1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "misc.h" 18 #include "ctree.h" 19 #include "disk-io.h" 20 #include "volumes.h" 21 #include "raid56.h" 22 #include "async-thread.h" 23 #include "file-item.h" 24 #include "btrfs_inode.h" 25 26 /* set when additional merges to this rbio are not allowed */ 27 #define RBIO_RMW_LOCKED_BIT 1 28 29 /* 30 * set when this rbio is sitting in the hash, but it is just a cache 31 * of past RMW 32 */ 33 #define RBIO_CACHE_BIT 2 34 35 /* 36 * set when it is safe to trust the stripe_pages for caching 37 */ 38 #define RBIO_CACHE_READY_BIT 3 39 40 #define RBIO_CACHE_SIZE 1024 41 42 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 43 44 /* Used by the raid56 code to lock stripes for read/modify/write */ 45 struct btrfs_stripe_hash { 46 struct list_head hash_list; 47 spinlock_t lock; 48 }; 49 50 /* Used by the raid56 code to lock stripes for read/modify/write */ 51 struct btrfs_stripe_hash_table { 52 struct list_head stripe_cache; 53 spinlock_t cache_lock; 54 int cache_size; 55 struct btrfs_stripe_hash table[]; 56 }; 57 58 /* 59 * A bvec like structure to present a sector inside a page. 60 * 61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 62 */ 63 struct sector_ptr { 64 struct page *page; 65 unsigned int pgoff:24; 66 unsigned int uptodate:8; 67 }; 68 69 static void rmw_rbio_work(struct work_struct *work); 70 static void rmw_rbio_work_locked(struct work_struct *work); 71 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 73 74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check); 75 static void scrub_rbio_work_locked(struct work_struct *work); 76 77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 78 { 79 bitmap_free(rbio->error_bitmap); 80 kfree(rbio->stripe_pages); 81 kfree(rbio->bio_sectors); 82 kfree(rbio->stripe_sectors); 83 kfree(rbio->finish_pointers); 84 } 85 86 static void free_raid_bio(struct btrfs_raid_bio *rbio) 87 { 88 int i; 89 90 if (!refcount_dec_and_test(&rbio->refs)) 91 return; 92 93 WARN_ON(!list_empty(&rbio->stripe_cache)); 94 WARN_ON(!list_empty(&rbio->hash_list)); 95 WARN_ON(!bio_list_empty(&rbio->bio_list)); 96 97 for (i = 0; i < rbio->nr_pages; i++) { 98 if (rbio->stripe_pages[i]) { 99 __free_page(rbio->stripe_pages[i]); 100 rbio->stripe_pages[i] = NULL; 101 } 102 } 103 104 btrfs_put_bioc(rbio->bioc); 105 free_raid_bio_pointers(rbio); 106 kfree(rbio); 107 } 108 109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 110 { 111 INIT_WORK(&rbio->work, work_func); 112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 113 } 114 115 /* 116 * the stripe hash table is used for locking, and to collect 117 * bios in hopes of making a full stripe 118 */ 119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 120 { 121 struct btrfs_stripe_hash_table *table; 122 struct btrfs_stripe_hash_table *x; 123 struct btrfs_stripe_hash *cur; 124 struct btrfs_stripe_hash *h; 125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 126 int i; 127 128 if (info->stripe_hash_table) 129 return 0; 130 131 /* 132 * The table is large, starting with order 4 and can go as high as 133 * order 7 in case lock debugging is turned on. 134 * 135 * Try harder to allocate and fallback to vmalloc to lower the chance 136 * of a failing mount. 137 */ 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 139 if (!table) 140 return -ENOMEM; 141 142 spin_lock_init(&table->cache_lock); 143 INIT_LIST_HEAD(&table->stripe_cache); 144 145 h = table->table; 146 147 for (i = 0; i < num_entries; i++) { 148 cur = h + i; 149 INIT_LIST_HEAD(&cur->hash_list); 150 spin_lock_init(&cur->lock); 151 } 152 153 x = cmpxchg(&info->stripe_hash_table, NULL, table); 154 kvfree(x); 155 return 0; 156 } 157 158 /* 159 * caching an rbio means to copy anything from the 160 * bio_sectors array into the stripe_pages array. We 161 * use the page uptodate bit in the stripe cache array 162 * to indicate if it has valid data 163 * 164 * once the caching is done, we set the cache ready 165 * bit. 166 */ 167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 168 { 169 int i; 170 int ret; 171 172 ret = alloc_rbio_pages(rbio); 173 if (ret) 174 return; 175 176 for (i = 0; i < rbio->nr_sectors; i++) { 177 /* Some range not covered by bio (partial write), skip it */ 178 if (!rbio->bio_sectors[i].page) { 179 /* 180 * Even if the sector is not covered by bio, if it is 181 * a data sector it should still be uptodate as it is 182 * read from disk. 183 */ 184 if (i < rbio->nr_data * rbio->stripe_nsectors) 185 ASSERT(rbio->stripe_sectors[i].uptodate); 186 continue; 187 } 188 189 ASSERT(rbio->stripe_sectors[i].page); 190 memcpy_page(rbio->stripe_sectors[i].page, 191 rbio->stripe_sectors[i].pgoff, 192 rbio->bio_sectors[i].page, 193 rbio->bio_sectors[i].pgoff, 194 rbio->bioc->fs_info->sectorsize); 195 rbio->stripe_sectors[i].uptodate = 1; 196 } 197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 198 } 199 200 /* 201 * we hash on the first logical address of the stripe 202 */ 203 static int rbio_bucket(struct btrfs_raid_bio *rbio) 204 { 205 u64 num = rbio->bioc->raid_map[0]; 206 207 /* 208 * we shift down quite a bit. We're using byte 209 * addressing, and most of the lower bits are zeros. 210 * This tends to upset hash_64, and it consistently 211 * returns just one or two different values. 212 * 213 * shifting off the lower bits fixes things. 214 */ 215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 216 } 217 218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 219 unsigned int page_nr) 220 { 221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 222 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 223 int i; 224 225 ASSERT(page_nr < rbio->nr_pages); 226 227 for (i = sectors_per_page * page_nr; 228 i < sectors_per_page * page_nr + sectors_per_page; 229 i++) { 230 if (!rbio->stripe_sectors[i].uptodate) 231 return false; 232 } 233 return true; 234 } 235 236 /* 237 * Update the stripe_sectors[] array to use correct page and pgoff 238 * 239 * Should be called every time any page pointer in stripes_pages[] got modified. 240 */ 241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 242 { 243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 244 u32 offset; 245 int i; 246 247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 248 int page_index = offset >> PAGE_SHIFT; 249 250 ASSERT(page_index < rbio->nr_pages); 251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 253 } 254 } 255 256 static void steal_rbio_page(struct btrfs_raid_bio *src, 257 struct btrfs_raid_bio *dest, int page_nr) 258 { 259 const u32 sectorsize = src->bioc->fs_info->sectorsize; 260 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 261 int i; 262 263 if (dest->stripe_pages[page_nr]) 264 __free_page(dest->stripe_pages[page_nr]); 265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 266 src->stripe_pages[page_nr] = NULL; 267 268 /* Also update the sector->uptodate bits. */ 269 for (i = sectors_per_page * page_nr; 270 i < sectors_per_page * page_nr + sectors_per_page; i++) 271 dest->stripe_sectors[i].uptodate = true; 272 } 273 274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 275 { 276 const int sector_nr = (page_nr << PAGE_SHIFT) >> 277 rbio->bioc->fs_info->sectorsize_bits; 278 279 /* 280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 281 * we won't have a page which is half data half parity. 282 * 283 * Thus if the first sector of the page belongs to data stripes, then 284 * the full page belongs to data stripes. 285 */ 286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 287 } 288 289 /* 290 * Stealing an rbio means taking all the uptodate pages from the stripe array 291 * in the source rbio and putting them into the destination rbio. 292 * 293 * This will also update the involved stripe_sectors[] which are referring to 294 * the old pages. 295 */ 296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 297 { 298 int i; 299 300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 301 return; 302 303 for (i = 0; i < dest->nr_pages; i++) { 304 struct page *p = src->stripe_pages[i]; 305 306 /* 307 * We don't need to steal P/Q pages as they will always be 308 * regenerated for RMW or full write anyway. 309 */ 310 if (!is_data_stripe_page(src, i)) 311 continue; 312 313 /* 314 * If @src already has RBIO_CACHE_READY_BIT, it should have 315 * all data stripe pages present and uptodate. 316 */ 317 ASSERT(p); 318 ASSERT(full_page_sectors_uptodate(src, i)); 319 steal_rbio_page(src, dest, i); 320 } 321 index_stripe_sectors(dest); 322 index_stripe_sectors(src); 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 /* Also inherit the bitmaps from @victim. */ 338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 339 dest->stripe_nsectors); 340 bio_list_init(&victim->bio_list); 341 } 342 343 /* 344 * used to prune items that are in the cache. The caller 345 * must hold the hash table lock. 346 */ 347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 348 { 349 int bucket = rbio_bucket(rbio); 350 struct btrfs_stripe_hash_table *table; 351 struct btrfs_stripe_hash *h; 352 int freeit = 0; 353 354 /* 355 * check the bit again under the hash table lock. 356 */ 357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 358 return; 359 360 table = rbio->bioc->fs_info->stripe_hash_table; 361 h = table->table + bucket; 362 363 /* hold the lock for the bucket because we may be 364 * removing it from the hash table 365 */ 366 spin_lock(&h->lock); 367 368 /* 369 * hold the lock for the bio list because we need 370 * to make sure the bio list is empty 371 */ 372 spin_lock(&rbio->bio_list_lock); 373 374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 375 list_del_init(&rbio->stripe_cache); 376 table->cache_size -= 1; 377 freeit = 1; 378 379 /* if the bio list isn't empty, this rbio is 380 * still involved in an IO. We take it out 381 * of the cache list, and drop the ref that 382 * was held for the list. 383 * 384 * If the bio_list was empty, we also remove 385 * the rbio from the hash_table, and drop 386 * the corresponding ref 387 */ 388 if (bio_list_empty(&rbio->bio_list)) { 389 if (!list_empty(&rbio->hash_list)) { 390 list_del_init(&rbio->hash_list); 391 refcount_dec(&rbio->refs); 392 BUG_ON(!list_empty(&rbio->plug_list)); 393 } 394 } 395 } 396 397 spin_unlock(&rbio->bio_list_lock); 398 