1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 atomic_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 222 if (!table) { 223 table = vzalloc(table_size); 224 if (!table) 225 return -ENOMEM; 226 } 227 228 spin_lock_init(&table->cache_lock); 229 INIT_LIST_HEAD(&table->stripe_cache); 230 231 h = table->table; 232 233 for (i = 0; i < num_entries; i++) { 234 cur = h + i; 235 INIT_LIST_HEAD(&cur->hash_list); 236 spin_lock_init(&cur->lock); 237 init_waitqueue_head(&cur->wait); 238 } 239 240 x = cmpxchg(&info->stripe_hash_table, NULL, table); 241 if (x) 242 kvfree(x); 243 return 0; 244 } 245 246 /* 247 * caching an rbio means to copy anything from the 248 * bio_pages array into the stripe_pages array. We 249 * use the page uptodate bit in the stripe cache array 250 * to indicate if it has valid data 251 * 252 * once the caching is done, we set the cache ready 253 * bit. 254 */ 255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 256 { 257 int i; 258 char *s; 259 char *d; 260 int ret; 261 262 ret = alloc_rbio_pages(rbio); 263 if (ret) 264 return; 265 266 for (i = 0; i < rbio->nr_pages; i++) { 267 if (!rbio->bio_pages[i]) 268 continue; 269 270 s = kmap(rbio->bio_pages[i]); 271 d = kmap(rbio->stripe_pages[i]); 272 273 memcpy(d, s, PAGE_SIZE); 274 275 kunmap(rbio->bio_pages[i]); 276 kunmap(rbio->stripe_pages[i]); 277 SetPageUptodate(rbio->stripe_pages[i]); 278 } 279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 280 } 281 282 /* 283 * we hash on the first logical address of the stripe 284 */ 285 static int rbio_bucket(struct btrfs_raid_bio *rbio) 286 { 287 u64 num = rbio->bbio->raid_map[0]; 288 289 /* 290 * we shift down quite a bit. We're using byte 291 * addressing, and most of the lower bits are zeros. 292 * This tends to upset hash_64, and it consistently 293 * returns just one or two different values. 294 * 295 * shifting off the lower bits fixes things. 296 */ 297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 298 } 299 300 /* 301 * stealing an rbio means taking all the uptodate pages from the stripe 302 * array in the source rbio and putting them into the destination rbio 303 */ 304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 305 { 306 int i; 307 struct page *s; 308 struct page *d; 309 310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 311 return; 312 313 for (i = 0; i < dest->nr_pages; i++) { 314 s = src->stripe_pages[i]; 315 if (!s || !PageUptodate(s)) { 316 continue; 317 } 318 319 d = dest->stripe_pages[i]; 320 if (d) 321 __free_page(d); 322 323 dest->stripe_pages[i] = s; 324 src->stripe_pages[i] = NULL; 325 } 326 } 327 328 /* 329 * merging means we take the bio_list from the victim and 330 * splice it into the destination. The victim should 331 * be discarded afterwards. 332 * 333 * must be called with dest->rbio_list_lock held 334 */ 335 static void merge_rbio(struct btrfs_raid_bio *dest, 336 struct btrfs_raid_bio *victim) 337 { 338 bio_list_merge(&dest->bio_list, &victim->bio_list); 339 dest->bio_list_bytes += victim->bio_list_bytes; 340 dest->generic_bio_cnt += victim->generic_bio_cnt; 341 bio_list_init(&victim->bio_list); 342 } 343 344 /* 345 * used to prune items that are in the cache. The caller 346 * must hold the hash table lock. 347 */ 348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 349 { 350 int bucket = rbio_bucket(rbio); 351 struct btrfs_stripe_hash_table *table; 352 struct btrfs_stripe_hash *h; 353 int freeit = 0; 354 355 /* 356 * check the bit again under the hash table lock. 357 */ 358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 359 return; 360 361 table = rbio->fs_info->stripe_hash_table; 362 h = table->table + bucket; 363 364 /* hold the lock for the bucket because we may be 365 * removing it from the hash table 366 */ 367 spin_lock(&h->lock); 368 369 /* 370 * hold the lock for the bio list because we need 371 * to make sure the bio list is empty 372 */ 373 spin_lock(&rbio->bio_list_lock); 374 375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 376 list_del_init(&rbio->stripe_cache); 377 table->cache_size -= 1; 378 freeit = 1; 379 380 /* if the bio list isn't empty, this rbio is 381 * still involved in an IO. We take it out 382 * of the cache list, and drop the ref that 383 * was held for the list. 384 * 385 * If the bio_list was empty, we also remove 386 * the rbio from the hash_table, and drop 387 * the corresponding ref 388 */ 389 if (bio_list_empty(&rbio->bio_list)) { 390 if (!list_empty(&rbio->hash_list)) { 391 list_del_init(&rbio->hash_list); 392 atomic_dec(&rbio->refs); 393 BUG_ON(!list_empty(&rbio->plug_list)); 394 } 395 } 396 } 397 398 spin_unlock(&rbio->bio_list_lock); 399 spin_unlock(&h->lock); 400 401 if (freeit) 402 __free_raid_bio(rbio); 403 } 404 405 /* 406 * prune a given rbio from the cache 407 */ 408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 409 { 410 struct btrfs_stripe_hash_table *table; 411 unsigned long flags; 412 413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 414 return; 415 416 table = rbio->fs_info->stripe_hash_table; 417 418 spin_lock_irqsave(&table->cache_lock, flags); 419 __remove_rbio_from_cache(rbio); 420 spin_unlock_irqrestore(&table->cache_lock, flags); 421 } 422 423 /* 424 * remove everything in the cache 425 */ 426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 427 { 428 struct btrfs_stripe_hash_table *table; 429 unsigned long flags; 430 struct btrfs_raid_bio *rbio; 431 432 table = info->stripe_hash_table; 433 434 spin_lock_irqsave(&table->cache_lock, flags); 435 while (!list_empty(&table->stripe_cache)) { 436 rbio = list_entry(table->stripe_cache.next, 437 struct btrfs_raid_bio, 438 stripe_cache); 439 __remove_rbio_from_cache(rbio); 440 } 441 spin_unlock_irqrestore(&table->cache_lock, flags); 442 } 443 444 /* 445 * remove all cached entries and free the hash table 446 * used by unmount 447 */ 448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 449 { 450 if (!info->stripe_hash_table) 451 return; 452 btrfs_clear_rbio_cache(info); 453 kvfree(info->stripe_hash_table); 454 info->stripe_hash_table = NULL; 455 } 456 457 /* 458 * insert an rbio into the stripe cache. It 459 * must have already been prepared by calling 460 * cache_rbio_pages 461 * 462 * If this rbio was already cached, it gets 463 * moved to the front of the lru. 464 * 465 * If the size of the rbio cache is too big, we 466 * prune an item. 467 */ 468 static void cache_rbio(struct btrfs_raid_bio *rbio) 469 { 470 struct btrfs_stripe_hash_table *table; 471 unsigned long flags; 472 473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 474 return; 475 476 table = rbio->fs_info->stripe_hash_table; 477 478 spin_lock_irqsave(&table->cache_lock, flags); 479 spin_lock(&rbio->bio_list_lock); 480 481 /* bump our ref if we were not in the list before */ 482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 483 atomic_inc(&rbio->refs); 484 485 if (!list_empty(&rbio->stripe_cache)){ 486 list_move(&rbio->stripe_cache, &table->stripe_cache); 487 } else { 488 list_add(&rbio->stripe_cache, &table->stripe_cache); 489 table->cache_size += 1; 490 } 491 492 spin_unlock(&rbio->bio_list_lock); 493 494 if (table->cache_size > RBIO_CACHE_SIZE) { 495 struct btrfs_raid_bio *found; 496 497 found = list_entry(table->stripe_cache.prev, 498 struct btrfs_raid_bio, 499 stripe_cache); 500 501 if (found != rbio) 502 __remove_rbio_from_cache(found); 503 } 504 505 spin_unlock_irqrestore(&table->cache_lock, flags); 506 } 507 508 /* 509 * helper function to run the xor_blocks api. It is only 510 * able to do MAX_XOR_BLOCKS at a time, so we need to 511 * loop through. 512 */ 513 static void run_xor(void **pages, int src_cnt, ssize_t len) 514 { 515 int src_off = 0; 516 int xor_src_cnt = 0; 517 void *dest = pages[src_cnt]; 518 519 while(src_cnt > 0) { 520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 521 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 522 523 src_cnt -= xor_src_cnt; 524 src_off += xor_src_cnt; 525 } 526 } 527 528 /* 529 * returns true if the bio list inside this rbio 530 * covers an entire stripe (no rmw required). 531 * Must be called with the bio list lock held, or 532 * at a time when you know it is impossible to add 533 * new bios into the list 534 */ 535 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 536 { 537 unsigned long size = rbio->bio_list_bytes; 538 int ret = 1; 539 540 if (size != rbio->nr_data * rbio->stripe_len) 541 ret = 0; 542 543 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 544 return ret; 545 } 546 547 static int rbio_is_full(struct btrfs_raid_bio *rbio) 548 { 549 unsigned long flags; 550 int ret; 551 552 spin_lock_irqsave(&rbio->bio_list_lock, flags); 553 ret = __rbio_is_full(rbio); 554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 555 return ret; 556 } 557 558 /* 559 * returns 1 if it is safe to merge two rbios together. 