xref: /openbmc/linux/fs/btrfs/raid56.c (revision d8bcaabe)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/mm.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	refcount_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kvzalloc(table_size, GFP_KERNEL);
222 	if (!table)
223 		return -ENOMEM;
224 
225 	spin_lock_init(&table->cache_lock);
226 	INIT_LIST_HEAD(&table->stripe_cache);
227 
228 	h = table->table;
229 
230 	for (i = 0; i < num_entries; i++) {
231 		cur = h + i;
232 		INIT_LIST_HEAD(&cur->hash_list);
233 		spin_lock_init(&cur->lock);
234 		init_waitqueue_head(&cur->wait);
235 	}
236 
237 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 	if (x)
239 		kvfree(x);
240 	return 0;
241 }
242 
243 /*
244  * caching an rbio means to copy anything from the
245  * bio_pages array into the stripe_pages array.  We
246  * use the page uptodate bit in the stripe cache array
247  * to indicate if it has valid data
248  *
249  * once the caching is done, we set the cache ready
250  * bit.
251  */
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 	int i;
255 	char *s;
256 	char *d;
257 	int ret;
258 
259 	ret = alloc_rbio_pages(rbio);
260 	if (ret)
261 		return;
262 
263 	for (i = 0; i < rbio->nr_pages; i++) {
264 		if (!rbio->bio_pages[i])
265 			continue;
266 
267 		s = kmap(rbio->bio_pages[i]);
268 		d = kmap(rbio->stripe_pages[i]);
269 
270 		memcpy(d, s, PAGE_SIZE);
271 
272 		kunmap(rbio->bio_pages[i]);
273 		kunmap(rbio->stripe_pages[i]);
274 		SetPageUptodate(rbio->stripe_pages[i]);
275 	}
276 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278 
279 /*
280  * we hash on the first logical address of the stripe
281  */
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 	u64 num = rbio->bbio->raid_map[0];
285 
286 	/*
287 	 * we shift down quite a bit.  We're using byte
288 	 * addressing, and most of the lower bits are zeros.
289 	 * This tends to upset hash_64, and it consistently
290 	 * returns just one or two different values.
291 	 *
292 	 * shifting off the lower bits fixes things.
293 	 */
294 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296 
297 /*
298  * stealing an rbio means taking all the uptodate pages from the stripe
299  * array in the source rbio and putting them into the destination rbio
300  */
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 	int i;
304 	struct page *s;
305 	struct page *d;
306 
307 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 		return;
309 
310 	for (i = 0; i < dest->nr_pages; i++) {
311 		s = src->stripe_pages[i];
312 		if (!s || !PageUptodate(s)) {
313 			continue;
314 		}
315 
316 		d = dest->stripe_pages[i];
317 		if (d)
318 			__free_page(d);
319 
320 		dest->stripe_pages[i] = s;
321 		src->stripe_pages[i] = NULL;
322 	}
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	dest->generic_bio_cnt += victim->generic_bio_cnt;
338 	bio_list_init(&victim->bio_list);
339 }
340 
341 /*
342  * used to prune items that are in the cache.  The caller
343  * must hold the hash table lock.
344  */
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 	int bucket = rbio_bucket(rbio);
348 	struct btrfs_stripe_hash_table *table;
349 	struct btrfs_stripe_hash *h;
350 	int freeit = 0;
351 
352 	/*
353 	 * check the bit again under the hash table lock.
354 	 */
355 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 		return;
357 
358 	table = rbio->fs_info->stripe_hash_table;
359 	h = table->table + bucket;
360 
361 	/* hold the lock for the bucket because we may be
362 	 * removing it from the hash table
363 	 */
364 	spin_lock(&h->lock);
365 
366 	/*
367 	 * hold the lock for the bio list because we need
368 	 * to make sure the bio list is empty
369 	 */
370 	spin_lock(&rbio->bio_list_lock);
371 
372 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 		list_del_init(&rbio->stripe_cache);
374 		table->cache_size -= 1;
375 		freeit = 1;
376 
377 		/* if the bio list isn't empty, this rbio is
378 		 * still involved in an IO.  We take it out
379 		 * of the cache list, and drop the ref that
380 		 * was held for the list.
381 		 *
382 		 * If the bio_list was empty, we also remove
383 		 * the rbio from the hash_table, and drop
384 		 * the corresponding ref
385 		 */
386 		if (bio_list_empty(&rbio->bio_list)) {
387 			if (!list_empty(&rbio->hash_list)) {
388 				list_del_init(&rbio->hash_list);
389 				refcount_dec(&rbio->refs);
390 				BUG_ON(!list_empty(&rbio->plug_list));
391 			}
392 		}
393 	}
394 
395 	spin_unlock(&rbio->bio_list_lock);
396 	spin_unlock(&h->lock);
397 
398 	if (freeit)
399 		__free_raid_bio(rbio);
400 }
401 
402 /*
403  * prune a given rbio from the cache
404  */
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 	struct btrfs_stripe_hash_table *table;
408 	unsigned long flags;
409 
410 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 		return;
412 
413 	table = rbio->fs_info->stripe_hash_table;
414 
415 	spin_lock_irqsave(&table->cache_lock, flags);
416 	__remove_rbio_from_cache(rbio);
417 	spin_unlock_irqrestore(&table->cache_lock, flags);
418 }
419 
420 /*
421  * remove everything in the cache
422  */
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 	struct btrfs_stripe_hash_table *table;
426 	unsigned long flags;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock_irqsave(&table->cache_lock, flags);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock_irqrestore(&table->cache_lock, flags);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 	unsigned long flags;
469 
470 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 		return;
472 
473 	table = rbio->fs_info->stripe_hash_table;
474 
475 	spin_lock_irqsave(&table->cache_lock, flags);
476 	spin_lock(&rbio->bio_list_lock);
477 
478 	/* bump our ref if we were not in the list before */
479 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 		refcount_inc(&rbio->refs);
481 
482 	if (!list_empty(&rbio->stripe_cache)){
483 		list_move(&rbio->stripe_cache, &table->stripe_cache);
484 	} else {
485 		list_add(&rbio->stripe_cache, &table->stripe_cache);
486 		table->cache_size += 1;
487 	}
488 
489 	spin_unlock(&rbio->bio_list_lock);
490 
491 	if (table->cache_size > RBIO_CACHE_SIZE) {
492 		struct btrfs_raid_bio *found;
493 
494 		found = list_entry(table->stripe_cache.prev,
495 				  struct btrfs_raid_bio,
496 				  stripe_cache);
497 
498 		if (found != rbio)
499 			__remove_rbio_from_cache(found);
500 	}
501 
502 	spin_unlock_irqrestore(&table->cache_lock, flags);
503 }
504 
505 /*
506  * helper function to run the xor_blocks api.  It is only
507  * able to do MAX_XOR_BLOCKS at a time, so we need to
508  * loop through.
509  */
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 {
512 	int src_off = 0;
513 	int xor_src_cnt = 0;
514 	void *dest = pages[src_cnt];
515 
516 	while(src_cnt > 0) {
517 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519 
520 		src_cnt -= xor_src_cnt;
521 		src_off += xor_src_cnt;
522 	}
523 }
524 
525 /*
526  * returns true if the bio list inside this rbio
527  * covers an entire stripe (no rmw required).
528  * Must be called with the bio list lock held, or
529  * at a time when you know it is impossible to add
530  * new bios into the list
531  */
532 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533 {
534 	unsigned long size = rbio->bio_list_bytes;
535 	int ret = 1;
536 
537 	if (size != rbio->nr_data * rbio->stripe_len)
538 		ret = 0;
539 
540 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 	return ret;
542 }
543 
544 static int rbio_is_full(struct btrfs_raid_bio *rbio)
545 {
546 	unsigned long flags;
547 	int ret;
548 
549 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 	ret = __rbio_is_full(rbio);
551 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 	return ret;
553 }
554 
555 /*
556  * returns 1 if it is safe to merge two rbios together.
557  * The merging is safe if the two rbios correspond to
558  * the same stripe and if they are both going in the same
559  * direction (read vs write), and if neither one is
560  * locked for final IO
561  *
562  * The caller is responsible for locking such that
563  * rmw_locked is safe to test
564  */
565 static int rbio_can_merge(struct btrfs_raid_bio *last,
566 			  struct btrfs_raid_bio *cur)
567 {
568 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 		return 0;
571 
572 	/*
573 	 * we can't merge with cached rbios, since the
574 	 * idea is that when we merge the destination
575 	 * rbio is going to run our IO for us.  We can
576 	 * steal from cached rbios though, other functions
577 	 * handle that.
578 	 */
579 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
581 		return 0;
582 
583 	if (last->bbio->raid_map[0] !=
584 	    cur->bbio->raid_map[0])
585 		return 0;
586 
587 	/* we can't merge with different operations */
588 	if (last->operation != cur->operation)
589 		return 0;
590 	/*
591 	 * We've need read the full stripe from the drive.
592 	 * check and repair the parity and write the new results.