spin_unlock(&h->lock); 399 400 if (freeit) 401 free_raid_bio(rbio); 402 } 403 404 /* 405 * prune a given rbio from the cache 406 */ 407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 408 { 409 struct btrfs_stripe_hash_table *table; 410 unsigned long flags; 411 412 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 413 return; 414 415 table = rbio->bioc->fs_info->stripe_hash_table; 416 417 spin_lock_irqsave(&table->cache_lock, flags); 418 __remove_rbio_from_cache(rbio); 419 spin_unlock_irqrestore(&table->cache_lock, flags); 420 } 421 422 /* 423 * remove everything in the cache 424 */ 425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 426 { 427 struct btrfs_stripe_hash_table *table; 428 unsigned long flags; 429 struct btrfs_raid_bio *rbio; 430 431 table = info->stripe_hash_table; 432 433 spin_lock_irqsave(&table->cache_lock, flags); 434 while (!list_empty(&table->stripe_cache)) { 435 rbio = list_entry(table->stripe_cache.next, 436 struct btrfs_raid_bio, 437 stripe_cache); 438 __remove_rbio_from_cache(rbio); 439 } 440 spin_unlock_irqrestore(&table->cache_lock, flags); 441 } 442 443 /* 444 * remove all cached entries and free the hash table 445 * used by unmount 446 */ 447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 448 { 449 if (!info->stripe_hash_table) 450 return; 451 btrfs_clear_rbio_cache(info); 452 kvfree(info->stripe_hash_table); 453 info->stripe_hash_table = NULL; 454 } 455 456 /* 457 * insert an rbio into the stripe cache. It 458 * must have already been prepared by calling 459 * cache_rbio_pages 460 * 461 * If this rbio was already cached, it gets 462 * moved to the front of the lru. 463 * 464 * If the size of the rbio cache is too big, we 465 * prune an item. 466 */ 467 static void cache_rbio(struct btrfs_raid_bio *rbio) 468 { 469 struct btrfs_stripe_hash_table *table; 470 unsigned long flags; 471 472 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 473 return; 474 475 table = rbio->bioc->fs_info->stripe_hash_table; 476 477 spin_lock_irqsave(&table->cache_lock, flags); 478 spin_lock(&rbio->bio_list_lock); 479 480 /* bump our ref if we were not in the list before */ 481 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 482 refcount_inc(&rbio->refs); 483 484 if (!list_empty(&rbio->stripe_cache)){ 485 list_move(&rbio->stripe_cache, &table->stripe_cache); 486 } else { 487 list_add(&rbio->stripe_cache, &table->stripe_cache); 488 table->cache_size += 1; 489 } 490 491 spin_unlock(&rbio->bio_list_lock); 492 493 if (table->cache_size > RBIO_CACHE_SIZE) { 494 struct btrfs_raid_bio *found; 495 496 found = list_entry(table->stripe_cache.prev, 497 struct btrfs_raid_bio, 498 stripe_cache); 499 500 if (found != rbio) 501 __remove_rbio_from_cache(found); 502 } 503 504 spin_unlock_irqrestore(&table->cache_lock, flags); 505 } 506 507 /* 508 * helper function to run the xor_blocks api. It is only 509 * able to do MAX_XOR_BLOCKS at a time, so we need to 510 * loop through. 511 */ 512 static void run_xor(void **pages, int src_cnt, ssize_t len) 513 { 514 int src_off = 0; 515 int xor_src_cnt = 0; 516 void *dest = pages[src_cnt]; 517 518 while(src_cnt > 0) { 519 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 520 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 521 522 src_cnt -= xor_src_cnt; 523 src_off += xor_src_cnt; 524 } 525 } 526 527 /* 528 * Returns true if the bio list inside this rbio covers an entire stripe (no 529 * rmw required). 530 */ 531 static int rbio_is_full(struct btrfs_raid_bio *rbio) 532 { 533 unsigned long flags; 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 spin_lock_irqsave(&rbio->bio_list_lock, flags); 538 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 539 ret = 0; 540 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 541 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 542 543 return ret; 544 } 545 546 /* 547 * returns 1 if it is safe to merge two rbios together. 548 * The merging is safe if the two rbios correspond to 549 * the same stripe and if they are both going in the same 550 * direction (read vs write), and if neither one is 551 * locked for final IO 552 * 553 * The caller is responsible for locking such that 554 * rmw_locked is safe to test 555 */ 556 static int rbio_can_merge(struct btrfs_raid_bio *last, 557 struct btrfs_raid_bio *cur) 558 { 559 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 560 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 561 return 0; 562 563 /* 564 * we can't merge with cached rbios, since the 565 * idea is that when we merge the destination 566 * rbio is going to run our IO for us. We can 567 * steal from cached rbios though, other functions 568 * handle that. 569 */ 570 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 571 test_bit(RBIO_CACHE_BIT, &cur->flags)) 572 return 0; 573 574 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0]) 575 return 0; 576 577 /* we can't merge with different operations */ 578 if (last->operation != cur->operation) 579 return 0; 580 /* 581 * We've need read the full stripe from the drive. 582 * check and repair the parity and write the new results. 583 * 584 * We're not allowed to add any new bios to the 585 * bio list here, anyone else that wants to 586 * change this stripe needs to do their own rmw. 587 */ 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 589 return 0; 590 591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 592 last->operation == BTRFS_RBIO_READ_REBUILD) 593 return 0; 594 595 return 1; 596 } 597 598 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 599 unsigned int stripe_nr, 600 unsigned int sector_nr) 601 { 602 ASSERT(stripe_nr < rbio->real_stripes); 603 ASSERT(sector_nr < rbio->stripe_nsectors); 604 605 return stripe_nr * rbio->stripe_nsectors + sector_nr; 606 } 607 608 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 609 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 610 unsigned int stripe_nr, 611 unsigned int sector_nr) 612 { 613 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 614 sector_nr)]; 615 } 616 617 /* Grab a sector inside P stripe */ 618 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 619 unsigned int sector_nr) 620 { 621 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 622 } 623 624 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 625 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 626 unsigned int sector_nr) 627 { 628 if (rbio->nr_data + 1 == rbio->real_stripes) 629 return NULL; 630 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 631 } 632 633 /* 634 * The first stripe in the table for a logical address 635 * has the lock. rbios are added in one of three ways: 636 * 637 * 1) Nobody has the stripe locked yet. The rbio is given 638 * the lock and 0 is returned. The caller must start the IO 639 * themselves. 640 * 641 * 2) Someone has the stripe locked, but we're able to merge 642 * with the lock owner. The rbio is freed and the IO will 643 * start automatically along with the existing rbio. 1 is returned. 644 * 645 * 3) Someone has the stripe locked, but we're not able to merge. 646 * The rbio is added to the lock owner's plug list, or merged into 647 * an rbio already on the plug list. When the lock owner unlocks, 648 * the next rbio on the list is run and the IO is started automatically. 649 * 1 is returned 650 * 651 * If we return 0, the caller still owns the rbio and must continue with 652 * IO submission. If we return 1, the caller must assume the rbio has 653 * already been freed. 654 */ 655 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 656 { 657 struct btrfs_stripe_hash *h; 658 struct btrfs_raid_bio *cur; 659 struct btrfs_raid_bio *pending; 660 unsigned long flags; 661 struct btrfs_raid_bio *freeit = NULL; 662 struct btrfs_raid_bio *cache_drop = NULL; 663 int ret = 0; 664 665 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 666 667 spin_lock_irqsave(&h->lock, flags); 668 list_for_each_entry(cur, &h->hash_list, hash_list) { 669 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0]) 670 continue; 671 672 spin_lock(&cur->bio_list_lock); 673 674 /* Can we steal this cached rbio's pages? */ 675 if (bio_list_empty(&cur->bio_list) && 676 list_empty(&cur->plug_list) && 677 test_bit(RBIO_CACHE_BIT, &cur->flags) && 678 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 679 list_del_init(&cur->hash_list); 680 refcount_dec(&cur->refs); 681 682 steal_rbio(cur, rbio); 683 cache_drop = cur; 684 spin_unlock(&cur->bio_list_lock); 685 686 goto lockit; 687 } 688 689 /* Can we merge into the lock owner? */ 690 if (rbio_can_merge(cur, rbio)) { 691 merge_rbio(cur, rbio); 692 spin_unlock(&cur->bio_list_lock); 693 freeit = rbio; 694 ret = 1; 695 goto out; 696 } 697 698 699 /* 700 * We couldn't merge with the running rbio, see if we can merge 701 * with the pending ones. We don't have to check for rmw_locked 702 * because there is no way they are inside finish_rmw right now 703 */ 704 list_for_each_entry(pending, &cur->plug_list, plug_list) { 705 if (rbio_can_merge(pending, rbio)) { 706 merge_rbio(pending, rbio); 707 spin_unlock(&cur->bio_list_lock); 708 freeit = rbio; 709 ret = 1; 710 goto out; 711 } 712 } 713 714 /* 715 * No merging, put us on the tail of the plug list, our rbio 716 * will be started with the currently running rbio unlocks 717 */ 718 list_add_tail(&rbio->plug_list, &cur->plug_list); 719 spin_unlock(&cur->bio_list_lock); 720 ret = 1; 721 goto out; 722 } 723 lockit: 724 refcount_inc(&rbio->refs); 725 list_add(&rbio->hash_list, &h->hash_list); 726 out: 727 spin_unlock_irqrestore(&h->lock, flags); 728 if (cache_drop) 729 remove_rbio_from_cache(cache_drop); 730 if (freeit) 731 free_raid_bio(freeit); 732 return ret; 733 } 734 735 static void recover_rbio_work_locked(struct work_struct *work); 736 737 /* 738 * called as rmw or parity rebuild is completed. If the plug list has more 739 * rbios waiting for this stripe, the next one on the list will be started 740 */ 741 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 742 { 743 int bucket; 744 struct btrfs_stripe_hash *h; 745 unsigned long flags; 746 int keep_cache = 0; 747 748 bucket = rbio_bucket(rbio); 749 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 750 751 if (list_empty(&rbio->plug_list)) 752 cache_rbio(rbio); 753 754 spin_lock_irqsave(&h->lock, flags); 755 spin_lock(&rbio->bio_list_lock); 756 757 if (!list_empty(&rbio->hash_list)) { 758 /* 759 * if we're still cached and there is no other IO 760 * to perform, just leave this rbio here for others 761 * to steal from later 762 */ 763 if (list_empty(&rbio->plug_list) && 764 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 765 keep_cache = 1; 766 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 767 BUG_ON(!bio_list_empty(&rbio->bio_list)); 768 goto done; 769 } 770 771 list_del_init(&rbio->hash_list); 772 refcount_dec(&rbio->refs); 773 774 /* 775 * we use the plug list to hold all the rbios 776 * waiting for the chance to lock this stripe. 