560 * The merging is safe if the two rbios correspond to 561 * the same stripe and if they are both going in the same 562 * direction (read vs write), and if neither one is 563 * locked for final IO 564 * 565 * The caller is responsible for locking such that 566 * rmw_locked is safe to test 567 */ 568 static int rbio_can_merge(struct btrfs_raid_bio *last, 569 struct btrfs_raid_bio *cur) 570 { 571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 573 return 0; 574 575 /* 576 * we can't merge with cached rbios, since the 577 * idea is that when we merge the destination 578 * rbio is going to run our IO for us. We can 579 * steal from cached rbios though, other functions 580 * handle that. 581 */ 582 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 583 test_bit(RBIO_CACHE_BIT, &cur->flags)) 584 return 0; 585 586 if (last->bbio->raid_map[0] != 587 cur->bbio->raid_map[0]) 588 return 0; 589 590 /* we can't merge with different operations */ 591 if (last->operation != cur->operation) 592 return 0; 593 /* 594 * We've need read the full stripe from the drive. 595 * check and repair the parity and write the new results. 596 * 597 * We're not allowed to add any new bios to the 598 * bio list here, anyone else that wants to 599 * change this stripe needs to do their own rmw. 600 */ 601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 602 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 603 return 0; 604 605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 606 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 607 return 0; 608 609 return 1; 610 } 611 612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 613 int index) 614 { 615 return stripe * rbio->stripe_npages + index; 616 } 617 618 /* 619 * these are just the pages from the rbio array, not from anything 620 * the FS sent down to us 621 */ 622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 623 int index) 624 { 625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 626 } 627 628 /* 629 * helper to index into the pstripe 630 */ 631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 632 { 633 return rbio_stripe_page(rbio, rbio->nr_data, index); 634 } 635 636 /* 637 * helper to index into the qstripe, returns null 638 * if there is no qstripe 639 */ 640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 641 { 642 if (rbio->nr_data + 1 == rbio->real_stripes) 643 return NULL; 644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 645 } 646 647 /* 648 * The first stripe in the table for a logical address 649 * has the lock. rbios are added in one of three ways: 650 * 651 * 1) Nobody has the stripe locked yet. The rbio is given 652 * the lock and 0 is returned. The caller must start the IO 653 * themselves. 654 * 655 * 2) Someone has the stripe locked, but we're able to merge 656 * with the lock owner. The rbio is freed and the IO will 657 * start automatically along with the existing rbio. 1 is returned. 658 * 659 * 3) Someone has the stripe locked, but we're not able to merge. 660 * The rbio is added to the lock owner's plug list, or merged into 661 * an rbio already on the plug list. When the lock owner unlocks, 662 * the next rbio on the list is run and the IO is started automatically. 663 * 1 is returned 664 * 665 * If we return 0, the caller still owns the rbio and must continue with 666 * IO submission. If we return 1, the caller must assume the rbio has 667 * already been freed. 668 */ 669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 670 { 671 int bucket = rbio_bucket(rbio); 672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 673 struct btrfs_raid_bio *cur; 674 struct btrfs_raid_bio *pending; 675 unsigned long flags; 676 DEFINE_WAIT(wait); 677 struct btrfs_raid_bio *freeit = NULL; 678 struct btrfs_raid_bio *cache_drop = NULL; 679 int ret = 0; 680 int walk = 0; 681 682 spin_lock_irqsave(&h->lock, flags); 683 list_for_each_entry(cur, &h->hash_list, hash_list) { 684 walk++; 685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 686 spin_lock(&cur->bio_list_lock); 687 688 /* can we steal this cached rbio's pages? */ 689 if (bio_list_empty(&cur->bio_list) && 690 list_empty(&cur->plug_list) && 691 test_bit(RBIO_CACHE_BIT, &cur->flags) && 692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 693 list_del_init(&cur->hash_list); 694 atomic_dec(&cur->refs); 695 696 steal_rbio(cur, rbio); 697 cache_drop = cur; 698 spin_unlock(&cur->bio_list_lock); 699 700 goto lockit; 701 } 702 703 /* can we merge into the lock owner? */ 704 if (rbio_can_merge(cur, rbio)) { 705 merge_rbio(cur, rbio); 706 spin_unlock(&cur->bio_list_lock); 707 freeit = rbio; 708 ret = 1; 709 goto out; 710 } 711 712 713 /* 714 * we couldn't merge with the running 715 * rbio, see if we can merge with the 716 * pending ones. We don't have to 717 * check for rmw_locked because there 718 * is no way they are inside finish_rmw 719 * right now 720 */ 721 list_for_each_entry(pending, &cur->plug_list, 722 plug_list) { 723 if (rbio_can_merge(pending, rbio)) { 724 merge_rbio(pending, rbio); 725 spin_unlock(&cur->bio_list_lock); 726 freeit = rbio; 727 ret = 1; 728 goto out; 729 } 730 } 731 732 /* no merging, put us on the tail of the plug list, 733 * our rbio will be started with the currently 734 * running rbio unlocks 735 */ 736 list_add_tail(&rbio->plug_list, &cur->plug_list); 737 spin_unlock(&cur->bio_list_lock); 738 ret = 1; 739 goto out; 740 } 741 } 742 lockit: 743 atomic_inc(&rbio->refs); 744 list_add(&rbio->hash_list, &h->hash_list); 745 out: 746 spin_unlock_irqrestore(&h->lock, flags); 747 if (cache_drop) 748 remove_rbio_from_cache(cache_drop); 749 if (freeit) 750 __free_raid_bio(freeit); 751 return ret; 752 } 753 754 /* 755 * called as rmw or parity rebuild is completed. If the plug list has more 756 * rbios waiting for this stripe, the next one on the list will be started 757 */ 758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 759 { 760 int bucket; 761 struct btrfs_stripe_hash *h; 762 unsigned long flags; 763 int keep_cache = 0; 764 765 bucket = rbio_bucket(rbio); 766 h = rbio->fs_info->stripe_hash_table->table + bucket; 767 768 if (list_empty(&rbio->plug_list)) 769 cache_rbio(rbio); 770 771 spin_lock_irqsave(&h->lock, flags); 772 spin_lock(&rbio->bio_list_lock); 773 774 if (!list_empty(&rbio->hash_list)) { 775 /* 776 * if we're still cached and there is no other IO 777 * to perform, just leave this rbio here for others 778 * to steal from later 779 */ 780 if (list_empty(&rbio->plug_list) && 781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 782 keep_cache = 1; 783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 784 BUG_ON(!bio_list_empty(&rbio->bio_list)); 785 goto done; 786 } 787 788 list_del_init(&rbio->hash_list); 789 atomic_dec(&rbio->refs); 790 791 /* 792 * we use the plug list to hold all the rbios 793 * waiting for the chance to lock this stripe. 794 * hand the lock over to one of them. 795 */ 796 if (!list_empty(&rbio->plug_list)) { 797 struct btrfs_raid_bio *next; 798 struct list_head *head = rbio->plug_list.next; 799 800 next = list_entry(head, struct btrfs_raid_bio, 801 plug_list); 802 803 list_del_init(&rbio->plug_list); 804 805 list_add(&next->hash_list, &h->hash_list); 806 atomic_inc(&next->refs); 807 spin_unlock(&rbio->bio_list_lock); 808 spin_unlock_irqrestore(&h->lock, flags); 809 810 if (next->operation == BTRFS_RBIO_READ_REBUILD) 811 async_read_rebuild(next); 812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 813 steal_rbio(rbio, next); 814 async_read_rebuild(next); 815 } else if (next->operation == BTRFS_RBIO_WRITE) { 816 steal_rbio(rbio, next); 817 async_rmw_stripe(next); 818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 819 steal_rbio(rbio, next); 820 async_scrub_parity(next); 821 } 822 823 goto done_nolock; 824 /* 825 * The barrier for this waitqueue_active is not needed, 826 * we're protected by h->lock and can't miss a wakeup. 