593 	 *
594 	 * We're not allowed to add any new bios to the
595 	 * bio list here, anyone else that wants to
596 	 * change this stripe needs to do their own rmw.
597 	 */
598 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
600 		return 0;
601 
602 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 		return 0;
605 
606 	return 1;
607 }
608 
609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 				  int index)
611 {
612 	return stripe * rbio->stripe_npages + index;
613 }
614 
615 /*
616  * these are just the pages from the rbio array, not from anything
617  * the FS sent down to us
618  */
619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 				     int index)
621 {
622 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623 }
624 
625 /*
626  * helper to index into the pstripe
627  */
628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629 {
630 	return rbio_stripe_page(rbio, rbio->nr_data, index);
631 }
632 
633 /*
634  * helper to index into the qstripe, returns null
635  * if there is no qstripe
636  */
637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638 {
639 	if (rbio->nr_data + 1 == rbio->real_stripes)
640 		return NULL;
641 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
642 }
643 
644 /*
645  * The first stripe in the table for a logical address
646  * has the lock.  rbios are added in one of three ways:
647  *
648  * 1) Nobody has the stripe locked yet.  The rbio is given
649  * the lock and 0 is returned.  The caller must start the IO
650  * themselves.
651  *
652  * 2) Someone has the stripe locked, but we're able to merge
653  * with the lock owner.  The rbio is freed and the IO will
654  * start automatically along with the existing rbio.  1 is returned.
655  *
656  * 3) Someone has the stripe locked, but we're not able to merge.
657  * The rbio is added to the lock owner's plug list, or merged into
658  * an rbio already on the plug list.  When the lock owner unlocks,
659  * the next rbio on the list is run and the IO is started automatically.
660  * 1 is returned
661  *
662  * If we return 0, the caller still owns the rbio and must continue with
663  * IO submission.  If we return 1, the caller must assume the rbio has
664  * already been freed.
665  */
666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667 {
668 	int bucket = rbio_bucket(rbio);
669 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 	struct btrfs_raid_bio *cur;
671 	struct btrfs_raid_bio *pending;
672 	unsigned long flags;
673 	DEFINE_WAIT(wait);
674 	struct btrfs_raid_bio *freeit = NULL;
675 	struct btrfs_raid_bio *cache_drop = NULL;
676 	int ret = 0;
677 
678 	spin_lock_irqsave(&h->lock, flags);
679 	list_for_each_entry(cur, &h->hash_list, hash_list) {
680 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
681 			spin_lock(&cur->bio_list_lock);
682 
683 			/* can we steal this cached rbio's pages? */
684 			if (bio_list_empty(&cur->bio_list) &&
685 			    list_empty(&cur->plug_list) &&
686 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 				list_del_init(&cur->hash_list);
689 				refcount_dec(&cur->refs);
690 
691 				steal_rbio(cur, rbio);
692 				cache_drop = cur;
693 				spin_unlock(&cur->bio_list_lock);
694 
695 				goto lockit;
696 			}
697 
698 			/* can we merge into the lock owner? */
699 			if (rbio_can_merge(cur, rbio)) {
700 				merge_rbio(cur, rbio);
701 				spin_unlock(&cur->bio_list_lock);
702 				freeit = rbio;
703 				ret = 1;
704 				goto out;
705 			}
706 
707 
708 			/*
709 			 * we couldn't merge with the running
710 			 * rbio, see if we can merge with the
711 			 * pending ones.  We don't have to
712 			 * check for rmw_locked because there
713 			 * is no way they are inside finish_rmw
714 			 * right now
715 			 */
716 			list_for_each_entry(pending, &cur->plug_list,
717 					    plug_list) {
718 				if (rbio_can_merge(pending, rbio)) {
719 					merge_rbio(pending, rbio);
720 					spin_unlock(&cur->bio_list_lock);
721 					freeit = rbio;
722 					ret = 1;
723 					goto out;
724 				}
725 			}
726 
727 			/* no merging, put us on the tail of the plug list,
728 			 * our rbio will be started with the currently
729 			 * running rbio unlocks
730 			 */
731 			list_add_tail(&rbio->plug_list, &cur->plug_list);
732 			spin_unlock(&cur->bio_list_lock);
733 			ret = 1;
734 			goto out;
735 		}
736 	}
737 lockit:
738 	refcount_inc(&rbio->refs);
739 	list_add(&rbio->hash_list, &h->hash_list);
740 out:
741 	spin_unlock_irqrestore(&h->lock, flags);
742 	if (cache_drop)
743 		remove_rbio_from_cache(cache_drop);
744 	if (freeit)
745 		__free_raid_bio(freeit);
746 	return ret;
747 }
748 
749 /*
750  * called as rmw or parity rebuild is completed.  If the plug list has more
751  * rbios waiting for this stripe, the next one on the list will be started
752  */
753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754 {
755 	int bucket;
756 	struct btrfs_stripe_hash *h;
757 	unsigned long flags;
758 	int keep_cache = 0;
759 
760 	bucket = rbio_bucket(rbio);
761 	h = rbio->fs_info->stripe_hash_table->table + bucket;
762 
763 	if (list_empty(&rbio->plug_list))
764 		cache_rbio(rbio);
765 
766 	spin_lock_irqsave(&h->lock, flags);
767 	spin_lock(&rbio->bio_list_lock);
768 
769 	if (!list_empty(&rbio->hash_list)) {
770 		/*
771 		 * if we're still cached and there is no other IO
772 		 * to perform, just leave this rbio here for others
773 		 * to steal from later
774 		 */
775 		if (list_empty(&rbio->plug_list) &&
776 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 			keep_cache = 1;
778 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 			BUG_ON(!bio_list_empty(&rbio->bio_list));
780 			goto done;
781 		}
782 
783 		list_del_init(&rbio->hash_list);
784 		refcount_dec(&rbio->refs);
785 
786 		/*
787 		 * we use the plug list to hold all the rbios
788 		 * waiting for the chance to lock this stripe.
789 		 * hand the lock over to one of them.
790 		 */
791 		if (!list_empty(&rbio->plug_list)) {
792 			struct btrfs_raid_bio *next;
793 			struct list_head *head = rbio->plug_list.next;
794 
795 			next = list_entry(head, struct btrfs_raid_bio,
796 					  plug_list);
797 
798 			list_del_init(&rbio->plug_list);
799 
800 			list_add(&next->hash_list, &h->hash_list);
801 			refcount_inc(&next->refs);
802 			spin_unlock(&rbio->bio_list_lock);
803 			spin_unlock_irqrestore(&h->lock, flags);
804 
805 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
806 				async_read_rebuild(next);
807 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 				steal_rbio(rbio, next);
809 				async_read_rebuild(next);
810 			} else if (next->operation == BTRFS_RBIO_WRITE) {
811 				steal_rbio(rbio, next);
812 				async_rmw_stripe(next);
813 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 				steal_rbio(rbio, next);
815 				async_scrub_parity(next);
816 			}
817 
818 			goto done_nolock;
819 			/*
820 			 * The barrier for this waitqueue_active is not needed,
821 			 * we're protected by h->lock and can't miss a wakeup.
822 			 */
823 		} else if (waitqueue_active(&h->wait)) {
824 			spin_unlock(&rbio->bio_list_lock);
825 			spin_unlock_irqrestore(&h->lock, flags);
826 			wake_up(&h->wait);
827 			goto done_nolock;
828 		}
829 	}
830 done:
831 	spin_unlock(&rbio->bio_list_lock);
832 	spin_unlock_irqrestore(&h->lock, flags);
833 
834 done_nolock:
835 	if (!keep_cache)
836 		remove_rbio_from_cache(rbio);
837 }
838 
839 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840 {
841 	int i;
842 
843 	if (!refcount_dec_and_test(&rbio->refs))
844 		return;
845 
846 	WARN_ON(!list_empty(&rbio->stripe_cache));
847 	WARN_ON(!list_empty(&rbio->hash_list));
848 	WARN_ON(!bio_list_empty(&rbio->bio_list));
849 
850 	for (i = 0; i < rbio->nr_pages; i++) {
851 		if (rbio->stripe_pages[i]) {
852 			__free_page(rbio->stripe_pages[i]);
853 			rbio->stripe_pages[i] = NULL;
854 		}
855 	}
856 
857 	btrfs_put_bbio(rbio->bbio);
858 	kfree(rbio);
859 }
860 
861 static void free_raid_bio(struct btrfs_raid_bio *rbio)
862 {
863 	unlock_stripe(rbio);
864 	__free_raid_bio(rbio);
865 }
866 
867 /*
868  * this frees the rbio and runs through all the bios in the
869  * bio_list and calls end_io on them
870  */
871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
872 {
873 	struct bio *cur = bio_list_get(&rbio->bio_list);
874 	struct bio *next;
875 
876 	if (rbio->generic_bio_cnt)
877 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878 
879 	free_raid_bio(rbio);
880 
881 	while (cur) {
882 		next = cur->bi_next;
883 		cur->bi_next = NULL;
884 		cur->bi_status = err;
885 		bio_endio(cur);
886 		cur = next;
887 	}
888 }
889 
890 /*
891  * end io function used by finish_rmw.  When we finally
892  * get here, we've written a full stripe
893  */
894 static void raid_write_end_io(struct bio *bio)
895 {
896 	struct btrfs_raid_bio *rbio = bio->bi_private;
897 	blk_status_t err = bio->bi_status;
898 	int max_errors;
899 
900 	if (err)
901 		fail_bio_stripe(rbio, bio);
902 
903 	bio_put(bio);
904 
905 	if (!atomic_dec_and_test(&rbio->stripes_pending))
906 		return;
907 
908 	err = BLK_STS_OK;
909 
910 	/* OK, we have read all the stripes we need to. */
911 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 		     0 : rbio->bbio->max_errors;
913 	if (atomic_read(&rbio->error) > max_errors)
914 		err = BLK_STS_IOERR;
915 
916 	rbio_orig_end_io(rbio, err);
917 }
918 
919 /*
920  * the read/modify/write code wants to use the original bio for
921  * any pages it included, and then use the rbio for everything
922  * else.  This function decides if a given index (stripe number)
923  * and page number in that stripe fall inside the original bio
924  * or the rbio.
