xref: /openbmc/linux/fs/btrfs/raid56.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 /*
62  * bbio and raid_map is managed by the caller, so we shouldn't free
63  * them here. And besides that, all rbios with this flag should not
64  * be cached, because we need raid_map to check the rbios' stripe
65  * is the same or not, but it is very likely that the caller has
66  * free raid_map, so don't cache those rbios.
67  */
68 #define RBIO_HOLD_BBIO_MAP_BIT	4
69 
70 #define RBIO_CACHE_SIZE 1024
71 
72 enum btrfs_rbio_ops {
73 	BTRFS_RBIO_WRITE	= 0,
74 	BTRFS_RBIO_READ_REBUILD	= 1,
75 	BTRFS_RBIO_PARITY_SCRUB	= 2,
76 };
77 
78 struct btrfs_raid_bio {
79 	struct btrfs_fs_info *fs_info;
80 	struct btrfs_bio *bbio;
81 
82 	/*
83 	 * logical block numbers for the start of each stripe
84 	 * The last one or two are p/q.  These are sorted,
85 	 * so raid_map[0] is the start of our full stripe
86 	 */
87 	u64 *raid_map;
88 
89 	/* while we're doing rmw on a stripe
90 	 * we put it into a hash table so we can
91 	 * lock the stripe and merge more rbios
92 	 * into it.
93 	 */
94 	struct list_head hash_list;
95 
96 	/*
97 	 * LRU list for the stripe cache
98 	 */
99 	struct list_head stripe_cache;
100 
101 	/*
102 	 * for scheduling work in the helper threads
103 	 */
104 	struct btrfs_work work;
105 
106 	/*
107 	 * bio list and bio_list_lock are used
108 	 * to add more bios into the stripe
109 	 * in hopes of avoiding the full rmw
110 	 */
111 	struct bio_list bio_list;
112 	spinlock_t bio_list_lock;
113 
114 	/* also protected by the bio_list_lock, the
115 	 * plug list is used by the plugging code
116 	 * to collect partial bios while plugged.  The
117 	 * stripe locking code also uses it to hand off
118 	 * the stripe lock to the next pending IO
119 	 */
120 	struct list_head plug_list;
121 
122 	/*
123 	 * flags that tell us if it is safe to
124 	 * merge with this bio
125 	 */
126 	unsigned long flags;
127 
128 	/* size of each individual stripe on disk */
129 	int stripe_len;
130 
131 	/* number of data stripes (no p/q) */
132 	int nr_data;
133 
134 	int real_stripes;
135 
136 	int stripe_npages;
137 	/*
138 	 * set if we're doing a parity rebuild
139 	 * for a read from higher up, which is handled
140 	 * differently from a parity rebuild as part of
141 	 * rmw
142 	 */
143 	enum btrfs_rbio_ops operation;
144 
145 	/* first bad stripe */
146 	int faila;
147 
148 	/* second bad stripe (for raid6 use) */
149 	int failb;
150 
151 	int scrubp;
152 	/*
153 	 * number of pages needed to represent the full
154 	 * stripe
155 	 */
156 	int nr_pages;
157 
158 	/*
159 	 * size of all the bios in the bio_list.  This
160 	 * helps us decide if the rbio maps to a full
161 	 * stripe or not
162 	 */
163 	int bio_list_bytes;
164 
165 	int generic_bio_cnt;
166 
167 	atomic_t refs;
168 
169 	atomic_t stripes_pending;
170 
171 	atomic_t error;
172 	/*
173 	 * these are two arrays of pointers.  We allocate the
174 	 * rbio big enough to hold them both and setup their
175 	 * locations when the rbio is allocated
176 	 */
177 
178 	/* pointers to pages that we allocated for
179 	 * reading/writing stripes directly from the disk (including P/Q)
180 	 */
181 	struct page **stripe_pages;
182 
183 	/*
184 	 * pointers to the pages in the bio_list.  Stored
185 	 * here for faster lookup
186 	 */
187 	struct page **bio_pages;
188 
189 	/*
190 	 * bitmap to record which horizontal stripe has data
191 	 */
192 	unsigned long *dbitmap;
193 };
194 
195 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
196 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
197 static void rmw_work(struct btrfs_work *work);
198 static void read_rebuild_work(struct btrfs_work *work);
199 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
200 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
201 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
202 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
203 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
204 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
205 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
206 
207 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
208 					 int need_check);
209 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
210 
211 /*
212  * the stripe hash table is used for locking, and to collect
213  * bios in hopes of making a full stripe
214  */
215 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
216 {
217 	struct btrfs_stripe_hash_table *table;
218 	struct btrfs_stripe_hash_table *x;
219 	struct btrfs_stripe_hash *cur;
220 	struct btrfs_stripe_hash *h;
221 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
222 	int i;
223 	int table_size;
224 
225 	if (info->stripe_hash_table)
226 		return 0;
227 
228 	/*
229 	 * The table is large, starting with order 4 and can go as high as
230 	 * order 7 in case lock debugging is turned on.
231 	 *
232 	 * Try harder to allocate and fallback to vmalloc to lower the chance
233 	 * of a failing mount.
234 	 */
235 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
236 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
237 	if (!table) {
238 		table = vzalloc(table_size);
239 		if (!table)
240 			return -ENOMEM;
241 	}
242 
243 	spin_lock_init(&table->cache_lock);
244 	INIT_LIST_HEAD(&table->stripe_cache);
245 
246 	h = table->table;
247 
248 	for (i = 0; i < num_entries; i++) {
249 		cur = h + i;
250 		INIT_LIST_HEAD(&cur->hash_list);
251 		spin_lock_init(&cur->lock);
252 		init_waitqueue_head(&cur->wait);
253 	}
254 
255 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
256 	if (x) {
257 		if (is_vmalloc_addr(x))
258 			vfree(x);
259 		else
260 			kfree(x);
261 	}
262 	return 0;
263 }
264 
265 /*
266  * caching an rbio means to copy anything from the
267  * bio_pages array into the stripe_pages array.  We
268  * use the page uptodate bit in the stripe cache array
269  * to indicate if it has valid data
270  *
271  * once the caching is done, we set the cache ready
272  * bit.
273  */
274 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
275 {
276 	int i;
277 	char *s;
278 	char *d;
279 	int ret;
280 
281 	ret = alloc_rbio_pages(rbio);
282 	if (ret)
283 		return;
284 
285 	for (i = 0; i < rbio->nr_pages; i++) {
286 		if (!rbio->bio_pages[i])
287 			continue;
288 
289 		s = kmap(rbio->bio_pages[i]);
290 		d = kmap(rbio->stripe_pages[i]);
291 
292 		memcpy(d, s, PAGE_CACHE_SIZE);
293 
294 		kunmap(rbio->bio_pages[i]);
295 		kunmap(rbio->stripe_pages[i]);
296 		SetPageUptodate(rbio->stripe_pages[i]);
297 	}
298 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
299 }
300 
301 /*
302  * we hash on the first logical address of the stripe
303  */
304 static int rbio_bucket(struct btrfs_raid_bio *rbio)
305 {
306 	u64 num = rbio->raid_map[0];
307 
308 	/*
309 	 * we shift down quite a bit.  We're using byte
310 	 * addressing, and most of the lower bits are zeros.
311 	 * This tends to upset hash_64, and it consistently
312 	 * returns just one or two different values.
313 	 *
314 	 * shifting off the lower bits fixes things.
315 	 */
316 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
317 }
318 
319 /*
320  * stealing an rbio means taking all the uptodate pages from the stripe
321  * array in the source rbio and putting them into the destination rbio
322  */
323 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
324 {
325 	int i;
326 	struct page *s;
327 	struct page *d;
328 
329 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
330 		return;
331 
332 	for (i = 0; i < dest->nr_pages; i++) {
333 		s = src->stripe_pages[i];
334 		if (!s || !PageUptodate(s)) {
335 			continue;
336 		}
337 
338 		d = dest->stripe_pages[i];
339 		if (d)
340 			__free_page(d);
341 
342 		dest->stripe_pages[i] = s;
343 		src->stripe_pages[i] = NULL;
344 	}
345 }
346 
347 /*
348  * merging means we take the bio_list from the victim and
349  * splice it into the destination.  The victim should
350  * be discarded afterwards.
351  *
352  * must be called with dest->rbio_list_lock held
353  */
354 static void merge_rbio(struct btrfs_raid_bio *dest,
355 		       struct btrfs_raid_bio *victim)
356 {
357 	bio_list_merge(&dest->bio_list, &victim->bio_list);
358 	dest->bio_list_bytes += victim->bio_list_bytes;
359 	dest->generic_bio_cnt += victim->generic_bio_cnt;
360 	bio_list_init(&victim->bio_list);
361 }
362 
363 /*
364  * used to prune items that are in the cache.  The caller
365  * must hold the hash table lock.
366  */
367 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
368 {
369 	int bucket = rbio_bucket(rbio);
370 	struct btrfs_stripe_hash_table *table;
371 	struct btrfs_stripe_hash *h;
372 	int freeit = 0;
373 
374 	/*
375 	 * check the bit again under the hash table lock.
376 	 */
377 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
378 		return;
379 
380 	table = rbio->fs_info->stripe_hash_table;
381 	h = table->table + bucket;
382 
383 	/* hold the lock for the bucket because we may be
384 	 * removing it from the hash table
385 	 */
386 	spin_lock(&h->lock);
387 
388 	/*
389 	 * hold the lock for the bio list because we need
390 	 * to make sure the bio list is empty
391 	 */
392 	spin_lock(&rbio->bio_list_lock);
393 
394 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
395 		list_del_init(&rbio->stripe_cache);
396 		table->cache_size -= 1;
397 		freeit = 1;
398 
399 		/* if the bio list isn't empty, this rbio is
400 		 * still involved in an IO.  We take it out
401 		 * of the cache list, and drop the ref that
402 		 * was held for the list.
