1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2014 Facebook. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/stacktrace.h> 8 #include "ctree.h" 9 #include "disk-io.h" 10 #include "locking.h" 11 #include "delayed-ref.h" 12 #include "ref-verify.h" 13 14 /* 15 * Used to keep track the roots and number of refs each root has for a given 16 * bytenr. This just tracks the number of direct references, no shared 17 * references. 18 */ 19 struct root_entry { 20 u64 root_objectid; 21 u64 num_refs; 22 struct rb_node node; 23 }; 24 25 /* 26 * These are meant to represent what should exist in the extent tree, these can 27 * be used to verify the extent tree is consistent as these should all match 28 * what the extent tree says. 29 */ 30 struct ref_entry { 31 u64 root_objectid; 32 u64 parent; 33 u64 owner; 34 u64 offset; 35 u64 num_refs; 36 struct rb_node node; 37 }; 38 39 #define MAX_TRACE 16 40 41 /* 42 * Whenever we add/remove a reference we record the action. The action maps 43 * back to the delayed ref action. We hold the ref we are changing in the 44 * action so we can account for the history properly, and we record the root we 45 * were called with since it could be different from ref_root. We also store 46 * stack traces because that's how I roll. 47 */ 48 struct ref_action { 49 int action; 50 u64 root; 51 struct ref_entry ref; 52 struct list_head list; 53 unsigned long trace[MAX_TRACE]; 54 unsigned int trace_len; 55 }; 56 57 /* 58 * One of these for every block we reference, it holds the roots and references 59 * to it as well as all of the ref actions that have occurred to it. We never 60 * free it until we unmount the file system in order to make sure re-allocations 61 * are happening properly. 62 */ 63 struct block_entry { 64 u64 bytenr; 65 u64 len; 66 u64 num_refs; 67 int metadata; 68 int from_disk; 69 struct rb_root roots; 70 struct rb_root refs; 71 struct rb_node node; 72 struct list_head actions; 73 }; 74 75 static struct block_entry *insert_block_entry(struct rb_root *root, 76 struct block_entry *be) 77 { 78 struct rb_node **p = &root->rb_node; 79 struct rb_node *parent_node = NULL; 80 struct block_entry *entry; 81 82 while (*p) { 83 parent_node = *p; 84 entry = rb_entry(parent_node, struct block_entry, node); 85 if (entry->bytenr > be->bytenr) 86 p = &(*p)->rb_left; 87 else if (entry->bytenr < be->bytenr) 88 p = &(*p)->rb_right; 89 else 90 return entry; 91 } 92 93 rb_link_node(&be->node, parent_node, p); 94 rb_insert_color(&be->node, root); 95 return NULL; 96 } 97 98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr) 99 { 100 struct rb_node *n; 101 struct block_entry *entry = NULL; 102 103 n = root->rb_node; 104 while (n) { 105 entry = rb_entry(n, struct block_entry, node); 106 if (entry->bytenr < bytenr) 107 n = n->rb_right; 108 else if (entry->bytenr > bytenr) 109 n = n->rb_left; 110 else 111 return entry; 112 } 113 return NULL; 114 } 115 116 static struct root_entry *insert_root_entry(struct rb_root *root, 117 struct root_entry *re) 118 { 119 struct rb_node **p = &root->rb_node; 120 struct rb_node *parent_node = NULL; 121 struct root_entry *entry; 122 123 while (*p) { 124 parent_node = *p; 125 entry = rb_entry(parent_node, struct root_entry, node); 126 if (entry->root_objectid > re->root_objectid) 127 p = &(*p)->rb_left; 128 else if (entry->root_objectid < re->root_objectid) 129 p = &(*p)->rb_right; 130 else 131 return entry; 132 } 133 134 rb_link_node(&re->node, parent_node, p); 135 rb_insert_color(&re->node, root); 