925  *
926  * if you set bio_list_only, you'll get a NULL back for any ranges
927  * that are outside the bio_list
928  *
929  * This doesn't take any refs on anything, you get a bare page pointer
930  * and the caller must bump refs as required.
931  *
932  * You must call index_rbio_pages once before you can trust
933  * the answers from this function.
934  */
935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 				 int index, int pagenr, int bio_list_only)
937 {
938 	int chunk_page;
939 	struct page *p = NULL;
940 
941 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
942 
943 	spin_lock_irq(&rbio->bio_list_lock);
944 	p = rbio->bio_pages[chunk_page];
945 	spin_unlock_irq(&rbio->bio_list_lock);
946 
947 	if (p || bio_list_only)
948 		return p;
949 
950 	return rbio->stripe_pages[chunk_page];
951 }
952 
953 /*
954  * number of pages we need for the entire stripe across all the
955  * drives
956  */
957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
958 {
959 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
960 }
961 
962 /*
963  * allocation and initial setup for the btrfs_raid_bio.  Not
964  * this does not allocate any pages for rbio->pages.
965  */
966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 					 struct btrfs_bio *bbio,
968 					 u64 stripe_len)
969 {
970 	struct btrfs_raid_bio *rbio;
971 	int nr_data = 0;
972 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
974 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
975 	void *p;
976 
977 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
978 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 		       sizeof(long), GFP_NOFS);
980 	if (!rbio)
981 		return ERR_PTR(-ENOMEM);
982 
983 	bio_list_init(&rbio->bio_list);
984 	INIT_LIST_HEAD(&rbio->plug_list);
985 	spin_lock_init(&rbio->bio_list_lock);
986 	INIT_LIST_HEAD(&rbio->stripe_cache);
987 	INIT_LIST_HEAD(&rbio->hash_list);
988 	rbio->bbio = bbio;
989 	rbio->fs_info = fs_info;
990 	rbio->stripe_len = stripe_len;
991 	rbio->nr_pages = num_pages;
992 	rbio->real_stripes = real_stripes;
993 	rbio->stripe_npages = stripe_npages;
994 	rbio->faila = -1;
995 	rbio->failb = -1;
996 	refcount_set(&rbio->refs, 1);
997 	atomic_set(&rbio->error, 0);
998 	atomic_set(&rbio->stripes_pending, 0);
999 
1000 	/*
1001 	 * the stripe_pages and bio_pages array point to the extra
1002 	 * memory we allocated past the end of the rbio
1003 	 */
1004 	p = rbio + 1;
1005 	rbio->stripe_pages = p;
1006 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1007 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1008 
1009 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 		nr_data = real_stripes - 1;
1011 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1012 		nr_data = real_stripes - 2;
1013 	else
1014 		BUG();
1015 
1016 	rbio->nr_data = nr_data;
1017 	return rbio;
1018 }
1019 
1020 /* allocate pages for all the stripes in the bio, including parity */
1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022 {
1023 	int i;
1024 	struct page *page;
1025 
1026 	for (i = 0; i < rbio->nr_pages; i++) {
1027 		if (rbio->stripe_pages[i])
1028 			continue;
1029 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 		if (!page)
1031 			return -ENOMEM;
1032 		rbio->stripe_pages[i] = page;
1033 	}
1034 	return 0;
1035 }
1036 
1037 /* only allocate pages for p/q stripes */
1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039 {
1040 	int i;
1041 	struct page *page;
1042 
1043 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1044 
1045 	for (; i < rbio->nr_pages; i++) {
1046 		if (rbio->stripe_pages[i])
1047 			continue;
1048 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 		if (!page)
1050 			return -ENOMEM;
1051 		rbio->stripe_pages[i] = page;
1052 	}
1053 	return 0;
1054 }
1055 
1056 /*
1057  * add a single page from a specific stripe into our list of bios for IO
1058  * this will try to merge into existing bios if possible, and returns
1059  * zero if all went well.
1060  */
1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 			    struct bio_list *bio_list,
1063 			    struct page *page,
1064 			    int stripe_nr,
1065 			    unsigned long page_index,
1066 			    unsigned long bio_max_len)
1067 {
1068 	struct bio *last = bio_list->tail;
1069 	u64 last_end = 0;
1070 	int ret;
1071 	struct bio *bio;
1072 	struct btrfs_bio_stripe *stripe;
1073 	u64 disk_start;
1074 
1075 	stripe = &rbio->bbio->stripes[stripe_nr];
1076 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1077 
1078 	/* if the device is missing, just fail this stripe */
1079 	if (!stripe->dev->bdev)
1080 		return fail_rbio_index(rbio, stripe_nr);
1081 
1082 	/* see if we can add this page onto our existing bio */
1083 	if (last) {
1084 		last_end = (u64)last->bi_iter.bi_sector << 9;
1085 		last_end += last->bi_iter.bi_size;
1086 
1087 		/*
1088 		 * we can't merge these if they are from different
1089 		 * devices or if they are not contiguous
1090 		 */
1091 		if (last_end == disk_start && stripe->dev->bdev &&
1092 		    !last->bi_status &&
1093 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1094 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1095 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1096 			if (ret == PAGE_SIZE)
1097 				return 0;
1098 		}
1099 	}
1100 
1101 	/* put a new bio on the list */
1102 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1103 	bio->bi_iter.bi_size = 0;
1104 	bio_set_dev(bio, stripe->dev->bdev);
1105 	bio->bi_iter.bi_sector = disk_start >> 9;
1106 
1107 	bio_add_page(bio, page, PAGE_SIZE, 0);
1108 	bio_list_add(bio_list, bio);
1109 	return 0;
1110 }
1111 
1112 /*
1113  * while we're doing the read/modify/write cycle, we could
1114  * have errors in reading pages off the disk.  This checks
1115  * for errors and if we're not able to read the page it'll
1116  * trigger parity reconstruction.  The rmw will be finished
1117  * after we've reconstructed the failed stripes
1118  */
1119 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1120 {
1121 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1122 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1123 		__raid56_parity_recover(rbio);
1124 	} else {
1125 		finish_rmw(rbio);
1126 	}
1127 }
1128 
1129 /*
1130  * helper function to walk our bio list and populate the bio_pages array with
1131  * the result.  This seems expensive, but it is faster than constantly
1132  * searching through the bio list as we setup the IO in finish_rmw or stripe
1133  * reconstruction.
1134  *
1135  * This must be called before you trust the answers from page_in_rbio
1136  */
1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138 {
1139 	struct bio *bio;
1140 	u64 start;
1141 	unsigned long stripe_offset;
1142 	unsigned long page_index;
1143 
1144 	spin_lock_irq(&rbio->bio_list_lock);
1145 	bio_list_for_each(bio, &rbio->bio_list) {
1146 		struct bio_vec bvec;
1147 		struct bvec_iter iter;
1148 		int i = 0;
1149 
1150 		start = (u64)bio->bi_iter.bi_sector << 9;
1151 		stripe_offset = start - rbio->bbio->raid_map[0];
1152 		page_index = stripe_offset >> PAGE_SHIFT;
1153 
1154 		if (bio_flagged(bio, BIO_CLONED))
1155 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1156 
1157 		bio_for_each_segment(bvec, bio, iter) {
1158 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1159 			i++;
1160 		}
1161 	}
1162 	spin_unlock_irq(&rbio->bio_list_lock);
1163 }
1164 
1165 /*
1166  * this is called from one of two situations.  We either
1167  * have a full stripe from the higher layers, or we've read all
1168  * the missing bits off disk.
1169  *
1170  * This will calculate the parity and then send down any
1171  * changed blocks.