403 		 *
404 		 * If the bio_list was empty, we also remove
405 		 * the rbio from the hash_table, and drop
406 		 * the corresponding ref
407 		 */
408 		if (bio_list_empty(&rbio->bio_list)) {
409 			if (!list_empty(&rbio->hash_list)) {
410 				list_del_init(&rbio->hash_list);
411 				atomic_dec(&rbio->refs);
412 				BUG_ON(!list_empty(&rbio->plug_list));
413 			}
414 		}
415 	}
416 
417 	spin_unlock(&rbio->bio_list_lock);
418 	spin_unlock(&h->lock);
419 
420 	if (freeit)
421 		__free_raid_bio(rbio);
422 }
423 
424 /*
425  * prune a given rbio from the cache
426  */
427 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
428 {
429 	struct btrfs_stripe_hash_table *table;
430 	unsigned long flags;
431 
432 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
433 		return;
434 
435 	table = rbio->fs_info->stripe_hash_table;
436 
437 	spin_lock_irqsave(&table->cache_lock, flags);
438 	__remove_rbio_from_cache(rbio);
439 	spin_unlock_irqrestore(&table->cache_lock, flags);
440 }
441 
442 /*
443  * remove everything in the cache
444  */
445 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
446 {
447 	struct btrfs_stripe_hash_table *table;
448 	unsigned long flags;
449 	struct btrfs_raid_bio *rbio;
450 
451 	table = info->stripe_hash_table;
452 
453 	spin_lock_irqsave(&table->cache_lock, flags);
454 	while (!list_empty(&table->stripe_cache)) {
455 		rbio = list_entry(table->stripe_cache.next,
456 				  struct btrfs_raid_bio,
457 				  stripe_cache);
458 		__remove_rbio_from_cache(rbio);
459 	}
460 	spin_unlock_irqrestore(&table->cache_lock, flags);
461 }
462 
463 /*
464  * remove all cached entries and free the hash table
465  * used by unmount
466  */
467 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
468 {
469 	if (!info->stripe_hash_table)
470 		return;
471 	btrfs_clear_rbio_cache(info);
472 	if (is_vmalloc_addr(info->stripe_hash_table))
473 		vfree(info->stripe_hash_table);
474 	else
475 		kfree(info->stripe_hash_table);
476 	info->stripe_hash_table = NULL;
477 }
478 
479 /*
480  * insert an rbio into the stripe cache.  It
481  * must have already been prepared by calling
482  * cache_rbio_pages
483  *
484  * If this rbio was already cached, it gets
485  * moved to the front of the lru.
486  *
487  * If the size of the rbio cache is too big, we
488  * prune an item.
489  */
490 static void cache_rbio(struct btrfs_raid_bio *rbio)
491 {
492 	struct btrfs_stripe_hash_table *table;
493 	unsigned long flags;
494 
495 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
496 		return;
497 
498 	table = rbio->fs_info->stripe_hash_table;
499 
500 	spin_lock_irqsave(&table->cache_lock, flags);
501 	spin_lock(&rbio->bio_list_lock);
502 
503 	/* bump our ref if we were not in the list before */
504 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
505 		atomic_inc(&rbio->refs);
506 
507 	if (!list_empty(&rbio->stripe_cache)){
508 		list_move(&rbio->stripe_cache, &table->stripe_cache);
509 	} else {
510 		list_add(&rbio->stripe_cache, &table->stripe_cache);
511 		table->cache_size += 1;
512 	}
513 
514 	spin_unlock(&rbio->bio_list_lock);
515 
516 	if (table->cache_size > RBIO_CACHE_SIZE) {
517 		struct btrfs_raid_bio *found;
518 
519 		found = list_entry(table->stripe_cache.prev,
520 				  struct btrfs_raid_bio,
521 				  stripe_cache);
522 
523 		if (found != rbio)
524 			__remove_rbio_from_cache(found);
525 	}
526 
527 	spin_unlock_irqrestore(&table->cache_lock, flags);
528 	return;
529 }
530 
531 /*
532  * helper function to run the xor_blocks api.  It is only
533  * able to do MAX_XOR_BLOCKS at a time, so we need to
534  * loop through.
535  */
536 static void run_xor(void **pages, int src_cnt, ssize_t len)
537 {
538 	int src_off = 0;
539 	int xor_src_cnt = 0;
540 	void *dest = pages[src_cnt];
541 
542 	while(src_cnt > 0) {
543 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
544 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
545 
546 		src_cnt -= xor_src_cnt;
547 		src_off += xor_src_cnt;
548 	}
549 }
550 
551 /*
552  * returns true if the bio list inside this rbio
553  * covers an entire stripe (no rmw required).
554  * Must be called with the bio list lock held, or
555  * at a time when you know it is impossible to add
556  * new bios into the list
557  */
558 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
559 {
560 	unsigned long size = rbio->bio_list_bytes;
561 	int ret = 1;
562 
563 	if (size != rbio->nr_data * rbio->stripe_len)
564 		ret = 0;
565 
566 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
567 	return ret;
568 }
569 
570 static int rbio_is_full(struct btrfs_raid_bio *rbio)
571 {
572 	unsigned long flags;
573 	int ret;
574 
575 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
576 	ret = __rbio_is_full(rbio);
577 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
578 	return ret;
579 }
580 
581 /*
582  * returns 1 if it is safe to merge two rbios together.
583  * The merging is safe if the two rbios correspond to
584  * the same stripe and if they are both going in the same
585  * direction (read vs write), and if neither one is
586  * locked for final IO
587  *
588  * The caller is responsible for locking such that
589  * rmw_locked is safe to test
590  */
591 static int rbio_can_merge(struct btrfs_raid_bio *last,
592 			  struct btrfs_raid_bio *cur)
593 {
594 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
595 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
596 		return 0;
597 
598 	/*
599 	 * we can't merge with cached rbios, since the
600 	 * idea is that when we merge the destination
601 	 * rbio is going to run our IO for us.  We can
602 	 * steal from cached rbio's though, other functions
603 	 * handle that.
604 	 */
605 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
606 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
607 		return 0;
608 
609 	if (last->raid_map[0] !=
610 	    cur->raid_map[0])
611 		return 0;
612 
613 	/* we can't merge with different operations */
614 	if (last->operation != cur->operation)
615 		return 0;
616 	/*
617 	 * We've need read the full stripe from the drive.
618 	 * check and repair the parity and write the new results.
619 	 *
620 	 * We're not allowed to add any new bios to the
621 	 * bio list here, anyone else that wants to
622 	 * change this stripe needs to do their own rmw.
623 	 */
624 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
625 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
626 		return 0;
627 
628 	return 1;
629 }
630 
631 /*
632  * helper to index into the pstripe
633  */
634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635 {
636 	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
637 	return rbio->stripe_pages[index];
638 }
639 
640 /*
641  * helper to index into the qstripe, returns null
642  * if there is no qstripe
643  */
644 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
645 {
646 	if (rbio->nr_data + 1 == rbio->real_stripes)
647 		return NULL;
648 
649 	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
650 		PAGE_CACHE_SHIFT;
651 	return rbio->stripe_pages[index];
652 }
653 
654 /*
655  * The first stripe in the table for a logical address
656  * has the lock.  rbios are added in one of three ways:
657  *
658  * 1) Nobody has the stripe locked yet.  The rbio is given
659  * the lock and 0 is returned.  The caller must start the IO
660  * themselves.
661  *
662  * 2) Someone has the stripe locked, but we're able to merge
663  * with the lock owner.  The rbio is freed and the IO will
664  * start automatically along with the existing rbio.  1 is returned.
665  *
666  * 3) Someone has the stripe locked, but we're not able to merge.
667  * The rbio is added to the lock owner's plug list, or merged into
668  * an rbio already on the plug list.  When the lock owner unlocks,
669  * the next rbio on the list is run and the IO is started automatically.
670  * 1 is returned
671  *
672  * If we return 0, the caller still owns the rbio and must continue with
673  * IO submission.  If we return 1, the caller must assume the rbio has
674  * already been freed.
675  */
676 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
677 {
678 	int bucket = rbio_bucket(rbio);
679 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
680 	struct btrfs_raid_bio *cur;
681 	struct btrfs_raid_bio *pending;
682 	unsigned long flags;
683 	DEFINE_WAIT(wait);
684 	struct btrfs_raid_bio *freeit = NULL;
685 	struct btrfs_raid_bio *cache_drop = NULL;
686 	int ret = 0;
687 	int walk = 0;
688 
689 	spin_lock_irqsave(&h->lock, flags);
690 	list_for_each_entry(cur, &h->hash_list, hash_list) {
691 		walk++;
692 		if (cur->raid_map[0] == rbio->raid_map[0]) {
693 			spin_lock(&cur->bio_list_lock);
694 
695 			/* can we steal this cached rbio's pages? */
696 			if (bio_list_empty(&cur->bio_list) &&
697 			    list_empty(&cur->plug_list) &&
698 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
699 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
700 				list_del_init(&cur->hash_list);
701 				atomic_dec(&cur->refs);
702 
703 				steal_rbio(cur, rbio);
704 				cache_drop = cur;
705 				spin_unlock(&cur->bio_list_lock);
706 
707 				goto lockit;
708 			}
709 
710 			/* can we merge into the lock owner? */
711 			if (rbio_can_merge(cur, rbio)) {
712 				merge_rbio(cur, rbio);
713 				spin_unlock(&cur->bio_list_lock);
714 				freeit = rbio;
715 				ret = 1;
716 				goto out;
717 			}
718 
719 
720 			/*
721 			 * we couldn't merge with the running
722 			 * rbio, see if we can merge with the
723 			 * pending ones.  We don't have to
724 			 * check for rmw_locked because there
725 			 * is no way they are inside finish_rmw
726 			 * right now
727 			 */
728 			list_for_each_entry(pending, &cur->plug_list,
729 					    plug_list) {
730 				if (rbio_can_merge(pending, rbio)) {
731 					merge_rbio(pending, rbio);
732 					spin_unlock(&cur->bio_list_lock);
733 					freeit = rbio;
734 					ret = 1;
735 					goto out;
736 				}
737 			}
738 
739 			/* no merging, put us on the tail of the plug list,
740 			 * our rbio will be started with the currently
741 			 * running rbio unlocks
742 			 */
743 			list_add_tail(&rbio->plug_list, &cur->plug_list);
744 			spin_unlock(&cur->bio_list_lock);
745 			ret = 1;
746 			goto out;
747 		}
748 	}
749 lockit:
750 	atomic_inc(&rbio->refs);
751 	list_add(&rbio->hash_list, &h->hash_list);
752 out:
753 	spin_unlock_irqrestore(&h->lock, flags);
754 	if (cache_drop)
755 		remove_rbio_from_cache(cache_drop);
756 	if (freeit)
757 		__free_raid_bio(freeit);
758 	return ret;
759 }
760 
761 /*
762  * called as rmw or parity rebuild is completed.  If the plug list has more
763  * rbios waiting for this stripe, the next one on the list will be started
764  */
765 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
766 {
767 	int bucket;
768 	struct btrfs_stripe_hash *h;
769 	unsigned long flags;
770 	int keep_cache = 0;
771 
772 	bucket = rbio_bucket(rbio);
773 	h = rbio->fs_info->stripe_hash_table->table + bucket;
774 
775 	if (list_empty(&rbio->plug_list))
776 		cache_rbio(rbio);
777 
778 	spin_lock_irqsave(&h->lock, flags);
779 	spin_lock(&rbio->bio_list_lock);
780 
781 	if (!list_empty(&rbio->hash_list)) {
782 		/*
783 		 * if we're still cached and there is no other IO
784 		 * to perform, just leave this rbio here for others
785 		 * to steal from later
786 		 */
787 		if (list_empty(&rbio->plug_list) &&
788 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
789 			keep_cache = 1;
790 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
791 			BUG_ON(!bio_list_empty(&rbio->bio_list));
792 			goto done;
793 		}
794 
795 		list_del_init(&rbio->hash_list);
796 		atomic_dec(&rbio->refs);
797 
798 		/*
799 		 * we use the plug list to hold all the rbios
800 		 * waiting for the chance to lock this stripe.