777 * hand the lock over to one of them. 778 */ 779 if (!list_empty(&rbio->plug_list)) { 780 struct btrfs_raid_bio *next; 781 struct list_head *head = rbio->plug_list.next; 782 783 next = list_entry(head, struct btrfs_raid_bio, 784 plug_list); 785 786 list_del_init(&rbio->plug_list); 787 788 list_add(&next->hash_list, &h->hash_list); 789 refcount_inc(&next->refs); 790 spin_unlock(&rbio->bio_list_lock); 791 spin_unlock_irqrestore(&h->lock, flags); 792 793 if (next->operation == BTRFS_RBIO_READ_REBUILD) 794 start_async_work(next, recover_rbio_work_locked); 795 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 796 steal_rbio(rbio, next); 797 start_async_work(next, recover_rbio_work_locked); 798 } else if (next->operation == BTRFS_RBIO_WRITE) { 799 steal_rbio(rbio, next); 800 start_async_work(next, rmw_rbio_work_locked); 801 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 802 steal_rbio(rbio, next); 803 start_async_work(next, scrub_rbio_work_locked); 804 } 805 806 goto done_nolock; 807 } 808 } 809 done: 810 spin_unlock(&rbio->bio_list_lock); 811 spin_unlock_irqrestore(&h->lock, flags); 812 813 done_nolock: 814 if (!keep_cache) 815 remove_rbio_from_cache(rbio); 816 } 817 818 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 819 { 820 struct bio *next; 821 822 while (cur) { 823 next = cur->bi_next; 824 cur->bi_next = NULL; 825 cur->bi_status = err; 826 bio_endio(cur); 827 cur = next; 828 } 829 } 830 831 /* 832 * this frees the rbio and runs through all the bios in the 833 * bio_list and calls end_io on them 834 */ 835 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 836 { 837 struct bio *cur = bio_list_get(&rbio->bio_list); 838 struct bio *extra; 839 840 kfree(rbio->csum_buf); 841 bitmap_free(rbio->csum_bitmap); 842 rbio->csum_buf = NULL; 843 rbio->csum_bitmap = NULL; 844 845 /* 846 * Clear the data bitmap, as the rbio may be cached for later usage. 847 * do this before before unlock_stripe() so there will be no new bio 848 * for this bio. 849 */ 850 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 851 852 /* 853 * At this moment, rbio->bio_list is empty, however since rbio does not 854 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 855 * hash list, rbio may be merged with others so that rbio->bio_list 856 * becomes non-empty. 857 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 858 * more and we can call bio_endio() on all queued bios. 859 */ 860 unlock_stripe(rbio); 861 extra = bio_list_get(&rbio->bio_list); 862 free_raid_bio(rbio); 863 864 rbio_endio_bio_list(cur, err); 865 if (extra) 866 rbio_endio_bio_list(extra, err); 867 } 868 869 /* 870 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 871 * 872 * @rbio: The raid bio 873 * @stripe_nr: Stripe number, valid range [0, real_stripe) 874 * @sector_nr: Sector number inside the stripe, 875 * valid range [0, stripe_nsectors) 876 * @bio_list_only: Whether to use sectors inside the bio list only. 877 * 878 * The read/modify/write code wants to reuse the original bio page as much 879 * as possible, and only use stripe_sectors as fallback. 880 */ 881 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 882 int stripe_nr, int sector_nr, 883 bool bio_list_only) 884 { 885 struct sector_ptr *sector; 886 int index; 887 888 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); 889 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 890 891 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 892 ASSERT(index >= 0 && index < rbio->nr_sectors); 893 894 spin_lock_irq(&rbio->bio_list_lock); 895 sector = &rbio->bio_sectors[index]; 896 if (sector->page || bio_list_only) { 897 /* Don't return sector without a valid page pointer */ 898 if (!sector->page) 899 sector = NULL; 900 spin_unlock_irq(&rbio->bio_list_lock); 901 return sector; 902 } 903 spin_unlock_irq(&rbio->bio_list_lock); 904 905 return &rbio->stripe_sectors[index]; 906 } 907 908 /* 909 * allocation and initial setup for the btrfs_raid_bio. Not 910 * this does not allocate any pages for rbio->pages. 911 */ 912 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 913 struct btrfs_io_context *bioc) 914 { 915 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs; 916 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 917 const unsigned int num_pages = stripe_npages * real_stripes; 918 const unsigned int stripe_nsectors = 919 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 920 const unsigned int num_sectors = stripe_nsectors * real_stripes; 921 struct btrfs_raid_bio *rbio; 922 923 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 924 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 925 /* 926 * Our current stripe len should be fixed to 64k thus stripe_nsectors 927 * (at most 16) should be no larger than BITS_PER_LONG. 928 */ 929 ASSERT(stripe_nsectors <= BITS_PER_LONG); 930 931 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 932 if (!rbio) 933 return ERR_PTR(-ENOMEM); 934 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 935 GFP_NOFS); 936 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 937 GFP_NOFS); 938 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 939 GFP_NOFS); 940 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 941 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 942 943 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 944 !rbio->finish_pointers || !rbio->error_bitmap) { 945 free_raid_bio_pointers(rbio); 946 kfree(rbio); 947 return ERR_PTR(-ENOMEM); 948 } 949 950 bio_list_init(&rbio->bio_list); 951 init_waitqueue_head(&rbio->io_wait); 952 INIT_LIST_HEAD(&rbio->plug_list); 953 spin_lock_init(&rbio->bio_list_lock); 954 INIT_LIST_HEAD(&rbio->stripe_cache); 955 INIT_LIST_HEAD(&rbio->hash_list); 956 btrfs_get_bioc(bioc); 957 rbio->bioc = bioc; 958 rbio->nr_pages = num_pages; 959 rbio->nr_sectors = num_sectors; 960 rbio->real_stripes = real_stripes; 961 rbio->stripe_npages = stripe_npages; 962 rbio->stripe_nsectors = stripe_nsectors; 963 refcount_set(&rbio->refs, 1); 964 atomic_set(&rbio->stripes_pending, 0); 965 966 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 967 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 968 969 return rbio; 970 } 971 972 /* allocate pages for all the stripes in the bio, including parity */ 973 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 974 { 975 int ret; 976 977 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); 978 if (ret < 0) 979 return ret; 980 /* Mapping all sectors */ 981 index_stripe_sectors(rbio); 982 return 0; 983 } 984 985 /* only allocate pages for p/q stripes */ 986 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 987 { 988 const int data_pages = rbio->nr_data * rbio->stripe_npages; 989 int ret; 990 991 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 992 rbio->stripe_pages + data_pages); 993 if (ret < 0) 994 return ret; 995 996 index_stripe_sectors(rbio); 997 return 0; 998 } 999 1000 /* 1001 * Return the total numer of errors found in the vertical stripe of @sector_nr. 1002 * 1003 * @faila and @failb will also be updated to the first and second stripe 1004 * number of the errors. 1005 */ 1006 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1007 int *faila, int *failb) 1008 { 1009 int stripe_nr; 1010 int found_errors = 0; 1011 1012 if (faila || failb) { 1013 /* 1014 * Both @faila and @failb should be valid pointers if any of 1015 * them is specified. 1016 */ 1017 ASSERT(faila && failb); 1018 *faila = -1; 1019 *failb = -1; 1020 } 1021 1022 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1023 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1024 1025 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1026 found_errors++; 1027 if (faila) { 1028 /* Update faila and failb. */ 1029 if (*faila < 0) 1030 *faila = stripe_nr; 1031 else if (*failb < 0) 1032 *failb = stripe_nr; 1033 } 1034 } 1035 } 1036 return found_errors; 1037 } 1038 1039 /* 1040 * Add a single sector @sector into our list of bios for IO. 1041 * 1042 * Return 0 if everything went well. 1043 * Return <0 for error. 1044 */ 1045 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1046 struct bio_list *bio_list, 1047 struct sector_ptr *sector, 1048 unsigned int stripe_nr, 1049 unsigned int sector_nr, 1050 enum req_op op) 1051 { 1052 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1053 struct bio *last = bio_list->tail; 1054 int ret; 1055 struct bio *bio; 1056 struct btrfs_io_stripe *stripe; 1057 u64 disk_start; 1058 1059 /* 1060 * Note: here stripe_nr has taken device replace into consideration, 1061 * thus it can be larger than rbio->real_stripe. 