_entry *be = NULL; 675 struct root_entry *re = NULL; 676 int action = generic_ref->action; 677 int ret = 0; 678 bool metadata; 679 u64 bytenr = generic_ref->bytenr; 680 u64 num_bytes = generic_ref->len; 681 u64 parent = generic_ref->parent; 682 u64 ref_root; 683 u64 owner; 684 u64 offset; 685 686 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 687 return 0; 688 689 if (generic_ref->type == BTRFS_REF_METADATA) { 690 ref_root = generic_ref->tree_ref.root; 691 owner = generic_ref->tree_ref.level; 692 offset = 0; 693 } else { 694 ref_root = generic_ref->data_ref.ref_root; 695 owner = generic_ref->data_ref.ino; 696 offset = generic_ref->data_ref.offset; 697 } 698 metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 699 700 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS); 701 ra = kmalloc(sizeof(struct ref_action), GFP_NOFS); 702 if (!ra || !ref) { 703 kfree(ref); 704 kfree(ra); 705 ret = -ENOMEM; 706 goto out; 707 } 708 709 if (parent) { 710 ref->parent = parent; 711 } else { 712 ref->root_objectid = ref_root; 713 ref->owner = owner; 714 ref->offset = offset; 715 } 716 ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1; 717 718 memcpy(&ra->ref, ref, sizeof(struct ref_entry)); 719 /* 720 * Save the extra info from the delayed ref in the ref action to make it 721 * easier to figure out what is happening. The real ref's we add to the 722 * ref tree need to reflect what we save on disk so it matches any 723 * on-disk refs we pre-loaded. 724 */ 725 ra->ref.owner = owner; 726 ra->ref.offset = offset; 727 ra->ref.root_objectid = ref_root; 728 __save_stack_trace(ra); 729 730 INIT_LIST_HEAD(&ra->list); 731 ra->action = action; 732 ra->root = generic_ref->real_root; 733 734 /* 735 * This is an allocation, preallocate the block_entry in case we haven't 736 * used it before. 737 */ 738 ret = -EINVAL; 739 if (action == BTRFS_ADD_DELAYED_EXTENT) { 740 /* 741 * For subvol_create we'll just pass in whatever the parent root 742 * is and the new root objectid, so let's not treat the passed 743 * in root as if it really has a ref for this bytenr. 744 */ 745 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root); 746 if (IS_ERR(be)) { 747 kfree(ref); 748 kfree(ra); 749 ret = PTR_ERR(be); 750 goto out; 751 } 752 be->num_refs++; 753 if (metadata) 754 be->metadata = 1; 755 756 if (be->num_refs != 1) { 757 btrfs_err(fs_info, 758 "re-allocated a block that still has references to it!"); 759 dump_block_entry(fs_info, be); 760 dump_ref_action(fs_info, ra); 761 kfree(ref); 762 kfree(ra); 763 goto out_unlock; 764 } 765 766 while (!list_empty(&be->actions)) { 767 struct ref_action *tmp; 768 769 tmp = list_first_entry(&be->actions, struct ref_action, 770 list); 771 list_del(&tmp->list); 772 kfree(tmp); 773 } 774 } else { 775 struct root_entry *tmp; 776 777 if (!parent) { 778 re = kmalloc(sizeof(struct root_entry), GFP_NOFS); 779 if (!re) { 780 kfree(ref); 781 kfree(ra); 782 ret = -ENOMEM; 783 goto out; 784 } 785 /* 786 * This is the root that is modifying us, so it's the 787 * one we want to lookup below when we modify the 788 * re->num_refs. 789 */ 790 ref_root = generic_ref->real_root; 791 re->root_objectid = generic_ref->real_root; 792 re->num_refs = 0; 793 } 794 795 spin_lock(&fs_info->ref_verify_lock); 796 be = lookup_block_entry(&fs_info->block_tree, bytenr); 797 if (!be) { 798 btrfs_err(fs_info, 799 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!", 800 action, (unsigned long long)bytenr, 801 (unsigned long long)num_bytes); 802 dump_ref_action(fs_info, ra); 803 kfree(ref); 804 kfree(ra); 805 goto out_unlock; 806 } else if (be->num_refs == 0) { 807 btrfs_err(fs_info, 808 "trying to do action %d for a bytenr that has 0 total references", 809 action); 810 dump_block_entry(fs_info, be); 811 dump_ref_action(fs_info, ra); 812 kfree(ref); 813 kfree(ra); 814 goto out_unlock; 815 } 816 817 if (!parent) { 818 tmp = insert_root_entry(&be->roots, re); 819 if (tmp) { 820 kfree(re); 821 re = tmp; 822 } 823 } 824 } 825 826 exist = insert_ref_entry(&be->refs, ref); 827 if (exist) { 828 if (action == BTRFS_DROP_DELAYED_REF) { 829 if (exist->num_refs == 0) { 830 btrfs_err(fs_info, 831 "dropping a ref for a existing root that doesn't have a ref on the block"); 832 dump_block_entry(fs_info, be); 833 dump_ref_action(fs_info, ra); 834 kfree(ref); 835 kfree(ra); 836 goto out_unlock; 837 } 838 exist->num_refs--; 839 if (exist->num_refs == 0) { 840 rb_erase(&exist->node, &be->refs); 841 kfree(exist); 842 } 843 } else if (!be->metadata) { 844 exist->num_refs++; 845 } else { 846 btrfs_err(fs_info, 847 "attempting to add another ref for an existing ref on a tree block"); 848 dump_block_entry(fs_info, be); 849 dump_ref_action(fs_info, ra); 850 kfree(ref); 851 kfree(ra); 852 goto out_unlock; 853 } 854 kfree(ref); 855 } else { 856 if (action == BTRFS_DROP_DELAYED_REF) { 857 btrfs_err(fs_info, 858 "dropping a ref for a root that doesn't have a ref on the block"); 859 dump_block_entry(fs_info, be); 860 dump_ref_action(fs_info, ra); 861 kfree(ra); 862 goto out_unlock; 863 } 864 } 865 866 if (!parent && !re) { 867 re = lookup_root_entry(&be->roots, ref_root); 868 if (!re) { 869 /* 870 * This shouldn't happen because we will add our re 871 * above when we lookup the be with !parent, but just in 872 * case catch this case so we don't panic because I 873 * didn't think of some other corner case. 874 */ 875 btrfs_err(fs_info, "failed to find root %llu for %llu", 876 generic_ref->real_root, be->bytenr); 877 dump_block_entry(fs_info, be); 878 dump_ref_action(fs_info, ra); 879 kfree(ra); 880 goto out_unlock; 881 } 882 } 883 if (action == BTRFS_DROP_DELAYED_REF) { 884 if (re) 885 re->num_refs--; 886 be->num_refs--; 887 } else if (action == BTRFS_ADD_DELAYED_REF) { 888 be->num_refs++; 889 if (re) 890 re->num_refs++; 891 } 892 list_add_tail(&ra->list, &be->actions); 893 ret = 0; 894 out_unlock: 895 spin_unlock(&fs_info->ref_verify_lock); 896 out: 897 if (ret) 898 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); 899 return ret; 900 } 901 902 /* Free up the ref cache */ 903 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info) 904 { 905 struct block_entry *be; 906 struct rb_node *n; 907 908 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 909 return; 910 911 spin_lock(&fs_info->ref_verify_lock); 912 while ((n = rb_first(&fs_info->block_tree))) { 913 be = rb_entry(n, struct block_entry, node); 914 rb_erase(&be->node, &fs_info->block_tree); 915 free_block_entry(be); 916 cond_resched_lock(&fs_info->ref_verify_lock); 917 } 918 spin_unlock(&fs_info->ref_verify_lock); 919 } 920 921 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start, 922 u64 len) 923 { 924 struct block_entry *be = NULL, *entry; 925 struct rb_node *n; 926 927 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 928 return; 929 930 spin_lock(&fs_info->ref_verify_lock); 931 n = fs_info->block_tree.rb_node; 932 while (n) { 933 entry = rb_entry(n, struct block_entry, node); 934 if (entry->bytenr < start) { 935 n = n->rb_right; 936 } else if (entry->bytenr > start) { 937 n = n->rb_left; 938 } else { 939 be = entry; 940 break; 941 } 942 /* We want to get as close to start as possible */ 943 if (be == NULL || 944 (entry->bytenr < start && be->bytenr > start) || 945 (entry->bytenr < start && entry->bytenr > be->bytenr)) 946 be = entry; 947 } 948 949 /* 950 * Could have an empty block group, maybe have something to check for 951 * this case to verify we were actually empty? 952 */ 953 if (!be) { 954 spin_unlock(&fs_info->ref_verify_lock); 955 return; 956 } 957 958 n = &be->node; 959 while (n) { 960 be = rb_entry(n, struct block_entry, node); 961 n = rb_next(n); 962 if (be->bytenr < start && be->bytenr + be->len > start) { 963 btrfs_err(fs_info, 964 "block entry overlaps a block group [%llu,%llu]!", 965 start, len); 966 dump_block_entry(fs_info, be); 967 continue; 968 } 969 if (be->bytenr < start) 970 continue; 971 if (be->bytenr >= start + len) 972 break; 973 if (be->bytenr + be->len > start + len) { 974 btrfs_err(fs_info, 975 "block entry overlaps a block group [%llu,%llu]!", 976 start, len); 977 dump_block_entry(fs_info, be); 978 } 979 rb_erase(&be->node, &fs_info->block_tree); 980 free_block_entry(be); 981 } 982 spin_unlock(&fs_info->ref_verify_lock); 983 } 984 985 /* Walk down all roots and build the ref tree, meant to be called at mount */ 986 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info) 987 { 988 struct btrfs_path *path; 989 struct extent_buffer *eb; 990 u64 bytenr = 0, num_bytes = 0; 991 int ret, level; 992 993 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 994 return 0; 995 996 path = btrfs_alloc_path(); 997 if (!path) 998 return -ENOMEM; 999 1000 eb = btrfs_read_lock_root_node(fs_info->extent_root); 1001 btrfs_set_lock_blocking_read(eb); 1002 level = btrfs_header_level(eb); 1003 path->nodes[level] = eb; 1004 path->slots[level] = 0; 1005 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 1006 1007 while (1) { 1008 /* 1009 * We have to keep track of the bytenr/num_bytes we last hit 1010 * because we could have run out of space for an inline ref, and 1011 * would have had to added a ref key item which may appear on a 1012 * different leaf from the original extent item. 1013 */ 1014 ret = walk_down_tree(fs_info->extent_root, path, level, 1015 &bytenr, &num_bytes); 1016 if (ret) 1017 break; 1018 ret = walk_up_tree(path, &level); 1019 if (ret < 0) 1020 break; 1021 if (ret > 0) { 1022 ret = 0; 1023 break; 1024 } 1025 } 1026 if (ret) { 1027 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); 1028 btrfs_free_ref_cache(fs_info); 1029 } 1030 btrfs_free_path(path); 1031 return ret; 1032 } 1033