801 		 * hand the lock over to one of them.
802 		 */
803 		if (!list_empty(&rbio->plug_list)) {
804 			struct btrfs_raid_bio *next;
805 			struct list_head *head = rbio->plug_list.next;
806 
807 			next = list_entry(head, struct btrfs_raid_bio,
808 					  plug_list);
809 
810 			list_del_init(&rbio->plug_list);
811 
812 			list_add(&next->hash_list, &h->hash_list);
813 			atomic_inc(&next->refs);
814 			spin_unlock(&rbio->bio_list_lock);
815 			spin_unlock_irqrestore(&h->lock, flags);
816 
817 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
818 				async_read_rebuild(next);
819 			else if (next->operation == BTRFS_RBIO_WRITE) {
820 				steal_rbio(rbio, next);
821 				async_rmw_stripe(next);
822 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
823 				steal_rbio(rbio, next);
824 				async_scrub_parity(next);
825 			}
826 
827 			goto done_nolock;
828 		} else  if (waitqueue_active(&h->wait)) {
829 			spin_unlock(&rbio->bio_list_lock);
830 			spin_unlock_irqrestore(&h->lock, flags);
831 			wake_up(&h->wait);
832 			goto done_nolock;
833 		}
834 	}
835 done:
836 	spin_unlock(&rbio->bio_list_lock);
837 	spin_unlock_irqrestore(&h->lock, flags);
838 
839 done_nolock:
840 	if (!keep_cache)
841 		remove_rbio_from_cache(rbio);
842 }
843 
844 static inline void
845 __free_bbio_and_raid_map(struct btrfs_bio *bbio, u64 *raid_map, int need)
846 {
847 	if (need) {
848 		kfree(raid_map);
849 		kfree(bbio);
850 	}
851 }
852 
853 static inline void free_bbio_and_raid_map(struct btrfs_raid_bio *rbio)
854 {
855 	__free_bbio_and_raid_map(rbio->bbio, rbio->raid_map,
856 			!test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags));
857 }
858 
859 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
860 {
861 	int i;
862 
863 	WARN_ON(atomic_read(&rbio->refs) < 0);
864 	if (!atomic_dec_and_test(&rbio->refs))
865 		return;
866 
867 	WARN_ON(!list_empty(&rbio->stripe_cache));
868 	WARN_ON(!list_empty(&rbio->hash_list));
869 	WARN_ON(!bio_list_empty(&rbio->bio_list));
870 
871 	for (i = 0; i < rbio->nr_pages; i++) {
872 		if (rbio->stripe_pages[i]) {
873 			__free_page(rbio->stripe_pages[i]);
874 			rbio->stripe_pages[i] = NULL;
875 		}
876 	}
877 
878 	free_bbio_and_raid_map(rbio);
879 
880 	kfree(rbio);
881 }
882 
883 static void free_raid_bio(struct btrfs_raid_bio *rbio)
884 {
885 	unlock_stripe(rbio);
886 	__free_raid_bio(rbio);
887 }
888 
889 /*
890  * this frees the rbio and runs through all the bios in the
891  * bio_list and calls end_io on them
892  */
893 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
894 {
895 	struct bio *cur = bio_list_get(&rbio->bio_list);
896 	struct bio *next;
897 
898 	if (rbio->generic_bio_cnt)
899 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
900 
901 	free_raid_bio(rbio);
902 
903 	while (cur) {
904 		next = cur->bi_next;
905 		cur->bi_next = NULL;
906 		if (uptodate)
907 			set_bit(BIO_UPTODATE, &cur->bi_flags);
908 		bio_endio(cur, err);
909 		cur = next;
910 	}
911 }
912 
913 /*
914  * end io function used by finish_rmw.  When we finally
915  * get here, we've written a full stripe
916  */
917 static void raid_write_end_io(struct bio *bio, int err)
918 {
919 	struct btrfs_raid_bio *rbio = bio->bi_private;
920 
921 	if (err)
922 		fail_bio_stripe(rbio, bio);
923 
924 	bio_put(bio);
925 
926 	if (!atomic_dec_and_test(&rbio->stripes_pending))
927 		return;
928 
929 	err = 0;
930 
931 	/* OK, we have read all the stripes we need to. */
932 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
933 		err = -EIO;
934 
935 	rbio_orig_end_io(rbio, err, 0);
936 	return;
937 }
938 
939 /*
940  * the read/modify/write code wants to use the original bio for
941  * any pages it included, and then use the rbio for everything
942  * else.  This function decides if a given index (stripe number)
943  * and page number in that stripe fall inside the original bio
944  * or the rbio.
945  *
946  * if you set bio_list_only, you'll get a NULL back for any ranges
947  * that are outside the bio_list
948  *
949  * This doesn't take any refs on anything, you get a bare page pointer
950  * and the caller must bump refs as required.
951  *
952  * You must call index_rbio_pages once before you can trust
953  * the answers from this function.
954  */
955 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
956 				 int index, int pagenr, int bio_list_only)
957 {
958 	int chunk_page;
959 	struct page *p = NULL;
960 
961 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
962 
963 	spin_lock_irq(&rbio->bio_list_lock);
964 	p = rbio->bio_pages[chunk_page];
965 	spin_unlock_irq(&rbio->bio_list_lock);
966 
967 	if (p || bio_list_only)
968 		return p;
969 
970 	return rbio->stripe_pages[chunk_page];
971 }
972 
973 /*
974  * number of pages we need for the entire stripe across all the
975  * drives
976  */
977 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
978 {
979 	unsigned long nr = stripe_len * nr_stripes;
980 	return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
981 }
982 
983 /*
984  * allocation and initial setup for the btrfs_raid_bio.  Not
985  * this does not allocate any pages for rbio->pages.
986  */
987 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
988 			  struct btrfs_bio *bbio, u64 *raid_map,
989 			  u64 stripe_len)
990 {
991 	struct btrfs_raid_bio *rbio;
992 	int nr_data = 0;
993 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
994 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
995 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
996 	void *p;
997 
998 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
999 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
1000 			GFP_NOFS);
1001 	if (!rbio)
1002 		return ERR_PTR(-ENOMEM);
1003 
1004 	bio_list_init(&rbio->bio_list);
1005 	INIT_LIST_HEAD(&rbio->plug_list);
1006 	spin_lock_init(&rbio->bio_list_lock);
1007 	INIT_LIST_HEAD(&rbio->stripe_cache);
1008 	INIT_LIST_HEAD(&rbio->hash_list);
1009 	rbio->bbio = bbio;
1010 	rbio->raid_map = raid_map;
1011 	rbio->fs_info = root->fs_info;
1012 	rbio->stripe_len = stripe_len;
1013 	rbio->nr_pages = num_pages;
1014 	rbio->real_stripes = real_stripes;
1015 	rbio->stripe_npages = stripe_npages;
1016 	rbio->faila = -1;
1017 	rbio->failb = -1;
1018 	atomic_set(&rbio->refs, 1);
1019 	atomic_set(&rbio->error, 0);
1020 	atomic_set(&rbio->stripes_pending, 0);
1021 
1022 	/*
1023 	 * the stripe_pages and bio_pages array point to the extra
1024 	 * memory we allocated past the end of the rbio
1025 	 */
1026 	p = rbio + 1;
1027 	rbio->stripe_pages = p;
1028 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1029 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1030 
1031 	if (raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1032 		nr_data = real_stripes - 2;
1033 	else
1034 		nr_data = real_stripes - 1;
1035 
1036 	rbio->nr_data = nr_data;
1037 	return rbio;
1038 }
1039 
1040 /* allocate pages for all the stripes in the bio, including parity */
1041 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1042 {
1043 	int i;
1044 	struct page *page;
1045 
1046 	for (i = 0; i < rbio->nr_pages; i++) {
1047 		if (rbio->stripe_pages[i])
1048 			continue;
1049 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1050 		if (!page)
1051 			return -ENOMEM;
1052 		rbio->stripe_pages[i] = page;
1053 		ClearPageUptodate(page);
1054 	}
1055 	return 0;
1056 }
1057 
1058 /* allocate pages for just the p/q stripes */
1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060 {
1061 	int i;
1062 	struct page *page;
1063 
1064 	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1065 
1066 	for (; i < rbio->nr_pages; i++) {
1067 		if (rbio->stripe_pages[i])
1068 			continue;
1069 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070 		if (!page)
1071 			return -ENOMEM;
1072 		rbio->stripe_pages[i] = page;
1073 	}
1074 	return 0;
1075 }
1076 
1077 /*
1078  * add a single page from a specific stripe into our list of bios for IO
1079  * this will try to merge into existing bios if possible, and returns
1080  * zero if all went well.
