xref: /openbmc/linux/fs/btrfs/raid56.c (revision e0f6d1a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/bio.h>
10 #include <linux/slab.h>
11 #include <linux/buffer_head.h>
12 #include <linux/blkdev.h>
13 #include <linux/random.h>
14 #include <linux/iocontext.h>
15 #include <linux/capability.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kthread.h>
18 #include <linux/raid/pq.h>
19 #include <linux/hash.h>
20 #include <linux/list_sort.h>
21 #include <linux/raid/xor.h>
22 #include <linux/mm.h>
23 #include <asm/div64.h>
24 #include "ctree.h"
25 #include "extent_map.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "raid56.h"
31 #include "async-thread.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 
35 /* set when additional merges to this rbio are not allowed */
36 #define RBIO_RMW_LOCKED_BIT	1
37 
38 /*
39  * set when this rbio is sitting in the hash, but it is just a cache
40  * of past RMW
41  */
42 #define RBIO_CACHE_BIT		2
43 
44 /*
45  * set when it is safe to trust the stripe_pages for caching
46  */
47 #define RBIO_CACHE_READY_BIT	3
48 
49 #define RBIO_CACHE_SIZE 1024
50 
51 enum btrfs_rbio_ops {
52 	BTRFS_RBIO_WRITE,
53 	BTRFS_RBIO_READ_REBUILD,
54 	BTRFS_RBIO_PARITY_SCRUB,
55 	BTRFS_RBIO_REBUILD_MISSING,
56 };
57 
58 struct btrfs_raid_bio {
59 	struct btrfs_fs_info *fs_info;
60 	struct btrfs_bio *bbio;
61 
62 	/* while we're doing rmw on a stripe
63 	 * we put it into a hash table so we can
64 	 * lock the stripe and merge more rbios
65 	 * into it.
66 	 */
67 	struct list_head hash_list;
68 
69 	/*
70 	 * LRU list for the stripe cache
71 	 */
72 	struct list_head stripe_cache;
73 
74 	/*
75 	 * for scheduling work in the helper threads
76 	 */
77 	struct btrfs_work work;
78 
79 	/*
80 	 * bio list and bio_list_lock are used
81 	 * to add more bios into the stripe
82 	 * in hopes of avoiding the full rmw
83 	 */
84 	struct bio_list bio_list;
85 	spinlock_t bio_list_lock;
86 
87 	/* also protected by the bio_list_lock, the
88 	 * plug list is used by the plugging code
89 	 * to collect partial bios while plugged.  The
90 	 * stripe locking code also uses it to hand off
91 	 * the stripe lock to the next pending IO
92 	 */
93 	struct list_head plug_list;
94 
95 	/*
96 	 * flags that tell us if it is safe to
97 	 * merge with this bio
98 	 */
99 	unsigned long flags;
100 
101 	/* size of each individual stripe on disk */
102 	int stripe_len;
103 
104 	/* number of data stripes (no p/q) */
105 	int nr_data;
106 
107 	int real_stripes;
108 
109 	int stripe_npages;
110 	/*
111 	 * set if we're doing a parity rebuild
112 	 * for a read from higher up, which is handled
113 	 * differently from a parity rebuild as part of
114 	 * rmw
115 	 */
116 	enum btrfs_rbio_ops operation;
117 
118 	/* first bad stripe */
119 	int faila;
120 
121 	/* second bad stripe (for raid6 use) */
122 	int failb;
123 
124 	int scrubp;
125 	/*
126 	 * number of pages needed to represent the full
127 	 * stripe
128 	 */
129 	int nr_pages;
130 
131 	/*
132 	 * size of all the bios in the bio_list.  This
133 	 * helps us decide if the rbio maps to a full
134 	 * stripe or not
135 	 */
136 	int bio_list_bytes;
137 
138 	int generic_bio_cnt;
139 
140 	refcount_t refs;
141 
142 	atomic_t stripes_pending;
143 
144 	atomic_t error;
145 	/*
146 	 * these are two arrays of pointers.  We allocate the
147 	 * rbio big enough to hold them both and setup their
148 	 * locations when the rbio is allocated
149 	 */
150 
151 	/* pointers to pages that we allocated for
152 	 * reading/writing stripes directly from the disk (including P/Q)
153 	 */
154 	struct page **stripe_pages;
155 
156 	/*
157 	 * pointers to the pages in the bio_list.  Stored
158 	 * here for faster lookup
159 	 */
160 	struct page **bio_pages;
161 
162 	/*
163 	 * bitmap to record which horizontal stripe has data
164 	 */
165 	unsigned long *dbitmap;
166 };
167 
168 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
169 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
170 static void rmw_work(struct btrfs_work *work);
171 static void read_rebuild_work(struct btrfs_work *work);
172 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
173 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
174 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
175 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
176 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
177 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
178 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
179 
180 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
181 					 int need_check);
182 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
183 
184 /*
185  * the stripe hash table is used for locking, and to collect
186  * bios in hopes of making a full stripe
187  */
188 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
189 {
190 	struct btrfs_stripe_hash_table *table;
191 	struct btrfs_stripe_hash_table *x;
192 	struct btrfs_stripe_hash *cur;
193 	struct btrfs_stripe_hash *h;
194 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
195 	int i;
196 	int table_size;
197 
198 	if (info->stripe_hash_table)
199 		return 0;
200 
201 	/*
202 	 * The table is large, starting with order 4 and can go as high as
203 	 * order 7 in case lock debugging is turned on.
204 	 *
205 	 * Try harder to allocate and fallback to vmalloc to lower the chance
206 	 * of a failing mount.
207 	 */
208 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
209 	table = kvzalloc(table_size, GFP_KERNEL);
210 	if (!table)
211 		return -ENOMEM;
212 
213 	spin_lock_init(&table->cache_lock);
214 	INIT_LIST_HEAD(&table->stripe_cache);
215 
216 	h = table->table;
217 
218 	for (i = 0; i < num_entries; i++) {
219 		cur = h + i;
220 		INIT_LIST_HEAD(&cur->hash_list);
221 		spin_lock_init(&cur->lock);
222 	}
223 
224 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
225 	if (x)
226 		kvfree(x);
227 	return 0;
228 }
229 
230 /*
231  * caching an rbio means to copy anything from the
232  * bio_pages array into the stripe_pages array.  We
233  * use the page uptodate bit in the stripe cache array
234  * to indicate if it has valid data
235  *
236  * once the caching is done, we set the cache ready
237  * bit.
238  */
239 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
240 {
241 	int i;
242 	char *s;
243 	char *d;
244 	int ret;
245 
246 	ret = alloc_rbio_pages(rbio);
247 	if (ret)
248 		return;
249 
250 	for (i = 0; i < rbio->nr_pages; i++) {
251 		if (!rbio->bio_pages[i])
252 			continue;
253 
254 		s = kmap(rbio->bio_pages[i]);
255 		d = kmap(rbio->stripe_pages[i]);
256 
257 		memcpy(d, s, PAGE_SIZE);
258 
259 		kunmap(rbio->bio_pages[i]);
260 		kunmap(rbio->stripe_pages[i]);
261 		SetPageUptodate(rbio->stripe_pages[i]);
262 	}
263 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
264 }
265 
266 /*
267  * we hash on the first logical address of the stripe
268  */
269 static int rbio_bucket(struct btrfs_raid_bio *rbio)
270 {
271 	u64 num = rbio->bbio->raid_map[0];
272 
273 	/*
274 	 * we shift down quite a bit.  We're using byte
275 	 * addressing, and most of the lower bits are zeros.
276 	 * This tends to upset hash_64, and it consistently
277 	 * returns just one or two different values.
278 	 *
279 	 * shifting off the lower bits fixes things.
280 	 */
281 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
282 }
283 
284 /*
285  * stealing an rbio means taking all the uptodate pages from the stripe
286  * array in the source rbio and putting them into the destination rbio
287  */
288 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
289 {
290 	int i;
291 	struct page *s;
292 	struct page *d;
293 
294 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
295 		return;
296 
297 	for (i = 0; i < dest->nr_pages; i++) {
298 		s = src->stripe_pages[i];
299 		if (!s || !PageUptodate(s)) {
300 			continue;
301 		}
302 
303 		d = dest->stripe_pages[i];
304 		if (d)
305 			__free_page(d);
306 
307 		dest->stripe_pages[i] = s;
308 		src->stripe_pages[i] = NULL;
309 	}
310 }
311 
312 /*
313  * merging means we take the bio_list from the victim and
314  * splice it into the destination.  The victim should
315  * be discarded afterwards.
316  *
317  * must be called with dest->rbio_list_lock held
318  */
319 static void merge_rbio(struct btrfs_raid_bio *dest,
320 		       struct btrfs_raid_bio *victim)
321 {
322 	bio_list_merge(&dest->bio_list, &victim->bio_list);
323 	dest->bio_list_bytes += victim->bio_list_bytes;
324 	dest->generic_bio_cnt += victim->generic_bio_cnt;
325 	bio_list_init(&victim->bio_list);
326 }
327 
328 /*
329  * used to prune items that are in the cache.  The caller
330  * must hold the hash table lock.
331  */
332 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
333 {
334 	int bucket = rbio_bucket(rbio);
335 	struct btrfs_stripe_hash_table *table;
336 	struct btrfs_stripe_hash *h;
337 	int freeit = 0;
338 
339 	/*
340 	 * check the bit again under the hash table lock.
341 	 */
342 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
343 		return;
344 
345 	table = rbio->fs_info->stripe_hash_table;
346 	h = table->table + bucket;
347 
348 	/* hold the lock for the bucket because we may be
349 	 * removing it from the hash table
350 	 */
351 	spin_lock(&h->lock);
352 
353 	/*
354 	 * hold the lock for the bio list because we need
355 	 * to make sure the bio list is empty
356 	 */
357 	spin_lock(&rbio->bio_list_lock);
358 
359 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
360 		list_del_init(&rbio->stripe_cache);
361 		table->cache_size -= 1;
362 		freeit = 1;
363 
364 		/* if the bio list isn't empty, this rbio is
365 		 * still involved in an IO.  We take it out
366 		 * of the cache list, and drop the ref that
367 		 * was held for the list.