1062 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1063 */ 1064 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); 1065 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 1066 ASSERT(sector->page); 1067 1068 stripe = &rbio->bioc->stripes[stripe_nr]; 1069 disk_start = stripe->physical + sector_nr * sectorsize; 1070 1071 /* if the device is missing, just fail this stripe */ 1072 if (!stripe->dev->bdev) { 1073 int found_errors; 1074 1075 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1076 rbio->error_bitmap); 1077 1078 /* Check if we have reached tolerance early. */ 1079 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1080 NULL, NULL); 1081 if (found_errors > rbio->bioc->max_errors) 1082 return -EIO; 1083 return 0; 1084 } 1085 1086 /* see if we can add this page onto our existing bio */ 1087 if (last) { 1088 u64 last_end = last->bi_iter.bi_sector << 9; 1089 last_end += last->bi_iter.bi_size; 1090 1091 /* 1092 * we can't merge these if they are from different 1093 * devices or if they are not contiguous 1094 */ 1095 if (last_end == disk_start && !last->bi_status && 1096 last->bi_bdev == stripe->dev->bdev) { 1097 ret = bio_add_page(last, sector->page, sectorsize, 1098 sector->pgoff); 1099 if (ret == sectorsize) 1100 return 0; 1101 } 1102 } 1103 1104 /* put a new bio on the list */ 1105 bio = bio_alloc(stripe->dev->bdev, 1106 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1107 op, GFP_NOFS); 1108 bio->bi_iter.bi_sector = disk_start >> 9; 1109 bio->bi_private = rbio; 1110 1111 bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1112 bio_list_add(bio_list, bio); 1113 return 0; 1114 } 1115 1116 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1117 { 1118 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1119 struct bio_vec bvec; 1120 struct bvec_iter iter; 1121 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1122 rbio->bioc->raid_map[0]; 1123 1124 bio_for_each_segment(bvec, bio, iter) { 1125 u32 bvec_offset; 1126 1127 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1128 bvec_offset += sectorsize, offset += sectorsize) { 1129 int index = offset / sectorsize; 1130 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1131 1132 sector->page = bvec.bv_page; 1133 sector->pgoff = bvec.bv_offset + bvec_offset; 1134 ASSERT(sector->pgoff < PAGE_SIZE); 1135 } 1136 } 1137 } 1138 1139 /* 1140 * helper function to walk our bio list and populate the bio_pages array with 1141 * the result. This seems expensive, but it is faster than constantly 1142 * searching through the bio list as we setup the IO in finish_rmw or stripe 1143 * reconstruction. 1144 * 1145 * This must be called before you trust the answers from page_in_rbio 1146 */ 1147 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1148 { 1149 struct bio *bio; 1150 1151 spin_lock_irq(&rbio->bio_list_lock); 1152 bio_list_for_each(bio, &rbio->bio_list) 1153 index_one_bio(rbio, bio); 1154 1155 spin_unlock_irq(&rbio->bio_list_lock); 1156 } 1157 1158 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1159 struct raid56_bio_trace_info *trace_info) 1160 { 1161 const struct btrfs_io_context *bioc = rbio->bioc; 1162 int i; 1163 1164 ASSERT(bioc); 1165 1166 /* We rely on bio->bi_bdev to find the stripe number. */ 1167 if (!bio->bi_bdev) 1168 goto not_found; 1169 1170 for (i = 0; i < bioc->num_stripes; i++) { 1171 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1172 continue; 1173 trace_info->stripe_nr = i; 1174 trace_info->devid = bioc->stripes[i].dev->devid; 1175 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1176 bioc->stripes[i].physical; 1177 return; 1178 } 1179 1180 not_found: 1181 trace_info->devid = -1; 1182 trace_info->offset = -1; 1183 trace_info->stripe_nr = -1; 1184 } 1185 1186 /* Generate PQ for one veritical stripe. */ 1187 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1188 { 1189 void **pointers = rbio->finish_pointers; 1190 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1191 struct sector_ptr *sector; 1192 int stripe; 1193 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1194 1195 /* First collect one sector from each data stripe */ 1196 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1197 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1198 pointers[stripe] = kmap_local_page(sector->page) + 1199 sector->pgoff; 1200 } 1201 1202 /* Then add the parity stripe */ 1203 sector = rbio_pstripe_sector(rbio, sectornr); 1204 sector->uptodate = 1; 1205 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1206 1207 if (has_qstripe) { 1208 /* 1209 * RAID6, add the qstripe and call the library function 1210 * to fill in our p/q 1211 */ 1212 sector = rbio_qstripe_sector(rbio, sectornr); 1213 sector->uptodate = 1; 1214 pointers[stripe++] = kmap_local_page(sector->page) + 1215 sector->pgoff; 1216 1217 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1218 pointers); 1219 } else { 1220 /* raid5 */ 1221 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1222 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1223 } 1224 for (stripe = stripe - 1; stripe >= 0; stripe--) 1225 kunmap_local(pointers[stripe]); 1226 } 1227 1228 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1229 struct bio_list *bio_list) 1230 { 1231 struct bio *bio; 1232 /* The total sector number inside the full stripe. */ 1233 int total_sector_nr; 1234 int sectornr; 1235 int stripe; 1236 int ret; 1237 1238 ASSERT(bio_list_size(bio_list) == 0); 1239 1240 /* We should have at least one data sector. */ 1241 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1242 1243 /* 1244 * Reset errors, as we may have errors inherited from from degraded 1245 * write. 1246 */ 1247 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1248 1249 /* 1250 * Start assembly. Make bios for everything from the higher layers (the 1251 * bio_list in our rbio) and our P/Q. Ignore everything else. 1252 */ 1253 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1254 total_sector_nr++) { 1255 struct sector_ptr *sector; 1256 1257 stripe = total_sector_nr / rbio->stripe_nsectors; 1258 sectornr = total_sector_nr % rbio->stripe_nsectors; 1259 1260 /* This vertical stripe has no data, skip it. */ 1261 if (!test_bit(sectornr, &rbio->dbitmap)) 1262 continue; 1263 1264 if (stripe < rbio->nr_data) { 1265 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1266 if (!sector) 1267 continue; 1268 } else { 1269 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1270 } 1271 1272 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1273 sectornr, REQ_OP_WRITE); 1274 if (ret) 1275 goto error; 1276 } 1277 1278 if (likely(!rbio->bioc->num_tgtdevs)) 1279 return 0; 1280 1281 /* Make a copy for the replace target device. */ 1282 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1283 total_sector_nr++) { 1284 struct sector_ptr *sector; 1285 1286 stripe = total_sector_nr / rbio->stripe_nsectors; 1287 sectornr = total_sector_nr % rbio->stripe_nsectors; 1288 1289 if (!rbio->bioc->tgtdev_map[stripe]) { 1290 /* 1291 * We can skip the whole stripe completely, note 1292 * total_sector_nr will be increased by one anyway. 1293 */ 1294 ASSERT(sectornr == 0); 1295 total_sector_nr += rbio->stripe_nsectors - 1; 1296 continue; 1297 } 1298 1299 /* This vertical stripe has no data, skip it. */ 1300 if (!test_bit(sectornr, &rbio->dbitmap)) 1301 continue; 1302 1303 if (stripe < rbio->nr_data) { 1304 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1305 if (!sector) 1306 continue; 1307 } else { 1308 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1309 } 1310 1311 ret = rbio_add_io_sector(rbio, bio_list, sector, 1312 rbio->bioc->tgtdev_map[stripe], 1313 sectornr, REQ_OP_WRITE); 1314 if (ret) 1315 goto error; 1316 } 1317 1318 return 0; 1319 error: 1320 while ((bio = bio_list_pop(bio_list))) 1321 bio_put(bio); 1322 return -EIO; 1323 } 1324 1325 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1326 { 1327 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1328 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1329 rbio->bioc->raid_map[0]; 1330 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1331 1332 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1333 1334 bitmap_set(rbio->error_bitmap, total_nr_sector, 1335 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1336 1337 /* 1338 * Special handling for raid56_alloc_missing_rbio() used by 1339 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1340 * pass an empty bio here. Thus we have to find out the missing device 1341 * and mark the stripe error instead. 1342 */ 1343 if (bio->bi_iter.bi_size == 0) { 1344 bool found_missing = false; 1345 int stripe_nr; 1346 1347 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1348 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1349 found_missing = true; 1350 bitmap_set(rbio->error_bitmap, 1351 stripe_nr * rbio->stripe_nsectors, 1352 rbio->stripe_nsectors); 1353 } 1354 } 1355 ASSERT(found_missing); 1356 } 1357 } 1358 1359 /* 1360 * For subpage case, we can no longer set page Uptodate directly for 1361 * stripe_pages[], thus we need to locate the sector. 1362 */ 1363 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1364 struct page *page, 1365 unsigned int pgoff) 1366 { 1367 int i; 1368 1369 for (i = 0; i < rbio->nr_sectors; i++) { 1370 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1371 1372 if (sector->page == page && sector->pgoff == pgoff) 1373 return sector; 1374 } 1375 return NULL; 1376 } 1377 1378 /* 1379 * this sets each page in the bio uptodate. It should only be used on private 1380 * rbio pages, nothing that comes in from the higher layers 1381 */ 1382 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1383 { 1384 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1385 struct bio_vec *bvec; 1386 struct bvec_iter_all iter_all; 1387 1388 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1389 1390 bio_for_each_segment_all(bvec, bio, iter_all) { 1391 struct sector_ptr *sector; 1392 int pgoff; 1393 1394 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1395 pgoff += sectorsize) { 1396 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1397 ASSERT(sector); 1398 if (sector) 1399 sector->uptodate = 1; 1400 } 1401 } 1402 } 1403 1404 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1405 { 1406 struct bio_vec *bv = bio_first_bvec_all(bio); 1407 int i; 1408 1409 for (i = 0; i < rbio->nr_sectors; i++) { 1410 struct sector_ptr *sector; 1411 1412 sector = &rbio->stripe_sectors[i]; 1413 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1414 break; 1415 sector = &rbio->bio_sectors[i]; 1416 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1417 break; 1418 } 1419 ASSERT(i < rbio->nr_sectors); 1420 return i; 1421 } 1422 1423 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1424 { 1425 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1426 u32 bio_size = 0; 1427 struct bio_vec *bvec; 1428 struct bvec_iter_all iter_all; 1429 1430 bio_for_each_segment_all(bvec, bio, iter_all) 1431 bio_size += bvec->bv_len; 1432 1433 bitmap_set(rbio->error_bitmap, total_sector_nr, 1434 bio_size >> rbio->bioc->fs_info->sectorsize_bits); 1435 } 1436 1437 /* Verify the data sectors at read time. */ 1438 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1439 struct bio *bio) 1440 { 1441 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1442 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1443 