1172  */
1173 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174 {
1175 	struct btrfs_bio *bbio = rbio->bbio;
1176 	void *pointers[rbio->real_stripes];
1177 	int nr_data = rbio->nr_data;
1178 	int stripe;
1179 	int pagenr;
1180 	int p_stripe = -1;
1181 	int q_stripe = -1;
1182 	struct bio_list bio_list;
1183 	struct bio *bio;
1184 	int ret;
1185 
1186 	bio_list_init(&bio_list);
1187 
1188 	if (rbio->real_stripes - rbio->nr_data == 1) {
1189 		p_stripe = rbio->real_stripes - 1;
1190 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1191 		p_stripe = rbio->real_stripes - 2;
1192 		q_stripe = rbio->real_stripes - 1;
1193 	} else {
1194 		BUG();
1195 	}
1196 
1197 	/* at this point we either have a full stripe,
1198 	 * or we've read the full stripe from the drive.
1199 	 * recalculate the parity and write the new results.
1200 	 *
1201 	 * We're not allowed to add any new bios to the
1202 	 * bio list here, anyone else that wants to
1203 	 * change this stripe needs to do their own rmw.
1204 	 */
1205 	spin_lock_irq(&rbio->bio_list_lock);
1206 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1207 	spin_unlock_irq(&rbio->bio_list_lock);
1208 
1209 	atomic_set(&rbio->error, 0);
1210 
1211 	/*
1212 	 * now that we've set rmw_locked, run through the
1213 	 * bio list one last time and map the page pointers
1214 	 *
1215 	 * We don't cache full rbios because we're assuming
1216 	 * the higher layers are unlikely to use this area of
1217 	 * the disk again soon.  If they do use it again,
1218 	 * hopefully they will send another full bio.
1219 	 */
1220 	index_rbio_pages(rbio);
1221 	if (!rbio_is_full(rbio))
1222 		cache_rbio_pages(rbio);
1223 	else
1224 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1225 
1226 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1227 		struct page *p;
1228 		/* first collect one page from each data stripe */
1229 		for (stripe = 0; stripe < nr_data; stripe++) {
1230 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1231 			pointers[stripe] = kmap(p);
1232 		}
1233 
1234 		/* then add the parity stripe */
1235 		p = rbio_pstripe_page(rbio, pagenr);
1236 		SetPageUptodate(p);
1237 		pointers[stripe++] = kmap(p);
1238 
1239 		if (q_stripe != -1) {
1240 
1241 			/*
1242 			 * raid6, add the qstripe and call the
1243 			 * library function to fill in our p/q
1244 			 */
1245 			p = rbio_qstripe_page(rbio, pagenr);
1246 			SetPageUptodate(p);
1247 			pointers[stripe++] = kmap(p);
1248 
1249 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1250 						pointers);
1251 		} else {
1252 			/* raid5 */
1253 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1254 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1255 		}
1256 
1257 
1258 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1259 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1260 	}
1261 
1262 	/*
1263 	 * time to start writing.  Make bios for everything from the
1264 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1265 	 * everything else.
1266 	 */
1267 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1268 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1269 			struct page *page;
1270 			if (stripe < rbio->nr_data) {
1271 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1272 				if (!page)
1273 					continue;
1274 			} else {
1275 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1276 			}
1277 
1278 			ret = rbio_add_io_page(rbio, &bio_list,
1279 				       page, stripe, pagenr, rbio->stripe_len);
1280 			if (ret)
1281 				goto cleanup;
1282 		}
1283 	}
1284 
1285 	if (likely(!bbio->num_tgtdevs))
1286 		goto write_data;
1287 
1288 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289 		if (!bbio->tgtdev_map[stripe])
1290 			continue;
1291 
1292 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1293 			struct page *page;
1294 			if (stripe < rbio->nr_data) {
1295 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1296 				if (!page)
1297 					continue;
1298 			} else {
1299 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1300 			}
1301 
1302 			ret = rbio_add_io_page(rbio, &bio_list, page,
1303 					       rbio->bbio->tgtdev_map[stripe],
1304 					       pagenr, rbio->stripe_len);
1305 			if (ret)
1306 				goto cleanup;
1307 		}
1308 	}
1309 
1310 write_data:
1311 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1312 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1313 
1314 	while (1) {
1315 		bio = bio_list_pop(&bio_list);
1316 		if (!bio)
1317 			break;
1318 
1319 		bio->bi_private = rbio;
1320 		bio->bi_end_io = raid_write_end_io;
1321 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1322 
1323 		submit_bio(bio);
1324 	}
1325 	return;
1326 
1327 cleanup:
1328 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1329 }
1330 
1331 /*
1332  * helper to find the stripe number for a given bio.  Used to figure out which
1333  * stripe has failed.  This expects the bio to correspond to a physical disk,
1334  * so it looks up based on physical sector numbers.
1335  */
1336 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337 			   struct bio *bio)
1338 {
1339 	u64 physical = bio->bi_iter.bi_sector;
1340 	u64 stripe_start;
1341 	int i;
1342 	struct btrfs_bio_stripe *stripe;
1343 
1344 	physical <<= 9;
1345 
1346 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 		stripe = &rbio->bbio->stripes[i];
1348 		stripe_start = stripe->physical;
1349 		if (physical >= stripe_start &&
1350 		    physical < stripe_start + rbio->stripe_len &&
1351 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1352 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1353 			return i;
1354 		}
1355 	}
1356 	return -1;
1357 }
1358 
1359 /*
1360  * helper to find the stripe number for a given
1361  * bio (before mapping).  Used to figure out which stripe has
1362  * failed.  This looks up based on logical block numbers.
1363  */
1364 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 				   struct bio *bio)
1366 {
1367 	u64 logical = bio->bi_iter.bi_sector;
1368 	u64 stripe_start;
1369 	int i;
1370 
1371 	logical <<= 9;
1372 
1373 	for (i = 0; i < rbio->nr_data; i++) {
1374 		stripe_start = rbio->bbio->raid_map[i];
1375 		if (logical >= stripe_start &&
1376 		    logical < stripe_start + rbio->stripe_len) {
1377 			return i;
1378 		}
1379 	}
1380 	return -1;
1381 }
1382 
1383 /*
1384  * returns -EIO if we had too many failures
1385  */
1386 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387 {
1388 	unsigned long flags;
1389 	int ret = 0;
1390 
1391 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392 
1393 	/* we already know this stripe is bad, move on */
1394 	if (rbio->faila == failed || rbio->failb == failed)
1395 		goto out;
1396 
1397 	if (rbio->faila == -1) {
1398 		/* first failure on this rbio */
1399 		rbio->faila = failed;
1400 		atomic_inc(&rbio->error);
1401 	} else if (rbio->failb == -1) {
1402 		/* second failure on this rbio */
1403 		rbio->failb = failed;
1404 		atomic_inc(&rbio->error);
1405 	} else {
1406 		ret = -EIO;
1407 	}
1408 out:
1409 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * helper to fail a stripe based on a physical disk
1416  * bio.
1417  */
1418 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 			   struct bio *bio)
1420 {
1421 	int failed = find_bio_stripe(rbio, bio);
1422 
1423 	if (failed < 0)
1424 		return -EIO;
1425 
1426 	return fail_rbio_index(rbio, failed);
1427 }
1428 
1429 /*
1430  * this sets each page in the bio uptodate.  It should only be used on private
1431  * rbio pages, nothing that comes in from the higher layers
1432  */
1433 static void set_bio_pages_uptodate(struct bio *bio)
1434 {
1435 	struct bio_vec bvec;
1436 	struct bvec_iter iter;
1437 
1438 	if (bio_flagged(bio, BIO_CLONED))
1439 		bio->bi_iter = btrfs_io_bio(bio)->iter;
1440 
1441 	bio_for_each_segment(bvec, bio, iter)
1442 		SetPageUptodate(bvec.bv_page);
1443 }
1444 
1445 /*
1446  * end io for the read phase of the rmw cycle.  All the bios here are physical
1447  * stripe bios we've read from the disk so we can recalculate the parity of the
1448  * stripe.
1449  *
1450  * This will usually kick off finish_rmw once all the bios are read in, but it
1451  * may trigger parity reconstruction if we had any errors along the way
1452  */
1453 static void raid_rmw_end_io(struct bio *bio)
1454 {
1455 	struct btrfs_raid_bio *rbio = bio->bi_private;
1456 
1457 	if (bio->bi_status)
1458 		fail_bio_stripe(rbio, bio);
1459 	else
1460 		set_bio_pages_uptodate(bio);
1461 
1462 	bio_put(bio);
1463 
1464 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1465 		return;
1466 
1467 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1468 		goto cleanup;
1469 
1470 	/*
1471 	 * this will normally call finish_rmw to start our write
1472 	 * but if there are any failed stripes we'll reconstruct
1473 	 * from parity first
1474 	 */
1475 	validate_rbio_for_rmw(rbio);
1476 	return;
1477 
1478 cleanup:
1479 
1480 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1481 }
1482 
1483 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1484 {
1485 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1486 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1487 }
1488 
1489 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1490 {
1491 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1492 			read_rebuild_work, NULL, NULL);
1493 
1494 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1495 }
1496 
1497 /*
1498  * the stripe must be locked by the caller.  It will
1499  * unlock after all the writes are done
1500  */
1501 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1502 {
1503 	int bios_to_read = 0;
1504 	struct bio_list bio_list;
1505 	int ret;
1506 	int pagenr;
1507 	int stripe;
1508 	struct bio *bio;
1509 
1510 	bio_list_init(&bio_list);
1511 
1512 	ret = alloc_rbio_pages(rbio);
1513 	if (ret)
1514 		goto cleanup;
1515 
1516 	index_rbio_pages(rbio);
1517 
1518 	atomic_set(&rbio->error, 0);
1519 	/*
1520 	 * build a list of bios to read all the missing parts of this
1521 	 * stripe
1522 	 */
1523 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1524 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1525 			struct page *page;
1526 			/*
1527 			 * we want to find all the pages missing from
1528 			 * the rbio and read them from the disk.  If
1529 			 * page_in_rbio finds a page in the bio list
1530 			 * we don't need to read it off the stripe.