368 		 *
369 		 * If the bio_list was empty, we also remove
370 		 * the rbio from the hash_table, and drop
371 		 * the corresponding ref
372 		 */
373 		if (bio_list_empty(&rbio->bio_list)) {
374 			if (!list_empty(&rbio->hash_list)) {
375 				list_del_init(&rbio->hash_list);
376 				refcount_dec(&rbio->refs);
377 				BUG_ON(!list_empty(&rbio->plug_list));
378 			}
379 		}
380 	}
381 
382 	spin_unlock(&rbio->bio_list_lock);
383 	spin_unlock(&h->lock);
384 
385 	if (freeit)
386 		__free_raid_bio(rbio);
387 }
388 
389 /*
390  * prune a given rbio from the cache
391  */
392 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
393 {
394 	struct btrfs_stripe_hash_table *table;
395 	unsigned long flags;
396 
397 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
398 		return;
399 
400 	table = rbio->fs_info->stripe_hash_table;
401 
402 	spin_lock_irqsave(&table->cache_lock, flags);
403 	__remove_rbio_from_cache(rbio);
404 	spin_unlock_irqrestore(&table->cache_lock, flags);
405 }
406 
407 /*
408  * remove everything in the cache
409  */
410 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
411 {
412 	struct btrfs_stripe_hash_table *table;
413 	unsigned long flags;
414 	struct btrfs_raid_bio *rbio;
415 
416 	table = info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	while (!list_empty(&table->stripe_cache)) {
420 		rbio = list_entry(table->stripe_cache.next,
421 				  struct btrfs_raid_bio,
422 				  stripe_cache);
423 		__remove_rbio_from_cache(rbio);
424 	}
425 	spin_unlock_irqrestore(&table->cache_lock, flags);
426 }
427 
428 /*
429  * remove all cached entries and free the hash table
430  * used by unmount
431  */
432 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
433 {
434 	if (!info->stripe_hash_table)
435 		return;
436 	btrfs_clear_rbio_cache(info);
437 	kvfree(info->stripe_hash_table);
438 	info->stripe_hash_table = NULL;
439 }
440 
441 /*
442  * insert an rbio into the stripe cache.  It
443  * must have already been prepared by calling
444  * cache_rbio_pages
445  *
446  * If this rbio was already cached, it gets
447  * moved to the front of the lru.
448  *
449  * If the size of the rbio cache is too big, we
450  * prune an item.
451  */
452 static void cache_rbio(struct btrfs_raid_bio *rbio)
453 {
454 	struct btrfs_stripe_hash_table *table;
455 	unsigned long flags;
456 
457 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
458 		return;
459 
460 	table = rbio->fs_info->stripe_hash_table;
461 
462 	spin_lock_irqsave(&table->cache_lock, flags);
463 	spin_lock(&rbio->bio_list_lock);
464 
465 	/* bump our ref if we were not in the list before */
466 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
467 		refcount_inc(&rbio->refs);
468 
469 	if (!list_empty(&rbio->stripe_cache)){
470 		list_move(&rbio->stripe_cache, &table->stripe_cache);
471 	} else {
472 		list_add(&rbio->stripe_cache, &table->stripe_cache);
473 		table->cache_size += 1;
474 	}
475 
476 	spin_unlock(&rbio->bio_list_lock);
477 
478 	if (table->cache_size > RBIO_CACHE_SIZE) {
479 		struct btrfs_raid_bio *found;
480 
481 		found = list_entry(table->stripe_cache.prev,
482 				  struct btrfs_raid_bio,
483 				  stripe_cache);
484 
485 		if (found != rbio)
486 			__remove_rbio_from_cache(found);
487 	}
488 
489 	spin_unlock_irqrestore(&table->cache_lock, flags);
490 }
491 
492 /*
493  * helper function to run the xor_blocks api.  It is only
494  * able to do MAX_XOR_BLOCKS at a time, so we need to
495  * loop through.
496  */
497 static void run_xor(void **pages, int src_cnt, ssize_t len)
498 {
499 	int src_off = 0;
500 	int xor_src_cnt = 0;
501 	void *dest = pages[src_cnt];
502 
503 	while(src_cnt > 0) {
504 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
505 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
506 
507 		src_cnt -= xor_src_cnt;
508 		src_off += xor_src_cnt;
509 	}
510 }
511 
512 /*
513  * returns true if the bio list inside this rbio
514  * covers an entire stripe (no rmw required).
515  * Must be called with the bio list lock held, or
516  * at a time when you know it is impossible to add
517  * new bios into the list
518  */
519 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
520 {
521 	unsigned long size = rbio->bio_list_bytes;
522 	int ret = 1;
523 
524 	if (size != rbio->nr_data * rbio->stripe_len)
525 		ret = 0;
526 
527 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
528 	return ret;
529 }
530 
531 static int rbio_is_full(struct btrfs_raid_bio *rbio)
532 {
533 	unsigned long flags;
534 	int ret;
535 
536 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
537 	ret = __rbio_is_full(rbio);
538 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
539 	return ret;
540 }
541 
542 /*
543  * returns 1 if it is safe to merge two rbios together.
544  * The merging is safe if the two rbios correspond to
545  * the same stripe and if they are both going in the same
546  * direction (read vs write), and if neither one is
547  * locked for final IO
548  *
549  * The caller is responsible for locking such that
550  * rmw_locked is safe to test
551  */
552 static int rbio_can_merge(struct btrfs_raid_bio *last,
553 			  struct btrfs_raid_bio *cur)
554 {
555 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 		return 0;
558 
559 	/*
560 	 * we can't merge with cached rbios, since the
561 	 * idea is that when we merge the destination
562 	 * rbio is going to run our IO for us.  We can
563 	 * steal from cached rbios though, other functions
564 	 * handle that.
565 	 */
566 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
568 		return 0;
569 
570 	if (last->bbio->raid_map[0] !=
571 	    cur->bbio->raid_map[0])
572 		return 0;
573 
574 	/* we can't merge with different operations */
575 	if (last->operation != cur->operation)
576 		return 0;
577 	/*
578 	 * We've need read the full stripe from the drive.
579 	 * check and repair the parity and write the new results.
580 	 *
581 	 * We're not allowed to add any new bios to the
582 	 * bio list here, anyone else that wants to
583 	 * change this stripe needs to do their own rmw.
584 	 */
585 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
586 		return 0;
587 
588 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
589 		return 0;
590 
591 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
592 		int fa = last->faila;
593 		int fb = last->failb;
594 		int cur_fa = cur->faila;
595 		int cur_fb = cur->failb;
596 
597 		if (last->faila >= last->failb) {
598 			fa = last->failb;
599 			fb = last->faila;
600 		}
601 
602 		if (cur->faila >= cur->failb) {
603 			cur_fa = cur->failb;
604 			cur_fb = cur->faila;
605 		}
606 
607 		if (fa != cur_fa || fb != cur_fb)
608 			return 0;
609 	}
610 	return 1;
611 }
612 
613 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
614 				  int index)
615 {
616 	return stripe * rbio->stripe_npages + index;
617 }
618 
619 /*
620  * these are just the pages from the rbio array, not from anything
621  * the FS sent down to us
622  */
623 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
624 				     int index)
625 {
626 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
627 }
628 
629 /*
630  * helper to index into the pstripe
631  */
632 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
633 {
634 	return rbio_stripe_page(rbio, rbio->nr_data, index);
635 }
636 
637 /*
638  * helper to index into the qstripe, returns null
639  * if there is no qstripe
640  */
641 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
642 {
643 	if (rbio->nr_data + 1 == rbio->real_stripes)
644 		return NULL;
645 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
646 }
647 
648 /*
649  * The first stripe in the table for a logical address
650  * has the lock.  rbios are added in one of three ways:
651  *
652  * 1) Nobody has the stripe locked yet.  The rbio is given
653  * the lock and 0 is returned.  The caller must start the IO
654  * themselves.
655  *
656  * 2) Someone has the stripe locked, but we're able to merge
657  * with the lock owner.  The rbio is freed and the IO will
658  * start automatically along with the existing rbio.  1 is returned.
659  *
660  * 3) Someone has the stripe locked, but we're not able to merge.
661  * The rbio is added to the lock owner's plug list, or merged into
662  * an rbio already on the plug list.  When the lock owner unlocks,
663  * the next rbio on the list is run and the IO is started automatically.
664  * 1 is returned
665  *
666  * If we return 0, the caller still owns the rbio and must continue with
667  * IO submission.  If we return 1, the caller must assume the rbio has
668  * already been freed.