1081  */
1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083 			    struct bio_list *bio_list,
1084 			    struct page *page,
1085 			    int stripe_nr,
1086 			    unsigned long page_index,
1087 			    unsigned long bio_max_len)
1088 {
1089 	struct bio *last = bio_list->tail;
1090 	u64 last_end = 0;
1091 	int ret;
1092 	struct bio *bio;
1093 	struct btrfs_bio_stripe *stripe;
1094 	u64 disk_start;
1095 
1096 	stripe = &rbio->bbio->stripes[stripe_nr];
1097 	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1098 
1099 	/* if the device is missing, just fail this stripe */
1100 	if (!stripe->dev->bdev)
1101 		return fail_rbio_index(rbio, stripe_nr);
1102 
1103 	/* see if we can add this page onto our existing bio */
1104 	if (last) {
1105 		last_end = (u64)last->bi_iter.bi_sector << 9;
1106 		last_end += last->bi_iter.bi_size;
1107 
1108 		/*
1109 		 * we can't merge these if they are from different
1110 		 * devices or if they are not contiguous
1111 		 */
1112 		if (last_end == disk_start && stripe->dev->bdev &&
1113 		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
1114 		    last->bi_bdev == stripe->dev->bdev) {
1115 			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1116 			if (ret == PAGE_CACHE_SIZE)
1117 				return 0;
1118 		}
1119 	}
1120 
1121 	/* put a new bio on the list */
1122 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1123 	if (!bio)
1124 		return -ENOMEM;
1125 
1126 	bio->bi_iter.bi_size = 0;
1127 	bio->bi_bdev = stripe->dev->bdev;
1128 	bio->bi_iter.bi_sector = disk_start >> 9;
1129 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1130 
1131 	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1132 	bio_list_add(bio_list, bio);
1133 	return 0;
1134 }
1135 
1136 /*
1137  * while we're doing the read/modify/write cycle, we could
1138  * have errors in reading pages off the disk.  This checks
1139  * for errors and if we're not able to read the page it'll
1140  * trigger parity reconstruction.  The rmw will be finished
1141  * after we've reconstructed the failed stripes
1142  */
1143 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1144 {
1145 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1146 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1147 		__raid56_parity_recover(rbio);
1148 	} else {
1149 		finish_rmw(rbio);
1150 	}
1151 }
1152 
1153 /*
1154  * these are just the pages from the rbio array, not from anything
1155  * the FS sent down to us
1156  */
1157 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1158 {
1159 	int index;
1160 	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1161 	index += page;
1162 	return rbio->stripe_pages[index];
1163 }
1164 
1165 /*
1166  * helper function to walk our bio list and populate the bio_pages array with
1167  * the result.  This seems expensive, but it is faster than constantly
1168  * searching through the bio list as we setup the IO in finish_rmw or stripe
1169  * reconstruction.
1170  *
1171  * This must be called before you trust the answers from page_in_rbio
1172  */
1173 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1174 {
1175 	struct bio *bio;
1176 	u64 start;
1177 	unsigned long stripe_offset;
1178 	unsigned long page_index;
1179 	struct page *p;
1180 	int i;
1181 
1182 	spin_lock_irq(&rbio->bio_list_lock);
1183 	bio_list_for_each(bio, &rbio->bio_list) {
1184 		start = (u64)bio->bi_iter.bi_sector << 9;
1185 		stripe_offset = start - rbio->raid_map[0];
1186 		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1187 
1188 		for (i = 0; i < bio->bi_vcnt; i++) {
1189 			p = bio->bi_io_vec[i].bv_page;
1190 			rbio->bio_pages[page_index + i] = p;
1191 		}
1192 	}
1193 	spin_unlock_irq(&rbio->bio_list_lock);
1194 }
1195 
1196 /*
1197  * this is called from one of two situations.  We either
1198  * have a full stripe from the higher layers, or we've read all
1199  * the missing bits off disk.
1200  *
1201  * This will calculate the parity and then send down any
1202  * changed blocks.
1203  */
1204 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1205 {
1206 	struct btrfs_bio *bbio = rbio->bbio;
1207 	void *pointers[rbio->real_stripes];
1208 	int stripe_len = rbio->stripe_len;
1209 	int nr_data = rbio->nr_data;
1210 	int stripe;
1211 	int pagenr;
1212 	int p_stripe = -1;
1213 	int q_stripe = -1;
1214 	struct bio_list bio_list;
1215 	struct bio *bio;
1216 	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1217 	int ret;
1218 
1219 	bio_list_init(&bio_list);
1220 
1221 	if (rbio->real_stripes - rbio->nr_data == 1) {
1222 		p_stripe = rbio->real_stripes - 1;
1223 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1224 		p_stripe = rbio->real_stripes - 2;
1225 		q_stripe = rbio->real_stripes - 1;
1226 	} else {
1227 		BUG();
1228 	}
1229 
1230 	/* at this point we either have a full stripe,
1231 	 * or we've read the full stripe from the drive.
1232 	 * recalculate the parity and write the new results.
1233 	 *
1234 	 * We're not allowed to add any new bios to the
1235 	 * bio list here, anyone else that wants to
1236 	 * change this stripe needs to do their own rmw.
1237 	 */
1238 	spin_lock_irq(&rbio->bio_list_lock);
1239 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1240 	spin_unlock_irq(&rbio->bio_list_lock);
1241 
1242 	atomic_set(&rbio->error, 0);
1243 
1244 	/*
1245 	 * now that we've set rmw_locked, run through the
1246 	 * bio list one last time and map the page pointers
1247 	 *
1248 	 * We don't cache full rbios because we're assuming
1249 	 * the higher layers are unlikely to use this area of
1250 	 * the disk again soon.  If they do use it again,
1251 	 * hopefully they will send another full bio.
1252 	 */
1253 	index_rbio_pages(rbio);
1254 	if (!rbio_is_full(rbio))
1255 		cache_rbio_pages(rbio);
1256 	else
1257 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1258 
1259 	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1260 		struct page *p;
1261 		/* first collect one page from each data stripe */
1262 		for (stripe = 0; stripe < nr_data; stripe++) {
1263 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1264 			pointers[stripe] = kmap(p);
1265 		}
1266 
1267 		/* then add the parity stripe */
1268 		p = rbio_pstripe_page(rbio, pagenr);
1269 		SetPageUptodate(p);
1270 		pointers[stripe++] = kmap(p);
1271 
1272 		if (q_stripe != -1) {
1273 
1274 			/*
1275 			 * raid6, add the qstripe and call the
1276 			 * library function to fill in our p/q
1277 			 */
1278 			p = rbio_qstripe_page(rbio, pagenr);
1279 			SetPageUptodate(p);
1280 			pointers[stripe++] = kmap(p);
1281 
1282 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1283 						pointers);
1284 		} else {
1285 			/* raid5 */
1286 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1287 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1288 		}
1289 
1290 
1291 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1292 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1293 	}
1294 
1295 	/*
1296 	 * time to start writing.  Make bios for everything from the
1297 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1298 	 * everything else.
1299 	 */
1300 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1301 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1302 			struct page *page;
1303 			if (stripe < rbio->nr_data) {
1304 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1305 				if (!page)
1306 					continue;
1307 			} else {
1308 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1309 			}
1310 
1311 			ret = rbio_add_io_page(rbio, &bio_list,
1312 				       page, stripe, pagenr, rbio->stripe_len);
1313 			if (ret)
1314 				goto cleanup;
1315 		}
1316 	}
1317 
1318 	if (likely(!bbio->num_tgtdevs))
1319 		goto write_data;
1320 
1321 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1322 		if (!bbio->tgtdev_map[stripe])
1323 			continue;
1324 
1325 		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1326 			struct page *page;
1327 			if (stripe < rbio->nr_data) {
1328 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1329 				if (!page)
1330 					continue;
1331 			} else {
1332 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1333 			}
1334 
1335 			ret = rbio_add_io_page(rbio, &bio_list, page,
1336 					       rbio->bbio->tgtdev_map[stripe],
1337 					       pagenr, rbio->stripe_len);
1338 			if (ret)
1339 				goto cleanup;
1340 		}
1341 	}
1342 
1343 write_data:
1344 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1345 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1346 
1347 	while (1) {
1348 		bio = bio_list_pop(&bio_list);
1349 		if (!bio)
1350 			break;
1351 
1352 		bio->bi_private = rbio;
1353 		bio->bi_end_io = raid_write_end_io;
1354 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1355 		submit_bio(WRITE, bio);
1356 	}
1357 	return;
1358 
1359 cleanup:
1360 	rbio_orig_end_io(rbio, -EIO, 0);
1361 }
1362 
1363 /*
1364  * helper to find the stripe number for a given bio.  Used to figure out which
1365  * stripe has failed.  This expects the bio to correspond to a physical disk,
1366  * so it looks up based on physical sector numbers.
1367  */
1368 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1369 			   struct bio *bio)
1370 {
1371 	u64 physical = bio->bi_iter.bi_sector;
1372 	u64 stripe_start;
1373 	int i;
1374 	struct btrfs_bio_stripe *stripe;
1375 
1376 	physical <<= 9;
1377 
1378 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1379 		stripe = &rbio->bbio->stripes[i];
1380 		stripe_start = stripe->physical;
1381 		if (physical >= stripe_start &&
1382 		    physical < stripe_start + rbio->stripe_len &&
1383 		    bio->bi_bdev == stripe->dev->bdev) {
1384 			return i;
1385 		}
1386 	}
1387 	return -1;
1388 }
1389 
1390 /*
1391  * helper to find the stripe number for a given
1392  * bio (before mapping).  Used to figure out which stripe has
1393  * failed.  This looks up based on logical block numbers.