136 return NULL; 137 138 } 139 140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2) 141 { 142 if (ref1->root_objectid < ref2->root_objectid) 143 return -1; 144 if (ref1->root_objectid > ref2->root_objectid) 145 return 1; 146 if (ref1->parent < ref2->parent) 147 return -1; 148 if (ref1->parent > ref2->parent) 149 return 1; 150 if (ref1->owner < ref2->owner) 151 return -1; 152 if (ref1->owner > ref2->owner) 153 return 1; 154 if (ref1->offset < ref2->offset) 155 return -1; 156 if (ref1->offset > ref2->offset) 157 return 1; 158 return 0; 159 } 160 161 static struct ref_entry *insert_ref_entry(struct rb_root *root, 162 struct ref_entry *ref) 163 { 164 struct rb_node **p = &root->rb_node; 165 struct rb_node *parent_node = NULL; 166 struct ref_entry *entry; 167 int cmp; 168 169 while (*p) { 170 parent_node = *p; 171 entry = rb_entry(parent_node, struct ref_entry, node); 172 cmp = comp_refs(entry, ref); 173 if (cmp > 0) 174 p = &(*p)->rb_left; 175 else if (cmp < 0) 176 p = &(*p)->rb_right; 177 else 178 return entry; 179 } 180 181 rb_link_node(&ref->node, parent_node, p); 182 rb_insert_color(&ref->node, root); 183 return NULL; 184 185 } 186 187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid) 188 { 189 struct rb_node *n; 190 struct root_entry *entry = NULL; 191 192 n = root->rb_node; 193 while (n) { 194 entry = rb_entry(n, struct root_entry, node); 195 if (entry->root_objectid < objectid) 196 n = n->rb_right; 197 else if (entry->root_objectid > objectid) 198 n = n->rb_left; 199 else 200 return entry; 201 } 202 return NULL; 203 } 204 205 #ifdef CONFIG_STACKTRACE 206 static void __save_stack_trace(struct ref_action *ra) 207 { 208 ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2); 209 } 210 211 static void __print_stack_trace(struct btrfs_fs_info *fs_info, 212 struct ref_action *ra) 213 { 214 if (ra->trace_len == 0) { 215 btrfs_err(fs_info, " ref-verify: no stacktrace"); 216 return; 217 } 218 stack_trace_print(ra->trace, ra->trace_len, 2); 219 } 220 #else 221 static void inline __save_stack_trace(struct ref_action *ra) 222 { 223 } 224 225 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info, 226 struct ref_action *ra) 227 { 228 btrfs_err(fs_info, " ref-verify: no stacktrace support"); 229 } 230 #endif 231 232 static void free_block_entry(struct block_entry *be) 233 { 234 struct root_entry *re; 235 struct ref_entry *ref; 236 struct ref_action *ra; 237 struct rb_node *n; 238 239 while ((n = rb_first(&be->roots))) { 240 re = rb_entry(n, struct root_entry, node); 241 rb_erase(&re->node, &be->roots); 242 kfree(re); 243 } 244 245 while((n = rb_first(&be->refs))) { 246 ref = rb_entry(n, struct ref_entry, node); 247 rb_erase(&ref->node, &be->refs); 248 kfree(ref); 249 } 250 251 while (!list_empty(&be->actions)) { 252 ra = list_first_entry(&be->actions, struct ref_action, 253 list); 254 list_del(&ra->list); 255 kfree(ra); 256 } 257 kfree(be); 258 } 259 260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info, 261 u64 bytenr, u64 len, 262 u64 root_objectid) 263 { 264 struct block_entry *be = NULL, *exist; 265 struct root_entry *re = NULL; 266 267 re = kzalloc(sizeof(struct root_entry), GFP_KERNEL); 268 be = kzalloc(sizeof(struct block_entry), GFP_KERNEL); 269 if (!be || !re) { 270 kfree(re); 271 kfree(be); 272 return ERR_PTR(-ENOMEM); 273 } 274 be->bytenr = bytenr; 275 be->len = len; 276 277 re->root_objectid = root_objectid; 278 re->num_refs = 0; 279 280 spin_lock(&fs_info->ref_verify_lock); 281 exist = insert_block_entry(&fs_info->block_tree, be); 282 if (exist) { 283 if (root_objectid) { 284 struct root_entry *exist_re; 285 286 exist_re = insert_root_entry(&exist->roots, re); 287 if (exist_re) 288 kfree(re); 289 } else { 290 kfree(re); 291 } 292 kfree(be); 293 return exist; 294 } 295 296 be->num_refs = 0; 297 be->metadata = 0; 298 be->from_disk = 0; 299 be->roots = RB_ROOT; 300 be->refs = RB_ROOT; 301 INIT_LIST_HEAD(&be->actions); 302 if (root_objectid) 303 insert_root_entry(&be->roots, re); 304 else 305 kfree(re); 306 return be; 307 } 308 309 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root, 310 u64 parent, u64 bytenr, int level) 311 { 312 struct block_entry *be; 313 struct root_entry *re; 314 struct ref_entry *ref = NULL, *exist; 315 316 ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL); 317 if (!ref) 318 return -ENOMEM; 319 320 if (parent) 321 ref->root_objectid = 0; 322 else 323 ref->root_objectid = ref_root; 324 ref->parent = parent; 325 ref->owner = level; 326 ref->offset = 0; 327 ref->num_refs = 1; 328 329 be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root); 330 if (IS_ERR(be)) { 331 kfree(ref); 332 return PTR_ERR(be); 333 } 334 be->num_refs++; 335 be->from_disk = 1; 336 be->metadata = 1; 337 338 if (!parent) { 339 ASSERT(ref_root); 340 re = lookup_root_entry(&be->roots, ref_root); 341 ASSERT(re); 342 re->num_refs++; 343 } 344 exist = insert_ref_entry(&be->refs, ref); 345 if (exist) { 346 exist->num_refs++; 347 kfree(ref); 348 } 349 spin_unlock(&fs_info->ref_verify_lock); 350 351 return 0; 352 } 353 354 static int add_shared_data_ref(struct btrfs_fs_info *fs_info, 355 u64 parent, u32 num_refs, u64 bytenr, 356 u64 num_bytes) 357 { 358 struct block_entry *be; 359 struct ref_entry *ref; 360 361 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); 362 if (!ref) 363 return -ENOMEM; 364 be = add_block_entry(fs_info, bytenr, num_bytes, 0); 365 if (IS_ERR(be)) { 366 kfree(ref); 367 return PTR_ERR(be); 368 } 369 be->num_refs += num_refs; 370 371 ref->parent = parent; 372 ref->num_refs = num_refs; 373 if (insert_ref_entry(&be->refs, ref)) { 374 spin_unlock(&fs_info->ref_verify_lock); 375 btrfs_err(fs_info, "existing shared ref when reading from disk?"); 376 kfree(ref); 377 return -EINVAL; 378 } 379 spin_unlock(&fs_info->ref_verify_lock); 380 return 0; 381 } 382 383 static int add_extent_data_ref(struct btrfs_fs_info *fs_info, 384 struct extent_buffer *leaf, 385 struct btrfs_extent_data_ref *dref, 386 u64 bytenr, u64 num_bytes) 387 { 388 struct block_entry *be; 389 struct ref_entry *ref; 390 struct root_entry *re; 391 u64 ref_root = btrfs_extent_data_ref_root(leaf, dref); 392 u64 owner = btrfs_extent_data_ref_objectid(leaf, dref); 393 u64 offset = btrfs_extent_data_ref_offset(leaf, dref); 394 u32 num_refs = btrfs_extent_data_ref_count(leaf, dref); 395 396 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL); 397 if (!ref) 398 return -ENOMEM; 399 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root); 400 if (IS_ERR(be)) { 401 kfree(ref); 402 return PTR_ERR(be); 403 } 404 be->num_refs += num_refs; 405 406 ref->parent = 0; 407 ref->owner = owner; 408 ref->root_objectid = ref_root; 409 ref->offset = offset; 410 ref->num_refs = num_refs; 411 if (insert_ref_entry(&be->refs, ref)) { 412 spin_unlock(&fs_info->ref_verify_lock); 413 btrfs_err(fs_info, "existing ref when reading from disk?"); 414 kfree(ref); 415 return -EINVAL; 416 } 417 418 re = lookup_root_entry(&be->roots, ref_root); 419 if (!re) { 