669  */
670 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
671 {
672 	int bucket = rbio_bucket(rbio);
673 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
674 	struct btrfs_raid_bio *cur;
675 	struct btrfs_raid_bio *pending;
676 	unsigned long flags;
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 
681 	spin_lock_irqsave(&h->lock, flags);
682 	list_for_each_entry(cur, &h->hash_list, hash_list) {
683 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 			spin_lock(&cur->bio_list_lock);
685 
686 			/* can we steal this cached rbio's pages? */
687 			if (bio_list_empty(&cur->bio_list) &&
688 			    list_empty(&cur->plug_list) &&
689 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 				list_del_init(&cur->hash_list);
692 				refcount_dec(&cur->refs);
693 
694 				steal_rbio(cur, rbio);
695 				cache_drop = cur;
696 				spin_unlock(&cur->bio_list_lock);
697 
698 				goto lockit;
699 			}
700 
701 			/* can we merge into the lock owner? */
702 			if (rbio_can_merge(cur, rbio)) {
703 				merge_rbio(cur, rbio);
704 				spin_unlock(&cur->bio_list_lock);
705 				freeit = rbio;
706 				ret = 1;
707 				goto out;
708 			}
709 
710 
711 			/*
712 			 * we couldn't merge with the running
713 			 * rbio, see if we can merge with the
714 			 * pending ones.  We don't have to
715 			 * check for rmw_locked because there
716 			 * is no way they are inside finish_rmw
717 			 * right now
718 			 */
719 			list_for_each_entry(pending, &cur->plug_list,
720 					    plug_list) {
721 				if (rbio_can_merge(pending, rbio)) {
722 					merge_rbio(pending, rbio);
723 					spin_unlock(&cur->bio_list_lock);
724 					freeit = rbio;
725 					ret = 1;
726 					goto out;
727 				}
728 			}
729 
730 			/* no merging, put us on the tail of the plug list,
731 			 * our rbio will be started with the currently
732 			 * running rbio unlocks
733 			 */
734 			list_add_tail(&rbio->plug_list, &cur->plug_list);
735 			spin_unlock(&cur->bio_list_lock);
736 			ret = 1;
737 			goto out;
738 		}
739 	}
740 lockit:
741 	refcount_inc(&rbio->refs);
742 	list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 	spin_unlock_irqrestore(&h->lock, flags);
745 	if (cache_drop)
746 		remove_rbio_from_cache(cache_drop);
747 	if (freeit)
748 		__free_raid_bio(freeit);
749 	return ret;
750 }
751 
752 /*
753  * called as rmw or parity rebuild is completed.  If the plug list has more
754  * rbios waiting for this stripe, the next one on the list will be started
755  */
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757 {
758 	int bucket;
759 	struct btrfs_stripe_hash *h;
760 	unsigned long flags;
761 	int keep_cache = 0;
762 
763 	bucket = rbio_bucket(rbio);
764 	h = rbio->fs_info->stripe_hash_table->table + bucket;
765 
766 	if (list_empty(&rbio->plug_list))
767 		cache_rbio(rbio);
768 
769 	spin_lock_irqsave(&h->lock, flags);
770 	spin_lock(&rbio->bio_list_lock);
771 
772 	if (!list_empty(&rbio->hash_list)) {
773 		/*
774 		 * if we're still cached and there is no other IO
775 		 * to perform, just leave this rbio here for others
776 		 * to steal from later
777 		 */
778 		if (list_empty(&rbio->plug_list) &&
779 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 			keep_cache = 1;
781 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 			BUG_ON(!bio_list_empty(&rbio->bio_list));
783 			goto done;
784 		}
785 
786 		list_del_init(&rbio->hash_list);
787 		refcount_dec(&rbio->refs);
788 
789 		/*
790 		 * we use the plug list to hold all the rbios
791 		 * waiting for the chance to lock this stripe.
792 		 * hand the lock over to one of them.
793 		 */
794 		if (!list_empty(&rbio->plug_list)) {
795 			struct btrfs_raid_bio *next;
796 			struct list_head *head = rbio->plug_list.next;
797 
798 			next = list_entry(head, struct btrfs_raid_bio,
799 					  plug_list);
800 
801 			list_del_init(&rbio->plug_list);
802 
803 			list_add(&next->hash_list, &h->hash_list);
804 			refcount_inc(&next->refs);
805 			spin_unlock(&rbio->bio_list_lock);
806 			spin_unlock_irqrestore(&h->lock, flags);
807 
808 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 				async_read_rebuild(next);
810 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 				steal_rbio(rbio, next);
812 				async_read_rebuild(next);
813 			} else if (next->operation == BTRFS_RBIO_WRITE) {
814 				steal_rbio(rbio, next);
815 				async_rmw_stripe(next);
816 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 				steal_rbio(rbio, next);
818 				async_scrub_parity(next);
819 			}
820 
821 			goto done_nolock;
822 		}
823 	}
824 done:
825 	spin_unlock(&rbio->bio_list_lock);
826 	spin_unlock_irqrestore(&h->lock, flags);
827 
828 done_nolock:
829 	if (!keep_cache)
830 		remove_rbio_from_cache(rbio);
831 }
832 
833 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
834 {
835 	int i;
836 
837 	if (!refcount_dec_and_test(&rbio->refs))
838 		return;
839 
840 	WARN_ON(!list_empty(&rbio->stripe_cache));
841 	WARN_ON(!list_empty(&rbio->hash_list));
842 	WARN_ON(!bio_list_empty(&rbio->bio_list));
843 
844 	for (i = 0; i < rbio->nr_pages; i++) {
845 		if (rbio->stripe_pages[i]) {
846 			__free_page(rbio->stripe_pages[i]);
847 			rbio->stripe_pages[i] = NULL;
848 		}
849 	}
850 
851 	btrfs_put_bbio(rbio->bbio);
852 	kfree(rbio);
853 }
854 
855 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
856 {
857 	struct bio *next;
858 
859 	while (cur) {
860 		next = cur->bi_next;
861 		cur->bi_next = NULL;
862 		cur->bi_status = err;
863 		bio_endio(cur);
864 		cur = next;
865 	}
866 }
867 
868 /*
869  * this frees the rbio and runs through all the bios in the
870  * bio_list and calls end_io on them
871  */
872 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
873 {
874 	struct bio *cur = bio_list_get(&rbio->bio_list);
875 	struct bio *extra;
876 
877 	if (rbio->generic_bio_cnt)
878 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
879 
880 	/*
881 	 * At this moment, rbio->bio_list is empty, however since rbio does not
882 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
883 	 * hash list, rbio may be merged with others so that rbio->bio_list
884 	 * becomes non-empty.
885 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
886 	 * more and we can call bio_endio() on all queued bios.
887 	 */
888 	unlock_stripe(rbio);
889 	extra = bio_list_get(&rbio->bio_list);
890 	__free_raid_bio(rbio);
891 
892 	rbio_endio_bio_list(cur, err);
893 	if (extra)
894 		rbio_endio_bio_list(extra, err);
895 }
896 
897 /*
898  * end io function used by finish_rmw.  When we finally
899  * get here, we've written a full stripe
900  */
901 static void raid_write_end_io(struct bio *bio)
902 {
903 	struct btrfs_raid_bio *rbio = bio->bi_private;
904 	blk_status_t err = bio->bi_status;
905 	int max_errors;
906 
907 	if (err)
908 		fail_bio_stripe(rbio, bio);
909 
910 	bio_put(bio);
911 
912 	if (!atomic_dec_and_test(&rbio->stripes_pending))
913 		return;
914 
915 	err = BLK_STS_OK;
916 
917 	/* OK, we have read all the stripes we need to. */
918 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
919 		     0 : rbio->bbio->max_errors;
920 	if (atomic_read(&rbio->error) > max_errors)
921 		err = BLK_STS_IOERR;
922 
923 	rbio_orig_end_io(rbio, err);
924 }
925 
926 /*
927  * the read/modify/write code wants to use the original bio for
928  * any pages it included, and then use the rbio for everything
929  * else.  This function decides if a given index (stripe number)
930  * and page number in that stripe fall inside the original bio
931  * or the rbio.
932  *
933  * if you set bio_list_only, you'll get a NULL back for any ranges
934  * that are outside the bio_list
935  *
936  * This doesn't take any refs on anything, you get a bare page pointer
937  * and the caller must bump refs as required.
938  *
939  * You must call index_rbio_pages once before you can trust
940  * the answers from this function.
941  */
942 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
943 				 int index, int pagenr, int bio_list_only)
944 {
945 	int chunk_page;
946 	struct page *p = NULL;
947 
948 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
949 
950 	spin_lock_irq(&rbio->bio_list_lock);
951 	p = rbio->bio_pages[chunk_page];
952 	spin_unlock_irq(&rbio->bio_list_lock);
953 
954 	if (p || bio_list_only)
955 		return p;
956 
957 	return rbio->stripe_pages[chunk_page];
958 }
959 
960 /*
961  * number of pages we need for the entire stripe across all the
962  * drives
963  */
964 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
965 {
966 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
967 }
968 
969 /*
970  * allocation and initial setup for the btrfs_raid_bio.  Not
971  * this does not allocate any pages for rbio->pages.
972  */
973 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
974 					 struct btrfs_bio *bbio,
975 					 u64 stripe_len)
976 {
977 	struct btrfs_raid_bio *rbio;
978 	int nr_data = 0;
979 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
980 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
981 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
982 	void *p;
983 
984 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
985 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
986 		       sizeof(long), GFP_NOFS);
987 	if (!rbio)
988 		return ERR_PTR(-ENOMEM);
989 
990 	bio_list_init(&rbio->bio_list);
991 	INIT_LIST_HEAD(&rbio->plug_list);
992 	spin_lock_init(&rbio->bio_list_lock);
993 	INIT_LIST_HEAD(&rbio->stripe_cache);
994 	INIT_LIST_HEAD(&rbio->hash_list);
995 	rbio->bbio = bbio;
996 	rbio->fs_info = fs_info;
997 	rbio->stripe_len = stripe_len;
998 	rbio->nr_pages = num_pages;
999 	rbio->real_stripes = real_stripes;
1000 	rbio->stripe_npages = stripe_npages;
1001 	rbio->faila = -1;
1002 	rbio->failb = -1;
1003 	refcount_set(&rbio->refs, 1);
1004 	atomic_set(&rbio->error, 0);
1005 	atomic_set(&rbio->stripes_pending, 0);
1006 
1007 	/*
1008 	 * the stripe_pages and bio_pages array point to the extra
1009 	 * memory we allocated past the end of the rbio
1010 	 */
1011 	p = rbio + 1;
1012 	rbio->stripe_pages = p;
1013 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1014 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1015 
1016 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1017 		nr_data = real_stripes - 1;
1018 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1019 		nr_data = real_stripes - 2;
1020 	else
1021 		BUG();
1022 
1023 	rbio->nr_data = nr_data;
1024 	return rbio;
1025 }
1026 
1027 /* allocate pages for all the stripes in the bio, including parity */
1028 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1029 {
1030 	int i;
1031 	struct page *page;
1032 
1033 	for (i = 0; i < rbio->nr_pages; i++) {
1034 		if (rbio->stripe_pages[i])
1035 			continue;
1036 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1037 		if (!page)
1038 			return -ENOMEM;
1039 		rbio->stripe_pages[i] = page;
1040 	}
1041 	return 0;
1042 }
1043 
1044 /* only allocate pages for p/q stripes */
1045 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1046 {
1047 	int i;
1048 	struct page *page;
1049 
1050 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1051 
1052 	for (; i < rbio->nr_pages; i++) {
1053 		if (rbio->stripe_pages[i])
1054 			continue;
1055 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1056 		if (!page)
1057 			return -ENOMEM;
1058 		rbio->stripe_pages[i] = page;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /*
1064  * add a single page from a specific stripe into our list of bios for IO
1065  * this will try to merge into existing bios if possible, and returns
1066  * zero if all went well.