1531 			 */
1532 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1533 			if (page)
1534 				continue;
1535 
1536 			page = rbio_stripe_page(rbio, stripe, pagenr);
1537 			/*
1538 			 * the bio cache may have handed us an uptodate
1539 			 * page.  If so, be happy and use it
1540 			 */
1541 			if (PageUptodate(page))
1542 				continue;
1543 
1544 			ret = rbio_add_io_page(rbio, &bio_list, page,
1545 				       stripe, pagenr, rbio->stripe_len);
1546 			if (ret)
1547 				goto cleanup;
1548 		}
1549 	}
1550 
1551 	bios_to_read = bio_list_size(&bio_list);
1552 	if (!bios_to_read) {
1553 		/*
1554 		 * this can happen if others have merged with
1555 		 * us, it means there is nothing left to read.
1556 		 * But if there are missing devices it may not be
1557 		 * safe to do the full stripe write yet.
1558 		 */
1559 		goto finish;
1560 	}
1561 
1562 	/*
1563 	 * the bbio may be freed once we submit the last bio.  Make sure
1564 	 * not to touch it after that
1565 	 */
1566 	atomic_set(&rbio->stripes_pending, bios_to_read);
1567 	while (1) {
1568 		bio = bio_list_pop(&bio_list);
1569 		if (!bio)
1570 			break;
1571 
1572 		bio->bi_private = rbio;
1573 		bio->bi_end_io = raid_rmw_end_io;
1574 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1575 
1576 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1577 
1578 		submit_bio(bio);
1579 	}
1580 	/* the actual write will happen once the reads are done */
1581 	return 0;
1582 
1583 cleanup:
1584 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1585 	return -EIO;
1586 
1587 finish:
1588 	validate_rbio_for_rmw(rbio);
1589 	return 0;
1590 }
1591 
1592 /*
1593  * if the upper layers pass in a full stripe, we thank them by only allocating
1594  * enough pages to hold the parity, and sending it all down quickly.
1595  */
1596 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1597 {
1598 	int ret;
1599 
1600 	ret = alloc_rbio_parity_pages(rbio);
1601 	if (ret) {
1602 		__free_raid_bio(rbio);
1603 		return ret;
1604 	}
1605 
1606 	ret = lock_stripe_add(rbio);
1607 	if (ret == 0)
1608 		finish_rmw(rbio);
1609 	return 0;
1610 }
1611 
1612 /*
1613  * partial stripe writes get handed over to async helpers.
1614  * We're really hoping to merge a few more writes into this
1615  * rbio before calculating new parity
1616  */
1617 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1618 {
1619 	int ret;
1620 
1621 	ret = lock_stripe_add(rbio);
1622 	if (ret == 0)
1623 		async_rmw_stripe(rbio);
1624 	return 0;
1625 }
1626 
1627 /*
1628  * sometimes while we were reading from the drive to
1629  * recalculate parity, enough new bios come into create
1630  * a full stripe.  So we do a check here to see if we can
1631  * go directly to finish_rmw
1632  */
1633 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1634 {
1635 	/* head off into rmw land if we don't have a full stripe */
1636 	if (!rbio_is_full(rbio))
1637 		return partial_stripe_write(rbio);
1638 	return full_stripe_write(rbio);
1639 }
1640 
1641 /*
1642  * We use plugging call backs to collect full stripes.
1643  * Any time we get a partial stripe write while plugged
1644  * we collect it into a list.  When the unplug comes down,
1645  * we sort the list by logical block number and merge
1646  * everything we can into the same rbios
1647  */
1648 struct btrfs_plug_cb {
1649 	struct blk_plug_cb cb;
1650 	struct btrfs_fs_info *info;
1651 	struct list_head rbio_list;
1652 	struct btrfs_work work;
1653 };
1654 
1655 /*
1656  * rbios on the plug list are sorted for easier merging.
1657  */
1658 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1659 {
1660 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1661 						 plug_list);
1662 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1663 						 plug_list);
1664 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1665 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1666 
1667 	if (a_sector < b_sector)
1668 		return -1;
1669 	if (a_sector > b_sector)
1670 		return 1;
1671 	return 0;
1672 }
1673 
1674 static void run_plug(struct btrfs_plug_cb *plug)
1675 {
1676 	struct btrfs_raid_bio *cur;
1677 	struct btrfs_raid_bio *last = NULL;
1678 
1679 	/*
1680 	 * sort our plug list then try to merge
1681 	 * everything we can in hopes of creating full
1682 	 * stripes.
1683 	 */
1684 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1685 	while (!list_empty(&plug->rbio_list)) {
1686 		cur = list_entry(plug->rbio_list.next,
1687 				 struct btrfs_raid_bio, plug_list);
1688 		list_del_init(&cur->plug_list);
1689 
1690 		if (rbio_is_full(cur)) {
1691 			/* we have a full stripe, send it down */
1692 			full_stripe_write(cur);
1693 			continue;
1694 		}
1695 		if (last) {
1696 			if (rbio_can_merge(last, cur)) {
1697 				merge_rbio(last, cur);
1698 				__free_raid_bio(cur);
1699 				continue;
1700 
1701 			}
1702 			__raid56_parity_write(last);
1703 		}
1704 		last = cur;
1705 	}
1706 	if (last) {
1707 		__raid56_parity_write(last);
1708 	}
1709 	kfree(plug);
1710 }
1711 
1712 /*
1713  * if the unplug comes from schedule, we have to push the
1714  * work off to a helper thread
1715  */
1716 static void unplug_work(struct btrfs_work *work)
1717 {
1718 	struct btrfs_plug_cb *plug;
1719 	plug = container_of(work, struct btrfs_plug_cb, work);
1720 	run_plug(plug);
1721 }
1722 
1723 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1724 {
1725 	struct btrfs_plug_cb *plug;
1726 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1727 
1728 	if (from_schedule) {
1729 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1730 				unplug_work, NULL, NULL);
1731 		btrfs_queue_work(plug->info->rmw_workers,
1732 				 &plug->work);
1733 		return;
1734 	}
1735 	run_plug(plug);
1736 }
1737 
1738 /*
1739  * our main entry point for writes from the rest of the FS.
1740  */
1741 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1742 			struct btrfs_bio *bbio, u64 stripe_len)
1743 {
1744 	struct btrfs_raid_bio *rbio;
1745 	struct btrfs_plug_cb *plug = NULL;
1746 	struct blk_plug_cb *cb;
1747 	int ret;
1748 
1749 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1750 	if (IS_ERR(rbio)) {
1751 		btrfs_put_bbio(bbio);
1752 		return PTR_ERR(rbio);
1753 	}
1754 	bio_list_add(&rbio->bio_list, bio);
1755 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1756 	rbio->operation = BTRFS_RBIO_WRITE;
1757 
1758 	btrfs_bio_counter_inc_noblocked(fs_info);
1759 	rbio->generic_bio_cnt = 1;
1760 
1761 	/*
1762 	 * don't plug on full rbios, just get them out the door
1763 	 * as quickly as we can
1764 	 */
1765 	if (rbio_is_full(rbio)) {
1766 		ret = full_stripe_write(rbio);
1767 		if (ret)
1768 			btrfs_bio_counter_dec(fs_info);
1769 		return ret;
1770 	}
1771 
1772 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1773 	if (cb) {
1774 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1775 		if (!plug->info) {
1776 			plug->info = fs_info;
1777 			INIT_LIST_HEAD(&plug->rbio_list);
1778 		}
1779 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1780 		ret = 0;
1781 	} else {
1782 		ret = __raid56_parity_write(rbio);
1783 		if (ret)
1784 			btrfs_bio_counter_dec(fs_info);
1785 	}
1786 	return ret;
1787 }
1788 
1789 /*
1790  * all parity reconstruction happens here.  We've read in everything
1791  * we can find from the drives and this does the heavy lifting of
1792  * sorting the good from the bad.