420 spin_unlock(&fs_info->ref_verify_lock); 421 btrfs_err(fs_info, "missing root in new block entry?"); 422 return -EINVAL; 423 } 424 re->num_refs += num_refs; 425 spin_unlock(&fs_info->ref_verify_lock); 426 return 0; 427 } 428 429 static int process_extent_item(struct btrfs_fs_info *fs_info, 430 struct btrfs_path *path, struct btrfs_key *key, 431 int slot, int *tree_block_level) 432 { 433 struct btrfs_extent_item *ei; 434 struct btrfs_extent_inline_ref *iref; 435 struct btrfs_extent_data_ref *dref; 436 struct btrfs_shared_data_ref *sref; 437 struct extent_buffer *leaf = path->nodes[0]; 438 u32 item_size = btrfs_item_size_nr(leaf, slot); 439 unsigned long end, ptr; 440 u64 offset, flags, count; 441 int type, ret; 442 443 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 444 flags = btrfs_extent_flags(leaf, ei); 445 446 if ((key->type == BTRFS_EXTENT_ITEM_KEY) && 447 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 448 struct btrfs_tree_block_info *info; 449 450 info = (struct btrfs_tree_block_info *)(ei + 1); 451 *tree_block_level = btrfs_tree_block_level(leaf, info); 452 iref = (struct btrfs_extent_inline_ref *)(info + 1); 453 } else { 454 if (key->type == BTRFS_METADATA_ITEM_KEY) 455 *tree_block_level = key->offset; 456 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 457 } 458 459 ptr = (unsigned long)iref; 460 end = (unsigned long)ei + item_size; 461 while (ptr < end) { 462 iref = (struct btrfs_extent_inline_ref *)ptr; 463 type = btrfs_extent_inline_ref_type(leaf, iref); 464 offset = btrfs_extent_inline_ref_offset(leaf, iref); 465 switch (type) { 466 case BTRFS_TREE_BLOCK_REF_KEY: 467 ret = add_tree_block(fs_info, offset, 0, key->objectid, 468 *tree_block_level); 469 break; 470 case BTRFS_SHARED_BLOCK_REF_KEY: 471 ret = add_tree_block(fs_info, 0, offset, key->objectid, 472 *tree_block_level); 473 break; 474 case BTRFS_EXTENT_DATA_REF_KEY: 475 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 476 ret = add_extent_data_ref(fs_info, leaf, dref, 477 key->objectid, key->offset); 478 break; 479 case BTRFS_SHARED_DATA_REF_KEY: 480 sref = (struct btrfs_shared_data_ref *)(iref + 1); 481 count = btrfs_shared_data_ref_count(leaf, sref); 482 ret = add_shared_data_ref(fs_info, offset, count, 483 key->objectid, key->offset); 484 break; 485 default: 486 btrfs_err(fs_info, "invalid key type in iref"); 487 ret = -EINVAL; 488 break; 489 } 490 if (ret) 491 break; 492 ptr += btrfs_extent_inline_ref_size(type); 493 } 494 return ret; 495 } 496 497 static int process_leaf(struct btrfs_root *root, 498 struct btrfs_path *path, u64 *bytenr, u64 *num_bytes) 499 { 500 struct btrfs_fs_info *fs_info = root->fs_info; 501 struct extent_buffer *leaf = path->nodes[0]; 502 struct btrfs_extent_data_ref *dref; 503 struct btrfs_shared_data_ref *sref; 504 u32 count; 505 int i = 0, tree_block_level = 0, ret = 0; 506 struct btrfs_key key; 507 int nritems = btrfs_header_nritems(leaf); 508 509 for (i = 0; i < nritems; i++) { 510 btrfs_item_key_to_cpu(leaf, &key, i); 511 switch (key.type) { 512 case BTRFS_EXTENT_ITEM_KEY: 513 *num_bytes = key.offset; 514 fallthrough; 515 case BTRFS_METADATA_ITEM_KEY: 516 *bytenr = key.objectid; 517 ret = process_extent_item(fs_info, path, &key, i, 518 &tree_block_level); 519 break; 520 case BTRFS_TREE_BLOCK_REF_KEY: 521 ret = add_tree_block(fs_info, key.offset, 0, 522 key.objectid, tree_block_level); 523 break; 524 case BTRFS_SHARED_BLOCK_REF_KEY: 525 ret = add_tree_block(fs_info, 0, key.offset, 526 