1067  */
1068 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1069 			    struct bio_list *bio_list,
1070 			    struct page *page,
1071 			    int stripe_nr,
1072 			    unsigned long page_index,
1073 			    unsigned long bio_max_len)
1074 {
1075 	struct bio *last = bio_list->tail;
1076 	u64 last_end = 0;
1077 	int ret;
1078 	struct bio *bio;
1079 	struct btrfs_bio_stripe *stripe;
1080 	u64 disk_start;
1081 
1082 	stripe = &rbio->bbio->stripes[stripe_nr];
1083 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1084 
1085 	/* if the device is missing, just fail this stripe */
1086 	if (!stripe->dev->bdev)
1087 		return fail_rbio_index(rbio, stripe_nr);
1088 
1089 	/* see if we can add this page onto our existing bio */
1090 	if (last) {
1091 		last_end = (u64)last->bi_iter.bi_sector << 9;
1092 		last_end += last->bi_iter.bi_size;
1093 
1094 		/*
1095 		 * we can't merge these if they are from different
1096 		 * devices or if they are not contiguous
1097 		 */
1098 		if (last_end == disk_start && stripe->dev->bdev &&
1099 		    !last->bi_status &&
1100 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1101 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1102 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1103 			if (ret == PAGE_SIZE)
1104 				return 0;
1105 		}
1106 	}
1107 
1108 	/* put a new bio on the list */
1109 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1110 	bio->bi_iter.bi_size = 0;
1111 	bio_set_dev(bio, stripe->dev->bdev);
1112 	bio->bi_iter.bi_sector = disk_start >> 9;
1113 
1114 	bio_add_page(bio, page, PAGE_SIZE, 0);
1115 	bio_list_add(bio_list, bio);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * while we're doing the read/modify/write cycle, we could
1121  * have errors in reading pages off the disk.  This checks
1122  * for errors and if we're not able to read the page it'll
1123  * trigger parity reconstruction.  The rmw will be finished
1124  * after we've reconstructed the failed stripes
1125  */
1126 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127 {
1128 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 		__raid56_parity_recover(rbio);
1131 	} else {
1132 		finish_rmw(rbio);
1133 	}
1134 }
1135 
1136 /*
1137  * helper function to walk our bio list and populate the bio_pages array with
1138  * the result.  This seems expensive, but it is faster than constantly
1139  * searching through the bio list as we setup the IO in finish_rmw or stripe
1140  * reconstruction.
1141  *
1142  * This must be called before you trust the answers from page_in_rbio
1143  */
1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145 {
1146 	struct bio *bio;
1147 	u64 start;
1148 	unsigned long stripe_offset;
1149 	unsigned long page_index;
1150 
1151 	spin_lock_irq(&rbio->bio_list_lock);
1152 	bio_list_for_each(bio, &rbio->bio_list) {
1153 		struct bio_vec bvec;
1154 		struct bvec_iter iter;
1155 		int i = 0;
1156 
1157 		start = (u64)bio->bi_iter.bi_sector << 9;
1158 		stripe_offset = start - rbio->bbio->raid_map[0];
1159 		page_index = stripe_offset >> PAGE_SHIFT;
1160 
1161 		if (bio_flagged(bio, BIO_CLONED))
1162 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1163 
1164 		bio_for_each_segment(bvec, bio, iter) {
1165 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1166 			i++;
1167 		}
1168 	}
1169 	spin_unlock_irq(&rbio->bio_list_lock);
1170 }
1171 
1172 /*
1173  * this is called from one of two situations.  We either
1174  * have a full stripe from the higher layers, or we've read all
1175  * the missing bits off disk.
1176  *
1177  * This will calculate the parity and then send down any
1178  * changed blocks.
1179  */
1180 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1181 {
1182 	struct btrfs_bio *bbio = rbio->bbio;
1183 	void *pointers[rbio->real_stripes];
1184 	int nr_data = rbio->nr_data;
1185 	int stripe;
1186 	int pagenr;
1187 	int p_stripe = -1;
1188 	int q_stripe = -1;
1189 	struct bio_list bio_list;
1190 	struct bio *bio;
1191 	int ret;
1192 
1193 	bio_list_init(&bio_list);
1194 
1195 	if (rbio->real_stripes - rbio->nr_data == 1) {
1196 		p_stripe = rbio->real_stripes - 1;
1197 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1198 		p_stripe = rbio->real_stripes - 2;
1199 		q_stripe = rbio->real_stripes - 1;
1200 	} else {
1201 		BUG();
1202 	}
1203 
1204 	/* at this point we either have a full stripe,
1205 	 * or we've read the full stripe from the drive.
1206 	 * recalculate the parity and write the new results.
1207 	 *
1208 	 * We're not allowed to add any new bios to the
1209 	 * bio list here, anyone else that wants to
1210 	 * change this stripe needs to do their own rmw.
1211 	 */
1212 	spin_lock_irq(&rbio->bio_list_lock);
1213 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1214 	spin_unlock_irq(&rbio->bio_list_lock);
1215 
1216 	atomic_set(&rbio->error, 0);
1217 
1218 	/*
1219 	 * now that we've set rmw_locked, run through the
1220 	 * bio list one last time and map the page pointers
1221 	 *
1222 	 * We don't cache full rbios because we're assuming
1223 	 * the higher layers are unlikely to use this area of
1224 	 * the disk again soon.  If they do use it again,
1225 	 * hopefully they will send another full bio.
1226 	 */
1227 	index_rbio_pages(rbio);
1228 	if (!rbio_is_full(rbio))
1229 		cache_rbio_pages(rbio);
1230 	else
1231 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1232 
1233 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1234 		struct page *p;
1235 		/* first collect one page from each data stripe */
1236 		for (stripe = 0; stripe < nr_data; stripe++) {
1237 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1238 			pointers[stripe] = kmap(p);
1239 		}
1240 
1241 		/* then add the parity stripe */
1242 		p = rbio_pstripe_page(rbio, pagenr);
1243 		SetPageUptodate(p);
1244 		pointers[stripe++] = kmap(p);
1245 
1246 		if (q_stripe != -1) {
1247 
1248 			/*
1249 			 * raid6, add the qstripe and call the
1250 			 * library function to fill in our p/q
1251 			 */
1252 			p = rbio_qstripe_page(rbio, pagenr);
1253 			SetPageUptodate(p);
1254 			pointers[stripe++] = kmap(p);
1255 
1256 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1257 						pointers);
1258 		} else {
1259 			/* raid5 */
1260 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1261 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1262 		}
1263 
1264 
1265 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1266 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1267 	}
1268 
1269 	/*
1270 	 * time to start writing.  Make bios for everything from the
1271 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1272 	 * everything else.
1273 	 */
1274 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1275 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1276 			struct page *page;
1277 			if (stripe < rbio->nr_data) {
1278 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1279 				if (!page)
1280 					continue;
1281 			} else {
1282 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1283 			}
1284 
1285 			ret = rbio_add_io_page(rbio, &bio_list,
1286 				       page, stripe, pagenr, rbio->stripe_len);
1287 			if (ret)
1288 				goto cleanup;
1289 		}
1290 	}
1291 
1292 	if (likely(!bbio->num_tgtdevs))
1293 		goto write_data;
1294 
1295 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1296 		if (!bbio->tgtdev_map[stripe])
1297 			continue;
1298 
1299 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1300 			struct page *page;
1301 			if (stripe < rbio->nr_data) {
1302 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1303 				if (!page)
1304 					continue;
1305 			} else {
1306 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1307 			}
1308 
1309 			ret = rbio_add_io_page(rbio, &bio_list, page,
1310 					       rbio->bbio->tgtdev_map[stripe],
1311 					       pagenr, rbio->stripe_len);
1312 			if (ret)
1313 				goto cleanup;
1314 		}
1315 	}
1316 
1317 write_data:
1318 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1319 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1320 
1321 	while (1) {
1322 		bio = bio_list_pop(&bio_list);
1323 		if (!bio)
1324 			break;
1325 
1326 		bio->bi_private = rbio;
1327 		bio->bi_end_io = raid_write_end_io;
1328 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1329 
1330 		submit_bio(bio);
1331 	}
1332 	return;
1333 
1334 cleanup:
1335 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1336 
1337 	while ((bio = bio_list_pop(&bio_list)))
1338 		bio_put(bio);
1339 }
1340 
1341 /*
1342  * helper to find the stripe number for a given bio.  Used to figure out which
1343  * stripe has failed.  This expects the bio to correspond to a physical disk,
1344  * so it looks up based on physical sector numbers.
1345  */
1346 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1347 			   struct bio *bio)
1348 {
1349 	u64 physical = bio->bi_iter.bi_sector;
1350 	u64 stripe_start;
1351 	int i;
1352 	struct btrfs_bio_stripe *stripe;
1353 
1354 	physical <<= 9;
1355 
1356 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1357 		stripe = &rbio->bbio->stripes[i];
1358 		stripe_start = stripe->physical;
1359 		if (physical >= stripe_start &&
1360 		    physical < stripe_start + rbio->stripe_len &&
1361 		    stripe->dev->bdev &&
1362 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1363 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1364 			return i;
1365 		}
1366 	}
1367 	return -1;
1368 }
1369 
1370 /*
1371  * helper to find the stripe number for a given
1372  * bio (before mapping).  Used to figure out which stripe has
1373  * failed.  This looks up based on logical block numbers.