struct bio_vec *bvec; 1444 struct bvec_iter_all iter_all; 1445 1446 /* No data csum for the whole stripe, no need to verify. */ 1447 if (!rbio->csum_bitmap || !rbio->csum_buf) 1448 return; 1449 1450 /* P/Q stripes, they have no data csum to verify against. */ 1451 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1452 return; 1453 1454 bio_for_each_segment_all(bvec, bio, iter_all) { 1455 int bv_offset; 1456 1457 for (bv_offset = bvec->bv_offset; 1458 bv_offset < bvec->bv_offset + bvec->bv_len; 1459 bv_offset += fs_info->sectorsize, total_sector_nr++) { 1460 u8 csum_buf[BTRFS_CSUM_SIZE]; 1461 u8 *expected_csum = rbio->csum_buf + 1462 total_sector_nr * fs_info->csum_size; 1463 int ret; 1464 1465 /* No csum for this sector, skip to the next sector. */ 1466 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1467 continue; 1468 1469 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, 1470 bv_offset, csum_buf, expected_csum); 1471 if (ret < 0) 1472 set_bit(total_sector_nr, rbio->error_bitmap); 1473 } 1474 } 1475 } 1476 1477 static void raid_wait_read_end_io(struct bio *bio) 1478 { 1479 struct btrfs_raid_bio *rbio = bio->bi_private; 1480 1481 if (bio->bi_status) { 1482 rbio_update_error_bitmap(rbio, bio); 1483 } else { 1484 set_bio_pages_uptodate(rbio, bio); 1485 verify_bio_data_sectors(rbio, bio); 1486 } 1487 1488 bio_put(bio); 1489 if (atomic_dec_and_test(&rbio->stripes_pending)) 1490 wake_up(&rbio->io_wait); 1491 } 1492 1493 static void submit_read_bios(struct btrfs_raid_bio *rbio, 1494 struct bio_list *bio_list) 1495 { 1496 struct bio *bio; 1497 1498 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1499 while ((bio = bio_list_pop(bio_list))) { 1500 bio->bi_end_io = raid_wait_read_end_io; 1501 1502 if (trace_raid56_scrub_read_recover_enabled()) { 1503 struct raid56_bio_trace_info trace_info = { 0 }; 1504 1505 bio_get_trace_info(rbio, bio, &trace_info); 1506 trace_raid56_scrub_read_recover(rbio, bio, &trace_info); 1507 } 1508 submit_bio(bio); 1509 } 1510 } 1511 1512 static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio, 1513 struct bio_list *bio_list) 1514 { 1515 struct bio *bio; 1516 int total_sector_nr; 1517 int ret = 0; 1518 1519 ASSERT(bio_list_size(bio_list) == 0); 1520 1521 /* 1522 * Build a list of bios to read all sectors (including data and P/Q). 1523 * 1524 * This behaviro is to compensate the later csum verification and 1525 * recovery. 1526 */ 1527 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1528 total_sector_nr++) { 1529 struct sector_ptr *sector; 1530 int stripe = total_sector_nr / rbio->stripe_nsectors; 1531 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1532 1533 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1534 ret = rbio_add_io_sector(rbio, bio_list, sector, 1535 stripe, sectornr, REQ_OP_READ); 1536 if (ret) 1537 goto cleanup; 1538 } 1539 return 0; 1540 1541 cleanup: 1542 while ((bio = bio_list_pop(bio_list))) 1543 bio_put(bio); 1544 return ret; 1545 } 1546 1547 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1548 { 1549 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1550 int ret; 1551 1552 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages); 1553 if (ret < 0) 1554 return ret; 1555 1556 index_stripe_sectors(rbio); 1557 return 0; 1558 } 1559 1560 /* 1561 * We use plugging call backs to collect full stripes. 1562 * Any time we get a partial stripe write while plugged 1563 * we collect it into a list. When the unplug comes down, 1564 * we sort the list by logical block number and merge 1565 * everything we can into the same rbios 1566 */ 1567 struct btrfs_plug_cb { 1568 struct blk_plug_cb cb; 1569 struct btrfs_fs_info *info; 1570 struct list_head rbio_list; 1571 struct work_struct work; 1572 }; 1573 1574 /* 1575 * rbios on the plug list are sorted for easier merging. 1576 */ 1577 static int plug_cmp(void *priv, const struct list_head *a, 1578 const struct list_head *b) 1579 { 1580 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1581 plug_list); 1582 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1583 plug_list); 1584 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1585 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1586 1587 if (a_sector < b_sector) 1588 return -1; 1589 if (a_sector > b_sector) 1590 return 1; 1591 return 0; 1592 } 1593 1594 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1595 { 1596 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1597 struct btrfs_raid_bio *cur; 1598 struct btrfs_raid_bio *last = NULL; 1599 1600 list_sort(NULL, &plug->rbio_list, plug_cmp); 1601 1602 while (!list_empty(&plug->rbio_list)) { 1603 cur = list_entry(plug->rbio_list.next, 1604 struct btrfs_raid_bio, plug_list); 1605 list_del_init(&cur->plug_list); 1606 1607 if (rbio_is_full(cur)) { 1608 /* We have a full stripe, queue it down. */ 1609 start_async_work(cur, rmw_rbio_work); 1610 continue; 1611 } 1612 if (last) { 1613 if (rbio_can_merge(last, cur)) { 1614 merge_rbio(last, cur); 1615 free_raid_bio(cur); 1616 continue; 1617 } 1618 start_async_work(last, rmw_rbio_work); 1619 } 1620 last = cur; 1621 } 1622 if (last) 1623 start_async_work(last, rmw_rbio_work); 1624 kfree(plug); 1625 } 1626 1627 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1628 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1629 { 1630 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1631 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1632 const u64 full_stripe_start = rbio->bioc->raid_map[0]; 1633 const u32 orig_len = orig_bio->bi_iter.bi_size; 1634 const u32 sectorsize = fs_info->sectorsize; 1635 u64 cur_logical; 1636 1637 ASSERT(orig_logical >= full_stripe_start && 1638 orig_logical + orig_len <= full_stripe_start + 1639 rbio->nr_data * BTRFS_STRIPE_LEN); 1640 1641 bio_list_add(&rbio->bio_list, orig_bio); 1642 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1643 1644 /* Update the dbitmap. */ 1645 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1646 cur_logical += sectorsize) { 1647 int bit = ((u32)(cur_logical - full_stripe_start) >> 1648 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1649 1650 set_bit(bit, &rbio->dbitmap); 1651 } 1652 } 1653 1654 /* 1655 * our main entry point for writes from the rest of the FS. 1656 */ 1657 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1658 { 1659 struct btrfs_fs_info *fs_info = bioc->fs_info; 1660 struct btrfs_raid_bio *rbio; 1661 struct btrfs_plug_cb *plug = NULL; 1662 struct blk_plug_cb *cb; 1663 int ret = 0; 1664 1665 rbio = alloc_rbio(fs_info, bioc); 1666 if (IS_ERR(rbio)) { 1667 ret = PTR_ERR(rbio); 1668 goto fail; 1669 } 1670 rbio->operation = BTRFS_RBIO_WRITE; 1671 rbio_add_bio(rbio, bio); 1672 1673 /* 1674 * Don't plug on full rbios, just get them out the door 1675 * as quickly as we can 1676 */ 1677 if (rbio_is_full(rbio)) 1678 goto queue_rbio; 1679 1680 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1681 if (cb) { 1682 plug = container_of(cb, struct btrfs_plug_cb, cb); 1683 if (!plug->info) { 1684 plug->info = fs_info; 1685 INIT_LIST_HEAD(&plug->rbio_list); 1686 } 1687 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1688 return; 1689 } 1690 queue_rbio: 1691 /* 1692 * Either we don't have any existing plug, or we're doing a full stripe, 1693 * can queue the rmw work now. 1694 */ 1695 start_async_work(rbio, rmw_rbio_work); 1696 1697 return; 1698 1699 fail: 1700 bio->bi_status = errno_to_blk_status(ret); 1701 bio_endio(bio); 1702 } 1703 1704 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1705 int stripe_nr, int sector_nr) 1706 { 1707 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1708 struct sector_ptr *sector; 1709 u8 csum_buf[BTRFS_CSUM_SIZE]; 1710 u8 *csum_expected; 1711 int ret; 1712 1713 if (!rbio->csum_bitmap || !rbio->csum_buf) 1714 return 0; 1715 1716 /* No way to verify P/Q as they are not covered by data csum. */ 1717 if (stripe_nr >= rbio->nr_data) 1718 return 0; 1719 /* 1720 * If we're rebuilding a read, we have to use pages from the 1721 * bio list if possible. 1722 */ 1723 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1724 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1725 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1726 } else { 1727 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1728 } 1729 1730 ASSERT(sector->page); 1731 1732 csum_expected = rbio->csum_buf + 1733 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1734 fs_info->csum_size; 1735 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, 1736 csum_buf, csum_expected); 1737 return ret; 1738 } 1739 1740 /* 1741 * Recover a vertical stripe specified by @sector_nr. 1742 * @*pointers are the pre-allocated pointers by the caller, so we don't 1743 * need to allocate/free the pointers again and again. 1744 */ 1745 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1746 void **pointers, void **unmap_array) 1747 { 1748 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1749 struct sector_ptr *sector; 1750 const u32 sectorsize = fs_info->sectorsize; 1751 int found_errors; 1752 int faila; 1753 int failb; 1754 int stripe_nr; 1755 int ret = 0; 1756 1757 /* 1758 * Now we just use bitmap to mark the horizontal stripes in 1759 * which we have data when doing parity scrub. 1760 */ 1761 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1762 !test_bit(sector_nr, &rbio->dbitmap)) 1763 return 0; 1764 1765 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1766 &failb); 1767 /* 1768 * No errors in the veritical stripe, skip it. Can happen for recovery 1769 * which only part of a stripe failed csum check. 1770 */ 1771 if (!found_errors) 1772 return 0; 1773 1774 if (found_errors > rbio->bioc->max_errors) 1775 return -EIO; 1776 1777 /* 1778 * Setup our array of pointers with sectors from each stripe 1779 * 1780 * NOTE: store a duplicate array of pointers to preserve the 1781 * pointer order. 1782 */ 1783 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1784 /* 1785 * If we're rebuilding a read, we have to use pages from the 1786 * bio list if possible. 