1793  */
1794 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1795 {
1796 	int pagenr, stripe;
1797 	void **pointers;
1798 	int faila = -1, failb = -1;
1799 	struct page *page;
1800 	blk_status_t err;
1801 	int i;
1802 
1803 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1804 	if (!pointers) {
1805 		err = BLK_STS_RESOURCE;
1806 		goto cleanup_io;
1807 	}
1808 
1809 	faila = rbio->faila;
1810 	failb = rbio->failb;
1811 
1812 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1813 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1814 		spin_lock_irq(&rbio->bio_list_lock);
1815 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1816 		spin_unlock_irq(&rbio->bio_list_lock);
1817 	}
1818 
1819 	index_rbio_pages(rbio);
1820 
1821 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1822 		/*
1823 		 * Now we just use bitmap to mark the horizontal stripes in
1824 		 * which we have data when doing parity scrub.
1825 		 */
1826 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1827 		    !test_bit(pagenr, rbio->dbitmap))
1828 			continue;
1829 
1830 		/* setup our array of pointers with pages
1831 		 * from each stripe
1832 		 */
1833 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1834 			/*
1835 			 * if we're rebuilding a read, we have to use
1836 			 * pages from the bio list
1837 			 */
1838 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1839 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1840 			    (stripe == faila || stripe == failb)) {
1841 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1842 			} else {
1843 				page = rbio_stripe_page(rbio, stripe, pagenr);
1844 			}
1845 			pointers[stripe] = kmap(page);
1846 		}
1847 
1848 		/* all raid6 handling here */
1849 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1850 			/*
1851 			 * single failure, rebuild from parity raid5
1852 			 * style
1853 			 */
1854 			if (failb < 0) {
1855 				if (faila == rbio->nr_data) {
1856 					/*
1857 					 * Just the P stripe has failed, without
1858 					 * a bad data or Q stripe.
1859 					 * TODO, we should redo the xor here.
1860 					 */
1861 					err = BLK_STS_IOERR;
1862 					goto cleanup;
1863 				}
1864 				/*
1865 				 * a single failure in raid6 is rebuilt
1866 				 * in the pstripe code below
1867 				 */
1868 				goto pstripe;
1869 			}
1870 
1871 			/* make sure our ps and qs are in order */
1872 			if (faila > failb) {
1873 				int tmp = failb;
1874 				failb = faila;
1875 				faila = tmp;
1876 			}
1877 
1878 			/* if the q stripe is failed, do a pstripe reconstruction
1879 			 * from the xors.
1880 			 * If both the q stripe and the P stripe are failed, we're
1881 			 * here due to a crc mismatch and we can't give them the
1882 			 * data they want
1883 			 */
1884 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1885 				if (rbio->bbio->raid_map[faila] ==
1886 				    RAID5_P_STRIPE) {
1887 					err = BLK_STS_IOERR;
1888 					goto cleanup;
1889 				}
1890 				/*
1891 				 * otherwise we have one bad data stripe and
1892 				 * a good P stripe.  raid5!
1893 				 */
1894 				goto pstripe;
1895 			}
1896 
1897 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1898 				raid6_datap_recov(rbio->real_stripes,
1899 						  PAGE_SIZE, faila, pointers);
1900 			} else {
1901 				raid6_2data_recov(rbio->real_stripes,
1902 						  PAGE_SIZE, faila, failb,
1903 						  pointers);
1904 			}
1905 		} else {
1906 			void *p;
1907 
1908 			/* rebuild from P stripe here (raid5 or raid6) */
1909 			BUG_ON(failb != -1);
1910 pstripe:
1911 			/* Copy parity block into failed block to start with */
1912 			memcpy(pointers[faila],
1913 			       pointers[rbio->nr_data],
1914 			       PAGE_SIZE);
1915 
1916 			/* rearrange the pointer array */
1917 			p = pointers[faila];
1918 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1919 				pointers[stripe] = pointers[stripe + 1];
1920 			pointers[rbio->nr_data - 1] = p;
1921 
1922 			/* xor in the rest */
1923 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1924 		}
1925 		/* if we're doing this rebuild as part of an rmw, go through
1926 		 * and set all of our private rbio pages in the
1927 		 * failed stripes as uptodate.  This way finish_rmw will
1928 		 * know they can be trusted.  If this was a read reconstruction,
1929 		 * other endio functions will fiddle the uptodate bits
1930 		 */
1931 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1932 			for (i = 0;  i < rbio->stripe_npages; i++) {
1933 				if (faila != -1) {
1934 					page = rbio_stripe_page(rbio, faila, i);
1935 					SetPageUptodate(page);
1936 				}
1937 				if (failb != -1) {
1938 					page = rbio_stripe_page(rbio, failb, i);
1939 					SetPageUptodate(page);
1940 				}
1941 			}
1942 		}
1943 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1944 			/*
1945 			 * if we're rebuilding a read, we have to use
1946 			 * pages from the bio list
1947 			 */
1948 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1949 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1950 			    (stripe == faila || stripe == failb)) {
1951 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1952 			} else {
1953 				page = rbio_stripe_page(rbio, stripe, pagenr);
1954 			}
1955 			kunmap(page);
1956 		}
1957 	}
1958 
1959 	err = BLK_STS_OK;
1960 cleanup:
1961 	kfree(pointers);
1962 
1963 cleanup_io:
1964 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1965 		if (err == BLK_STS_OK)
1966 			cache_rbio_pages(rbio);
1967 		else
1968 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1969 
1970 		rbio_orig_end_io(rbio, err);
1971 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1972 		rbio_orig_end_io(rbio, err);
1973 	} else if (err == BLK_STS_OK) {
1974 		rbio->faila = -1;
1975 		rbio->failb = -1;
1976 
1977 		if (rbio->operation == BTRFS_RBIO_WRITE)
1978 			finish_rmw(rbio);
1979 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1980 			finish_parity_scrub(rbio, 0);
1981 		else
1982 			BUG();
1983 	} else {
1984 		rbio_orig_end_io(rbio, err);
1985 	}
1986 }
1987 
1988 /*
1989  * This is called only for stripes we've read from disk to
1990  * reconstruct the parity.
1991  */
1992 static void raid_recover_end_io(struct bio *bio)
1993 {
1994 	struct btrfs_raid_bio *rbio = bio->bi_private;
1995 
1996 	/*
1997 	 * we only read stripe pages off the disk, set them
1998 	 * up to date if there were no errors
1999 	 */
2000 	if (bio->bi_status)
2001 		fail_bio_stripe(rbio, bio);
2002 	else
2003 		set_bio_pages_uptodate(bio);
2004 	bio_put(bio);
2005 
2006 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2007 		return;
2008 
2009 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2010 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2011 	else
2012 		__raid_recover_end_io(rbio);
2013 }
2014 
2015 /*
2016  * reads everything we need off the disk to reconstruct
2017  * the parity. endio handlers trigger final reconstruction
2018  * when the IO is done.
2019  *
2020  * This is used both for reads from the higher layers and for
2021  * parity construction required to finish a rmw cycle.
2022  */
2023 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2024 {
2025 	int bios_to_read = 0;
2026 	struct bio_list bio_list;
2027 	int ret;
2028 	int pagenr;
2029 	int stripe;
2030 	struct bio *bio;
2031 
2032 	bio_list_init(&bio_list);
2033 
2034 	ret = alloc_rbio_pages(rbio);
2035 	if (ret)
2036 		goto cleanup;
2037 
2038 	atomic_set(&rbio->error, 0);
2039 
2040 	/*
2041 	 * read everything that hasn't failed.  Thanks to the
2042 	 * stripe cache, it is possible that some or all of these
2043 	 * pages are going to be uptodate.
2044 	 */
2045 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2046 		if (rbio->faila == stripe || rbio->failb == stripe) {
2047 			atomic_inc(&rbio->error);
2048 			continue;
2049 		}
2050 
2051 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2052 			struct page *p;
2053 
2054 			/*
2055 			 * the rmw code may have already read this
2056 			 * page in
2057 			 */
2058 			p = rbio_stripe_page(rbio, stripe, pagenr);
2059 			if (PageUptodate(p))
2060 				continue;
2061 
2062 			ret = rbio_add_io_page(rbio, &bio_list,
2063 				       rbio_stripe_page(rbio, stripe, pagenr),
2064 				       stripe, pagenr, rbio->stripe_len);
2065 			if (ret < 0)
2066 				goto cleanup;
2067 		}
2068 	}
2069 
2070 	bios_to_read = bio_list_size(&bio_list);
2071 	if (!bios_to_read) {
2072 		/*
2073 		 * we might have no bios to read just because the pages
2074 		 * were up to date, or we might have no bios to read because
2075 		 * the devices were gone.
2076 		 */
2077 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2078 			__raid_recover_end_io(rbio);
2079 			goto out;
2080 		} else {
2081 			goto cleanup;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * the bbio may be freed once we submit the last bio.  Make sure
2087 	 * not to touch it after that
2088 	 */
2089 	atomic_set(&rbio->stripes_pending, bios_to_read);
2090 	while (1) {
2091 		bio = bio_list_pop(&bio_list);
2092 		if (!bio)
2093 			break;
2094 
2095 		bio->bi_private = rbio;
2096 		bio->bi_end_io = raid_recover_end_io;
2097 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2098 
2099 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2100 
2101 		submit_bio(bio);
2102 	}
2103 out:
2104 	return 0;
2105 
2106 cleanup:
2107 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2108 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2109 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2110 	return -EIO;
2111 }
2112 
2113 /*
2114  * the main entry point for reads from the higher layers.  This
2115  * is really only called when the normal read path had a failure,
2116  * so we assume the bio they send down corresponds to a failed part
2117  * of the drive.