1374  */
1375 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1376 				   struct bio *bio)
1377 {
1378 	u64 logical = bio->bi_iter.bi_sector;
1379 	u64 stripe_start;
1380 	int i;
1381 
1382 	logical <<= 9;
1383 
1384 	for (i = 0; i < rbio->nr_data; i++) {
1385 		stripe_start = rbio->bbio->raid_map[i];
1386 		if (logical >= stripe_start &&
1387 		    logical < stripe_start + rbio->stripe_len) {
1388 			return i;
1389 		}
1390 	}
1391 	return -1;
1392 }
1393 
1394 /*
1395  * returns -EIO if we had too many failures
1396  */
1397 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1398 {
1399 	unsigned long flags;
1400 	int ret = 0;
1401 
1402 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1403 
1404 	/* we already know this stripe is bad, move on */
1405 	if (rbio->faila == failed || rbio->failb == failed)
1406 		goto out;
1407 
1408 	if (rbio->faila == -1) {
1409 		/* first failure on this rbio */
1410 		rbio->faila = failed;
1411 		atomic_inc(&rbio->error);
1412 	} else if (rbio->failb == -1) {
1413 		/* second failure on this rbio */
1414 		rbio->failb = failed;
1415 		atomic_inc(&rbio->error);
1416 	} else {
1417 		ret = -EIO;
1418 	}
1419 out:
1420 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1421 
1422 	return ret;
1423 }
1424 
1425 /*
1426  * helper to fail a stripe based on a physical disk
1427  * bio.
1428  */
1429 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1430 			   struct bio *bio)
1431 {
1432 	int failed = find_bio_stripe(rbio, bio);
1433 
1434 	if (failed < 0)
1435 		return -EIO;
1436 
1437 	return fail_rbio_index(rbio, failed);
1438 }
1439 
1440 /*
1441  * this sets each page in the bio uptodate.  It should only be used on private
1442  * rbio pages, nothing that comes in from the higher layers
1443  */
1444 static void set_bio_pages_uptodate(struct bio *bio)
1445 {
1446 	struct bio_vec *bvec;
1447 	int i;
1448 
1449 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1450 
1451 	bio_for_each_segment_all(bvec, bio, i)
1452 		SetPageUptodate(bvec->bv_page);
1453 }
1454 
1455 /*
1456  * end io for the read phase of the rmw cycle.  All the bios here are physical
1457  * stripe bios we've read from the disk so we can recalculate the parity of the
1458  * stripe.
1459  *
1460  * This will usually kick off finish_rmw once all the bios are read in, but it
1461  * may trigger parity reconstruction if we had any errors along the way
1462  */
1463 static void raid_rmw_end_io(struct bio *bio)
1464 {
1465 	struct btrfs_raid_bio *rbio = bio->bi_private;
1466 
1467 	if (bio->bi_status)
1468 		fail_bio_stripe(rbio, bio);
1469 	else
1470 		set_bio_pages_uptodate(bio);
1471 
1472 	bio_put(bio);
1473 
1474 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1475 		return;
1476 
1477 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1478 		goto cleanup;
1479 
1480 	/*
1481 	 * this will normally call finish_rmw to start our write
1482 	 * but if there are any failed stripes we'll reconstruct
1483 	 * from parity first
1484 	 */
1485 	validate_rbio_for_rmw(rbio);
1486 	return;
1487 
1488 cleanup:
1489 
1490 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1491 }
1492 
1493 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1494 {
1495 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1496 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1497 }
1498 
1499 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1500 {
1501 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1502 			read_rebuild_work, NULL, NULL);
1503 
1504 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1505 }
1506 
1507 /*
1508  * the stripe must be locked by the caller.  It will
1509  * unlock after all the writes are done
1510  */
1511 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1512 {
1513 	int bios_to_read = 0;
1514 	struct bio_list bio_list;
1515 	int ret;
1516 	int pagenr;
1517 	int stripe;
1518 	struct bio *bio;
1519 
1520 	bio_list_init(&bio_list);
1521 
1522 	ret = alloc_rbio_pages(rbio);
1523 	if (ret)
1524 		goto cleanup;
1525 
1526 	index_rbio_pages(rbio);
1527 
1528 	atomic_set(&rbio->error, 0);
1529 	/*
1530 	 * build a list of bios to read all the missing parts of this
1531 	 * stripe
1532 	 */
1533 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1534 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1535 			struct page *page;
1536 			/*
1537 			 * we want to find all the pages missing from
1538 			 * the rbio and read them from the disk.  If
1539 			 * page_in_rbio finds a page in the bio list
1540 			 * we don't need to read it off the stripe.
1541 			 */
1542 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1543 			if (page)
1544 				continue;
1545 
1546 			page = rbio_stripe_page(rbio, stripe, pagenr);
1547 			/*
1548 			 * the bio cache may have handed us an uptodate
1549 			 * page.  If so, be happy and use it
1550 			 */
1551 			if (PageUptodate(page))
1552 				continue;
1553 
1554 			ret = rbio_add_io_page(rbio, &bio_list, page,
1555 				       stripe, pagenr, rbio->stripe_len);
1556 			if (ret)
1557 				goto cleanup;
1558 		}
1559 	}
1560 
1561 	bios_to_read = bio_list_size(&bio_list);
1562 	if (!bios_to_read) {
1563 		/*
1564 		 * this can happen if others have merged with
1565 		 * us, it means there is nothing left to read.
1566 		 * But if there are missing devices it may not be
1567 		 * safe to do the full stripe write yet.
1568 		 */
1569 		goto finish;
1570 	}
1571 
1572 	/*
1573 	 * the bbio may be freed once we submit the last bio.  Make sure
1574 	 * not to touch it after that
1575 	 */
1576 	atomic_set(&rbio->stripes_pending, bios_to_read);
1577 	while (1) {
1578 		bio = bio_list_pop(&bio_list);
1579 		if (!bio)
1580 			break;
1581 
1582 		bio->bi_private = rbio;
1583 		bio->bi_end_io = raid_rmw_end_io;
1584 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1585 
1586 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1587 
1588 		submit_bio(bio);
1589 	}
1590 	/* the actual write will happen once the reads are done */
1591 	return 0;
1592 
1593 cleanup:
1594 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1595 
1596 	while ((bio = bio_list_pop(&bio_list)))
1597 		bio_put(bio);
1598 
1599 	return -EIO;
1600 
1601 finish:
1602 	validate_rbio_for_rmw(rbio);
1603 	return 0;
1604 }
1605 
1606 /*
1607  * if the upper layers pass in a full stripe, we thank them by only allocating
1608  * enough pages to hold the parity, and sending it all down quickly.
1609  */
1610 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1611 {
1612 	int ret;
1613 
1614 	ret = alloc_rbio_parity_pages(rbio);
1615 	if (ret) {
1616 		__free_raid_bio(rbio);
1617 		return ret;
1618 	}
1619 
1620 	ret = lock_stripe_add(rbio);
1621 	if (ret == 0)
1622 		finish_rmw(rbio);
1623 	return 0;
1624 }
1625 
1626 /*
1627  * partial stripe writes get handed over to async helpers.
1628  * We're really hoping to merge a few more writes into this
1629  * rbio before calculating new parity
1630  */
1631 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1632 {
1633 	int ret;
1634 
1635 	ret = lock_stripe_add(rbio);
1636 	if (ret == 0)
1637 		async_rmw_stripe(rbio);
1638 	return 0;
1639 }
1640 
1641 /*
1642  * sometimes while we were reading from the drive to
1643  * recalculate parity, enough new bios come into create
1644  * a full stripe.  So we do a check here to see if we can
1645  * go directly to finish_rmw
1646  */
1647 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1648 {
1649 	/* head off into rmw land if we don't have a full stripe */
1650 	if (!rbio_is_full(rbio))
1651 		return partial_stripe_write(rbio);
1652 	return full_stripe_write(rbio);
1653 }
1654 
1655 /*
1656  * We use plugging call backs to collect full stripes.
1657  * Any time we get a partial stripe write while plugged
1658  * we collect it into a list.  When the unplug comes down,
1659  * we sort the list by logical block number and merge
1660  * everything we can into the same rbios
1661  */
1662 struct btrfs_plug_cb {
1663 	struct blk_plug_cb cb;
1664 	struct btrfs_fs_info *info;
1665 	struct list_head rbio_list;
1666 	struct btrfs_work work;
1667 };
1668 
1669 /*
1670  * rbios on the plug list are sorted for easier merging.
1671  */
1672 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1673 {
1674 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675 						 plug_list);
1676 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677 						 plug_list);
1678 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680 
1681 	if (a_sector < b_sector)
1682 		return -1;
1683 	if (a_sector > b_sector)
1684 		return 1;
1685 	return 0;
1686 }
1687 
1688 static void run_plug(struct btrfs_plug_cb *plug)
1689 {
1690 	struct btrfs_raid_bio *cur;
1691 	struct btrfs_raid_bio *last = NULL;
1692 
1693 	/*
1694 	 * sort our plug list then try to merge
1695 	 * everything we can in hopes of creating full
1696 	 * stripes.
1697 	 */
1698 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1699 	while (!list_empty(&plug->rbio_list)) {
1700 		cur = list_entry(plug->rbio_list.next,
1701 				 struct btrfs_raid_bio, plug_list);
1702 		list_del_init(&cur->plug_list);
1703 
1704 		if (rbio_is_full(cur)) {
1705 			/* we have a full stripe, send it down */
1706 			full_stripe_write(cur);
1707 			continue;
1708 		}
1709 		if (last) {
1710 			if (rbio_can_merge(last, cur)) {
1711 				merge_rbio(last, cur);
1712 				__free_raid_bio(cur);
1713 				continue;
1714 
1715 			}
1716 			__raid56_parity_write(last);
1717 		}
1718 		last = cur;
1719 	}
1720 	if (last) {
1721 		__raid56_parity_write(last);
1722 	}
1723 	kfree(plug);
1724 }
1725 
1726 /*
1727  * if the unplug comes from schedule, we have to push the
1728  * work off to a helper thread
1729  */
1730 static void unplug_work(struct btrfs_work *work)
1731 {
1732 	struct btrfs_plug_cb *plug;
1733 	plug = container_of(work, struct btrfs_plug_cb, work);
1734 	run_plug(plug);
1735 }
1736 
1737 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1738 {
1739 	struct btrfs_plug_cb *plug;
1740 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1741 
1742 	if (from_schedule) {
1743 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1744 				unplug_work, NULL, NULL);
1745 		btrfs_queue_work(plug->info->rmw_workers,
1746 				 &plug->work);
1747 		return;
1748 	}
1749 	run_plug(plug);
1750 }
1751 
1752 /*
1753  * our main entry point for writes from the rest of the FS.