1394  */
1395 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1396 				   struct bio *bio)
1397 {
1398 	u64 logical = bio->bi_iter.bi_sector;
1399 	u64 stripe_start;
1400 	int i;
1401 
1402 	logical <<= 9;
1403 
1404 	for (i = 0; i < rbio->nr_data; i++) {
1405 		stripe_start = rbio->raid_map[i];
1406 		if (logical >= stripe_start &&
1407 		    logical < stripe_start + rbio->stripe_len) {
1408 			return i;
1409 		}
1410 	}
1411 	return -1;
1412 }
1413 
1414 /*
1415  * returns -EIO if we had too many failures
1416  */
1417 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1418 {
1419 	unsigned long flags;
1420 	int ret = 0;
1421 
1422 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1423 
1424 	/* we already know this stripe is bad, move on */
1425 	if (rbio->faila == failed || rbio->failb == failed)
1426 		goto out;
1427 
1428 	if (rbio->faila == -1) {
1429 		/* first failure on this rbio */
1430 		rbio->faila = failed;
1431 		atomic_inc(&rbio->error);
1432 	} else if (rbio->failb == -1) {
1433 		/* second failure on this rbio */
1434 		rbio->failb = failed;
1435 		atomic_inc(&rbio->error);
1436 	} else {
1437 		ret = -EIO;
1438 	}
1439 out:
1440 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1441 
1442 	return ret;
1443 }
1444 
1445 /*
1446  * helper to fail a stripe based on a physical disk
1447  * bio.
1448  */
1449 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1450 			   struct bio *bio)
1451 {
1452 	int failed = find_bio_stripe(rbio, bio);
1453 
1454 	if (failed < 0)
1455 		return -EIO;
1456 
1457 	return fail_rbio_index(rbio, failed);
1458 }
1459 
1460 /*
1461  * this sets each page in the bio uptodate.  It should only be used on private
1462  * rbio pages, nothing that comes in from the higher layers
1463  */
1464 static void set_bio_pages_uptodate(struct bio *bio)
1465 {
1466 	int i;
1467 	struct page *p;
1468 
1469 	for (i = 0; i < bio->bi_vcnt; i++) {
1470 		p = bio->bi_io_vec[i].bv_page;
1471 		SetPageUptodate(p);
1472 	}
1473 }
1474 
1475 /*
1476  * end io for the read phase of the rmw cycle.  All the bios here are physical
1477  * stripe bios we've read from the disk so we can recalculate the parity of the
1478  * stripe.
1479  *
1480  * This will usually kick off finish_rmw once all the bios are read in, but it
1481  * may trigger parity reconstruction if we had any errors along the way
1482  */
1483 static void raid_rmw_end_io(struct bio *bio, int err)
1484 {
1485 	struct btrfs_raid_bio *rbio = bio->bi_private;
1486 
1487 	if (err)
1488 		fail_bio_stripe(rbio, bio);
1489 	else
1490 		set_bio_pages_uptodate(bio);
1491 
1492 	bio_put(bio);
1493 
1494 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1495 		return;
1496 
1497 	err = 0;
1498 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1499 		goto cleanup;
1500 
1501 	/*
1502 	 * this will normally call finish_rmw to start our write
1503 	 * but if there are any failed stripes we'll reconstruct
1504 	 * from parity first
1505 	 */
1506 	validate_rbio_for_rmw(rbio);
1507 	return;
1508 
1509 cleanup:
1510 
1511 	rbio_orig_end_io(rbio, -EIO, 0);
1512 }
1513 
1514 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1515 {
1516 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1517 			rmw_work, NULL, NULL);
1518 
1519 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1520 			 &rbio->work);
1521 }
1522 
1523 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1524 {
1525 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1526 			read_rebuild_work, NULL, NULL);
1527 
1528 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1529 			 &rbio->work);
1530 }
1531 
1532 /*
1533  * the stripe must be locked by the caller.  It will
1534  * unlock after all the writes are done
1535  */
1536 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1537 {
1538 	int bios_to_read = 0;
1539 	struct bio_list bio_list;
1540 	int ret;
1541 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1542 	int pagenr;
1543 	int stripe;
1544 	struct bio *bio;
1545 
1546 	bio_list_init(&bio_list);
1547 
1548 	ret = alloc_rbio_pages(rbio);
1549 	if (ret)
1550 		goto cleanup;
1551 
1552 	index_rbio_pages(rbio);
1553 
1554 	atomic_set(&rbio->error, 0);
1555 	/*
1556 	 * build a list of bios to read all the missing parts of this
1557 	 * stripe
1558 	 */
1559 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1560 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1561 			struct page *page;
1562 			/*
1563 			 * we want to find all the pages missing from
1564 			 * the rbio and read them from the disk.  If
1565 			 * page_in_rbio finds a page in the bio list
1566 			 * we don't need to read it off the stripe.
1567 			 */
1568 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1569 			if (page)
1570 				continue;
1571 
1572 			page = rbio_stripe_page(rbio, stripe, pagenr);
1573 			/*
1574 			 * the bio cache may have handed us an uptodate
1575 			 * page.  If so, be happy and use it
1576 			 */
1577 			if (PageUptodate(page))
1578 				continue;
1579 
1580 			ret = rbio_add_io_page(rbio, &bio_list, page,
1581 				       stripe, pagenr, rbio->stripe_len);
1582 			if (ret)
1583 				goto cleanup;
1584 		}
1585 	}
1586 
1587 	bios_to_read = bio_list_size(&bio_list);
1588 	if (!bios_to_read) {
1589 		/*
1590 		 * this can happen if others have merged with
1591 		 * us, it means there is nothing left to read.
1592 		 * But if there are missing devices it may not be
1593 		 * safe to do the full stripe write yet.
1594 		 */
1595 		goto finish;
1596 	}
1597 
1598 	/*
1599 	 * the bbio may be freed once we submit the last bio.  Make sure
1600 	 * not to touch it after that
1601 	 */
1602 	atomic_set(&rbio->stripes_pending, bios_to_read);
1603 	while (1) {
1604 		bio = bio_list_pop(&bio_list);
1605 		if (!bio)
1606 			break;
1607 
1608 		bio->bi_private = rbio;
1609 		bio->bi_end_io = raid_rmw_end_io;
1610 
1611 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1612 				    BTRFS_WQ_ENDIO_RAID56);
1613 
1614 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1615 		submit_bio(READ, bio);
1616 	}
1617 	/* the actual write will happen once the reads are done */
1618 	return 0;
1619 
1620 cleanup:
1621 	rbio_orig_end_io(rbio, -EIO, 0);
1622 	return -EIO;
1623 
1624 finish:
1625 	validate_rbio_for_rmw(rbio);
1626 	return 0;
1627 }
1628 
1629 /*
1630  * if the upper layers pass in a full stripe, we thank them by only allocating
1631  * enough pages to hold the parity, and sending it all down quickly.
1632  */
1633 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1634 {
1635 	int ret;
1636 
1637 	ret = alloc_rbio_parity_pages(rbio);
1638 	if (ret) {
1639 		__free_raid_bio(rbio);
1640 		return ret;
1641 	}
1642 
1643 	ret = lock_stripe_add(rbio);
1644 	if (ret == 0)
1645 		finish_rmw(rbio);
1646 	return 0;
1647 }
1648 
1649 /*
1650  * partial stripe writes get handed over to async helpers.
1651  * We're really hoping to merge a few more writes into this
1652  * rbio before calculating new parity
1653  */
1654 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1655 {
1656 	int ret;
1657 
1658 	ret = lock_stripe_add(rbio);
1659 	if (ret == 0)
1660 		async_rmw_stripe(rbio);
1661 	return 0;
1662 }
1663 
1664 /*
1665  * sometimes while we were reading from the drive to
1666  * recalculate parity, enough new bios come into create
1667  * a full stripe.  So we do a check here to see if we can
1668  * go directly to finish_rmw
1669  */
1670 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1671 {
1672 	/* head off into rmw land if we don't have a full stripe */
1673 	if (!rbio_is_full(rbio))
1674 		return partial_stripe_write(rbio);
1675 	return full_stripe_write(rbio);
1676 }
1677 
1678 /*
1679  * We use plugging call backs to collect full stripes.
1680  * Any time we get a partial stripe write while plugged
1681  * we collect it into a list.  When the unplug comes down,
1682  * we sort the list by logical block number and merge
1683  * everything we can into the same rbios
1684  */
1685 struct btrfs_plug_cb {
1686 	struct blk_plug_cb cb;
1687 	struct btrfs_fs_info *info;
1688 	struct list_head rbio_list;
1689 	struct btrfs_work work;
1690 };
1691 
1692 /*
1693  * rbios on the plug list are sorted for easier merging.
1694  */
1695 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1696 {
1697 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1698 						 plug_list);
1699 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1700 						 plug_list);
1701 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1702 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1703 
1704 	if (a_sector < b_sector)
1705 		return -1;
1706 	if (a_sector > b_sector)
1707 		return 1;
1708 	return 0;
1709 }
1710 
1711 static void run_plug(struct btrfs_plug_cb *plug)
1712 {
1713 	struct btrfs_raid_bio *cur;
1714 	struct btrfs_raid_bio *last = NULL;
1715 
1716 	/*
1717 	 * sort our plug list then try to merge
1718 	 * everything we can in hopes of creating full
1719 	 * stripes.