1787 */ 1788 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1789 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1790 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1791 } else { 1792 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1793 } 1794 ASSERT(sector->page); 1795 pointers[stripe_nr] = kmap_local_page(sector->page) + 1796 sector->pgoff; 1797 unmap_array[stripe_nr] = pointers[stripe_nr]; 1798 } 1799 1800 /* All raid6 handling here */ 1801 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1802 /* Single failure, rebuild from parity raid5 style */ 1803 if (failb < 0) { 1804 if (faila == rbio->nr_data) 1805 /* 1806 * Just the P stripe has failed, without 1807 * a bad data or Q stripe. 1808 * We have nothing to do, just skip the 1809 * recovery for this stripe. 1810 */ 1811 goto cleanup; 1812 /* 1813 * a single failure in raid6 is rebuilt 1814 * in the pstripe code below 1815 */ 1816 goto pstripe; 1817 } 1818 1819 /* 1820 * If the q stripe is failed, do a pstripe reconstruction from 1821 * the xors. 1822 * If both the q stripe and the P stripe are failed, we're 1823 * here due to a crc mismatch and we can't give them the 1824 * data they want. 1825 */ 1826 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) { 1827 if (rbio->bioc->raid_map[faila] == 1828 RAID5_P_STRIPE) 1829 /* 1830 * Only P and Q are corrupted. 1831 * We only care about data stripes recovery, 1832 * can skip this vertical stripe. 1833 */ 1834 goto cleanup; 1835 /* 1836 * Otherwise we have one bad data stripe and 1837 * a good P stripe. raid5! 1838 */ 1839 goto pstripe; 1840 } 1841 1842 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) { 1843 raid6_datap_recov(rbio->real_stripes, sectorsize, 1844 faila, pointers); 1845 } else { 1846 raid6_2data_recov(rbio->real_stripes, sectorsize, 1847 faila, failb, pointers); 1848 } 1849 } else { 1850 void *p; 1851 1852 /* Rebuild from P stripe here (raid5 or raid6). */ 1853 ASSERT(failb == -1); 1854 pstripe: 1855 /* Copy parity block into failed block to start with */ 1856 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1857 1858 /* Rearrange the pointer array */ 1859 p = pointers[faila]; 1860 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1861 stripe_nr++) 1862 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1863 pointers[rbio->nr_data - 1] = p; 1864 1865 /* Xor in the rest */ 1866 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1867 1868 } 1869 1870 /* 1871 * No matter if this is a RMW or recovery, we should have all 1872 * failed sectors repaired in the vertical stripe, thus they are now 1873 * uptodate. 1874 * Especially if we determine to cache the rbio, we need to 1875 * have at least all data sectors uptodate. 1876 * 1877 * If possible, also check if the repaired sector matches its data 1878 * checksum. 1879 */ 1880 if (faila >= 0) { 1881 ret = verify_one_sector(rbio, faila, sector_nr); 1882 if (ret < 0) 1883 goto cleanup; 1884 1885 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1886 sector->uptodate = 1; 1887 } 1888 if (failb >= 0) { 1889 ret = verify_one_sector(rbio, faila, sector_nr); 1890 if (ret < 0) 1891 goto cleanup; 1892 1893 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1894 sector->uptodate = 1; 1895 } 1896 1897 cleanup: 1898 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1899 kunmap_local(unmap_array[stripe_nr]); 1900 return ret; 1901 } 1902 1903 static int recover_sectors(struct btrfs_raid_bio *rbio) 1904 { 1905 void **pointers = NULL; 1906 void **unmap_array = NULL; 1907 int sectornr; 1908 int ret = 0; 1909 1910 /* 1911 * @pointers array stores the pointer for each sector. 1912 * 1913 * @unmap_array stores copy of pointers that does not get reordered 1914 * during reconstruction so that kunmap_local works. 1915 */ 1916 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1917 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1918 if (!pointers || !unmap_array) { 1919 ret = -ENOMEM; 1920 goto out; 1921 } 1922 1923 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1924 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1925 spin_lock_irq(&rbio->bio_list_lock); 1926 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1927 spin_unlock_irq(&rbio->bio_list_lock); 1928 } 1929 1930 index_rbio_pages(rbio); 1931 1932 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1933 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 1934 if (ret < 0) 1935 break; 1936 } 1937 1938 out: 1939 kfree(pointers); 1940 kfree(unmap_array); 1941 return ret; 1942 } 1943 1944 static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio, 1945 struct bio_list *bio_list) 1946 { 1947 struct bio *bio; 1948 int total_sector_nr; 1949 int ret = 0; 1950 1951 ASSERT(bio_list_size(bio_list) == 0); 1952 /* 1953 * Read everything that hasn't failed. However this time we will 1954 * not trust any cached sector. 1955 * As we may read out some stale data but higher layer is not reading 1956 * that stale part. 1957 * 1958 * So here we always re-read everything in recovery path. 1959 */ 1960 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1961 total_sector_nr++) { 1962 int stripe = total_sector_nr / rbio->stripe_nsectors; 1963 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1964 struct sector_ptr *sector; 1965 1966 /* 1967 * Skip the range which has error. It can be a range which is 1968 * marked error (for csum mismatch), or it can be a missing 1969 * device. 1970 */ 1971 if (!rbio->bioc->stripes[stripe].dev->bdev || 1972 test_bit(total_sector_nr, rbio->error_bitmap)) { 1973 /* 1974 * Also set the error bit for missing device, which 1975 * may not yet have its error bit set. 1976 */ 1977 set_bit(total_sector_nr, rbio->error_bitmap); 1978 continue; 1979 } 1980 1981 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1982 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1983 sectornr, REQ_OP_READ); 1984 if (ret < 0) 1985 goto error; 1986 } 1987 return 0; 1988 error: 1989 while ((bio = bio_list_pop(bio_list))) 1990 bio_put(bio); 1991 1992 return -EIO; 1993 } 1994 1995 static int recover_rbio(struct btrfs_raid_bio *rbio) 1996 { 1997 struct bio_list bio_list; 1998 struct bio *bio; 1999 int ret; 2000 2001 /* 2002 * Either we're doing recover for a read failure or degraded write, 2003 * caller should have set error bitmap correctly. 2004 */ 2005 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 2006 bio_list_init(&bio_list); 2007 2008 /* For recovery, we need to read all sectors including P/Q. */ 2009 ret = alloc_rbio_pages(rbio); 2010 if (ret < 0) 2011 goto out; 2012 2013 index_rbio_pages(rbio); 2014 2015 ret = recover_assemble_read_bios(rbio, &bio_list); 2016 if (ret < 0) 2017 goto out; 2018 2019 submit_read_bios(rbio, &bio_list); 2020 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2021 2022 ret = recover_sectors(rbio); 2023 2024 out: 2025 while ((bio = bio_list_pop(&bio_list))) 2026 bio_put(bio); 2027 2028 return ret; 2029 } 2030 2031 static void recover_rbio_work(struct work_struct *work) 2032 { 2033 struct btrfs_raid_bio *rbio; 2034 int ret; 2035 2036 rbio = container_of(work, struct btrfs_raid_bio, work); 2037 2038 ret = lock_stripe_add(rbio); 2039 if (ret == 0) { 2040 ret = recover_rbio(rbio); 2041 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2042 } 2043 } 2044 2045 static void recover_rbio_work_locked(struct work_struct *work) 2046 { 2047 struct btrfs_raid_bio *rbio; 2048 int ret; 2049 2050 rbio = container_of(work, struct btrfs_raid_bio, work); 2051 2052 ret = recover_rbio(rbio); 2053 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2054 } 2055 2056 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 2057 { 2058 bool found = false; 2059 int sector_nr; 2060 2061 /* 2062 * This is for RAID6 extra recovery tries, thus mirror number should 2063 * be large than 2. 2064 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2065 * RAID5 methods. 2066 */ 2067 ASSERT(mirror_num > 2); 2068 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2069 int found_errors; 2070 int faila; 2071 int failb; 2072 2073 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2074 &faila, &failb); 2075 /* This vertical stripe doesn't have errors. */ 2076 if (!found_errors) 2077 continue; 2078 2079 /* 2080 * If we found errors, there should be only one error marked 2081 * by previous set_rbio_range_error(). 2082 */ 2083 ASSERT(found_errors == 1); 2084 found = true; 2085 2086 /* Now select another stripe to mark as error. */ 2087 failb = rbio->real_stripes - (mirror_num - 1); 2088 if (failb <= faila) 2089 failb--; 2090 2091 /* Set the extra bit in error bitmap. */ 2092 if (failb >= 0) 2093 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2094 rbio->error_bitmap); 2095 } 2096 2097 /* We should found at least one vertical stripe with error.*/ 2098 ASSERT(found); 2099 } 2100 2101 /* 2102 * the main entry point for reads from the higher layers. This 2103 * is really only called when the normal read path had a failure, 2104 * so we assume the bio they send down corresponds to a failed part 2105 * of the drive. 2106 */ 2107 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2108 int mirror_num) 2109 { 2110 struct btrfs_fs_info *fs_info = bioc->fs_info; 2111 struct btrfs_raid_bio *rbio; 2112 2113 rbio = alloc_rbio(fs_info, bioc); 2114 if (IS_ERR(rbio)) { 2115 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2116 bio_endio(bio); 2117 return; 2118 } 2119 2120 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2121 rbio_add_bio(rbio, bio); 2122 2123 set_rbio_range_error(rbio, bio); 2124 2125 /* 2126 * Loop retry: 2127 * for 'mirror == 2', reconstruct from all other stripes. 2128 * for 'mirror_num > 2', select a stripe to fail on every retry. 2129 */ 2130 if (mirror_num > 2) 2131 set_rbio_raid6_extra_error(rbio, mirror_num); 2132 2133 start_async_work(rbio, recover_rbio_work); 2134 } 2135 2136 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2137 { 2138 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2139 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2140 rbio->bioc->raid_map[0]); 2141 const u64 start = rbio->bioc->raid_map[0]; 2142 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2143 fs_info->sectorsize_bits; 2144 int ret; 2145 2146 /* The rbio should not have its csum buffer initialized. */ 2147 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2148 2149 /* 2150 * Skip the csum search if: 2151 * 2152 * - The rbio doesn't belong to data block groups 2153 * Then we are doing IO for tree blocks, no need to search csums. 