1754  */
1755 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1756 			struct btrfs_bio *bbio, u64 stripe_len)
1757 {
1758 	struct btrfs_raid_bio *rbio;
1759 	struct btrfs_plug_cb *plug = NULL;
1760 	struct blk_plug_cb *cb;
1761 	int ret;
1762 
1763 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1764 	if (IS_ERR(rbio)) {
1765 		btrfs_put_bbio(bbio);
1766 		return PTR_ERR(rbio);
1767 	}
1768 	bio_list_add(&rbio->bio_list, bio);
1769 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1770 	rbio->operation = BTRFS_RBIO_WRITE;
1771 
1772 	btrfs_bio_counter_inc_noblocked(fs_info);
1773 	rbio->generic_bio_cnt = 1;
1774 
1775 	/*
1776 	 * don't plug on full rbios, just get them out the door
1777 	 * as quickly as we can
1778 	 */
1779 	if (rbio_is_full(rbio)) {
1780 		ret = full_stripe_write(rbio);
1781 		if (ret)
1782 			btrfs_bio_counter_dec(fs_info);
1783 		return ret;
1784 	}
1785 
1786 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1787 	if (cb) {
1788 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1789 		if (!plug->info) {
1790 			plug->info = fs_info;
1791 			INIT_LIST_HEAD(&plug->rbio_list);
1792 		}
1793 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1794 		ret = 0;
1795 	} else {
1796 		ret = __raid56_parity_write(rbio);
1797 		if (ret)
1798 			btrfs_bio_counter_dec(fs_info);
1799 	}
1800 	return ret;
1801 }
1802 
1803 /*
1804  * all parity reconstruction happens here.  We've read in everything
1805  * we can find from the drives and this does the heavy lifting of
1806  * sorting the good from the bad.
1807  */
1808 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1809 {
1810 	int pagenr, stripe;
1811 	void **pointers;
1812 	int faila = -1, failb = -1;
1813 	struct page *page;
1814 	blk_status_t err;
1815 	int i;
1816 
1817 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1818 	if (!pointers) {
1819 		err = BLK_STS_RESOURCE;
1820 		goto cleanup_io;
1821 	}
1822 
1823 	faila = rbio->faila;
1824 	failb = rbio->failb;
1825 
1826 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1828 		spin_lock_irq(&rbio->bio_list_lock);
1829 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1830 		spin_unlock_irq(&rbio->bio_list_lock);
1831 	}
1832 
1833 	index_rbio_pages(rbio);
1834 
1835 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1836 		/*
1837 		 * Now we just use bitmap to mark the horizontal stripes in
1838 		 * which we have data when doing parity scrub.
1839 		 */
1840 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1841 		    !test_bit(pagenr, rbio->dbitmap))
1842 			continue;
1843 
1844 		/* setup our array of pointers with pages
1845 		 * from each stripe
1846 		 */
1847 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1848 			/*
1849 			 * if we're rebuilding a read, we have to use
1850 			 * pages from the bio list
1851 			 */
1852 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1853 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1854 			    (stripe == faila || stripe == failb)) {
1855 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1856 			} else {
1857 				page = rbio_stripe_page(rbio, stripe, pagenr);
1858 			}
1859 			pointers[stripe] = kmap(page);
1860 		}
1861 
1862 		/* all raid6 handling here */
1863 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1864 			/*
1865 			 * single failure, rebuild from parity raid5
1866 			 * style
1867 			 */
1868 			if (failb < 0) {
1869 				if (faila == rbio->nr_data) {
1870 					/*
1871 					 * Just the P stripe has failed, without
1872 					 * a bad data or Q stripe.
1873 					 * TODO, we should redo the xor here.
1874 					 */
1875 					err = BLK_STS_IOERR;
1876 					goto cleanup;
1877 				}
1878 				/*
1879 				 * a single failure in raid6 is rebuilt
1880 				 * in the pstripe code below
1881 				 */
1882 				goto pstripe;
1883 			}
1884 
1885 			/* make sure our ps and qs are in order */
1886 			if (faila > failb) {
1887 				int tmp = failb;
1888 				failb = faila;
1889 				faila = tmp;
1890 			}
1891 
1892 			/* if the q stripe is failed, do a pstripe reconstruction
1893 			 * from the xors.
1894 			 * If both the q stripe and the P stripe are failed, we're
1895 			 * here due to a crc mismatch and we can't give them the
1896 			 * data they want
1897 			 */
1898 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1899 				if (rbio->bbio->raid_map[faila] ==
1900 				    RAID5_P_STRIPE) {
1901 					err = BLK_STS_IOERR;
1902 					goto cleanup;
1903 				}
1904 				/*
1905 				 * otherwise we have one bad data stripe and
1906 				 * a good P stripe.  raid5!
1907 				 */
1908 				goto pstripe;
1909 			}
1910 
1911 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1912 				raid6_datap_recov(rbio->real_stripes,
1913 						  PAGE_SIZE, faila, pointers);
1914 			} else {
1915 				raid6_2data_recov(rbio->real_stripes,
1916 						  PAGE_SIZE, faila, failb,
1917 						  pointers);
1918 			}
1919 		} else {
1920 			void *p;
1921 
1922 			/* rebuild from P stripe here (raid5 or raid6) */
1923 			BUG_ON(failb != -1);
1924 pstripe:
1925 			/* Copy parity block into failed block to start with */
1926 			memcpy(pointers[faila],
1927 			       pointers[rbio->nr_data],
1928 			       PAGE_SIZE);
1929 
1930 			/* rearrange the pointer array */
1931 			p = pointers[faila];
1932 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1933 				pointers[stripe] = pointers[stripe + 1];
1934 			pointers[rbio->nr_data - 1] = p;
1935 
1936 			/* xor in the rest */
1937 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1938 		}
1939 		/* if we're doing this rebuild as part of an rmw, go through
1940 		 * and set all of our private rbio pages in the
1941 		 * failed stripes as uptodate.  This way finish_rmw will
1942 		 * know they can be trusted.  If this was a read reconstruction,
1943 		 * other endio functions will fiddle the uptodate bits
1944 		 */
1945 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1946 			for (i = 0;  i < rbio->stripe_npages; i++) {
1947 				if (faila != -1) {
1948 					page = rbio_stripe_page(rbio, faila, i);
1949 					SetPageUptodate(page);
1950 				}
1951 				if (failb != -1) {
1952 					page = rbio_stripe_page(rbio, failb, i);
1953 					SetPageUptodate(page);
1954 				}
1955 			}
1956 		}
1957 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1958 			/*
1959 			 * if we're rebuilding a read, we have to use
1960 			 * pages from the bio list
1961 			 */
1962 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1963 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1964 			    (stripe == faila || stripe == failb)) {
1965 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1966 			} else {
1967 				page = rbio_stripe_page(rbio, stripe, pagenr);
1968 			}
1969 			kunmap(page);
1970 		}
1971 	}
1972 
1973 	err = BLK_STS_OK;
1974 cleanup:
1975 	kfree(pointers);
1976 
1977 cleanup_io:
1978 	/*
1979 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1980 	 * valid rbio which is consistent with ondisk content, thus such a
1981 	 * valid rbio can be cached to avoid further disk reads.
1982 	 */
1983 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1984 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1985 		/*
1986 		 * - In case of two failures, where rbio->failb != -1:
1987 		 *
1988 		 *   Do not cache this rbio since the above read reconstruction
1989 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1990 		 *   changed some content of stripes which are not identical to
1991 		 *   on-disk content any more, otherwise, a later write/recover
1992 		 *   may steal stripe_pages from this rbio and end up with
1993 		 *   corruptions or rebuild failures.
1994 		 *
1995 		 * - In case of single failure, where rbio->failb == -1:
1996 		 *
1997 		 *   Cache this rbio iff the above read reconstruction is
1998 		 *   excuted without problems.
1999 		 */
2000 		if (err == BLK_STS_OK && rbio->failb < 0)
2001 			cache_rbio_pages(rbio);
2002 		else
2003 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2004 
2005 		rbio_orig_end_io(rbio, err);
2006 	} else if (err == BLK_STS_OK) {
2007 		rbio->faila = -1;
2008 		rbio->failb = -1;
2009 
2010 		if (rbio->operation == BTRFS_RBIO_WRITE)
2011 			finish_rmw(rbio);
2012 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2013 			finish_parity_scrub(rbio, 0);
2014 		else
2015 			BUG();
2016 	} else {
2017 		rbio_orig_end_io(rbio, err);
2018 	}
2019 }
2020 
2021 /*
2022  * This is called only for stripes we've read from disk to
2023  * reconstruct the parity.
2024  */
2025 static void raid_recover_end_io(struct bio *bio)
2026 {
2027 	struct btrfs_raid_bio *rbio = bio->bi_private;
2028 
2029 	/*
2030 	 * we only read stripe pages off the disk, set them
2031 	 * up to date if there were no errors
2032 	 */
2033 	if (bio->bi_status)
2034 		fail_bio_stripe(rbio, bio);
2035 	else
2036 		set_bio_pages_uptodate(bio);
2037 	bio_put(bio);
2038 
2039 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2040 		return;
2041 
2042 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2043 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2044 	else
2045 		__raid_recover_end_io(rbio);
2046 }
2047 
2048 /*
2049  * reads everything we need off the disk to reconstruct
2050  * the parity. endio handlers trigger final reconstruction
2051  * when the IO is done.
2052  *
2053  * This is used both for reads from the higher layers and for
2054  * parity construction required to finish a rmw cycle.
2055  */
2056 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2057 {
2058 	int bios_to_read = 0;
2059 	struct bio_list bio_list;
2060 	int ret;
2061 	int pagenr;
2062 	int stripe;
2063 	struct bio *bio;
2064 
2065 	bio_list_init(&bio_list);
2066 
2067 	ret = alloc_rbio_pages(rbio);
2068 	if (ret)
2069 		goto cleanup;
2070 
2071 	atomic_set(&rbio->error, 0);
2072 
2073 	/*
2074 	 * read everything that hasn't failed.  Thanks to the
2075 	 * stripe cache, it is possible that some or all of these
2076 	 * pages are going to be uptodate.