827 */ 828 } else if (waitqueue_active(&h->wait)) { 829 spin_unlock(&rbio->bio_list_lock); 830 spin_unlock_irqrestore(&h->lock, flags); 831 wake_up(&h->wait); 832 goto done_nolock; 833 } 834 } 835 done: 836 spin_unlock(&rbio->bio_list_lock); 837 spin_unlock_irqrestore(&h->lock, flags); 838 839 done_nolock: 840 if (!keep_cache) 841 remove_rbio_from_cache(rbio); 842 } 843 844 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 845 { 846 int i; 847 848 WARN_ON(atomic_read(&rbio->refs) < 0); 849 if (!atomic_dec_and_test(&rbio->refs)) 850 return; 851 852 WARN_ON(!list_empty(&rbio->stripe_cache)); 853 WARN_ON(!list_empty(&rbio->hash_list)); 854 WARN_ON(!bio_list_empty(&rbio->bio_list)); 855 856 for (i = 0; i < rbio->nr_pages; i++) { 857 if (rbio->stripe_pages[i]) { 858 __free_page(rbio->stripe_pages[i]); 859 rbio->stripe_pages[i] = NULL; 860 } 861 } 862 863 btrfs_put_bbio(rbio->bbio); 864 kfree(rbio); 865 } 866 867 static void free_raid_bio(struct btrfs_raid_bio *rbio) 868 { 869 unlock_stripe(rbio); 870 __free_raid_bio(rbio); 871 } 872 873 /* 874 * this frees the rbio and runs through all the bios in the 875 * bio_list and calls end_io on them 876 */ 877 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) 878 { 879 struct bio *cur = bio_list_get(&rbio->bio_list); 880 struct bio *next; 881 882 if (rbio->generic_bio_cnt) 883 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 884 885 free_raid_bio(rbio); 886 887 while (cur) { 888 next = cur->bi_next; 889 cur->bi_next = NULL; 890 cur->bi_error = err; 891 bio_endio(cur); 892 cur = next; 893 } 894 } 895 896 /* 897 * end io function used by finish_rmw. When we finally 898 * get here, we've written a full stripe 899 */ 900 static void raid_write_end_io(struct bio *bio) 901 { 902 struct btrfs_raid_bio *rbio = bio->bi_private; 903 int err = bio->bi_error; 904 int max_errors; 905 906 if (err) 907 fail_bio_stripe(rbio, bio); 908 909 bio_put(bio); 910 911 if (!atomic_dec_and_test(&rbio->stripes_pending)) 912 return; 913 914 err = 0; 915 916 /* OK, we have read all the stripes we need to. */ 917 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 918 0 : rbio->bbio->max_errors; 919 if (atomic_read(&rbio->error) > max_errors) 920 err = -EIO; 921 922 rbio_orig_end_io(rbio, err); 923 } 924 925 /* 926 * the read/modify/write code wants to use the original bio for 927 * any pages it included, and then use the rbio for everything 928 * else. This function decides if a given index (stripe number) 929 * and page number in that stripe fall inside the original bio 930 * or the rbio. 931 * 932 * if you set bio_list_only, you'll get a NULL back for any ranges 933 * that are outside the bio_list 934 * 935 * This doesn't take any refs on anything, you get a bare page pointer 936 * and the caller must bump refs as required. 937 * 938 * You must call index_rbio_pages once before you can trust 939 * the answers from this function. 940 */ 941 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 942 int index, int pagenr, int bio_list_only) 943 { 944 int chunk_page; 945 struct page *p = NULL; 946 947 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 948 949 spin_lock_irq(&rbio->bio_list_lock); 950 p = rbio->bio_pages[chunk_page]; 951 spin_unlock_irq(&rbio->bio_list_lock); 952 953 if (p || bio_list_only) 954 return p; 955 956 return rbio->stripe_pages[chunk_page]; 957 } 958 959 /* 960 * number of pages we need for the entire stripe across all the 961 * drives 962 */ 963 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 964 { 965 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 966 } 967 968 /* 969 * allocation and initial setup for the btrfs_raid_bio. Not 970 * this does not allocate any pages for rbio->pages. 971 */ 972 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, 973 struct btrfs_bio *bbio, u64 stripe_len) 974 { 975 struct btrfs_raid_bio *rbio; 976 int nr_data = 0; 977 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 978 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 979 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 980 void *p; 981 982 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 983 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 984 sizeof(long), GFP_NOFS); 985 if (!rbio) 986 return ERR_PTR(-ENOMEM); 987 988 bio_list_init(&rbio->bio_list); 989 INIT_LIST_HEAD(&rbio->plug_list); 990 spin_lock_init(&rbio->bio_list_lock); 991 INIT_LIST_HEAD(&rbio->stripe_cache); 992 INIT_LIST_HEAD(&rbio->hash_list); 993 rbio->bbio = bbio; 994 rbio->fs_info = root->fs_info; 995 rbio->stripe_len = stripe_len; 996 rbio->nr_pages = num_pages; 997 rbio->real_stripes = real_stripes; 998 rbio->stripe_npages = stripe_npages; 999 rbio->faila = -1; 1000 rbio->failb = -1; 1001 atomic_set(&rbio->refs, 1); 1002 atomic_set(&rbio->error, 0); 1003 atomic_set(&rbio->stripes_pending, 0); 1004 1005 /* 1006 * the stripe_pages and bio_pages array point to the extra 1007 * memory we allocated past the end of the rbio 1008 */ 1009 p = rbio + 1; 1010 rbio->stripe_pages = p; 1011 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1012 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1013 1014 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1015 nr_data = real_stripes - 1; 1016 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1017 nr_data = real_stripes - 2; 1018 else 1019 BUG(); 1020 1021 rbio->nr_data = nr_data; 1022 return rbio; 1023 } 1024 1025 /* allocate pages for all the stripes in the bio, including parity */ 1026 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1027 { 1028 int i; 1029 struct page *page; 1030 1031 for (i = 0; i < rbio->nr_pages; i++) { 1032 if (rbio->stripe_pages[i]) 1033 continue; 1034 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1035 if (!page) 1036 return -ENOMEM; 1037 rbio->stripe_pages[i] = page; 1038 } 1039 return 0; 1040 } 1041 1042 /* only allocate pages for p/q stripes */ 1043 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1044 { 1045 int i; 1046 struct page *page; 1047 1048 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1049 1050 for (; i < rbio->nr_pages; i++) { 1051 if (rbio->stripe_pages[i]) 1052 continue; 1053 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1054 if (!page) 1055 return -ENOMEM; 1056 rbio->stripe_pages[i] = page; 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * add a single page from a specific stripe into our list of bios for IO 1063 * this will try to merge into existing bios if possible, and returns 1064 * zero if all went well. 1065 */ 1066 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1067 struct bio_list *bio_list, 1068 struct page *page, 1069 int stripe_nr, 1070 unsigned long page_index, 1071 unsigned long bio_max_len) 1072 { 1073 struct bio *last = bio_list->tail; 1074 u64 last_end = 0; 1075 int ret; 1076 struct bio *bio; 1077 struct btrfs_bio_stripe *stripe; 1078 u64 disk_start; 1079 1080 stripe = &rbio->bbio->stripes[stripe_nr]; 1081 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1082 1083 /* if the device is missing, just fail this stripe */ 1084 if (!stripe->dev->bdev) 1085 return fail_rbio_index(rbio, stripe_nr); 1086 1087 /* see if we can add this page onto our existing bio */ 1088 if (last) { 1089 last_end = (u64)last->bi_iter.bi_sector << 9; 1090 last_end += last->bi_iter.bi_size; 1091 1092 /* 1093 * we can't merge these if they are from different 1094 * devices or if they are not contiguous 1095 */ 1096 if (last_end == disk_start && stripe->dev->bdev && 1097 !last->bi_error && 1098 last->bi_bdev == stripe->dev->bdev) { 1099 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1100 if (ret == PAGE_SIZE) 1101 return 0; 1102 } 1103 } 1104 1105 /* put a new bio on the list */ 1106 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1107 if (!bio) 1108 return -ENOMEM; 1109 1110 bio->bi_iter.bi_size = 0; 1111 bio->bi_bdev = stripe->dev->bdev; 1112 bio->bi_iter.bi_sector = disk_start >> 9; 1113 1114 bio_add_page(bio, page, PAGE_SIZE, 0); 1115 bio_list_add(bio_list, bio); 1116 return 0; 1117 } 1118 1119 /* 1120 * while we're doing the read/modify/write cycle, we could 1121 * have errors in reading pages off the disk. This checks 1122 * for errors and if we're not able to read the page it'll 1123 * trigger parity reconstruction. The rmw will be finished 1124 * after we've reconstructed the failed stripes 1125 */ 1126 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1127 { 1128 if (rbio->faila >= 0 || rbio->failb >= 0) { 1129 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1130 __raid56_parity_recover(rbio); 1131 } else { 1132 finish_rmw(rbio); 1133 } 1134 } 1135 1136 /* 1137 * helper function to walk our bio list and populate the bio_pages array with 1138 * the result. This seems expensive, but it is faster than constantly 1139 * searching through the bio list as we setup the IO in finish_rmw or stripe 1140 * reconstruction. 