2154 * 2155 * - The rbio belongs to mixed block groups 2156 * This is to avoid deadlock, as we're already holding the full 2157 * stripe lock, if we trigger a metadata read, and it needs to do 2158 * raid56 recovery, we will deadlock. 2159 */ 2160 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2161 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2162 return; 2163 2164 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2165 fs_info->csum_size, GFP_NOFS); 2166 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2167 GFP_NOFS); 2168 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2169 ret = -ENOMEM; 2170 goto error; 2171 } 2172 2173 ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1, 2174 rbio->csum_buf, rbio->csum_bitmap); 2175 if (ret < 0) 2176 goto error; 2177 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2178 goto no_csum; 2179 return; 2180 2181 error: 2182 /* 2183 * We failed to allocate memory or grab the csum, but it's not fatal, 2184 * we can still continue. But better to warn users that RMW is no 2185 * longer safe for this particular sub-stripe write. 2186 */ 2187 btrfs_warn_rl(fs_info, 2188 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2189 rbio->bioc->raid_map[0], ret); 2190 no_csum: 2191 kfree(rbio->csum_buf); 2192 bitmap_free(rbio->csum_bitmap); 2193 rbio->csum_buf = NULL; 2194 rbio->csum_bitmap = NULL; 2195 } 2196 2197 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2198 { 2199 struct bio_list bio_list; 2200 struct bio *bio; 2201 int ret; 2202 2203 bio_list_init(&bio_list); 2204 2205 /* 2206 * Fill the data csums we need for data verification. We need to fill 2207 * the csum_bitmap/csum_buf first, as our endio function will try to 2208 * verify the data sectors. 2209 */ 2210 fill_data_csums(rbio); 2211 2212 ret = rmw_assemble_read_bios(rbio, &bio_list); 2213 if (ret < 0) 2214 goto out; 2215 2216 submit_read_bios(rbio, &bio_list); 2217 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2218 2219 /* 2220 * We may or may not have any corrupted sectors (including missing dev 2221 * and csum mismatch), just let recover_sectors() to handle them all. 2222 */ 2223 ret = recover_sectors(rbio); 2224 return ret; 2225 out: 2226 while ((bio = bio_list_pop(&bio_list))) 2227 bio_put(bio); 2228 2229 return ret; 2230 } 2231 2232 static void raid_wait_write_end_io(struct bio *bio) 2233 { 2234 struct btrfs_raid_bio *rbio = bio->bi_private; 2235 blk_status_t err = bio->bi_status; 2236 2237 if (err) 2238 rbio_update_error_bitmap(rbio, bio); 2239 bio_put(bio); 2240 if (atomic_dec_and_test(&rbio->stripes_pending)) 2241 wake_up(&rbio->io_wait); 2242 } 2243 2244 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2245 struct bio_list *bio_list) 2246 { 2247 struct bio *bio; 2248 2249 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2250 while ((bio = bio_list_pop(bio_list))) { 2251 bio->bi_end_io = raid_wait_write_end_io; 2252 2253 if (trace_raid56_write_stripe_enabled()) { 2254 struct raid56_bio_trace_info trace_info = { 0 }; 2255 2256 bio_get_trace_info(rbio, bio, &trace_info); 2257 trace_raid56_write_stripe(rbio, bio, &trace_info); 2258 } 2259 submit_bio(bio); 2260 } 2261 } 2262 2263 /* 2264 * To determine if we need to read any sector from the disk. 2265 * Should only be utilized in RMW path, to skip cached rbio. 2266 */ 2267 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2268 { 2269 int i; 2270 2271 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2272 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2273 2274 /* 2275 * We have a sector which doesn't have page nor uptodate, 2276 * thus this rbio can not be cached one, as cached one must 2277 * have all its data sectors present and uptodate. 2278 */ 2279 if (!sector->page || !sector->uptodate) 2280 return true; 2281 } 2282 return false; 2283 } 2284 2285 static int rmw_rbio(struct btrfs_raid_bio *rbio) 2286 { 2287 struct bio_list bio_list; 2288 int sectornr; 2289 int ret = 0; 2290 2291 /* 2292 * Allocate the pages for parity first, as P/Q pages will always be 2293 * needed for both full-stripe and sub-stripe writes. 2294 */ 2295 ret = alloc_rbio_parity_pages(rbio); 2296 if (ret < 0) 2297 return ret; 2298 2299 /* 2300 * Either full stripe write, or we have every data sector already 2301 * cached, can go to write path immediately. 2302 */ 2303 if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio)) 2304 goto write; 2305 2306 /* 2307 * Now we're doing sub-stripe write, also need all data stripes to do 2308 * the full RMW. 2309 */ 2310 ret = alloc_rbio_data_pages(rbio); 2311 if (ret < 0) 2312 return ret; 2313 2314 index_rbio_pages(rbio); 2315 2316 ret = rmw_read_wait_recover(rbio); 2317 if (ret < 0) 2318 return ret; 2319 2320 write: 2321 /* 2322 * At this stage we're not allowed to add any new bios to the 2323 * bio list any more, anyone else that wants to change this stripe 2324 * needs to do their own rmw. 2325 */ 2326 spin_lock_irq(&rbio->bio_list_lock); 2327 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2328 spin_unlock_irq(&rbio->bio_list_lock); 2329 2330 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2331 2332 index_rbio_pages(rbio); 2333 2334 /* 2335 * We don't cache full rbios because we're assuming 2336 * the higher layers are unlikely to use this area of 2337 * the disk again soon. If they do use it again, 2338 * hopefully they will send another full bio. 2339 */ 2340 if (!rbio_is_full(rbio)) 2341 cache_rbio_pages(rbio); 2342 else 2343 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2344 2345 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2346 generate_pq_vertical(rbio, sectornr); 2347 2348 bio_list_init(&bio_list); 2349 ret = rmw_assemble_write_bios(rbio, &bio_list); 2350 if (ret < 0) 2351 return ret; 2352 2353 /* We should have at least one bio assembled. */ 2354 ASSERT(bio_list_size(&bio_list)); 2355 submit_write_bios(rbio, &bio_list); 2356 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2357 2358 /* We may have more errors than our tolerance during the read. */ 2359 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2360 int found_errors; 2361 2362 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2363 if (found_errors > rbio->bioc->max_errors) { 2364 ret = -EIO; 2365 break; 2366 } 2367 } 2368 return ret; 2369 } 2370 2371 static void rmw_rbio_work(struct work_struct *work) 2372 { 2373 struct btrfs_raid_bio *rbio; 2374 int ret; 2375 2376 rbio = container_of(work, struct btrfs_raid_bio, work); 2377 2378 ret = lock_stripe_add(rbio); 2379 if (ret == 0) { 2380 ret = rmw_rbio(rbio); 2381 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2382 } 2383 } 2384 2385 static void rmw_rbio_work_locked(struct work_struct *work) 2386 { 2387 struct btrfs_raid_bio *rbio; 2388 int ret; 2389 2390 rbio = container_of(work, struct btrfs_raid_bio, work); 2391 2392 ret = rmw_rbio(rbio); 2393 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2394 } 2395 2396 /* 2397 * The following code is used to scrub/replace the parity stripe 2398 * 2399 * Caller must have already increased bio_counter for getting @bioc. 2400 * 2401 * Note: We need make sure all the pages that add into the scrub/replace 2402 * raid bio are correct and not be changed during the scrub/replace. That 2403 * is those pages just hold metadata or file data with checksum. 2404 */ 2405 2406 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2407 struct btrfs_io_context *bioc, 2408 struct btrfs_device *scrub_dev, 2409 unsigned long *dbitmap, int stripe_nsectors) 2410 { 2411 struct btrfs_fs_info *fs_info = bioc->fs_info; 2412 struct btrfs_raid_bio *rbio; 2413 int i; 2414 2415 rbio = alloc_rbio(fs_info, bioc); 2416 if (IS_ERR(rbio)) 2417 return NULL; 2418 bio_list_add(&rbio->bio_list, bio); 2419 /* 2420 * This is a special bio which is used to hold the completion handler 2421 * and make the scrub rbio is similar to the other types 2422 */ 2423 ASSERT(!bio->bi_iter.bi_size); 2424 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2425 2426 /* 2427 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2428 * to the end position, so this search can start from the first parity 2429 * stripe. 2430 */ 2431 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2432 if (bioc->stripes[i].dev == scrub_dev) { 2433 rbio->scrubp = i; 2434 break; 2435 } 2436 } 2437 ASSERT(i < rbio->real_stripes); 2438 2439 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2440 return rbio; 2441 } 2442 2443 /* Used for both parity scrub and missing. */ 2444 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2445 unsigned int pgoff, u64 logical) 2446 { 2447 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2448 int stripe_offset; 2449 int index; 2450 2451 ASSERT(logical >= rbio->bioc->raid_map[0]); 2452 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] + 2453 BTRFS_STRIPE_LEN * rbio->nr_data); 2454 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]); 2455 index = stripe_offset / sectorsize; 2456 rbio->bio_sectors[index].page = page; 2457 rbio->bio_sectors[index].pgoff = pgoff; 2458 } 2459 2460 /* 2461 * We just scrub the parity that we have correct data on the same horizontal, 2462 * so we needn't allocate all pages for all the stripes. 