2077 	 */
2078 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2079 		if (rbio->faila == stripe || rbio->failb == stripe) {
2080 			atomic_inc(&rbio->error);
2081 			continue;
2082 		}
2083 
2084 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2085 			struct page *p;
2086 
2087 			/*
2088 			 * the rmw code may have already read this
2089 			 * page in
2090 			 */
2091 			p = rbio_stripe_page(rbio, stripe, pagenr);
2092 			if (PageUptodate(p))
2093 				continue;
2094 
2095 			ret = rbio_add_io_page(rbio, &bio_list,
2096 				       rbio_stripe_page(rbio, stripe, pagenr),
2097 				       stripe, pagenr, rbio->stripe_len);
2098 			if (ret < 0)
2099 				goto cleanup;
2100 		}
2101 	}
2102 
2103 	bios_to_read = bio_list_size(&bio_list);
2104 	if (!bios_to_read) {
2105 		/*
2106 		 * we might have no bios to read just because the pages
2107 		 * were up to date, or we might have no bios to read because
2108 		 * the devices were gone.
2109 		 */
2110 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2111 			__raid_recover_end_io(rbio);
2112 			goto out;
2113 		} else {
2114 			goto cleanup;
2115 		}
2116 	}
2117 
2118 	/*
2119 	 * the bbio may be freed once we submit the last bio.  Make sure
2120 	 * not to touch it after that
2121 	 */
2122 	atomic_set(&rbio->stripes_pending, bios_to_read);
2123 	while (1) {
2124 		bio = bio_list_pop(&bio_list);
2125 		if (!bio)
2126 			break;
2127 
2128 		bio->bi_private = rbio;
2129 		bio->bi_end_io = raid_recover_end_io;
2130 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2131 
2132 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2133 
2134 		submit_bio(bio);
2135 	}
2136 out:
2137 	return 0;
2138 
2139 cleanup:
2140 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2141 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2142 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2143 
2144 	while ((bio = bio_list_pop(&bio_list)))
2145 		bio_put(bio);
2146 
2147 	return -EIO;
2148 }
2149 
2150 /*
2151  * the main entry point for reads from the higher layers.  This
2152  * is really only called when the normal read path had a failure,
2153  * so we assume the bio they send down corresponds to a failed part
2154  * of the drive.
2155  */
2156 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2157 			  struct btrfs_bio *bbio, u64 stripe_len,
2158 			  int mirror_num, int generic_io)
2159 {
2160 	struct btrfs_raid_bio *rbio;
2161 	int ret;
2162 
2163 	if (generic_io) {
2164 		ASSERT(bbio->mirror_num == mirror_num);
2165 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2166 	}
2167 
2168 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2169 	if (IS_ERR(rbio)) {
2170 		if (generic_io)
2171 			btrfs_put_bbio(bbio);
2172 		return PTR_ERR(rbio);
2173 	}
2174 
2175 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2176 	bio_list_add(&rbio->bio_list, bio);
2177 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2178 
2179 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2180 	if (rbio->faila == -1) {
2181 		btrfs_warn(fs_info,
2182 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2183 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2184 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2185 		if (generic_io)
2186 			btrfs_put_bbio(bbio);
2187 		kfree(rbio);
2188 		return -EIO;
2189 	}
2190 
2191 	if (generic_io) {
2192 		btrfs_bio_counter_inc_noblocked(fs_info);
2193 		rbio->generic_bio_cnt = 1;
2194 	} else {
2195 		btrfs_get_bbio(bbio);
2196 	}
2197 
2198 	/*
2199 	 * Loop retry:
2200 	 * for 'mirror == 2', reconstruct from all other stripes.
2201 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2202 	 */
2203 	if (mirror_num > 2) {
2204 		/*
2205 		 * 'mirror == 3' is to fail the p stripe and
2206 		 * reconstruct from the q stripe.  'mirror > 3' is to
2207 		 * fail a data stripe and reconstruct from p+q stripe.
2208 		 */
2209 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2210 		ASSERT(rbio->failb > 0);
2211 		if (rbio->failb <= rbio->faila)
2212 			rbio->failb--;
2213 	}
2214 
2215 	ret = lock_stripe_add(rbio);
2216 
2217 	/*
2218 	 * __raid56_parity_recover will end the bio with
2219 	 * any errors it hits.  We don't want to return
2220 	 * its error value up the stack because our caller
2221 	 * will end up calling bio_endio with any nonzero
2222 	 * return
2223 	 */
2224 	if (ret == 0)
2225 		__raid56_parity_recover(rbio);
2226 	/*
2227 	 * our rbio has been added to the list of
2228 	 * rbios that will be handled after the
2229 	 * currently lock owner is done
2230 	 */
2231 	return 0;
2232 
2233 }
2234 
2235 static void rmw_work(struct btrfs_work *work)
2236 {
2237 	struct btrfs_raid_bio *rbio;
2238 
2239 	rbio = container_of(work, struct btrfs_raid_bio, work);
2240 	raid56_rmw_stripe(rbio);
2241 }
2242 
2243 static void read_rebuild_work(struct btrfs_work *work)
2244 {
2245 	struct btrfs_raid_bio *rbio;
2246 
2247 	rbio = container_of(work, struct btrfs_raid_bio, work);
2248 	__raid56_parity_recover(rbio);
2249 }
2250 
2251 /*
2252  * The following code is used to scrub/replace the parity stripe
2253  *
2254  * Caller must have already increased bio_counter for getting @bbio.
2255  *
2256  * Note: We need make sure all the pages that add into the scrub/replace
2257  * raid bio are correct and not be changed during the scrub/replace. That
2258  * is those pages just hold metadata or file data with checksum.
2259  */
2260 
2261 struct btrfs_raid_bio *
2262 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2263 			       struct btrfs_bio *bbio, u64 stripe_len,
2264 			       struct btrfs_device *scrub_dev,
2265 			       unsigned long *dbitmap, int stripe_nsectors)
2266 {
2267 	struct btrfs_raid_bio *rbio;
2268 	int i;
2269 
2270 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2271 	if (IS_ERR(rbio))
2272 		return NULL;
2273 	bio_list_add(&rbio->bio_list, bio);
2274 	/*
2275 	 * This is a special bio which is used to hold the completion handler
2276 	 * and make the scrub rbio is similar to the other types
2277 	 */
2278 	ASSERT(!bio->bi_iter.bi_size);
2279 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2280 
2281 	/*
2282 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2283 	 * to the end position, so this search can start from the first parity
2284 	 * stripe.
2285 	 */
2286 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2287 		if (bbio->stripes[i].dev == scrub_dev) {
2288 			rbio->scrubp = i;
2289 			break;
2290 		}
2291 	}
2292 	ASSERT(i < rbio->real_stripes);
2293 
2294 	/* Now we just support the sectorsize equals to page size */
2295 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2296 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2297 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2298 
2299 	/*
2300 	 * We have already increased bio_counter when getting bbio, record it
2301 	 * so we can free it at rbio_orig_end_io().
2302 	 */
2303 	rbio->generic_bio_cnt = 1;
2304 
2305 	return rbio;
2306 }
2307 
2308 /* Used for both parity scrub and missing. */
2309 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2310 			    u64 logical)
2311 {
2312 	int stripe_offset;
2313 	int index;
2314 
2315 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2316 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2317 				rbio->stripe_len * rbio->nr_data);
2318 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2319 	index = stripe_offset >> PAGE_SHIFT;
2320 	rbio->bio_pages[index] = page;
2321 }
2322 
2323 /*
2324  * We just scrub the parity that we have correct data on the same horizontal,
2325  * so we needn't allocate all pages for all the stripes.
2326  */
2327 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2328 {
2329 	int i;
2330 	int bit;
2331 	int index;
2332 	struct page *page;
2333 
2334 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2335 		for (i = 0; i < rbio->real_stripes; i++) {
2336 			index = i * rbio->stripe_npages + bit;
2337 			if (rbio->stripe_pages[index])
2338 				continue;
2339 
2340 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 			if (!page)
2342 				return -ENOMEM;
2343 			rbio->stripe_pages[index] = page;
2344 		}
2345 	}
2346 	return 0;
2347 }
2348 
2349 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2350 					 int need_check)
2351 {
2352 	struct btrfs_bio *bbio = rbio->bbio;
2353 	void *pointers[rbio->real_stripes];
2354 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2355 	int nr_data = rbio->nr_data;
2356 	int stripe;
2357 	int pagenr;
2358 	int p_stripe = -1;
2359 	int q_stripe = -1;
2360 	struct page *p_page = NULL;
2361 	struct page *q_page = NULL;
2362 	struct bio_list bio_list;
2363 	struct bio *bio;
2364 	int is_replace = 0;
2365 	int ret;
2366 
2367 	bio_list_init(&bio_list);
2368 
2369 	if (rbio->real_stripes - rbio->nr_data == 1) {
2370 		p_stripe = rbio->real_stripes - 1;
2371 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2372 		p_stripe = rbio->real_stripes - 2;
2373 		q_stripe = rbio->real_stripes - 1;
2374 	} else {
2375 		BUG();
2376 	}
2377 
2378 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2379 		is_replace = 1;
2380 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2381 	}
2382 
2383 	/*
2384 	 * Because the higher layers(scrubber) are unlikely to
2385 	 * use this area of the disk again soon, so don't cache
2386 	 * it.