key.objectid, tree_block_level); 527 break; 528 case BTRFS_EXTENT_DATA_REF_KEY: 529 dref = btrfs_item_ptr(leaf, i, 530 struct btrfs_extent_data_ref); 531 ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr, 532 *num_bytes); 533 break; 534 case BTRFS_SHARED_DATA_REF_KEY: 535 sref = btrfs_item_ptr(leaf, i, 536 struct btrfs_shared_data_ref); 537 count = btrfs_shared_data_ref_count(leaf, sref); 538 ret = add_shared_data_ref(fs_info, key.offset, count, 539 *bytenr, *num_bytes); 540 break; 541 default: 542 break; 543 } 544 if (ret) 545 break; 546 } 547 return ret; 548 } 549 550 /* Walk down to the leaf from the given level */ 551 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, 552 int level, u64 *bytenr, u64 *num_bytes) 553 { 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 struct extent_buffer *eb; 556 u64 block_bytenr, gen; 557 int ret = 0; 558 559 while (level >= 0) { 560 if (level) { 561 struct btrfs_key first_key; 562 563 block_bytenr = btrfs_node_blockptr(path->nodes[level], 564 path->slots[level]); 565 gen = btrfs_node_ptr_generation(path->nodes[level], 566 path->slots[level]); 567 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 568 path->slots[level]); 569 eb = read_tree_block(fs_info, block_bytenr, gen, 570 level - 1, &first_key); 571 if (IS_ERR(eb)) 572 return PTR_ERR(eb); 573 if (!extent_buffer_uptodate(eb)) { 574 free_extent_buffer(eb); 575 return -EIO; 576 } 577 btrfs_tree_read_lock(eb); 578 btrfs_set_lock_blocking_read(eb); 579 path->nodes[level-1] = eb; 580 path->slots[level-1] = 0; 581 path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING; 582 } else { 583 ret = process_leaf(root, path, bytenr, num_bytes); 584 if (ret) 585 break; 586 } 587 level--; 588 } 589 return ret; 590 } 591 592 /* Walk up to the next node that needs to be processed */ 593 static int walk_up_tree(struct btrfs_path *path, int *level) 594 { 595 int l; 596 597 for (l = 0; l < BTRFS_MAX_LEVEL; l++) { 598 if (!path->nodes[l]) 599 continue; 600 if (l) { 601 path->slots[l]++; 602 if (path->slots[l] < 603 btrfs_header_nritems(path->nodes[l])) { 604 *level = l; 605 return 0; 606 } 607 } 608 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]); 609 free_extent_buffer(path->nodes[l]); 610 path->nodes[l] = NULL; 611 path->slots[l] = 0; 612 path->locks[l] = 0; 613 } 614 615 return 1; 616 } 617 618 static void dump_ref_action(struct btrfs_fs_info *fs_info, 619 struct ref_action *ra) 620 { 621 btrfs_err(fs_info, 622 " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", 623 ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent, 624 ra->ref.owner, ra->ref.offset, ra->ref.num_refs); 625 __print_stack_trace(fs_info, ra); 626 } 627 628 /* 629 * Dumps all the information from the block entry to printk, it's going to be 630 * awesome. 631 */ 632 static void dump_block_entry(struct btrfs_fs_info *fs_info, 633 struct block_entry *be) 634 { 635 struct ref_entry *ref; 636 struct root_entry *re; 637 struct ref_action *ra; 638 struct rb_node *n; 639 640 btrfs_err(fs_info, 641 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d", 642 be->bytenr, be->len, be->num_refs, be->metadata, 643 be->from_disk); 644 645 for (n = rb_first(&be->refs); n; n = rb_next(n)) { 646 ref = rb_entry(n, struct ref_entry, node); 647 btrfs_err(fs_info, 648 " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu", 649 ref->root_objectid, ref->parent, ref->owner, 650 ref->offset, ref->num_refs); 651 } 652 653 for (n = rb_first(&be->roots); n; n = rb_next(n)) { 654 re = rb_entry(n, struct root_entry, node); 655 btrfs_err(fs_info, " root entry %llu, num_refs %llu", 656 re->root_objectid, re->num_refs); 657 } 658 659 list_for_each_entry(ra, &be->actions, list) 660 dump_ref_action(fs_info, ra); 661 } 662 663 /* 664 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr 665 * 666 * This will add an action item to the given bytenr and do sanity checks to make 667 * sure we haven't messed something up. If we are making a new allocation and 668 * this block entry has history we will delete all previous actions as long as 669 * our sanity checks pass as they are no longer needed. 670 */ 671 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info, 672 struct btrfs_ref *generic_ref) 673 { 674 struct ref_entry *ref = NULL, *exist; 675 struct ref_action *ra = NULL; 676 struct block_entry *be = NULL; 677 struct root_entry *re = NULL; 678 int action = generic_ref->action; 679 int ret = 0; 680 bool metadata; 681 u64 bytenr = generic_ref->bytenr; 682 u64 num_bytes = generic_ref->len; 683 u64 parent = generic_ref->parent; 684 u64 ref_root; 685 u64 owner; 686 u64 offset; 687 688 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 689 return 0; 690 691 if (generic_ref->type == BTRFS_REF_METADATA) { 692 ref_root = generic_ref->tree_ref.root; 693 owner = generic_ref->tree_ref.level; 694 offset = 0; 695 } else { 696 ref_root = generic_ref->data_ref.ref_root; 697 owner = generic_ref->data_ref.ino; 698 offset = generic_ref->data_ref.offset; 699 } 700 metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 701 702 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS); 703 ra = kmalloc(sizeof(struct ref_action), GFP_NOFS); 704 if (!ra || !ref) { 705 kfree(ref); 706 kfree(ra); 707 ret = -ENOMEM; 708 goto out; 709 } 710 711 if (parent) { 712 ref->parent = parent; 713 } else { 714 ref->root_objectid = ref_root; 715 ref->owner = owner; 716 ref->offset = offset; 717 } 718 ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1; 719 720 memcpy(&ra->ref, ref, sizeof(struct ref_entry)); 721 /* 722 * Save the extra info from the delayed ref in the ref action to make it 723 * easier to figure out what is happening. The real ref's we add to the 724 * ref tree need to reflect what we save on disk so it matches any 725 * on-disk refs we pre-loaded. 726 */ 727 ra->ref.owner = owner; 728 ra->ref.offset = offset; 729 ra->ref.root_objectid = ref_root; 730 __save_stack_trace(ra); 731 732 INIT_LIST_HEAD(&ra->list); 733 ra->action = action; 734 ra->root = generic_ref->real_root; 735 736 /* 737 * This is an allocation, preallocate the block_entry in case we haven't 738 * used it before. 739 */ 740 ret = -EINVAL; 741 if (action == BTRFS_ADD_DELAYED_EXTENT) { 742 /* 743 * For subvol_create we'll just pass in whatever the parent root 744 * is and the new root objectid, so let's not treat the passed 745 * in root as if it really has a ref for this bytenr. 746 */ 747 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root); 748 if (IS_ERR(be)) { 749 kfree(ref); 750 kfree(ra); 751 ret = PTR_ERR(be); 752 goto out; 753 } 754 be->num_refs++; 755 if (metadata) 756 be->metadata = 1; 757 758 if (be->num_refs != 1) { 759 btrfs_err(fs_info, 760 "re-allocated a block that still has references to it!"); 761 dump_block_entry(fs_info, be); 762 dump_ref_action(fs_info, ra); 763 kfree(ref); 764 kfree(ra); 765 goto out_unlock; 766 } 767 768 while (!list_empty(&be->actions)) { 769 struct ref_action *tmp; 770 771 tmp = list_first_entry(&be->actions, struct