2463 */ 2464 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2465 { 2466 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2467 int total_sector_nr; 2468 2469 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2470 total_sector_nr++) { 2471 struct page *page; 2472 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2473 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2474 2475 if (!test_bit(sectornr, &rbio->dbitmap)) 2476 continue; 2477 if (rbio->stripe_pages[index]) 2478 continue; 2479 page = alloc_page(GFP_NOFS); 2480 if (!page) 2481 return -ENOMEM; 2482 rbio->stripe_pages[index] = page; 2483 } 2484 index_stripe_sectors(rbio); 2485 return 0; 2486 } 2487 2488 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check) 2489 { 2490 struct btrfs_io_context *bioc = rbio->bioc; 2491 const u32 sectorsize = bioc->fs_info->sectorsize; 2492 void **pointers = rbio->finish_pointers; 2493 unsigned long *pbitmap = &rbio->finish_pbitmap; 2494 int nr_data = rbio->nr_data; 2495 int stripe; 2496 int sectornr; 2497 bool has_qstripe; 2498 struct sector_ptr p_sector = { 0 }; 2499 struct sector_ptr q_sector = { 0 }; 2500 struct bio_list bio_list; 2501 struct bio *bio; 2502 int is_replace = 0; 2503 int ret; 2504 2505 bio_list_init(&bio_list); 2506 2507 if (rbio->real_stripes - rbio->nr_data == 1) 2508 has_qstripe = false; 2509 else if (rbio->real_stripes - rbio->nr_data == 2) 2510 has_qstripe = true; 2511 else 2512 BUG(); 2513 2514 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) { 2515 is_replace = 1; 2516 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2517 } 2518 2519 /* 2520 * Because the higher layers(scrubber) are unlikely to 2521 * use this area of the disk again soon, so don't cache 2522 * it. 2523 */ 2524 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2525 2526 if (!need_check) 2527 goto writeback; 2528 2529 p_sector.page = alloc_page(GFP_NOFS); 2530 if (!p_sector.page) 2531 return -ENOMEM; 2532 p_sector.pgoff = 0; 2533 p_sector.uptodate = 1; 2534 2535 if (has_qstripe) { 2536 /* RAID6, allocate and map temp space for the Q stripe */ 2537 q_sector.page = alloc_page(GFP_NOFS); 2538 if (!q_sector.page) { 2539 __free_page(p_sector.page); 2540 p_sector.page = NULL; 2541 return -ENOMEM; 2542 } 2543 q_sector.pgoff = 0; 2544 q_sector.uptodate = 1; 2545 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2546 } 2547 2548 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2549 2550 /* Map the parity stripe just once */ 2551 pointers[nr_data] = kmap_local_page(p_sector.page); 2552 2553 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2554 struct sector_ptr *sector; 2555 void *parity; 2556 2557 /* first collect one page from each data stripe */ 2558 for (stripe = 0; stripe < nr_data; stripe++) { 2559 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2560 pointers[stripe] = kmap_local_page(sector->page) + 2561 sector->pgoff; 2562 } 2563 2564 if (has_qstripe) { 2565 /* RAID6, call the library function to fill in our P/Q */ 2566 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2567 pointers); 2568 } else { 2569 /* raid5 */ 2570 memcpy(pointers[nr_data], pointers[0], sectorsize); 2571 run_xor(pointers + 1, nr_data - 1, sectorsize); 2572 } 2573 2574 /* Check scrubbing parity and repair it */ 2575 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2576 parity = kmap_local_page(sector->page) + sector->pgoff; 2577 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2578 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2579 else 2580 /* Parity is right, needn't writeback */ 2581 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2582 kunmap_local(parity); 2583 2584 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2585 kunmap_local(pointers[stripe]); 2586 } 2587 2588 kunmap_local(pointers[nr_data]); 2589 __free_page(p_sector.page); 2590 p_sector.page = NULL; 2591 if (q_sector.page) { 2592 kunmap_local(pointers[rbio->real_stripes - 1]); 2593 __free_page(q_sector.page); 2594 q_sector.page = NULL; 2595 } 2596 2597 writeback: 2598 /* 2599 * time to start writing. Make bios for everything from the 2600 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2601 * everything else. 2602 */ 2603 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2604 struct sector_ptr *sector; 2605 2606 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2607 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2608 sectornr, REQ_OP_WRITE); 2609 if (ret) 2610 goto cleanup; 2611 } 2612 2613 if (!is_replace) 2614 goto submit_write; 2615 2616 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2617 struct sector_ptr *sector; 2618 2619 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2620 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2621 bioc->tgtdev_map[rbio->scrubp], 2622 sectornr, REQ_OP_WRITE); 2623 if (ret) 2624 goto cleanup; 2625 } 2626 2627 submit_write: 2628 submit_write_bios(rbio, &bio_list); 2629 return 0; 2630 2631 cleanup: 2632 while ((bio = bio_list_pop(&bio_list))) 2633 bio_put(bio); 2634 return ret; 2635 } 2636 2637 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2638 { 2639 if (stripe >= 0 && stripe < rbio->nr_data) 2640 return 1; 2641 return 0; 2642 } 2643 2644 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2645 { 2646 void **pointers = NULL; 2647 void **unmap_array = NULL; 2648 int sector_nr; 2649 int ret; 2650 2651 /* 2652 * @pointers array stores the pointer for each sector. 2653 * 2654 * @unmap_array stores copy of pointers that does not get reordered 2655 * during reconstruction so that kunmap_local works. 2656 */ 2657 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2658 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2659 if (!pointers || !unmap_array) { 2660 ret = -ENOMEM; 2661 goto out; 2662 } 2663 2664 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2665 int dfail = 0, failp = -1; 2666 int faila; 2667 int failb; 2668 int found_errors; 2669 2670 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2671 &faila, &failb); 2672 if (found_errors > rbio->bioc->max_errors) { 2673 ret = -EIO; 2674 goto out; 2675 } 2676 if (found_errors == 0) 2677 continue; 2678 2679 /* We should have at least one error here. */ 2680 ASSERT(faila >= 0 || failb >= 0); 2681 2682 if (is_data_stripe(rbio, faila)) 2683 dfail++; 2684 else if (is_parity_stripe(faila)) 2685 failp = faila; 2686 2687 if (is_data_stripe(rbio, failb)) 2688 dfail++; 2689 else if (is_parity_stripe(failb)) 2690 failp = failb; 2691 /* 2692 * Because we can not use a scrubbing parity to repair the 2693 * data, so the capability of the repair is declined. (In the 2694 * case of RAID5, we can not repair anything.) 2695 */ 2696 if (dfail > rbio->bioc->max_errors - 1) { 2697 ret = -EIO; 2698 goto out; 2699 } 2700 /* 2701 * If all data is good, only parity is correctly, just repair 2702 * the parity, no need to recover data stripes. 2703 */ 2704 if (dfail == 0) 2705 continue; 2706 2707 /* 2708 * Here means we got one corrupted data stripe and one 2709 * corrupted parity on RAID6, if the corrupted parity is 2710 * scrubbing parity, luckily, use the other one to repair the 2711 * data, or we can not repair the data stripe. 2712 */ 2713 if (failp != rbio->scrubp) { 2714 ret = -EIO; 2715 goto out; 2716 } 2717 2718 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2719 if (ret < 0) 2720 goto out; 2721 } 2722 out: 2723 kfree(pointers); 2724 kfree(unmap_array); 2725 return ret; 2726 } 2727 2728 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio, 2729 struct bio_list *bio_list) 2730 { 2731 struct bio *bio; 2732 int total_sector_nr; 2733 int ret = 0; 2734 2735 ASSERT(bio_list_size(bio_list) == 0); 2736 2737 /* Build a list of bios to read all the missing parts. */ 2738 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2739 total_sector_nr++) { 2740 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2741 int stripe = total_sector_nr / rbio->stripe_nsectors; 2742 struct sector_ptr *sector; 2743 2744 /* No data in the vertical stripe, no need to read. */ 2745 if (!test_bit(sectornr, &rbio->dbitmap)) 2746 continue; 2747 2748 /* 2749 * We want to find all the sectors missing from the rbio and 2750 * read them from the disk. If sector_in_rbio() finds a sector 2751 * in the bio list we don't need to read it off the stripe. 2752 */ 2753 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2754 if (sector) 2755 continue; 2756 2757 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2758 /* 2759 * The bio cache may have handed us an uptodate sector. If so, 2760 * use it. 2761 */ 2762 if (sector->uptodate) 2763 continue; 2764 2765 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 2766 sectornr, REQ_OP_READ); 2767 if (ret) 2768 goto error; 2769 } 2770 return 0; 2771 error: 2772 while ((bio = bio_list_pop(bio_list))) 2773 bio_put(bio); 2774 return ret; 2775 } 2776 2777 static int scrub_rbio(struct btrfs_raid_bio *rbio) 2778 { 2779 bool need_check = false; 2780 struct bio_list bio_list; 2781 int sector_nr; 2782 int ret; 2783 struct bio *bio; 2784 2785 bio_list_init(&bio_list); 2786 2787 ret = alloc_rbio_essential_pages(rbio); 2788 if (ret) 2789 goto cleanup; 2790 2791 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2792 2793 ret = scrub_assemble_read_bios(rbio, &bio_list); 2794 if (ret < 0) 2795 goto cleanup; 2796 2797 submit_read_bios(rbio, &bio_list); 2798 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2799 2800 /* We may have some failures, recover the failed sectors first. */ 2801 ret = recover_scrub_rbio(rbio); 2802 if (ret < 0) 2803 goto cleanup; 2804 2805 /* 2806 * We have every sector properly prepared. Can finish the scrub 2807 * and writeback the good content. 2808 */ 2809 ret = finish_parity_scrub(rbio, need_check); 2810 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2811 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2812 int found_errors; 2813 2814 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2815 if (found_errors > rbio->bioc->max_errors) { 2816 ret = -EIO; 2817 break; 2818 } 2819 } 2820 return ret; 2821 2822 cleanup: 2823 while ((bio = bio_list_pop(&bio_list))) 2824 bio_put(bio); 2825 2826 return ret; 2827 } 2828 2829 static void scrub_rbio_work_locked(struct work_struct *work) 2830 { 2831 struct btrfs_raid_bio *rbio; 2832 int ret; 2833 2834 rbio = container_of(work, struct btrfs_raid_bio, work); 2835 ret = scrub_rbio(rbio); 2836 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2837 } 2838 2839 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2840 { 2841 if (!lock_stripe_add(rbio)) 2842 start_async_work(rbio, scrub_rbio_work_locked); 2843 } 2844 2845 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2846 2847 struct btrfs_raid_bio * 2848 raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc) 2849 { 2850 struct btrfs_fs_info *fs_info = bioc->fs_info; 2851 struct btrfs_raid_bio *rbio; 2852 2853 rbio = alloc_rbio(fs_info, bioc); 2854 if (IS_ERR(rbio)) 2855 return NULL; 2856 2857 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2858 bio_list_add(&rbio->bio_list, bio); 2859 /* 2860 * This is a special bio which is used to hold the completion handler 2861 * and make the scrub rbio is similar to the other types 2862 */ 2863 ASSERT(!bio->bi_iter.bi_size); 2864 2865 set_rbio_range_error(rbio, bio); 2866 2867 return rbio; 2868 } 2869 2870 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2871 { 2872 start_async_work(rbio, recover_rbio_work); 2873 } 2874