2387 	 */
2388 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2389 
2390 	if (!need_check)
2391 		goto writeback;
2392 
2393 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2394 	if (!p_page)
2395 		goto cleanup;
2396 	SetPageUptodate(p_page);
2397 
2398 	if (q_stripe != -1) {
2399 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2400 		if (!q_page) {
2401 			__free_page(p_page);
2402 			goto cleanup;
2403 		}
2404 		SetPageUptodate(q_page);
2405 	}
2406 
2407 	atomic_set(&rbio->error, 0);
2408 
2409 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2410 		struct page *p;
2411 		void *parity;
2412 		/* first collect one page from each data stripe */
2413 		for (stripe = 0; stripe < nr_data; stripe++) {
2414 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2415 			pointers[stripe] = kmap(p);
2416 		}
2417 
2418 		/* then add the parity stripe */
2419 		pointers[stripe++] = kmap(p_page);
2420 
2421 		if (q_stripe != -1) {
2422 
2423 			/*
2424 			 * raid6, add the qstripe and call the
2425 			 * library function to fill in our p/q
2426 			 */
2427 			pointers[stripe++] = kmap(q_page);
2428 
2429 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2430 						pointers);
2431 		} else {
2432 			/* raid5 */
2433 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2434 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2435 		}
2436 
2437 		/* Check scrubbing parity and repair it */
2438 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2439 		parity = kmap(p);
2440 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2441 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2442 		else
2443 			/* Parity is right, needn't writeback */
2444 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2445 		kunmap(p);
2446 
2447 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2448 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2449 	}
2450 
2451 	__free_page(p_page);
2452 	if (q_page)
2453 		__free_page(q_page);
2454 
2455 writeback:
2456 	/*
2457 	 * time to start writing.  Make bios for everything from the
2458 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2459 	 * everything else.
2460 	 */
2461 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2462 		struct page *page;
2463 
2464 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2465 		ret = rbio_add_io_page(rbio, &bio_list,
2466 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2467 		if (ret)
2468 			goto cleanup;
2469 	}
2470 
2471 	if (!is_replace)
2472 		goto submit_write;
2473 
2474 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2475 		struct page *page;
2476 
2477 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2478 		ret = rbio_add_io_page(rbio, &bio_list, page,
2479 				       bbio->tgtdev_map[rbio->scrubp],
2480 				       pagenr, rbio->stripe_len);
2481 		if (ret)
2482 			goto cleanup;
2483 	}
2484 
2485 submit_write:
2486 	nr_data = bio_list_size(&bio_list);
2487 	if (!nr_data) {
2488 		/* Every parity is right */
2489 		rbio_orig_end_io(rbio, BLK_STS_OK);
2490 		return;
2491 	}
2492 
2493 	atomic_set(&rbio->stripes_pending, nr_data);
2494 
2495 	while (1) {
2496 		bio = bio_list_pop(&bio_list);
2497 		if (!bio)
2498 			break;
2499 
2500 		bio->bi_private = rbio;
2501 		bio->bi_end_io = raid_write_end_io;
2502 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2503 
2504 		submit_bio(bio);
2505 	}
2506 	return;
2507 
2508 cleanup:
2509 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2510 
2511 	while ((bio = bio_list_pop(&bio_list)))
2512 		bio_put(bio);
2513 }
2514 
2515 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2516 {
2517 	if (stripe >= 0 && stripe < rbio->nr_data)
2518 		return 1;
2519 	return 0;
2520 }
2521 
2522 /*
2523  * While we're doing the parity check and repair, we could have errors
2524  * in reading pages off the disk.  This checks for errors and if we're
2525  * not able to read the page it'll trigger parity reconstruction.  The
2526  * parity scrub will be finished after we've reconstructed the failed
2527  * stripes
2528  */
2529 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2530 {
2531 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2532 		goto cleanup;
2533 
2534 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2535 		int dfail = 0, failp = -1;
2536 
2537 		if (is_data_stripe(rbio, rbio->faila))
2538 			dfail++;
2539 		else if (is_parity_stripe(rbio->faila))
2540 			failp = rbio->faila;
2541 
2542 		if (is_data_stripe(rbio, rbio->failb))
2543 			dfail++;
2544 		else if (is_parity_stripe(rbio->failb))
2545 			failp = rbio->failb;
2546 
2547 		/*
2548 		 * Because we can not use a scrubbing parity to repair
2549 		 * the data, so the capability of the repair is declined.
2550 		 * (In the case of RAID5, we can not repair anything)
2551 		 */
2552 		if (dfail > rbio->bbio->max_errors - 1)
2553 			goto cleanup;
2554 
2555 		/*
2556 		 * If all data is good, only parity is correctly, just
2557 		 * repair the parity.
2558 		 */
2559 		if (dfail == 0) {
2560 			finish_parity_scrub(rbio, 0);
2561 			return;
2562 		}
2563 
2564 		/*
2565 		 * Here means we got one corrupted data stripe and one
2566 		 * corrupted parity on RAID6, if the corrupted parity
2567 		 * is scrubbing parity, luckily, use the other one to repair
2568 		 * the data, or we can not repair the data stripe.
2569 		 */
2570 		if (failp != rbio->scrubp)
2571 			goto cleanup;
2572 
2573 		__raid_recover_end_io(rbio);
2574 	} else {
2575 		finish_parity_scrub(rbio, 1);
2576 	}
2577 	return;
2578 
2579 cleanup:
2580 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2581 }
2582 
2583 /*
2584  * end io for the read phase of the rmw cycle.  All the bios here are physical
2585  * stripe bios we've read from the disk so we can recalculate the parity of the
2586  * stripe.
2587  *
2588  * This will usually kick off finish_rmw once all the bios are read in, but it
2589  * may trigger parity reconstruction if we had any errors along the way
2590  */
2591 static void raid56_parity_scrub_end_io(struct bio *bio)
2592 {
2593 	struct btrfs_raid_bio *rbio = bio->bi_private;
2594 
2595 	if (bio->bi_status)
2596 		fail_bio_stripe(rbio, bio);
2597 	else
2598 		set_bio_pages_uptodate(bio);
2599 
2600 	bio_put(bio);
2601 
2602 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2603 		return;
2604 
2605 	/*
2606 	 * this will normally call finish_rmw to start our write
2607 	 * but if there are any failed stripes we'll reconstruct
2608 	 * from parity first
2609 	 */
2610 	validate_rbio_for_parity_scrub(rbio);
2611 }
2612 
2613 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2614 {
2615 	int bios_to_read = 0;
2616 	struct bio_list bio_list;
2617 	int ret;
2618 	int pagenr;
2619 	int stripe;
2620 	struct bio *bio;
2621 
2622 	bio_list_init(&bio_list);
2623 
2624 	ret = alloc_rbio_essential_pages(rbio);
2625 	if (ret)
2626 		goto cleanup;
2627 
2628 	atomic_set(&rbio->error, 0);
2629 	/*
2630 	 * build a list of bios to read all the missing parts of this
2631 	 * stripe
2632 	 */
2633 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2634 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2635 			struct page *page;
2636 			/*
2637 			 * we want to find all the pages missing from
2638 			 * the rbio and read them from the disk.  If
2639 			 * page_in_rbio finds a page in the bio list
2640 			 * we don't need to read it off the stripe.
2641 			 */
2642 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2643 			if (page)
2644 				continue;
2645 
2646 			page = rbio_stripe_page(rbio, stripe, pagenr);
2647 			/*
2648 			 * the bio cache may have handed us an uptodate
2649 			 * page.  If so, be happy and use it
2650 			 */
2651 			if (PageUptodate(page))
2652 				continue;
2653 
2654 			ret = rbio_add_io_page(rbio, &bio_list, page,
2655 				       stripe, pagenr, rbio->stripe_len);
2656 			if (ret)
2657 				goto cleanup;
2658 		}
2659 	}
2660 
2661 	bios_to_read = bio_list_size(&bio_list);
2662 	if (!bios_to_read) {
2663 		/*
2664 		 * this can happen if others have merged with
2665 		 * us, it means there is nothing left to read.
2666 		 * But if there are missing devices it may not be
2667 		 * safe to do the full stripe write yet.
2668 		 */
2669 		goto finish;
2670 	}
2671 
2672 	/*
2673 	 * the bbio may be freed once we submit the last bio.  Make sure
2674 	 * not to touch it after that
2675 	 */
2676 	atomic_set(&rbio->stripes_pending, bios_to_read);
2677 	while (1) {
2678 		bio = bio_list_pop(&bio_list);
2679 		if (!bio)
2680 			break;
2681 
2682 		bio->bi_private = rbio;
2683 		bio->bi_end_io = raid56_parity_scrub_end_io;
2684 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2685 
2686 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2687 
2688 		submit_bio(bio);
2689 	}
2690 	/* the actual write will happen once the reads are done */
2691 	return;
2692 
2693 cleanup:
2694 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2695 
2696 	while ((bio = bio_list_pop(&bio_list)))
2697 		bio_put(bio);
2698 
2699 	return;
2700 
2701 finish:
2702 	validate_rbio_for_parity_scrub(rbio);
2703 }
2704 
2705 static void scrub_parity_work(struct btrfs_work *work)
2706 {
2707 	struct btrfs_raid_bio *rbio;
2708 
2709 	rbio = container_of(work, struct btrfs_raid_bio, work);
2710 	raid56_parity_scrub_stripe(rbio);
2711 }
2712 
2713 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2714 {
2715 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2716 			scrub_parity_work, NULL, NULL);
2717 
2718 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2719 }
2720 
2721 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2722 {
2723 	if (!lock_stripe_add(rbio))
2724 		async_scrub_parity(rbio);
2725 }
2726 
2727 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2728 
2729 struct btrfs_raid_bio *
2730 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2731 			  struct btrfs_bio *bbio, u64 length)
2732 {
2733 	struct btrfs_raid_bio *rbio;
2734 
2735 	rbio = alloc_rbio(fs_info, bbio, length);
2736 	if (IS_ERR(rbio))
2737 		return NULL;
2738 
2739 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2740 	bio_list_add(&rbio->bio_list, bio);
2741 	/*
2742 	 * This is a special bio which is used to hold the completion handler
2743 	 * and make the scrub rbio is similar to the other types
2744 	 */
2745 	ASSERT(!bio->bi_iter.bi_size);
2746 
2747 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2748 	if (rbio->faila == -1) {
2749 		BUG();
2750 		kfree(rbio);
2751 		return NULL;
2752 	}
2753 
2754 	/*
2755 	 * When we get bbio, we have already increased bio_counter, record it
2756 	 * so we can free it at rbio_orig_end_io()
2757 	 */
2758 	rbio->generic_bio_cnt = 1;
2759 
2760 	return rbio;
2761 }
2762 
2763 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2764 {
2765 	if (!lock_stripe_add(rbio))
2766 		async_read_rebuild(rbio);
2767 }
2768