1141 * 1142 * This must be called before you trust the answers from page_in_rbio 1143 */ 1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1145 { 1146 struct bio *bio; 1147 u64 start; 1148 unsigned long stripe_offset; 1149 unsigned long page_index; 1150 struct page *p; 1151 int i; 1152 1153 spin_lock_irq(&rbio->bio_list_lock); 1154 bio_list_for_each(bio, &rbio->bio_list) { 1155 start = (u64)bio->bi_iter.bi_sector << 9; 1156 stripe_offset = start - rbio->bbio->raid_map[0]; 1157 page_index = stripe_offset >> PAGE_SHIFT; 1158 1159 for (i = 0; i < bio->bi_vcnt; i++) { 1160 p = bio->bi_io_vec[i].bv_page; 1161 rbio->bio_pages[page_index + i] = p; 1162 } 1163 } 1164 spin_unlock_irq(&rbio->bio_list_lock); 1165 } 1166 1167 /* 1168 * this is called from one of two situations. We either 1169 * have a full stripe from the higher layers, or we've read all 1170 * the missing bits off disk. 1171 * 1172 * This will calculate the parity and then send down any 1173 * changed blocks. 1174 */ 1175 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1176 { 1177 struct btrfs_bio *bbio = rbio->bbio; 1178 void *pointers[rbio->real_stripes]; 1179 int nr_data = rbio->nr_data; 1180 int stripe; 1181 int pagenr; 1182 int p_stripe = -1; 1183 int q_stripe = -1; 1184 struct bio_list bio_list; 1185 struct bio *bio; 1186 int ret; 1187 1188 bio_list_init(&bio_list); 1189 1190 if (rbio->real_stripes - rbio->nr_data == 1) { 1191 p_stripe = rbio->real_stripes - 1; 1192 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1193 p_stripe = rbio->real_stripes - 2; 1194 q_stripe = rbio->real_stripes - 1; 1195 } else { 1196 BUG(); 1197 } 1198 1199 /* at this point we either have a full stripe, 1200 * or we've read the full stripe from the drive. 1201 * recalculate the parity and write the new results. 1202 * 1203 * We're not allowed to add any new bios to the 1204 * bio list here, anyone else that wants to 1205 * change this stripe needs to do their own rmw. 1206 */ 1207 spin_lock_irq(&rbio->bio_list_lock); 1208 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1209 spin_unlock_irq(&rbio->bio_list_lock); 1210 1211 atomic_set(&rbio->error, 0); 1212 1213 /* 1214 * now that we've set rmw_locked, run through the 1215 * bio list one last time and map the page pointers 1216 * 1217 * We don't cache full rbios because we're assuming 1218 * the higher layers are unlikely to use this area of 1219 * the disk again soon. If they do use it again, 1220 * hopefully they will send another full bio. 1221 */ 1222 index_rbio_pages(rbio); 1223 if (!rbio_is_full(rbio)) 1224 cache_rbio_pages(rbio); 1225 else 1226 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1227 1228 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1229 struct page *p; 1230 /* first collect one page from each data stripe */ 1231 for (stripe = 0; stripe < nr_data; stripe++) { 1232 p = page_in_rbio(rbio, stripe, pagenr, 0); 1233 pointers[stripe] = kmap(p); 1234 } 1235 1236 /* then add the parity stripe */ 1237 p = rbio_pstripe_page(rbio, pagenr); 1238 SetPageUptodate(p); 1239 pointers[stripe++] = kmap(p); 1240 1241 if (q_stripe != -1) { 1242 1243 /* 1244 * raid6, add the qstripe and call the 1245 * library function to fill in our p/q 1246 */ 1247 p = rbio_qstripe_page(rbio, pagenr); 1248 SetPageUptodate(p); 1249 pointers[stripe++] = kmap(p); 1250 1251 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1252 pointers); 1253 } else { 1254 /* raid5 */ 1255 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1256 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1257 } 1258 1259 1260 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1261 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1262 } 1263 1264 /* 1265 * time to start writing. Make bios for everything from the 1266 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1267 * everything else. 1268 */ 1269 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1270 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1271 struct page *page; 1272 if (stripe < rbio->nr_data) { 1273 page = page_in_rbio(rbio, stripe, pagenr, 1); 1274 if (!page) 1275 continue; 1276 } else { 1277 page = rbio_stripe_page(rbio, stripe, pagenr); 1278 } 1279 1280 ret = rbio_add_io_page(rbio, &bio_list, 1281 page, stripe, pagenr, rbio->stripe_len); 1282 if (ret) 1283 goto cleanup; 1284 } 1285 } 1286 1287 if (likely(!bbio->num_tgtdevs)) 1288 goto write_data; 1289 1290 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1291 if (!bbio->tgtdev_map[stripe]) 1292 continue; 1293 1294 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1295 struct page *page; 1296 if (stripe < rbio->nr_data) { 1297 page = page_in_rbio(rbio, stripe, pagenr, 1); 1298 if (!page) 1299 continue; 1300 } else { 1301 page = rbio_stripe_page(rbio, stripe, pagenr); 1302 } 1303 1304 ret = rbio_add_io_page(rbio, &bio_list, page, 1305 rbio->bbio->tgtdev_map[stripe], 1306 pagenr, rbio->stripe_len); 1307 if (ret) 1308 goto cleanup; 1309 } 1310 } 1311 1312 write_data: 1313 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1314 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1315 1316 while (1) { 1317 bio = bio_list_pop(&bio_list); 1318 if (!bio) 1319 break; 1320 1321 bio->bi_private = rbio; 1322 bio->bi_end_io = raid_write_end_io; 1323 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1324 1325 submit_bio(bio); 1326 } 1327 return; 1328 1329 cleanup: 1330 rbio_orig_end_io(rbio, -EIO); 1331 } 1332 1333 /* 1334 * helper to find the stripe number for a given bio. Used to figure out which 1335 * stripe has failed. This expects the bio to correspond to a physical disk, 1336 * so it looks up based on physical sector numbers. 1337 */ 1338 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1339 struct bio *bio) 1340 { 1341 u64 physical = bio->bi_iter.bi_sector; 1342 u64 stripe_start; 1343 int i; 1344 struct btrfs_bio_stripe *stripe; 1345 1346 physical <<= 9; 1347 1348 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1349 stripe = &rbio->bbio->stripes[i]; 1350 stripe_start = stripe->physical; 1351 if (physical >= stripe_start && 1352 physical < stripe_start + rbio->stripe_len && 1353 bio->bi_bdev == stripe->dev->bdev) { 1354 return i; 1355 } 1356 } 1357 return -1; 1358 } 1359 1360 /* 1361 * helper to find the stripe number for a given 1362 * bio (before mapping). Used to figure out which stripe has 1363 * failed. This looks up based on logical block numbers. 1364 */ 1365 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1366 struct bio *bio) 1367 { 1368 u64 logical = bio->bi_iter.bi_sector; 1369 u64 stripe_start; 1370 int i; 1371 1372 logical <<= 9; 1373 1374 for (i = 0; i < rbio->nr_data; i++) { 1375 stripe_start = rbio->bbio->raid_map[i]; 1376 if (logical >= stripe_start && 1377 logical < stripe_start + rbio->stripe_len) { 1378 return i; 1379 } 1380 } 1381 return -1; 1382 } 1383 1384 /* 1385 * returns -EIO if we had too many failures 1386 */ 1387 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1388 { 1389 unsigned long flags; 1390 int ret = 0; 1391 1392 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1393 1394 /* we already know this stripe is bad, move on */ 1395 if (rbio->faila == failed || rbio->failb == failed) 1396 goto out; 1397 1398 if (rbio->faila == -1) { 1399 /* first failure on this rbio */ 1400 rbio->faila = failed; 1401 atomic_inc(&rbio->error); 1402 } else if (rbio->failb == -1) { 1403 /* second failure on this rbio */ 1404 rbio->failb = failed; 1405 atomic_inc(&rbio->error); 1406 } else { 1407 ret = -EIO; 1408 } 1409 out: 1410 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1411 1412 return ret; 1413 } 1414 1415 /* 1416 * helper to fail a stripe based on a physical disk 1417 * bio. 1418 */ 1419 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1420 struct bio *bio) 1421 { 1422 int failed = find_bio_stripe(rbio, bio); 1423 1424 if (failed < 0) 1425 return -EIO; 1426 1427 return fail_rbio_index(rbio, failed); 1428 } 1429 1430 /* 1431 * this sets each page in the bio uptodate. It should only be used on private 1432 * rbio pages, nothing that comes in from the higher layers 1433 */ 1434 static void set_bio_pages_uptodate(struct bio *bio) 1435 { 1436 int i; 1437 struct page *p; 1438 1439 for (i = 0; i < bio->bi_vcnt; i++) { 1440 p = bio->bi_io_vec[i].bv_page; 1441 SetPageUptodate(p); 1442 } 1443 } 1444 1445 /* 1446 * end io for the read phase of the rmw cycle. All the bios here are physical 1447 * stripe bios we've read from the disk so we can recalculate the parity of the 1448 * stripe. 