1720 	 */
1721 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1722 	while (!list_empty(&plug->rbio_list)) {
1723 		cur = list_entry(plug->rbio_list.next,
1724 				 struct btrfs_raid_bio, plug_list);
1725 		list_del_init(&cur->plug_list);
1726 
1727 		if (rbio_is_full(cur)) {
1728 			/* we have a full stripe, send it down */
1729 			full_stripe_write(cur);
1730 			continue;
1731 		}
1732 		if (last) {
1733 			if (rbio_can_merge(last, cur)) {
1734 				merge_rbio(last, cur);
1735 				__free_raid_bio(cur);
1736 				continue;
1737 
1738 			}
1739 			__raid56_parity_write(last);
1740 		}
1741 		last = cur;
1742 	}
1743 	if (last) {
1744 		__raid56_parity_write(last);
1745 	}
1746 	kfree(plug);
1747 }
1748 
1749 /*
1750  * if the unplug comes from schedule, we have to push the
1751  * work off to a helper thread
1752  */
1753 static void unplug_work(struct btrfs_work *work)
1754 {
1755 	struct btrfs_plug_cb *plug;
1756 	plug = container_of(work, struct btrfs_plug_cb, work);
1757 	run_plug(plug);
1758 }
1759 
1760 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1761 {
1762 	struct btrfs_plug_cb *plug;
1763 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1764 
1765 	if (from_schedule) {
1766 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1767 				unplug_work, NULL, NULL);
1768 		btrfs_queue_work(plug->info->rmw_workers,
1769 				 &plug->work);
1770 		return;
1771 	}
1772 	run_plug(plug);
1773 }
1774 
1775 /*
1776  * our main entry point for writes from the rest of the FS.
1777  */
1778 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1779 			struct btrfs_bio *bbio, u64 *raid_map,
1780 			u64 stripe_len)
1781 {
1782 	struct btrfs_raid_bio *rbio;
1783 	struct btrfs_plug_cb *plug = NULL;
1784 	struct blk_plug_cb *cb;
1785 	int ret;
1786 
1787 	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1788 	if (IS_ERR(rbio)) {
1789 		__free_bbio_and_raid_map(bbio, raid_map, 1);
1790 		return PTR_ERR(rbio);
1791 	}
1792 	bio_list_add(&rbio->bio_list, bio);
1793 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1794 	rbio->operation = BTRFS_RBIO_WRITE;
1795 
1796 	btrfs_bio_counter_inc_noblocked(root->fs_info);
1797 	rbio->generic_bio_cnt = 1;
1798 
1799 	/*
1800 	 * don't plug on full rbios, just get them out the door
1801 	 * as quickly as we can
1802 	 */
1803 	if (rbio_is_full(rbio)) {
1804 		ret = full_stripe_write(rbio);
1805 		if (ret)
1806 			btrfs_bio_counter_dec(root->fs_info);
1807 		return ret;
1808 	}
1809 
1810 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1811 			       sizeof(*plug));
1812 	if (cb) {
1813 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1814 		if (!plug->info) {
1815 			plug->info = root->fs_info;
1816 			INIT_LIST_HEAD(&plug->rbio_list);
1817 		}
1818 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1819 		ret = 0;
1820 	} else {
1821 		ret = __raid56_parity_write(rbio);
1822 		if (ret)
1823 			btrfs_bio_counter_dec(root->fs_info);
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * all parity reconstruction happens here.  We've read in everything
1830  * we can find from the drives and this does the heavy lifting of
1831  * sorting the good from the bad.
1832  */
1833 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1834 {
1835 	int pagenr, stripe;
1836 	void **pointers;
1837 	int faila = -1, failb = -1;
1838 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1839 	struct page *page;
1840 	int err;
1841 	int i;
1842 
1843 	pointers = kzalloc(rbio->real_stripes * sizeof(void *),
1844 			   GFP_NOFS);
1845 	if (!pointers) {
1846 		err = -ENOMEM;
1847 		goto cleanup_io;
1848 	}
1849 
1850 	faila = rbio->faila;
1851 	failb = rbio->failb;
1852 
1853 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1854 		spin_lock_irq(&rbio->bio_list_lock);
1855 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1856 		spin_unlock_irq(&rbio->bio_list_lock);
1857 	}
1858 
1859 	index_rbio_pages(rbio);
1860 
1861 	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1862 		/*
1863 		 * Now we just use bitmap to mark the horizontal stripes in
1864 		 * which we have data when doing parity scrub.
1865 		 */
1866 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1867 		    !test_bit(pagenr, rbio->dbitmap))
1868 			continue;
1869 
1870 		/* setup our array of pointers with pages
1871 		 * from each stripe
1872 		 */
1873 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1874 			/*
1875 			 * if we're rebuilding a read, we have to use
1876 			 * pages from the bio list
1877 			 */
1878 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1879 			    (stripe == faila || stripe == failb)) {
1880 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1881 			} else {
1882 				page = rbio_stripe_page(rbio, stripe, pagenr);
1883 			}
1884 			pointers[stripe] = kmap(page);
1885 		}
1886 
1887 		/* all raid6 handling here */
1888 		if (rbio->raid_map[rbio->real_stripes - 1] ==
1889 		    RAID6_Q_STRIPE) {
1890 
1891 			/*
1892 			 * single failure, rebuild from parity raid5
1893 			 * style
1894 			 */
1895 			if (failb < 0) {
1896 				if (faila == rbio->nr_data) {
1897 					/*
1898 					 * Just the P stripe has failed, without
1899 					 * a bad data or Q stripe.
1900 					 * TODO, we should redo the xor here.
1901 					 */
1902 					err = -EIO;
1903 					goto cleanup;
1904 				}
1905 				/*
1906 				 * a single failure in raid6 is rebuilt
1907 				 * in the pstripe code below
1908 				 */
1909 				goto pstripe;
1910 			}
1911 
1912 			/* make sure our ps and qs are in order */
1913 			if (faila > failb) {
1914 				int tmp = failb;
1915 				failb = faila;
1916 				faila = tmp;
1917 			}
1918 
1919 			/* if the q stripe is failed, do a pstripe reconstruction
1920 			 * from the xors.
1921 			 * If both the q stripe and the P stripe are failed, we're
1922 			 * here due to a crc mismatch and we can't give them the
1923 			 * data they want
1924 			 */
1925 			if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1926 				if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1927 					err = -EIO;
1928 					goto cleanup;
1929 				}
1930 				/*
1931 				 * otherwise we have one bad data stripe and
1932 				 * a good P stripe.  raid5!
1933 				 */
1934 				goto pstripe;
1935 			}
1936 
1937 			if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1938 				raid6_datap_recov(rbio->real_stripes,
1939 						  PAGE_SIZE, faila, pointers);
1940 			} else {
1941 				raid6_2data_recov(rbio->real_stripes,
1942 						  PAGE_SIZE, faila, failb,
1943 						  pointers);
1944 			}
1945 		} else {
1946 			void *p;
1947 
1948 			/* rebuild from P stripe here (raid5 or raid6) */
1949 			BUG_ON(failb != -1);
1950 pstripe:
1951 			/* Copy parity block into failed block to start with */
1952 			memcpy(pointers[faila],
1953 			       pointers[rbio->nr_data],
1954 			       PAGE_CACHE_SIZE);
1955 
1956 			/* rearrange the pointer array */
1957 			p = pointers[faila];
1958 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1959 				pointers[stripe] = pointers[stripe + 1];
1960 			pointers[rbio->nr_data - 1] = p;
1961 
1962 			/* xor in the rest */
1963 			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1964 		}
1965 		/* if we're doing this rebuild as part of an rmw, go through
1966 		 * and set all of our private rbio pages in the
1967 		 * failed stripes as uptodate.  This way finish_rmw will
1968 		 * know they can be trusted.  If this was a read reconstruction,
1969 		 * other endio functions will fiddle the uptodate bits
1970 		 */
1971 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1972 			for (i = 0;  i < nr_pages; i++) {
1973 				if (faila != -1) {
1974 					page = rbio_stripe_page(rbio, faila, i);
1975 					SetPageUptodate(page);
1976 				}
1977 				if (failb != -1) {
1978 					page = rbio_stripe_page(rbio, failb, i);
1979 					SetPageUptodate(page);
1980 				}
1981 			}
1982 		}
1983 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1984 			/*
1985 			 * if we're rebuilding a read, we have to use
1986 			 * pages from the bio list
1987 			 */
1988 			if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1989 			    (stripe == faila || stripe == failb)) {
1990 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1991 			} else {
1992 				page = rbio_stripe_page(rbio, stripe, pagenr);
1993 			}
1994 			kunmap(page);
1995 		}
1996 	}
1997 
1998 	err = 0;
1999 cleanup:
2000 	kfree(pointers);
2001 
2002 cleanup_io:
2003 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004 		if (err == 0 &&
2005 		    !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags))
2006 			cache_rbio_pages(rbio);
2007 		else
2008 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2009 
2010 		rbio_orig_end_io(rbio, err, err == 0);
2011 	} else if (err == 0) {
2012 		rbio->faila = -1;
2013 		rbio->failb = -1;
2014 
2015 		if (rbio->operation == BTRFS_RBIO_WRITE)
2016 			finish_rmw(rbio);
2017 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2018 			finish_parity_scrub(rbio, 0);
2019 		else
2020 			BUG();
2021 	} else {
2022 		rbio_orig_end_io(rbio, err, 0);
2023 	}
2024 }
2025 
2026 /*
2027  * This is called only for stripes we've read from disk to
2028  * reconstruct the parity.
2029  */
2030 static void raid_recover_end_io(struct bio *bio, int err)
2031 {
2032 	struct btrfs_raid_bio *rbio = bio->bi_private;
2033 
2034 	/*
2035 	 * we only read stripe pages off the disk, set them
2036 	 * up to date if there were no errors
2037 	 */
2038 	if (err)
2039 		fail_bio_stripe(rbio, bio);
2040 	else
2041 		set_bio_pages_uptodate(bio);
2042 	bio_put(bio);
2043 
2044 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2045 		return;
2046 
2047 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2048 		rbio_orig_end_io(rbio, -EIO, 0);
2049 	else
2050 		__raid_recover_end_io(rbio);
2051 }
2052 
2053 /*
2054  * reads everything we need off the disk to reconstruct
2055  * the parity. endio handlers trigger final reconstruction
2056  * when the IO is done.