2118  */
2119 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2120 			  struct btrfs_bio *bbio, u64 stripe_len,
2121 			  int mirror_num, int generic_io)
2122 {
2123 	struct btrfs_raid_bio *rbio;
2124 	int ret;
2125 
2126 	if (generic_io) {
2127 		ASSERT(bbio->mirror_num == mirror_num);
2128 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2129 	}
2130 
2131 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2132 	if (IS_ERR(rbio)) {
2133 		if (generic_io)
2134 			btrfs_put_bbio(bbio);
2135 		return PTR_ERR(rbio);
2136 	}
2137 
2138 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2139 	bio_list_add(&rbio->bio_list, bio);
2140 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2141 
2142 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2143 	if (rbio->faila == -1) {
2144 		btrfs_warn(fs_info,
2145 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2147 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2148 		if (generic_io)
2149 			btrfs_put_bbio(bbio);
2150 		kfree(rbio);
2151 		return -EIO;
2152 	}
2153 
2154 	if (generic_io) {
2155 		btrfs_bio_counter_inc_noblocked(fs_info);
2156 		rbio->generic_bio_cnt = 1;
2157 	} else {
2158 		btrfs_get_bbio(bbio);
2159 	}
2160 
2161 	/*
2162 	 * reconstruct from the q stripe if they are
2163 	 * asking for mirror 3
2164 	 */
2165 	if (mirror_num == 3)
2166 		rbio->failb = rbio->real_stripes - 2;
2167 
2168 	ret = lock_stripe_add(rbio);
2169 
2170 	/*
2171 	 * __raid56_parity_recover will end the bio with
2172 	 * any errors it hits.  We don't want to return
2173 	 * its error value up the stack because our caller
2174 	 * will end up calling bio_endio with any nonzero
2175 	 * return
2176 	 */
2177 	if (ret == 0)
2178 		__raid56_parity_recover(rbio);
2179 	/*
2180 	 * our rbio has been added to the list of
2181 	 * rbios that will be handled after the
2182 	 * currently lock owner is done
2183 	 */
2184 	return 0;
2185 
2186 }
2187 
2188 static void rmw_work(struct btrfs_work *work)
2189 {
2190 	struct btrfs_raid_bio *rbio;
2191 
2192 	rbio = container_of(work, struct btrfs_raid_bio, work);
2193 	raid56_rmw_stripe(rbio);
2194 }
2195 
2196 static void read_rebuild_work(struct btrfs_work *work)
2197 {
2198 	struct btrfs_raid_bio *rbio;
2199 
2200 	rbio = container_of(work, struct btrfs_raid_bio, work);
2201 	__raid56_parity_recover(rbio);
2202 }
2203 
2204 /*
2205  * The following code is used to scrub/replace the parity stripe
2206  *
2207  * Caller must have already increased bio_counter for getting @bbio.
2208  *
2209  * Note: We need make sure all the pages that add into the scrub/replace
2210  * raid bio are correct and not be changed during the scrub/replace. That
2211  * is those pages just hold metadata or file data with checksum.
2212  */
2213 
2214 struct btrfs_raid_bio *
2215 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2216 			       struct btrfs_bio *bbio, u64 stripe_len,
2217 			       struct btrfs_device *scrub_dev,
2218 			       unsigned long *dbitmap, int stripe_nsectors)
2219 {
2220 	struct btrfs_raid_bio *rbio;
2221 	int i;
2222 
2223 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2224 	if (IS_ERR(rbio))
2225 		return NULL;
2226 	bio_list_add(&rbio->bio_list, bio);
2227 	/*
2228 	 * This is a special bio which is used to hold the completion handler
2229 	 * and make the scrub rbio is similar to the other types
2230 	 */
2231 	ASSERT(!bio->bi_iter.bi_size);
2232 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2233 
2234 	for (i = 0; i < rbio->real_stripes; i++) {
2235 		if (bbio->stripes[i].dev == scrub_dev) {
2236 			rbio->scrubp = i;
2237 			break;
2238 		}
2239 	}
2240 
2241 	/* Now we just support the sectorsize equals to page size */
2242 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2243 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2244 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2245 
2246 	/*
2247 	 * We have already increased bio_counter when getting bbio, record it
2248 	 * so we can free it at rbio_orig_end_io().
2249 	 */
2250 	rbio->generic_bio_cnt = 1;
2251 
2252 	return rbio;
2253 }
2254 
2255 /* Used for both parity scrub and missing. */
2256 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2257 			    u64 logical)
2258 {
2259 	int stripe_offset;
2260 	int index;
2261 
2262 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2263 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2264 				rbio->stripe_len * rbio->nr_data);
2265 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2266 	index = stripe_offset >> PAGE_SHIFT;
2267 	rbio->bio_pages[index] = page;
2268 }
2269 
2270 /*
2271  * We just scrub the parity that we have correct data on the same horizontal,
2272  * so we needn't allocate all pages for all the stripes.
2273  */
2274 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2275 {
2276 	int i;
2277 	int bit;
2278 	int index;
2279 	struct page *page;
2280 
2281 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2282 		for (i = 0; i < rbio->real_stripes; i++) {
2283 			index = i * rbio->stripe_npages + bit;
2284 			if (rbio->stripe_pages[index])
2285 				continue;
2286 
2287 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2288 			if (!page)
2289 				return -ENOMEM;
2290 			rbio->stripe_pages[index] = page;
2291 		}
2292 	}
2293 	return 0;
2294 }
2295 
2296 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2297 					 int need_check)
2298 {
2299 	struct btrfs_bio *bbio = rbio->bbio;
2300 	void *pointers[rbio->real_stripes];
2301 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2302 	int nr_data = rbio->nr_data;
2303 	int stripe;
2304 	int pagenr;
2305 	int p_stripe = -1;
2306 	int q_stripe = -1;
2307 	struct page *p_page = NULL;
2308 	struct page *q_page = NULL;
2309 	struct bio_list bio_list;
2310 	struct bio *bio;
2311 	int is_replace = 0;
2312 	int ret;
2313 
2314 	bio_list_init(&bio_list);
2315 
2316 	if (rbio->real_stripes - rbio->nr_data == 1) {
2317 		p_stripe = rbio->real_stripes - 1;
2318 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2319 		p_stripe = rbio->real_stripes - 2;
2320 		q_stripe = rbio->real_stripes - 1;
2321 	} else {
2322 		BUG();
2323 	}
2324 
2325 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2326 		is_replace = 1;
2327 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2328 	}
2329 
2330 	/*
2331 	 * Because the higher layers(scrubber) are unlikely to
2332 	 * use this area of the disk again soon, so don't cache
2333 	 * it.
2334 	 */
2335 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2336 
2337 	if (!need_check)
2338 		goto writeback;
2339 
2340 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 	if (!p_page)
2342 		goto cleanup;
2343 	SetPageUptodate(p_page);
2344 
2345 	if (q_stripe != -1) {
2346 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2347 		if (!q_page) {
2348 			__free_page(p_page);
2349 			goto cleanup;
2350 		}
2351 		SetPageUptodate(q_page);
2352 	}
2353 
2354 	atomic_set(&rbio->error, 0);
2355 
2356 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2357 		struct page *p;
2358 		void *parity;
2359 		/* first collect one page from each data stripe */
2360 		for (stripe = 0; stripe < nr_data; stripe++) {
2361 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2362 			pointers[stripe] = kmap(p);
2363 		}
2364 
2365 		/* then add the parity stripe */
2366 		pointers[stripe++] = kmap(p_page);
2367 
2368 		if (q_stripe != -1) {
2369 
2370 			/*
2371 			 * raid6, add the qstripe and call the
2372 			 * library function to fill in our p/q
2373 			 */
2374 			pointers[stripe++] = kmap(q_page);
2375 
2376 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2377 						pointers);
2378 		} else {
2379 			/* raid5 */
2380 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2381 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2382 		}
2383 
2384 		/* Check scrubbing parity and repair it */
2385 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2386 		parity = kmap(p);
2387 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2388 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2389 		else
2390 			/* Parity is right, needn't writeback */
2391 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2392 		kunmap(p);
2393 
2394 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2395 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2396 	}
2397 
2398 	__free_page(p_page);
2399 	if (q_page)
2400 		__free_page(q_page);
2401 
2402 writeback:
2403 	/*
2404 	 * time to start writing.  Make bios for everything from the
2405 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2406 	 * everything else.