1449 * 1450 * This will usually kick off finish_rmw once all the bios are read in, but it 1451 * may trigger parity reconstruction if we had any errors along the way 1452 */ 1453 static void raid_rmw_end_io(struct bio *bio) 1454 { 1455 struct btrfs_raid_bio *rbio = bio->bi_private; 1456 1457 if (bio->bi_error) 1458 fail_bio_stripe(rbio, bio); 1459 else 1460 set_bio_pages_uptodate(bio); 1461 1462 bio_put(bio); 1463 1464 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1465 return; 1466 1467 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1468 goto cleanup; 1469 1470 /* 1471 * this will normally call finish_rmw to start our write 1472 * but if there are any failed stripes we'll reconstruct 1473 * from parity first 1474 */ 1475 validate_rbio_for_rmw(rbio); 1476 return; 1477 1478 cleanup: 1479 1480 rbio_orig_end_io(rbio, -EIO); 1481 } 1482 1483 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1484 { 1485 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1486 rmw_work, NULL, NULL); 1487 1488 btrfs_queue_work(rbio->fs_info->rmw_workers, 1489 &rbio->work); 1490 } 1491 1492 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1493 { 1494 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1495 read_rebuild_work, NULL, NULL); 1496 1497 btrfs_queue_work(rbio->fs_info->rmw_workers, 1498 &rbio->work); 1499 } 1500 1501 /* 1502 * the stripe must be locked by the caller. It will 1503 * unlock after all the writes are done 1504 */ 1505 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1506 { 1507 int bios_to_read = 0; 1508 struct bio_list bio_list; 1509 int ret; 1510 int pagenr; 1511 int stripe; 1512 struct bio *bio; 1513 1514 bio_list_init(&bio_list); 1515 1516 ret = alloc_rbio_pages(rbio); 1517 if (ret) 1518 goto cleanup; 1519 1520 index_rbio_pages(rbio); 1521 1522 atomic_set(&rbio->error, 0); 1523 /* 1524 * build a list of bios to read all the missing parts of this 1525 * stripe 1526 */ 1527 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1528 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1529 struct page *page; 1530 /* 1531 * we want to find all the pages missing from 1532 * the rbio and read them from the disk. If 1533 * page_in_rbio finds a page in the bio list 1534 * we don't need to read it off the stripe. 1535 */ 1536 page = page_in_rbio(rbio, stripe, pagenr, 1); 1537 if (page) 1538 continue; 1539 1540 page = rbio_stripe_page(rbio, stripe, pagenr); 1541 /* 1542 * the bio cache may have handed us an uptodate 1543 * page. If so, be happy and use it 1544 */ 1545 if (PageUptodate(page)) 1546 continue; 1547 1548 ret = rbio_add_io_page(rbio, &bio_list, page, 1549 stripe, pagenr, rbio->stripe_len); 1550 if (ret) 1551 goto cleanup; 1552 } 1553 } 1554 1555 bios_to_read = bio_list_size(&bio_list); 1556 if (!bios_to_read) { 1557 /* 1558 * this can happen if others have merged with 1559 * us, it means there is nothing left to read. 1560 * But if there are missing devices it may not be 1561 * safe to do the full stripe write yet. 1562 */ 1563 goto finish; 1564 } 1565 1566 /* 1567 * the bbio may be freed once we submit the last bio. Make sure 1568 * not to touch it after that 1569 */ 1570 atomic_set(&rbio->stripes_pending, bios_to_read); 1571 while (1) { 1572 bio = bio_list_pop(&bio_list); 1573 if (!bio) 1574 break; 1575 1576 bio->bi_private = rbio; 1577 bio->bi_end_io = raid_rmw_end_io; 1578 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1579 1580 btrfs_bio_wq_end_io(rbio->fs_info, bio, 1581 BTRFS_WQ_ENDIO_RAID56); 1582 1583 submit_bio(bio); 1584 } 1585 /* the actual write will happen once the reads are done */ 1586 return 0; 1587 1588 cleanup: 1589 rbio_orig_end_io(rbio, -EIO); 1590 return -EIO; 1591 1592 finish: 1593 validate_rbio_for_rmw(rbio); 1594 return 0; 1595 } 1596 1597 /* 1598 * if the upper layers pass in a full stripe, we thank them by only allocating 1599 * enough pages to hold the parity, and sending it all down quickly. 1600 */ 1601 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1602 { 1603 int ret; 1604 1605 ret = alloc_rbio_parity_pages(rbio); 1606 if (ret) { 1607 __free_raid_bio(rbio); 1608 return ret; 1609 } 1610 1611 ret = lock_stripe_add(rbio); 1612 if (ret == 0) 1613 finish_rmw(rbio); 1614 return 0; 1615 } 1616 1617 /* 1618 * partial stripe writes get handed over to async helpers. 1619 * We're really hoping to merge a few more writes into this 1620 * rbio before calculating new parity 1621 */ 1622 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1623 { 1624 int ret; 1625 1626 ret = lock_stripe_add(rbio); 1627 if (ret == 0) 1628 async_rmw_stripe(rbio); 1629 return 0; 1630 } 1631 1632 /* 1633 * sometimes while we were reading from the drive to 1634 * recalculate parity, enough new bios come into create 1635 * a full stripe. So we do a check here to see if we can 1636 * go directly to finish_rmw 1637 */ 1638 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1639 { 1640 /* head off into rmw land if we don't have a full stripe */ 1641 if (!rbio_is_full(rbio)) 1642 return partial_stripe_write(rbio); 1643 return full_stripe_write(rbio); 1644 } 1645 1646 /* 1647 * We use plugging call backs to collect full stripes. 1648 * Any time we get a partial stripe write while plugged 1649 * we collect it into a list. When the unplug comes down, 1650 * we sort the list by logical block number and merge 1651 * everything we can into the same rbios 1652 */ 1653 struct btrfs_plug_cb { 1654 struct blk_plug_cb cb; 1655 struct btrfs_fs_info *info; 1656 struct list_head rbio_list; 1657 struct btrfs_work work; 1658 }; 1659 1660 /* 1661 * rbios on the plug list are sorted for easier merging. 1662 */ 1663 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1664 { 1665 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1666 plug_list); 1667 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1668 plug_list); 1669 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1670 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1671 1672 if (a_sector < b_sector) 1673 return -1; 1674 if (a_sector > b_sector) 1675 return 1; 1676 return 0; 1677 } 1678 1679 static void run_plug(struct btrfs_plug_cb *plug) 1680 { 1681 struct btrfs_raid_bio *cur; 1682 struct btrfs_raid_bio *last = NULL; 1683 1684 /* 1685 * sort our plug list then try to merge 1686 * everything we can in hopes of creating full 1687 * stripes. 1688 */ 1689 list_sort(NULL, &plug->rbio_list, plug_cmp); 1690 while (!list_empty(&plug->rbio_list)) { 1691 cur = list_entry(plug->rbio_list.next, 1692 struct btrfs_raid_bio, plug_list); 1693 list_del_init(&cur->plug_list); 1694 1695 if (rbio_is_full(cur)) { 1696 /* we have a full stripe, send it down */ 1697 full_stripe_write(cur); 1698 continue; 1699 } 1700 if (last) { 1701 if (rbio_can_merge(last, cur)) { 1702 merge_rbio(last, cur); 1703 __free_raid_bio(cur); 1704 continue; 1705 1706 } 1707 __raid56_parity_write(last); 1708 } 1709 last = cur; 1710 } 1711 if (last) { 1712 __raid56_parity_write(last); 1713 } 1714 kfree(plug); 1715 } 1716 1717 /* 1718 * if the unplug comes from schedule, we have to push the 1719 * work off to a helper thread 1720 */ 1721 static void unplug_work(struct btrfs_work *work) 1722 { 1723 struct btrfs_plug_cb *plug; 1724 plug = container_of(work, struct btrfs_plug_cb, work); 1725 run_plug(plug); 1726 } 1727 1728 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1729 { 1730 struct btrfs_plug_cb *plug; 1731 plug = container_of(cb, struct btrfs_plug_cb, cb); 1732 1733 if (from_schedule) { 1734 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1735 unplug_work, NULL, NULL); 1736 btrfs_queue_work(plug->info->rmw_workers, 1737 &plug->work); 1738 return; 1739 } 1740 run_plug(plug); 1741 } 1742 1743 /* 1744 * our main entry point for writes from the rest of the FS. 1745 */ 1746 int raid56_parity_write(struct btrfs_root *root, struct bio *bio, 1747 struct btrfs_bio *bbio, u64 stripe_len) 1748 { 1749 struct btrfs_raid_bio *rbio; 1750 struct btrfs_plug_cb *plug = NULL; 1751 struct blk_plug_cb *cb; 1752 int ret; 1753 1754 rbio = alloc_rbio(root, bbio, stripe_len); 1755 if (IS_ERR(rbio)) { 1756 btrfs_put_bbio(bbio); 1757 return PTR_ERR(rbio); 1758 } 1759 bio_list_add(&rbio->bio_list, bio); 1760 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1761 rbio->operation = BTRFS_RBIO_WRITE; 1762 1763 btrfs_bio_counter_inc_noblocked(root->fs_info); 1764 rbio->generic_bio_cnt = 1; 1765 1766 /* 1767 * don't plug on full rbios, just get them out the door 1768 * as quickly as we can 1769 */ 1770 if (rbio_is_full(rbio)) { 1771 ret = full_stripe_write(rbio); 1772 if (ret) 1773 