ref_action, 772 list); 773 list_del(&tmp->list); 774 kfree(tmp); 775 } 776 } else { 777 struct root_entry *tmp; 778 779 if (!parent) { 780 re = kmalloc(sizeof(struct root_entry), GFP_NOFS); 781 if (!re) { 782 kfree(ref); 783 kfree(ra); 784 ret = -ENOMEM; 785 goto out; 786 } 787 /* 788 * This is the root that is modifying us, so it's the 789 * one we want to lookup below when we modify the 790 * re->num_refs. 791 */ 792 ref_root = generic_ref->real_root; 793 re->root_objectid = generic_ref->real_root; 794 re->num_refs = 0; 795 } 796 797 spin_lock(&fs_info->ref_verify_lock); 798 be = lookup_block_entry(&fs_info->block_tree, bytenr); 799 if (!be) { 800 btrfs_err(fs_info, 801 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!", 802 action, (unsigned long long)bytenr, 803 (unsigned long long)num_bytes); 804 dump_ref_action(fs_info, ra); 805 kfree(ref); 806 kfree(ra); 807 goto out_unlock; 808 } else if (be->num_refs == 0) { 809 btrfs_err(fs_info, 810 "trying to do action %d for a bytenr that has 0 total references", 811 action); 812 dump_block_entry(fs_info, be); 813 dump_ref_action(fs_info, ra); 814 kfree(ref); 815 kfree(ra); 816 goto out_unlock; 817 } 818 819 if (!parent) { 820 tmp = insert_root_entry(&be->roots, re); 821 if (tmp) { 822 kfree(re); 823 re = tmp; 824 } 825 } 826 } 827 828 exist = insert_ref_entry(&be->refs, ref); 829 if (exist) { 830 if (action == BTRFS_DROP_DELAYED_REF) { 831 if (exist->num_refs == 0) { 832 btrfs_err(fs_info, 833 "dropping a ref for a existing root that doesn't have a ref on the block"); 834 dump_block_entry(fs_info, be); 835 dump_ref_action(fs_info, ra); 836 kfree(ref); 837 kfree(ra); 838 goto out_unlock; 839 } 840 exist->num_refs--; 841 if (exist->num_refs == 0) { 842 rb_erase(&exist->node, &be->refs); 843 kfree(exist); 844 } 845 } else if (!be->metadata) { 846 exist->num_refs++; 847 } else { 848 btrfs_err(fs_info, 849 "attempting to add another ref for an existing ref on a tree block"); 850 dump_block_entry(fs_info, be); 851 dump_ref_action(fs_info, ra); 852 kfree(ref); 853 kfree(ra); 854 goto out_unlock; 855 } 856 kfree(ref); 857 } else { 858 if (action == BTRFS_DROP_DELAYED_REF) { 859 btrfs_err(fs_info, 860 "dropping a ref for a root that doesn't have a ref on the block"); 861 dump_block_entry(fs_info, be); 862 dump_ref_action(fs_info, ra); 863 kfree(ref); 864 kfree(ra); 865 goto out_unlock; 866 } 867 } 868 869 if (!parent && !re) { 870 re = lookup_root_entry(&be->roots, ref_root); 871 if (!re) { 872 /* 873 * This shouldn't happen because we will add our re 874 * above when we lookup the be with !parent, but just in 875 * case catch this case so we don't panic because I 876 * didn't think of some other corner case. 877 */ 878 btrfs_err(fs_info, "failed to find root %llu for %llu", 879 generic_ref->real_root, be->bytenr); 880 dump_block_entry(fs_info, be); 881 dump_ref_action(fs_info, ra); 882 kfree(ra); 883 goto out_unlock; 884 } 885 } 886 if (action == BTRFS_DROP_DELAYED_REF) { 887 if (re) 888 re->num_refs--; 889 be->num_refs--; 890 } else if (action == BTRFS_ADD_DELAYED_REF) { 891 be->num_refs++; 892 if (re) 893 re->num_refs++; 894 } 895 list_add_tail(&ra->list, &be->actions); 896 ret = 0; 897 out_unlock: 898 spin_unlock(&fs_info->ref_verify_lock); 899 out: 900 if (ret) 901 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); 902 return ret; 903 } 904 905 /* Free up the ref cache */ 906 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info) 907 { 908 struct block_entry *be; 909 struct rb_node *n; 910 911 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 912 return; 913 914 spin_lock(&fs_info->ref_verify_lock); 915 while ((n = rb_first(&fs_info->block_tree))) { 916 be = rb_entry(n, struct block_entry, node); 917 rb_erase(&be->node, &fs_info->block_tree); 918 free_block_entry(be); 919 cond_resched_lock(&fs_info->ref_verify_lock); 920 } 921 spin_unlock(&fs_info->ref_verify_lock); 922 } 923 924 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start, 925 u64 len) 926 { 927 struct block_entry *be = NULL, *entry; 928 struct rb_node *n; 929 930 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 931 return; 932 933 spin_lock(&fs_info->ref_verify_lock); 934 n = fs_info->block_tree.rb_node; 935 while (n) { 936 entry = rb_entry(n, struct block_entry, node); 937 if (entry->bytenr < start) { 938 n = n->rb_right; 939 } else if (entry->bytenr > start) { 940 n = n->rb_left; 941 } else { 942 be = entry; 943 break; 944 } 945 /* We want to get as close to start as possible */ 946 if (be == NULL || 947 (entry->bytenr < start && be->bytenr > start) || 948 (entry->bytenr < start && entry->bytenr > be->bytenr)) 949 be = entry; 950 } 951 952 /* 953 * Could have an empty block group, maybe have something to check for 954 * this case to verify we were actually empty? 955 */ 956 if (!be) { 957 spin_unlock(&fs_info->ref_verify_lock); 958 return; 959 } 960 961 n = &be->node; 962 while (n) { 963 be = rb_entry(n, struct block_entry, node); 964 n = rb_next(n); 965 if (be->bytenr < start && be->bytenr + be->len > start) { 966 btrfs_err(fs_info, 967 "block entry overlaps a block group [%llu,%llu]!", 968 start, len); 969 dump_block_entry(fs_info, be); 970 continue; 971 } 972 if (be->bytenr < start) 973 continue; 974 if (be->bytenr >= start + len) 975 break; 976 if (be->bytenr + be->len > start + len) { 977 btrfs_err(fs_info, 978 "block entry overlaps a block group [%llu,%llu]!", 979 start, len); 980 dump_block_entry(fs_info, be); 981 } 982 rb_erase(&be->node, &fs_info->block_tree); 983 free_block_entry(be); 984 } 985 spin_unlock(&fs_info->ref_verify_lock); 986 } 987 988 /* Walk down all roots and build the ref tree, meant to be called at mount */ 989 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info) 990 { 991 struct btrfs_path *path; 992 struct extent_buffer *eb; 993 u64 bytenr = 0, num_bytes = 0; 994 int ret, level; 995 996 if (!btrfs_test_opt(fs_info, REF_VERIFY)) 997 return 0; 998 999 path = btrfs_alloc_path(); 1000 if (!path) 1001 return -ENOMEM; 1002 1003 eb = btrfs_read_lock_root_node(fs_info->extent_root); 1004 btrfs_set_lock_blocking_read(eb); 1005 level = btrfs_header_level(eb); 1006 path->nodes[level] = eb; 1007 path->slots[level] = 0; 1008 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 1009 1010 while (1) { 1011 /* 1012 * We have to keep track of the bytenr/num_bytes we last hit 1013 * because we could have run out of space for an inline ref, and 1014 * would have had to added a ref key item which may appear on a 1015 * different leaf from the original extent item. 1016 */ 1017 ret = walk_down_tree(fs_info->extent_root, path, level, 1018 &bytenr, &num_bytes); 1019 if (ret) 1020 break; 1021 ret = walk_up_tree(path, &level); 1022 if (ret < 0) 1023 break; 1024 if (ret > 0) { 1025 ret = 0; 1026 break; 1027 } 1028 } 1029 if (ret) { 1030 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY); 1031 btrfs_free_ref_cache(fs_info); 1032 } 1033 btrfs_free_path(path); 1034 return ret; 1035 } 1036