2407 	 */
2408 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2409 		struct page *page;
2410 
2411 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412 		ret = rbio_add_io_page(rbio, &bio_list,
2413 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2414 		if (ret)
2415 			goto cleanup;
2416 	}
2417 
2418 	if (!is_replace)
2419 		goto submit_write;
2420 
2421 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2422 		struct page *page;
2423 
2424 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2425 		ret = rbio_add_io_page(rbio, &bio_list, page,
2426 				       bbio->tgtdev_map[rbio->scrubp],
2427 				       pagenr, rbio->stripe_len);
2428 		if (ret)
2429 			goto cleanup;
2430 	}
2431 
2432 submit_write:
2433 	nr_data = bio_list_size(&bio_list);
2434 	if (!nr_data) {
2435 		/* Every parity is right */
2436 		rbio_orig_end_io(rbio, BLK_STS_OK);
2437 		return;
2438 	}
2439 
2440 	atomic_set(&rbio->stripes_pending, nr_data);
2441 
2442 	while (1) {
2443 		bio = bio_list_pop(&bio_list);
2444 		if (!bio)
2445 			break;
2446 
2447 		bio->bi_private = rbio;
2448 		bio->bi_end_io = raid_write_end_io;
2449 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2450 
2451 		submit_bio(bio);
2452 	}
2453 	return;
2454 
2455 cleanup:
2456 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2457 }
2458 
2459 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2460 {
2461 	if (stripe >= 0 && stripe < rbio->nr_data)
2462 		return 1;
2463 	return 0;
2464 }
2465 
2466 /*
2467  * While we're doing the parity check and repair, we could have errors
2468  * in reading pages off the disk.  This checks for errors and if we're
2469  * not able to read the page it'll trigger parity reconstruction.  The
2470  * parity scrub will be finished after we've reconstructed the failed
2471  * stripes
2472  */
2473 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2474 {
2475 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2476 		goto cleanup;
2477 
2478 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2479 		int dfail = 0, failp = -1;
2480 
2481 		if (is_data_stripe(rbio, rbio->faila))
2482 			dfail++;
2483 		else if (is_parity_stripe(rbio->faila))
2484 			failp = rbio->faila;
2485 
2486 		if (is_data_stripe(rbio, rbio->failb))
2487 			dfail++;
2488 		else if (is_parity_stripe(rbio->failb))
2489 			failp = rbio->failb;
2490 
2491 		/*
2492 		 * Because we can not use a scrubbing parity to repair
2493 		 * the data, so the capability of the repair is declined.
2494 		 * (In the case of RAID5, we can not repair anything)
2495 		 */
2496 		if (dfail > rbio->bbio->max_errors - 1)
2497 			goto cleanup;
2498 
2499 		/*
2500 		 * If all data is good, only parity is correctly, just
2501 		 * repair the parity.
2502 		 */
2503 		if (dfail == 0) {
2504 			finish_parity_scrub(rbio, 0);
2505 			return;
2506 		}
2507 
2508 		/*
2509 		 * Here means we got one corrupted data stripe and one
2510 		 * corrupted parity on RAID6, if the corrupted parity
2511 		 * is scrubbing parity, luckily, use the other one to repair
2512 		 * the data, or we can not repair the data stripe.
2513 		 */
2514 		if (failp != rbio->scrubp)
2515 			goto cleanup;
2516 
2517 		__raid_recover_end_io(rbio);
2518 	} else {
2519 		finish_parity_scrub(rbio, 1);
2520 	}
2521 	return;
2522 
2523 cleanup:
2524 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2525 }
2526 
2527 /*
2528  * end io for the read phase of the rmw cycle.  All the bios here are physical
2529  * stripe bios we've read from the disk so we can recalculate the parity of the
2530  * stripe.
2531  *
2532  * This will usually kick off finish_rmw once all the bios are read in, but it
2533  * may trigger parity reconstruction if we had any errors along the way
2534  */
2535 static void raid56_parity_scrub_end_io(struct bio *bio)
2536 {
2537 	struct btrfs_raid_bio *rbio = bio->bi_private;
2538 
2539 	if (bio->bi_status)
2540 		fail_bio_stripe(rbio, bio);
2541 	else
2542 		set_bio_pages_uptodate(bio);
2543 
2544 	bio_put(bio);
2545 
2546 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2547 		return;
2548 
2549 	/*
2550 	 * this will normally call finish_rmw to start our write
2551 	 * but if there are any failed stripes we'll reconstruct
2552 	 * from parity first
2553 	 */
2554 	validate_rbio_for_parity_scrub(rbio);
2555 }
2556 
2557 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2558 {
2559 	int bios_to_read = 0;
2560 	struct bio_list bio_list;
2561 	int ret;
2562 	int pagenr;
2563 	int stripe;
2564 	struct bio *bio;
2565 
2566 	ret = alloc_rbio_essential_pages(rbio);
2567 	if (ret)
2568 		goto cleanup;
2569 
2570 	bio_list_init(&bio_list);
2571 
2572 	atomic_set(&rbio->error, 0);
2573 	/*
2574 	 * build a list of bios to read all the missing parts of this
2575 	 * stripe
2576 	 */
2577 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2578 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2579 			struct page *page;
2580 			/*
2581 			 * we want to find all the pages missing from
2582 			 * the rbio and read them from the disk.  If
2583 			 * page_in_rbio finds a page in the bio list
2584 			 * we don't need to read it off the stripe.
2585 			 */
2586 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2587 			if (page)
2588 				continue;
2589 
2590 			page = rbio_stripe_page(rbio, stripe, pagenr);
2591 			/*
2592 			 * the bio cache may have handed us an uptodate
2593 			 * page.  If so, be happy and use it
2594 			 */
2595 			if (PageUptodate(page))
2596 				continue;
2597 
2598 			ret = rbio_add_io_page(rbio, &bio_list, page,
2599 				       stripe, pagenr, rbio->stripe_len);
2600 			if (ret)
2601 				goto cleanup;
2602 		}
2603 	}
2604 
2605 	bios_to_read = bio_list_size(&bio_list);
2606 	if (!bios_to_read) {
2607 		/*
2608 		 * this can happen if others have merged with
2609 		 * us, it means there is nothing left to read.
2610 		 * But if there are missing devices it may not be
2611 		 * safe to do the full stripe write yet.
2612 		 */
2613 		goto finish;
2614 	}
2615 
2616 	/*
2617 	 * the bbio may be freed once we submit the last bio.  Make sure
2618 	 * not to touch it after that
2619 	 */
2620 	atomic_set(&rbio->stripes_pending, bios_to_read);
2621 	while (1) {
2622 		bio = bio_list_pop(&bio_list);
2623 		if (!bio)
2624 			break;
2625 
2626 		bio->bi_private = rbio;
2627 		bio->bi_end_io = raid56_parity_scrub_end_io;
2628 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2629 
2630 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2631 
2632 		submit_bio(bio);
2633 	}
2634 	/* the actual write will happen once the reads are done */
2635 	return;
2636 
2637 cleanup:
2638 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2639 	return;
2640 
2641 finish:
2642 	validate_rbio_for_parity_scrub(rbio);
2643 }
2644 
2645 static void scrub_parity_work(struct btrfs_work *work)
2646 {
2647 	struct btrfs_raid_bio *rbio;
2648 
2649 	rbio = container_of(work, struct btrfs_raid_bio, work);
2650 	raid56_parity_scrub_stripe(rbio);
2651 }
2652 
2653 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2654 {
2655 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2656 			scrub_parity_work, NULL, NULL);
2657 
2658 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2659 }
2660 
2661 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2662 {
2663 	if (!lock_stripe_add(rbio))
2664 		async_scrub_parity(rbio);
2665 }
2666 
2667 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2668 
2669 struct btrfs_raid_bio *
2670 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2671 			  struct btrfs_bio *bbio, u64 length)
2672 {
2673 	struct btrfs_raid_bio *rbio;
2674 
2675 	rbio = alloc_rbio(fs_info, bbio, length);
2676 	if (IS_ERR(rbio))
2677 		return NULL;
2678 
2679 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2680 	bio_list_add(&rbio->bio_list, bio);
2681 	/*
2682 	 * This is a special bio which is used to hold the completion handler
2683 	 * and make the scrub rbio is similar to the other types
2684 	 */
2685 	ASSERT(!bio->bi_iter.bi_size);
2686 
2687 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2688 	if (rbio->faila == -1) {
2689 		BUG();
2690 		kfree(rbio);
2691 		return NULL;
2692 	}
2693 
2694 	/*
2695 	 * When we get bbio, we have already increased bio_counter, record it
2696 	 * so we can free it at rbio_orig_end_io()
2697 	 */
2698 	rbio->generic_bio_cnt = 1;
2699 
2700 	return rbio;
2701 }
2702 
2703 static void missing_raid56_work(struct btrfs_work *work)
2704 {
2705 	struct btrfs_raid_bio *rbio;
2706 
2707 	rbio = container_of(work, struct btrfs_raid_bio, work);
2708 	__raid56_parity_recover(rbio);
2709 }
2710 
2711 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2712 {
2713 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2714 			missing_raid56_work, NULL, NULL);
2715 
2716 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2717 }
2718 
2719 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2720 {
2721 	if (!lock_stripe_add(rbio))
2722 		async_missing_raid56(rbio);
2723 }
2724