btrfs_bio_counter_dec(root->fs_info); 1774 return ret; 1775 } 1776 1777 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, 1778 sizeof(*plug)); 1779 if (cb) { 1780 plug = container_of(cb, struct btrfs_plug_cb, cb); 1781 if (!plug->info) { 1782 plug->info = root->fs_info; 1783 INIT_LIST_HEAD(&plug->rbio_list); 1784 } 1785 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1786 ret = 0; 1787 } else { 1788 ret = __raid56_parity_write(rbio); 1789 if (ret) 1790 btrfs_bio_counter_dec(root->fs_info); 1791 } 1792 return ret; 1793 } 1794 1795 /* 1796 * all parity reconstruction happens here. We've read in everything 1797 * we can find from the drives and this does the heavy lifting of 1798 * sorting the good from the bad. 1799 */ 1800 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1801 { 1802 int pagenr, stripe; 1803 void **pointers; 1804 int faila = -1, failb = -1; 1805 struct page *page; 1806 int err; 1807 int i; 1808 1809 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1810 if (!pointers) { 1811 err = -ENOMEM; 1812 goto cleanup_io; 1813 } 1814 1815 faila = rbio->faila; 1816 failb = rbio->failb; 1817 1818 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1819 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1820 spin_lock_irq(&rbio->bio_list_lock); 1821 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1822 spin_unlock_irq(&rbio->bio_list_lock); 1823 } 1824 1825 index_rbio_pages(rbio); 1826 1827 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1828 /* 1829 * Now we just use bitmap to mark the horizontal stripes in 1830 * which we have data when doing parity scrub. 1831 */ 1832 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1833 !test_bit(pagenr, rbio->dbitmap)) 1834 continue; 1835 1836 /* setup our array of pointers with pages 1837 * from each stripe 1838 */ 1839 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1840 /* 1841 * if we're rebuilding a read, we have to use 1842 * pages from the bio list 1843 */ 1844 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1845 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1846 (stripe == faila || stripe == failb)) { 1847 page = page_in_rbio(rbio, stripe, pagenr, 0); 1848 } else { 1849 page = rbio_stripe_page(rbio, stripe, pagenr); 1850 } 1851 pointers[stripe] = kmap(page); 1852 } 1853 1854 /* all raid6 handling here */ 1855 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1856 /* 1857 * single failure, rebuild from parity raid5 1858 * style 1859 */ 1860 if (failb < 0) { 1861 if (faila == rbio->nr_data) { 1862 /* 1863 * Just the P stripe has failed, without 1864 * a bad data or Q stripe. 1865 * TODO, we should redo the xor here. 1866 */ 1867 err = -EIO; 1868 goto cleanup; 1869 } 1870 /* 1871 * a single failure in raid6 is rebuilt 1872 * in the pstripe code below 1873 */ 1874 goto pstripe; 1875 } 1876 1877 /* make sure our ps and qs are in order */ 1878 if (faila > failb) { 1879 int tmp = failb; 1880 failb = faila; 1881 faila = tmp; 1882 } 1883 1884 /* if the q stripe is failed, do a pstripe reconstruction 1885 * from the xors. 1886 * If both the q stripe and the P stripe are failed, we're 1887 * here due to a crc mismatch and we can't give them the 1888 * data they want 1889 */ 1890 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1891 if (rbio->bbio->raid_map[faila] == 1892 RAID5_P_STRIPE) { 1893 err = -EIO; 1894 goto cleanup; 1895 } 1896 /* 1897 * otherwise we have one bad data stripe and 1898 * a good P stripe. raid5! 1899 */ 1900 goto pstripe; 1901 } 1902 1903 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1904 raid6_datap_recov(rbio->real_stripes, 1905 PAGE_SIZE, faila, pointers); 1906 } else { 1907 raid6_2data_recov(rbio->real_stripes, 1908 PAGE_SIZE, faila, failb, 1909 pointers); 1910 } 1911 } else { 1912 void *p; 1913 1914 /* rebuild from P stripe here (raid5 or raid6) */ 1915 BUG_ON(failb != -1); 1916 pstripe: 1917 /* Copy parity block into failed block to start with */ 1918 memcpy(pointers[faila], 1919 pointers[rbio->nr_data], 1920 PAGE_SIZE); 1921 1922 /* rearrange the pointer array */ 1923 p = pointers[faila]; 1924 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1925 pointers[stripe] = pointers[stripe + 1]; 1926 pointers[rbio->nr_data - 1] = p; 1927 1928 /* xor in the rest */ 1929 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1930 } 1931 /* if we're doing this rebuild as part of an rmw, go through 1932 * and set all of our private rbio pages in the 1933 * failed stripes as uptodate. This way finish_rmw will 1934 * know they can be trusted. If this was a read reconstruction, 1935 * other endio functions will fiddle the uptodate bits 1936 */ 1937 if (rbio->operation == BTRFS_RBIO_WRITE) { 1938 for (i = 0; i < rbio->stripe_npages; i++) { 1939 if (faila != -1) { 1940 page = rbio_stripe_page(rbio, faila, i); 1941 SetPageUptodate(page); 1942 } 1943 if (failb != -1) { 1944 page = rbio_stripe_page(rbio, failb, i); 1945 SetPageUptodate(page); 1946 } 1947 } 1948 } 1949 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1950 /* 1951 * if we're rebuilding a read, we have to use 1952 * pages from the bio list 1953 */ 1954 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1955 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1956 (stripe == faila || stripe == failb)) { 1957 page = page_in_rbio(rbio, stripe, pagenr, 0); 1958 } else { 1959 page = rbio_stripe_page(rbio, stripe, pagenr); 1960 } 1961 kunmap(page); 1962 } 1963 } 1964 1965 err = 0; 1966 cleanup: 1967 kfree(pointers); 1968 1969 cleanup_io: 1970 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1971 if (err == 0) 1972 cache_rbio_pages(rbio); 1973 else 1974 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1975 1976 rbio_orig_end_io(rbio, err); 1977 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1978 rbio_orig_end_io(rbio, err); 1979 } else if (err == 0) { 1980 rbio->faila = -1; 1981 rbio->failb = -1; 1982 1983 if (rbio->operation == BTRFS_RBIO_WRITE) 1984 finish_rmw(rbio); 1985 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1986 finish_parity_scrub(rbio, 0); 1987 else 1988 BUG(); 1989 } else { 1990 rbio_orig_end_io(rbio, err); 1991 } 1992 } 1993 1994 /* 1995 * This is called only for stripes we've read from disk to 1996 * reconstruct the parity. 1997 */ 1998 static void raid_recover_end_io(struct bio *bio) 1999 { 2000 struct btrfs_raid_bio *rbio = bio->bi_private; 2001 2002 /* 2003 * we only read stripe pages off the disk, set them 2004 * up to date if there were no errors 2005 */ 2006 if (bio->bi_error) 2007 fail_bio_stripe(rbio, bio); 2008 else 2009 set_bio_pages_uptodate(bio); 2010 bio_put(bio); 2011 2012 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2013 return; 2014 2015 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2016 rbio_orig_end_io(rbio, -EIO); 2017 else 2018 __raid_recover_end_io(rbio); 2019 } 2020 2021 /* 2022 * reads everything we need off the disk to reconstruct 2023 * the parity. endio handlers trigger final reconstruction 2024 * when the IO is done. 2025 * 2026 * This is used both for reads from the higher layers and for 2027 * parity construction required to finish a rmw cycle. 2028 */ 2029 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2030 { 2031 int bios_to_read = 0; 2032 struct bio_list bio_list; 2033 int ret; 2034 int pagenr; 2035 int stripe; 2036 struct bio *bio; 2037 2038 bio_list_init(&bio_list); 2039 2040 ret = alloc_rbio_pages(rbio); 2041 if (ret) 2042 goto cleanup; 2043 2044 atomic_set(&rbio->error, 0); 2045 2046 /* 2047 * read everything that hasn't failed. Thanks to the 2048 * stripe cache, it is possible that some or all of these 2049 * pages are going to be uptodate. 