2057  *
2058  * This is used both for reads from the higher layers and for
2059  * parity construction required to finish a rmw cycle.
2060  */
2061 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2062 {
2063 	int bios_to_read = 0;
2064 	struct bio_list bio_list;
2065 	int ret;
2066 	int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2067 	int pagenr;
2068 	int stripe;
2069 	struct bio *bio;
2070 
2071 	bio_list_init(&bio_list);
2072 
2073 	ret = alloc_rbio_pages(rbio);
2074 	if (ret)
2075 		goto cleanup;
2076 
2077 	atomic_set(&rbio->error, 0);
2078 
2079 	/*
2080 	 * read everything that hasn't failed.  Thanks to the
2081 	 * stripe cache, it is possible that some or all of these
2082 	 * pages are going to be uptodate.
2083 	 */
2084 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2085 		if (rbio->faila == stripe || rbio->failb == stripe) {
2086 			atomic_inc(&rbio->error);
2087 			continue;
2088 		}
2089 
2090 		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2091 			struct page *p;
2092 
2093 			/*
2094 			 * the rmw code may have already read this
2095 			 * page in
2096 			 */
2097 			p = rbio_stripe_page(rbio, stripe, pagenr);
2098 			if (PageUptodate(p))
2099 				continue;
2100 
2101 			ret = rbio_add_io_page(rbio, &bio_list,
2102 				       rbio_stripe_page(rbio, stripe, pagenr),
2103 				       stripe, pagenr, rbio->stripe_len);
2104 			if (ret < 0)
2105 				goto cleanup;
2106 		}
2107 	}
2108 
2109 	bios_to_read = bio_list_size(&bio_list);
2110 	if (!bios_to_read) {
2111 		/*
2112 		 * we might have no bios to read just because the pages
2113 		 * were up to date, or we might have no bios to read because
2114 		 * the devices were gone.
2115 		 */
2116 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2117 			__raid_recover_end_io(rbio);
2118 			goto out;
2119 		} else {
2120 			goto cleanup;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * the bbio may be freed once we submit the last bio.  Make sure
2126 	 * not to touch it after that
2127 	 */
2128 	atomic_set(&rbio->stripes_pending, bios_to_read);
2129 	while (1) {
2130 		bio = bio_list_pop(&bio_list);
2131 		if (!bio)
2132 			break;
2133 
2134 		bio->bi_private = rbio;
2135 		bio->bi_end_io = raid_recover_end_io;
2136 
2137 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2138 				    BTRFS_WQ_ENDIO_RAID56);
2139 
2140 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2141 		submit_bio(READ, bio);
2142 	}
2143 out:
2144 	return 0;
2145 
2146 cleanup:
2147 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
2148 		rbio_orig_end_io(rbio, -EIO, 0);
2149 	return -EIO;
2150 }
2151 
2152 /*
2153  * the main entry point for reads from the higher layers.  This
2154  * is really only called when the normal read path had a failure,
2155  * so we assume the bio they send down corresponds to a failed part
2156  * of the drive.
2157  */
2158 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2159 			  struct btrfs_bio *bbio, u64 *raid_map,
2160 			  u64 stripe_len, int mirror_num, int generic_io)
2161 {
2162 	struct btrfs_raid_bio *rbio;
2163 	int ret;
2164 
2165 	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2166 	if (IS_ERR(rbio)) {
2167 		__free_bbio_and_raid_map(bbio, raid_map, generic_io);
2168 		return PTR_ERR(rbio);
2169 	}
2170 
2171 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2172 	bio_list_add(&rbio->bio_list, bio);
2173 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2174 
2175 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2176 	if (rbio->faila == -1) {
2177 		BUG();
2178 		__free_bbio_and_raid_map(bbio, raid_map, generic_io);
2179 		kfree(rbio);
2180 		return -EIO;
2181 	}
2182 
2183 	if (generic_io) {
2184 		btrfs_bio_counter_inc_noblocked(root->fs_info);
2185 		rbio->generic_bio_cnt = 1;
2186 	} else {
2187 		set_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags);
2188 	}
2189 
2190 	/*
2191 	 * reconstruct from the q stripe if they are
2192 	 * asking for mirror 3
2193 	 */
2194 	if (mirror_num == 3)
2195 		rbio->failb = rbio->real_stripes - 2;
2196 
2197 	ret = lock_stripe_add(rbio);
2198 
2199 	/*
2200 	 * __raid56_parity_recover will end the bio with
2201 	 * any errors it hits.  We don't want to return
2202 	 * its error value up the stack because our caller
2203 	 * will end up calling bio_endio with any nonzero
2204 	 * return
2205 	 */
2206 	if (ret == 0)
2207 		__raid56_parity_recover(rbio);
2208 	/*
2209 	 * our rbio has been added to the list of
2210 	 * rbios that will be handled after the
2211 	 * currently lock owner is done
2212 	 */
2213 	return 0;
2214 
2215 }
2216 
2217 static void rmw_work(struct btrfs_work *work)
2218 {
2219 	struct btrfs_raid_bio *rbio;
2220 
2221 	rbio = container_of(work, struct btrfs_raid_bio, work);
2222 	raid56_rmw_stripe(rbio);
2223 }
2224 
2225 static void read_rebuild_work(struct btrfs_work *work)
2226 {
2227 	struct btrfs_raid_bio *rbio;
2228 
2229 	rbio = container_of(work, struct btrfs_raid_bio, work);
2230 	__raid56_parity_recover(rbio);
2231 }
2232 
2233 /*
2234  * The following code is used to scrub/replace the parity stripe
2235  *
2236  * Note: We need make sure all the pages that add into the scrub/replace
2237  * raid bio are correct and not be changed during the scrub/replace. That
2238  * is those pages just hold metadata or file data with checksum.
2239  */
2240 
2241 struct btrfs_raid_bio *
2242 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2243 			       struct btrfs_bio *bbio, u64 *raid_map,
2244 			       u64 stripe_len, struct btrfs_device *scrub_dev,
2245 			       unsigned long *dbitmap, int stripe_nsectors)
2246 {
2247 	struct btrfs_raid_bio *rbio;
2248 	int i;
2249 
2250 	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2251 	if (IS_ERR(rbio))
2252 		return NULL;
2253 	bio_list_add(&rbio->bio_list, bio);
2254 	/*
2255 	 * This is a special bio which is used to hold the completion handler
2256 	 * and make the scrub rbio is similar to the other types
2257 	 */
2258 	ASSERT(!bio->bi_iter.bi_size);
2259 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2260 
2261 	for (i = 0; i < rbio->real_stripes; i++) {
2262 		if (bbio->stripes[i].dev == scrub_dev) {
2263 			rbio->scrubp = i;
2264 			break;
2265 		}
2266 	}
2267 
2268 	/* Now we just support the sectorsize equals to page size */
2269 	ASSERT(root->sectorsize == PAGE_SIZE);
2270 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2271 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2272 
2273 	return rbio;
2274 }
2275 
2276 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
2277 				   struct page *page, u64 logical)
2278 {
2279 	int stripe_offset;
2280 	int index;
2281 
2282 	ASSERT(logical >= rbio->raid_map[0]);
2283 	ASSERT(logical + PAGE_SIZE <= rbio->raid_map[0] +
2284 				rbio->stripe_len * rbio->nr_data);
2285 	stripe_offset = (int)(logical - rbio->raid_map[0]);
2286 	index = stripe_offset >> PAGE_CACHE_SHIFT;
2287 	rbio->bio_pages[index] = page;
2288 }
2289 
2290 /*
2291  * We just scrub the parity that we have correct data on the same horizontal,
2292  * so we needn't allocate all pages for all the stripes.
2293  */
2294 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2295 {
2296 	int i;
2297 	int bit;
2298 	int index;
2299 	struct page *page;
2300 
2301 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2302 		for (i = 0; i < rbio->real_stripes; i++) {
2303 			index = i * rbio->stripe_npages + bit;
2304 			if (rbio->stripe_pages[index])
2305 				continue;
2306 
2307 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2308 			if (!page)
2309 				return -ENOMEM;
2310 			rbio->stripe_pages[index] = page;
2311 			ClearPageUptodate(page);
2312 		}
2313 	}
2314 	return 0;
2315 }
2316 
2317 /*
2318  * end io function used by finish_rmw.  When we finally
2319  * get here, we've written a full stripe
2320  */
2321 static void raid_write_parity_end_io(struct bio *bio, int err)
2322 {
2323 	struct btrfs_raid_bio *rbio = bio->bi_private;
2324 
2325 	if (err)
2326 		fail_bio_stripe(rbio, bio);
2327 
2328 	bio_put(bio);
2329 
2330 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2331 		return;
2332 
2333 	err = 0;
2334 
2335 	if (atomic_read(&rbio->error))
2336 		err = -EIO;
2337 
2338 	rbio_orig_end_io(rbio, err, 0);
2339 }
2340 
2341 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2342 					 int need_check)
2343 {
2344 	struct btrfs_bio *bbio = rbio->bbio;
2345 	void *pointers[rbio->real_stripes];
2346 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2347 	int nr_data = rbio->nr_data;
2348 	int stripe;
2349 	int pagenr;
2350 	int p_stripe = -1;
2351 	int q_stripe = -1;
2352 	struct page *p_page = NULL;
2353 	struct page *q_page = NULL;
2354 	struct bio_list bio_list;
2355 	struct bio *bio;
2356 	int is_replace = 0;
2357 	int ret;
2358 
2359 	bio_list_init(&bio_list);
2360 
2361 	if (rbio->real_stripes - rbio->nr_data == 1) {
2362 		p_stripe = rbio->real_stripes - 1;
2363 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2364 		p_stripe = rbio->real_stripes - 2;
2365 		q_stripe = rbio->real_stripes - 1;
2366 	} else {
2367 		BUG();
2368 	}
2369 
2370 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2371 		is_replace = 1;
2372 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2373 	}
2374 
2375 	/*
2376 	 * Because the higher layers(scrubber) are unlikely to
2377 	 * use this area of the disk again soon, so don't cache
2378 	 * it.