2050 */ 2051 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2052 if (rbio->faila == stripe || rbio->failb == stripe) { 2053 atomic_inc(&rbio->error); 2054 continue; 2055 } 2056 2057 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2058 struct page *p; 2059 2060 /* 2061 * the rmw code may have already read this 2062 * page in 2063 */ 2064 p = rbio_stripe_page(rbio, stripe, pagenr); 2065 if (PageUptodate(p)) 2066 continue; 2067 2068 ret = rbio_add_io_page(rbio, &bio_list, 2069 rbio_stripe_page(rbio, stripe, pagenr), 2070 stripe, pagenr, rbio->stripe_len); 2071 if (ret < 0) 2072 goto cleanup; 2073 } 2074 } 2075 2076 bios_to_read = bio_list_size(&bio_list); 2077 if (!bios_to_read) { 2078 /* 2079 * we might have no bios to read just because the pages 2080 * were up to date, or we might have no bios to read because 2081 * the devices were gone. 2082 */ 2083 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2084 __raid_recover_end_io(rbio); 2085 goto out; 2086 } else { 2087 goto cleanup; 2088 } 2089 } 2090 2091 /* 2092 * the bbio may be freed once we submit the last bio. Make sure 2093 * not to touch it after that 2094 */ 2095 atomic_set(&rbio->stripes_pending, bios_to_read); 2096 while (1) { 2097 bio = bio_list_pop(&bio_list); 2098 if (!bio) 2099 break; 2100 2101 bio->bi_private = rbio; 2102 bio->bi_end_io = raid_recover_end_io; 2103 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2104 2105 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2106 BTRFS_WQ_ENDIO_RAID56); 2107 2108 submit_bio(bio); 2109 } 2110 out: 2111 return 0; 2112 2113 cleanup: 2114 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2115 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2116 rbio_orig_end_io(rbio, -EIO); 2117 return -EIO; 2118 } 2119 2120 /* 2121 * the main entry point for reads from the higher layers. This 2122 * is really only called when the normal read path had a failure, 2123 * so we assume the bio they send down corresponds to a failed part 2124 * of the drive. 2125 */ 2126 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, 2127 struct btrfs_bio *bbio, u64 stripe_len, 2128 int mirror_num, int generic_io) 2129 { 2130 struct btrfs_raid_bio *rbio; 2131 int ret; 2132 2133 rbio = alloc_rbio(root, bbio, stripe_len); 2134 if (IS_ERR(rbio)) { 2135 if (generic_io) 2136 btrfs_put_bbio(bbio); 2137 return PTR_ERR(rbio); 2138 } 2139 2140 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2141 bio_list_add(&rbio->bio_list, bio); 2142 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2143 2144 rbio->faila = find_logical_bio_stripe(rbio, bio); 2145 if (rbio->faila == -1) { 2146 BUG(); 2147 if (generic_io) 2148 btrfs_put_bbio(bbio); 2149 kfree(rbio); 2150 return -EIO; 2151 } 2152 2153 if (generic_io) { 2154 btrfs_bio_counter_inc_noblocked(root->fs_info); 2155 rbio->generic_bio_cnt = 1; 2156 } else { 2157 btrfs_get_bbio(bbio); 2158 } 2159 2160 /* 2161 * reconstruct from the q stripe if they are 2162 * asking for mirror 3 2163 */ 2164 if (mirror_num == 3) 2165 rbio->failb = rbio->real_stripes - 2; 2166 2167 ret = lock_stripe_add(rbio); 2168 2169 /* 2170 * __raid56_parity_recover will end the bio with 2171 * any errors it hits. We don't want to return 2172 * its error value up the stack because our caller 2173 * will end up calling bio_endio with any nonzero 2174 * return 2175 */ 2176 if (ret == 0) 2177 __raid56_parity_recover(rbio); 2178 /* 2179 * our rbio has been added to the list of 2180 * rbios that will be handled after the 2181 * currently lock owner is done 2182 */ 2183 return 0; 2184 2185 } 2186 2187 static void rmw_work(struct btrfs_work *work) 2188 { 2189 struct btrfs_raid_bio *rbio; 2190 2191 rbio = container_of(work, struct btrfs_raid_bio, work); 2192 raid56_rmw_stripe(rbio); 2193 } 2194 2195 static void read_rebuild_work(struct btrfs_work *work) 2196 { 2197 struct btrfs_raid_bio *rbio; 2198 2199 rbio = container_of(work, struct btrfs_raid_bio, work); 2200 __raid56_parity_recover(rbio); 2201 } 2202 2203 /* 2204 * The following code is used to scrub/replace the parity stripe 2205 * 2206 * Note: We need make sure all the pages that add into the scrub/replace 2207 * raid bio are correct and not be changed during the scrub/replace. That 2208 * is those pages just hold metadata or file data with checksum. 2209 */ 2210 2211 struct btrfs_raid_bio * 2212 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, 2213 struct btrfs_bio *bbio, u64 stripe_len, 2214 struct btrfs_device *scrub_dev, 2215 unsigned long *dbitmap, int stripe_nsectors) 2216 { 2217 struct btrfs_raid_bio *rbio; 2218 int i; 2219 2220 rbio = alloc_rbio(root, bbio, stripe_len); 2221 if (IS_ERR(rbio)) 2222 return NULL; 2223 bio_list_add(&rbio->bio_list, bio); 2224 /* 2225 * This is a special bio which is used to hold the completion handler 2226 * and make the scrub rbio is similar to the other types 2227 */ 2228 ASSERT(!bio->bi_iter.bi_size); 2229 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2230 2231 for (i = 0; i < rbio->real_stripes; i++) { 2232 if (bbio->stripes[i].dev == scrub_dev) { 2233 rbio->scrubp = i; 2234 break; 2235 } 2236 } 2237 2238 /* Now we just support the sectorsize equals to page size */ 2239 ASSERT(root->sectorsize == PAGE_SIZE); 2240 ASSERT(rbio->stripe_npages == stripe_nsectors); 2241 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2242 2243 return rbio; 2244 } 2245 2246 /* Used for both parity scrub and missing. */ 2247 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2248 u64 logical) 2249 { 2250 int stripe_offset; 2251 int index; 2252 2253 ASSERT(logical >= rbio->bbio->raid_map[0]); 2254 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2255 rbio->stripe_len * rbio->nr_data); 2256 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2257 index = stripe_offset >> PAGE_SHIFT; 2258 rbio->bio_pages[index] = page; 2259 } 2260 2261 /* 2262 * We just scrub the parity that we have correct data on the same horizontal, 2263 * so we needn't allocate all pages for all the stripes. 2264 */ 2265 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2266 { 2267 int i; 2268 int bit; 2269 int index; 2270 struct page *page; 2271 2272 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2273 for (i = 0; i < rbio->real_stripes; i++) { 2274 index = i * rbio->stripe_npages + bit; 2275 if (rbio->stripe_pages[index]) 2276 continue; 2277 2278 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2279 if (!page) 2280 return -ENOMEM; 2281 rbio->stripe_pages[index] = page; 2282 } 2283 } 2284 return 0; 2285 } 2286 2287 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2288 int need_check) 2289 { 2290 struct btrfs_bio *bbio = rbio->bbio; 2291 void *pointers[rbio->real_stripes]; 2292 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2293 int nr_data = rbio->nr_data; 2294 int stripe; 2295 int pagenr; 2296 int p_stripe = -1; 2297 int q_stripe = -1; 2298 struct page *p_page = NULL; 2299 struct page *q_page = NULL; 2300 struct bio_list bio_list; 2301 struct bio *bio; 2302 int is_replace = 0; 2303 int ret; 2304 2305 bio_list_init(&bio_list); 2306 2307 if (rbio->real_stripes - rbio->nr_data == 1) { 2308 p_stripe = rbio->real_stripes - 1; 2309 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2310 p_stripe = rbio->real_stripes - 2; 2311 q_stripe = rbio->real_stripes - 1; 2312 } else { 2313 BUG(); 2314 } 2315 2316 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2317 is_replace = 1; 2318 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2319 } 2320 2321 /* 2322 * Because the higher layers(scrubber) are unlikely to 2323 * use this area of the disk again soon, so don't cache 2324 * it. 2325 */ 2326 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2327 2328 if (!need_check) 2329 goto writeback; 2330 2331 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2332 if (!p_page) 2333 goto cleanup; 2334 SetPageUptodate(p_page); 2335 2336 if (q_stripe != -1) { 2337 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2338 if (!q_page) { 2339 __free_page(p_page); 2340 goto cleanup; 2341 } 2342 SetPageUptodate(q_page); 2343 } 2344 2345 atomic_set(&rbio->error, 0); 2346 2347 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2348 struct page *p; 2349 void *parity; 2350 /* first collect one page from each data stripe */ 2351 for (stripe = 0; stripe < nr_data; stripe++) { 2352 p = page_in_rbio(rbio, stripe, pagenr, 0); 2353 pointers[stripe] = kmap(p); 2354 } 2355 2356 /* then add the parity stripe */ 2357 pointers[stripe++] = kmap(p_page); 2358 2359 if (q_stripe != -1) { 2360 2361 /* 2362 * raid6, add the qstripe and call the 2363 * library function to fill in our p/q 2364 */ 2365 pointers[stripe++] = kmap(q_page); 2366 2367 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2368 pointers); 2369 } else { 2370 /* raid5 */ 2371 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2372 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2373 } 2374 2375 /* Check scrubbing parity and repair it */ 2376 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2377 parity = kmap(p); 2378 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2379 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2380 else 2381 /* Parity is right, needn't writeback */ 2382 bitmap_clear(rbio->dbitmap, pagenr, 1); 2383 kunmap(p); 2384 2385 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2386 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2387 } 2388 2389 __free_page(p_page); 2390 