2379 	 */
2380 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2381 
2382 	if (!need_check)
2383 		goto writeback;
2384 
2385 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2386 	if (!p_page)
2387 		goto cleanup;
2388 	SetPageUptodate(p_page);
2389 
2390 	if (q_stripe != -1) {
2391 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2392 		if (!q_page) {
2393 			__free_page(p_page);
2394 			goto cleanup;
2395 		}
2396 		SetPageUptodate(q_page);
2397 	}
2398 
2399 	atomic_set(&rbio->error, 0);
2400 
2401 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2402 		struct page *p;
2403 		void *parity;
2404 		/* first collect one page from each data stripe */
2405 		for (stripe = 0; stripe < nr_data; stripe++) {
2406 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2407 			pointers[stripe] = kmap(p);
2408 		}
2409 
2410 		/* then add the parity stripe */
2411 		pointers[stripe++] = kmap(p_page);
2412 
2413 		if (q_stripe != -1) {
2414 
2415 			/*
2416 			 * raid6, add the qstripe and call the
2417 			 * library function to fill in our p/q
2418 			 */
2419 			pointers[stripe++] = kmap(q_page);
2420 
2421 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2422 						pointers);
2423 		} else {
2424 			/* raid5 */
2425 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2426 			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2427 		}
2428 
2429 		/* Check scrubbing pairty and repair it */
2430 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2431 		parity = kmap(p);
2432 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2433 			memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2434 		else
2435 			/* Parity is right, needn't writeback */
2436 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2437 		kunmap(p);
2438 
2439 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2440 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2441 	}
2442 
2443 	__free_page(p_page);
2444 	if (q_page)
2445 		__free_page(q_page);
2446 
2447 writeback:
2448 	/*
2449 	 * time to start writing.  Make bios for everything from the
2450 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2451 	 * everything else.
2452 	 */
2453 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2454 		struct page *page;
2455 
2456 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2457 		ret = rbio_add_io_page(rbio, &bio_list,
2458 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2459 		if (ret)
2460 			goto cleanup;
2461 	}
2462 
2463 	if (!is_replace)
2464 		goto submit_write;
2465 
2466 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2467 		struct page *page;
2468 
2469 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2470 		ret = rbio_add_io_page(rbio, &bio_list, page,
2471 				       bbio->tgtdev_map[rbio->scrubp],
2472 				       pagenr, rbio->stripe_len);
2473 		if (ret)
2474 			goto cleanup;
2475 	}
2476 
2477 submit_write:
2478 	nr_data = bio_list_size(&bio_list);
2479 	if (!nr_data) {
2480 		/* Every parity is right */
2481 		rbio_orig_end_io(rbio, 0, 0);
2482 		return;
2483 	}
2484 
2485 	atomic_set(&rbio->stripes_pending, nr_data);
2486 
2487 	while (1) {
2488 		bio = bio_list_pop(&bio_list);
2489 		if (!bio)
2490 			break;
2491 
2492 		bio->bi_private = rbio;
2493 		bio->bi_end_io = raid_write_parity_end_io;
2494 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2495 		submit_bio(WRITE, bio);
2496 	}
2497 	return;
2498 
2499 cleanup:
2500 	rbio_orig_end_io(rbio, -EIO, 0);
2501 }
2502 
2503 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2504 {
2505 	if (stripe >= 0 && stripe < rbio->nr_data)
2506 		return 1;
2507 	return 0;
2508 }
2509 
2510 /*
2511  * While we're doing the parity check and repair, we could have errors
2512  * in reading pages off the disk.  This checks for errors and if we're
2513  * not able to read the page it'll trigger parity reconstruction.  The
2514  * parity scrub will be finished after we've reconstructed the failed
2515  * stripes
2516  */
2517 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2518 {
2519 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2520 		goto cleanup;
2521 
2522 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2523 		int dfail = 0, failp = -1;
2524 
2525 		if (is_data_stripe(rbio, rbio->faila))
2526 			dfail++;
2527 		else if (is_parity_stripe(rbio->faila))
2528 			failp = rbio->faila;
2529 
2530 		if (is_data_stripe(rbio, rbio->failb))
2531 			dfail++;
2532 		else if (is_parity_stripe(rbio->failb))
2533 			failp = rbio->failb;
2534 
2535 		/*
2536 		 * Because we can not use a scrubbing parity to repair
2537 		 * the data, so the capability of the repair is declined.
2538 		 * (In the case of RAID5, we can not repair anything)
2539 		 */
2540 		if (dfail > rbio->bbio->max_errors - 1)
2541 			goto cleanup;
2542 
2543 		/*
2544 		 * If all data is good, only parity is correctly, just
2545 		 * repair the parity.
2546 		 */
2547 		if (dfail == 0) {
2548 			finish_parity_scrub(rbio, 0);
2549 			return;
2550 		}
2551 
2552 		/*
2553 		 * Here means we got one corrupted data stripe and one
2554 		 * corrupted parity on RAID6, if the corrupted parity
2555 		 * is scrubbing parity, luckly, use the other one to repair
2556 		 * the data, or we can not repair the data stripe.
2557 		 */
2558 		if (failp != rbio->scrubp)
2559 			goto cleanup;
2560 
2561 		__raid_recover_end_io(rbio);
2562 	} else {
2563 		finish_parity_scrub(rbio, 1);
2564 	}
2565 	return;
2566 
2567 cleanup:
2568 	rbio_orig_end_io(rbio, -EIO, 0);
2569 }
2570 
2571 /*
2572  * end io for the read phase of the rmw cycle.  All the bios here are physical
2573  * stripe bios we've read from the disk so we can recalculate the parity of the
2574  * stripe.
2575  *
2576  * This will usually kick off finish_rmw once all the bios are read in, but it
2577  * may trigger parity reconstruction if we had any errors along the way
2578  */
2579 static void raid56_parity_scrub_end_io(struct bio *bio, int err)
2580 {
2581 	struct btrfs_raid_bio *rbio = bio->bi_private;
2582 
2583 	if (err)
2584 		fail_bio_stripe(rbio, bio);
2585 	else
2586 		set_bio_pages_uptodate(bio);
2587 
2588 	bio_put(bio);
2589 
2590 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2591 		return;
2592 
2593 	/*
2594 	 * this will normally call finish_rmw to start our write
2595 	 * but if there are any failed stripes we'll reconstruct
2596 	 * from parity first
2597 	 */
2598 	validate_rbio_for_parity_scrub(rbio);
2599 }
2600 
2601 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2602 {
2603 	int bios_to_read = 0;
2604 	struct bio_list bio_list;
2605 	int ret;
2606 	int pagenr;
2607 	int stripe;
2608 	struct bio *bio;
2609 
2610 	ret = alloc_rbio_essential_pages(rbio);
2611 	if (ret)
2612 		goto cleanup;
2613 
2614 	bio_list_init(&bio_list);
2615 
2616 	atomic_set(&rbio->error, 0);
2617 	/*
2618 	 * build a list of bios to read all the missing parts of this
2619 	 * stripe
2620 	 */
2621 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2622 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2623 			struct page *page;
2624 			/*
2625 			 * we want to find all the pages missing from
2626 			 * the rbio and read them from the disk.  If
2627 			 * page_in_rbio finds a page in the bio list
2628 			 * we don't need to read it off the stripe.
2629 			 */
2630 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2631 			if (page)
2632 				continue;
2633 
2634 			page = rbio_stripe_page(rbio, stripe, pagenr);
2635 			/*
2636 			 * the bio cache may have handed us an uptodate
2637 			 * page.  If so, be happy and use it
2638 			 */
2639 			if (PageUptodate(page))
2640 				continue;
2641 
2642 			ret = rbio_add_io_page(rbio, &bio_list, page,
2643 				       stripe, pagenr, rbio->stripe_len);
2644 			if (ret)
2645 				goto cleanup;
2646 		}
2647 	}
2648 
2649 	bios_to_read = bio_list_size(&bio_list);
2650 	if (!bios_to_read) {
2651 		/*
2652 		 * this can happen if others have merged with
2653 		 * us, it means there is nothing left to read.
2654 		 * But if there are missing devices it may not be
2655 		 * safe to do the full stripe write yet.
2656 		 */
2657 		goto finish;
2658 	}
2659 
2660 	/*
2661 	 * the bbio may be freed once we submit the last bio.  Make sure
2662 	 * not to touch it after that
2663 	 */
2664 	atomic_set(&rbio->stripes_pending, bios_to_read);
2665 	while (1) {
2666 		bio = bio_list_pop(&bio_list);
2667 		if (!bio)
2668 			break;
2669 
2670 		bio->bi_private = rbio;
2671 		bio->bi_end_io = raid56_parity_scrub_end_io;
2672 
2673 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2674 				    BTRFS_WQ_ENDIO_RAID56);
2675 
2676 		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2677 		submit_bio(READ, bio);
2678 	}
2679 	/* the actual write will happen once the reads are done */
2680 	return;
2681 
2682 cleanup:
2683 	rbio_orig_end_io(rbio, -EIO, 0);
2684 	return;
2685 
2686 finish:
2687 	validate_rbio_for_parity_scrub(rbio);
2688 }
2689 
2690 static void scrub_parity_work(struct btrfs_work *work)
2691 {
2692 	struct btrfs_raid_bio *rbio;
2693 
2694 	rbio = container_of(work, struct btrfs_raid_bio, work);
2695 	raid56_parity_scrub_stripe(rbio);
2696 }
2697 
2698 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2699 {
2700 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2701 			scrub_parity_work, NULL, NULL);
2702 
2703 	btrfs_queue_work(rbio->fs_info->rmw_workers,
2704 			 &rbio->work);
2705 }
2706 
2707 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2708 {
2709 	if (!lock_stripe_add(rbio))
2710 		async_scrub_parity(rbio);
2711 }
2712