if (q_page) 2391 __free_page(q_page); 2392 2393 writeback: 2394 /* 2395 * time to start writing. Make bios for everything from the 2396 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2397 * everything else. 2398 */ 2399 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2400 struct page *page; 2401 2402 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2403 ret = rbio_add_io_page(rbio, &bio_list, 2404 page, rbio->scrubp, pagenr, rbio->stripe_len); 2405 if (ret) 2406 goto cleanup; 2407 } 2408 2409 if (!is_replace) 2410 goto submit_write; 2411 2412 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2413 struct page *page; 2414 2415 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2416 ret = rbio_add_io_page(rbio, &bio_list, page, 2417 bbio->tgtdev_map[rbio->scrubp], 2418 pagenr, rbio->stripe_len); 2419 if (ret) 2420 goto cleanup; 2421 } 2422 2423 submit_write: 2424 nr_data = bio_list_size(&bio_list); 2425 if (!nr_data) { 2426 /* Every parity is right */ 2427 rbio_orig_end_io(rbio, 0); 2428 return; 2429 } 2430 2431 atomic_set(&rbio->stripes_pending, nr_data); 2432 2433 while (1) { 2434 bio = bio_list_pop(&bio_list); 2435 if (!bio) 2436 break; 2437 2438 bio->bi_private = rbio; 2439 bio->bi_end_io = raid_write_end_io; 2440 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2441 2442 submit_bio(bio); 2443 } 2444 return; 2445 2446 cleanup: 2447 rbio_orig_end_io(rbio, -EIO); 2448 } 2449 2450 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2451 { 2452 if (stripe >= 0 && stripe < rbio->nr_data) 2453 return 1; 2454 return 0; 2455 } 2456 2457 /* 2458 * While we're doing the parity check and repair, we could have errors 2459 * in reading pages off the disk. This checks for errors and if we're 2460 * not able to read the page it'll trigger parity reconstruction. The 2461 * parity scrub will be finished after we've reconstructed the failed 2462 * stripes 2463 */ 2464 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2465 { 2466 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2467 goto cleanup; 2468 2469 if (rbio->faila >= 0 || rbio->failb >= 0) { 2470 int dfail = 0, failp = -1; 2471 2472 if (is_data_stripe(rbio, rbio->faila)) 2473 dfail++; 2474 else if (is_parity_stripe(rbio->faila)) 2475 failp = rbio->faila; 2476 2477 if (is_data_stripe(rbio, rbio->failb)) 2478 dfail++; 2479 else if (is_parity_stripe(rbio->failb)) 2480 failp = rbio->failb; 2481 2482 /* 2483 * Because we can not use a scrubbing parity to repair 2484 * the data, so the capability of the repair is declined. 2485 * (In the case of RAID5, we can not repair anything) 2486 */ 2487 if (dfail > rbio->bbio->max_errors - 1) 2488 goto cleanup; 2489 2490 /* 2491 * If all data is good, only parity is correctly, just 2492 * repair the parity. 2493 */ 2494 if (dfail == 0) { 2495 finish_parity_scrub(rbio, 0); 2496 return; 2497 } 2498 2499 /* 2500 * Here means we got one corrupted data stripe and one 2501 * corrupted parity on RAID6, if the corrupted parity 2502 * is scrubbing parity, luckily, use the other one to repair 2503 * the data, or we can not repair the data stripe. 2504 */ 2505 if (failp != rbio->scrubp) 2506 goto cleanup; 2507 2508 __raid_recover_end_io(rbio); 2509 } else { 2510 finish_parity_scrub(rbio, 1); 2511 } 2512 return; 2513 2514 cleanup: 2515 rbio_orig_end_io(rbio, -EIO); 2516 } 2517 2518 /* 2519 * end io for the read phase of the rmw cycle. All the bios here are physical 2520 * stripe bios we've read from the disk so we can recalculate the parity of the 2521 * stripe. 2522 * 2523 * This will usually kick off finish_rmw once all the bios are read in, but it 2524 * may trigger parity reconstruction if we had any errors along the way 2525 */ 2526 static void raid56_parity_scrub_end_io(struct bio *bio) 2527 { 2528 struct btrfs_raid_bio *rbio = bio->bi_private; 2529 2530 if (bio->bi_error) 2531 fail_bio_stripe(rbio, bio); 2532 else 2533 set_bio_pages_uptodate(bio); 2534 2535 bio_put(bio); 2536 2537 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2538 return; 2539 2540 /* 2541 * this will normally call finish_rmw to start our write 2542 * but if there are any failed stripes we'll reconstruct 2543 * from parity first 2544 */ 2545 validate_rbio_for_parity_scrub(rbio); 2546 } 2547 2548 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2549 { 2550 int bios_to_read = 0; 2551 struct bio_list bio_list; 2552 int ret; 2553 int pagenr; 2554 int stripe; 2555 struct bio *bio; 2556 2557 ret = alloc_rbio_essential_pages(rbio); 2558 if (ret) 2559 goto cleanup; 2560 2561 bio_list_init(&bio_list); 2562 2563 atomic_set(&rbio->error, 0); 2564 /* 2565 * build a list of bios to read all the missing parts of this 2566 * stripe 2567 */ 2568 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2569 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2570 struct page *page; 2571 /* 2572 * we want to find all the pages missing from 2573 * the rbio and read them from the disk. If 2574 * page_in_rbio finds a page in the bio list 2575 * we don't need to read it off the stripe. 2576 */ 2577 page = page_in_rbio(rbio, stripe, pagenr, 1); 2578 if (page) 2579 continue; 2580 2581 page = rbio_stripe_page(rbio, stripe, pagenr); 2582 /* 2583 * the bio cache may have handed us an uptodate 2584 * page. If so, be happy and use it 2585 */ 2586 if (PageUptodate(page)) 2587 continue; 2588 2589 ret = rbio_add_io_page(rbio, &bio_list, page, 2590 stripe, pagenr, rbio->stripe_len); 2591 if (ret) 2592 goto cleanup; 2593 } 2594 } 2595 2596 bios_to_read = bio_list_size(&bio_list); 2597 if (!bios_to_read) { 2598 /* 2599 * this can happen if others have merged with 2600 * us, it means there is nothing left to read. 2601 * But if there are missing devices it may not be 2602 * safe to do the full stripe write yet. 2603 */ 2604 goto finish; 2605 } 2606 2607 /* 2608 * the bbio may be freed once we submit the last bio. Make sure 2609 * not to touch it after that 2610 */ 2611 atomic_set(&rbio->stripes_pending, bios_to_read); 2612 while (1) { 2613 bio = bio_list_pop(&bio_list); 2614 if (!bio) 2615 break; 2616 2617 bio->bi_private = rbio; 2618 bio->bi_end_io = raid56_parity_scrub_end_io; 2619 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2620 2621 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2622 BTRFS_WQ_ENDIO_RAID56); 2623 2624 submit_bio(bio); 2625 } 2626 /* the actual write will happen once the reads are done */ 2627 return; 2628 2629 cleanup: 2630 rbio_orig_end_io(rbio, -EIO); 2631 return; 2632 2633 finish: 2634 validate_rbio_for_parity_scrub(rbio); 2635 } 2636 2637 static void scrub_parity_work(struct btrfs_work *work) 2638 { 2639 struct btrfs_raid_bio *rbio; 2640 2641 rbio = container_of(work, struct btrfs_raid_bio, work); 2642 raid56_parity_scrub_stripe(rbio); 2643 } 2644 2645 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2646 { 2647 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2648 scrub_parity_work, NULL, NULL); 2649 2650 btrfs_queue_work(rbio->fs_info->rmw_workers, 2651 &rbio->work); 2652 } 2653 2654 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2655 { 2656 if (!lock_stripe_add(rbio)) 2657 async_scrub_parity(rbio); 2658 } 2659 2660 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2661 2662 struct btrfs_raid_bio * 2663 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, 2664 struct btrfs_bio *bbio, u64 length) 2665 { 2666 struct btrfs_raid_bio *rbio; 2667 2668 rbio = alloc_rbio(root, bbio, length); 2669 if (IS_ERR(rbio)) 2670 return NULL; 2671 2672 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2673 bio_list_add(&rbio->bio_list, bio); 2674 /* 2675 * This is a special bio which is used to hold the completion handler 2676 * and make the scrub rbio is similar to the other types 2677 */ 2678 ASSERT(!bio->bi_iter.bi_size); 2679 2680 rbio->faila = find_logical_bio_stripe(rbio, bio); 2681 if (rbio->faila == -1) { 2682 BUG(); 2683 kfree(rbio); 2684 return NULL; 2685 } 2686 2687 return rbio; 2688 } 2689 2690 static void missing_raid56_work(struct btrfs_work *work) 2691 { 2692 struct btrfs_raid_bio *rbio; 2693 2694 rbio = container_of(work, struct btrfs_raid_bio, work); 2695 __raid56_parity_recover(rbio); 2696 } 2697 2698 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2699 { 2700 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2701 missing_raid56_work, NULL, NULL); 2702 2703 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2704 } 2705 2706 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2707 { 2708 if (!lock_stripe_add(rbio)) 2709 async_missing_raid56(rbio); 2710 } 2711