xref: /openbmc/linux/fs/btrfs/raid56.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	atomic_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 	if (!table) {
223 		table = vzalloc(table_size);
224 		if (!table)
225 			return -ENOMEM;
226 	}
227 
228 	spin_lock_init(&table->cache_lock);
229 	INIT_LIST_HEAD(&table->stripe_cache);
230 
231 	h = table->table;
232 
233 	for (i = 0; i < num_entries; i++) {
234 		cur = h + i;
235 		INIT_LIST_HEAD(&cur->hash_list);
236 		spin_lock_init(&cur->lock);
237 		init_waitqueue_head(&cur->wait);
238 	}
239 
240 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 	if (x)
242 		kvfree(x);
243 	return 0;
244 }
245 
246 /*
247  * caching an rbio means to copy anything from the
248  * bio_pages array into the stripe_pages array.  We
249  * use the page uptodate bit in the stripe cache array
250  * to indicate if it has valid data
251  *
252  * once the caching is done, we set the cache ready
253  * bit.
254  */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 	int i;
258 	char *s;
259 	char *d;
260 	int ret;
261 
262 	ret = alloc_rbio_pages(rbio);
263 	if (ret)
264 		return;
265 
266 	for (i = 0; i < rbio->nr_pages; i++) {
267 		if (!rbio->bio_pages[i])
268 			continue;
269 
270 		s = kmap(rbio->bio_pages[i]);
271 		d = kmap(rbio->stripe_pages[i]);
272 
273 		memcpy(d, s, PAGE_SIZE);
274 
275 		kunmap(rbio->bio_pages[i]);
276 		kunmap(rbio->stripe_pages[i]);
277 		SetPageUptodate(rbio->stripe_pages[i]);
278 	}
279 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281 
282 /*
283  * we hash on the first logical address of the stripe
284  */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 	u64 num = rbio->bbio->raid_map[0];
288 
289 	/*
290 	 * we shift down quite a bit.  We're using byte
291 	 * addressing, and most of the lower bits are zeros.
292 	 * This tends to upset hash_64, and it consistently
293 	 * returns just one or two different values.
294 	 *
295 	 * shifting off the lower bits fixes things.
296 	 */
297 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299 
300 /*
301  * stealing an rbio means taking all the uptodate pages from the stripe
302  * array in the source rbio and putting them into the destination rbio
303  */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 	int i;
307 	struct page *s;
308 	struct page *d;
309 
310 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 		return;
312 
313 	for (i = 0; i < dest->nr_pages; i++) {
314 		s = src->stripe_pages[i];
315 		if (!s || !PageUptodate(s)) {
316 			continue;
317 		}
318 
319 		d = dest->stripe_pages[i];
320 		if (d)
321 			__free_page(d);
322 
323 		dest->stripe_pages[i] = s;
324 		src->stripe_pages[i] = NULL;
325 	}
326 }
327 
328 /*
329  * merging means we take the bio_list from the victim and
330  * splice it into the destination.  The victim should
331  * be discarded afterwards.
332  *
333  * must be called with dest->rbio_list_lock held
334  */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 		       struct btrfs_raid_bio *victim)
337 {
338 	bio_list_merge(&dest->bio_list, &victim->bio_list);
339 	dest->bio_list_bytes += victim->bio_list_bytes;
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				atomic_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		atomic_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbios though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 		return 0;
608 
609 	return 1;
610 }
611 
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 				  int index)
614 {
615 	return stripe * rbio->stripe_npages + index;
616 }
617 
618 /*
619  * these are just the pages from the rbio array, not from anything
620  * the FS sent down to us
621  */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 				     int index)
624 {
625 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627 
628 /*
629  * helper to index into the pstripe
630  */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 	return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635 
636 /*
637  * helper to index into the qstripe, returns null
638  * if there is no qstripe
639  */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 	if (rbio->nr_data + 1 == rbio->real_stripes)
643 		return NULL;
644 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646 
647 /*
648  * The first stripe in the table for a logical address
649  * has the lock.  rbios are added in one of three ways:
650  *
651  * 1) Nobody has the stripe locked yet.  The rbio is given
652  * the lock and 0 is returned.  The caller must start the IO
653  * themselves.
654  *
655  * 2) Someone has the stripe locked, but we're able to merge
656  * with the lock owner.  The rbio is freed and the IO will
657  * start automatically along with the existing rbio.  1 is returned.
658  *
659  * 3) Someone has the stripe locked, but we're not able to merge.
660  * The rbio is added to the lock owner's plug list, or merged into
661  * an rbio already on the plug list.  When the lock owner unlocks,
662  * the next rbio on the list is run and the IO is started automatically.
663  * 1 is returned
664  *
665  * If we return 0, the caller still owns the rbio and must continue with
666  * IO submission.  If we return 1, the caller must assume the rbio has
667  * already been freed.
668  */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 	int bucket = rbio_bucket(rbio);
672 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 	struct btrfs_raid_bio *cur;
674 	struct btrfs_raid_bio *pending;
675 	unsigned long flags;
676 	DEFINE_WAIT(wait);
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 	int walk = 0;
681 
682 	spin_lock_irqsave(&h->lock, flags);
683 	list_for_each_entry(cur, &h->hash_list, hash_list) {
684 		walk++;
685 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 			spin_lock(&cur->bio_list_lock);
687 
688 			/* can we steal this cached rbio's pages? */
689 			if (bio_list_empty(&cur->bio_list) &&
690 			    list_empty(&cur->plug_list) &&
691 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 				list_del_init(&cur->hash_list);
694 				atomic_dec(&cur->refs);
695 
696 				steal_rbio(cur, rbio);
697 				cache_drop = cur;
698 				spin_unlock(&cur->bio_list_lock);
699 
700 				goto lockit;
701 			}
702 
703 			/* can we merge into the lock owner? */
704 			if (rbio_can_merge(cur, rbio)) {
705 				merge_rbio(cur, rbio);
706 				spin_unlock(&cur->bio_list_lock);
707 				freeit = rbio;
708 				ret = 1;
709 				goto out;
710 			}
711 
712 
713 			/*
714 			 * we couldn't merge with the running
715 			 * rbio, see if we can merge with the
716 			 * pending ones.  We don't have to
717 			 * check for rmw_locked because there
718 			 * is no way they are inside finish_rmw
719 			 * right now
720 			 */
721 			list_for_each_entry(pending, &cur->plug_list,
722 					    plug_list) {
723 				if (rbio_can_merge(pending, rbio)) {
724 					merge_rbio(pending, rbio);
725 					spin_unlock(&cur->bio_list_lock);
726 					freeit = rbio;
727 					ret = 1;
728 					goto out;
729 				}
730 			}
731 
732 			/* no merging, put us on the tail of the plug list,
733 			 * our rbio will be started with the currently
734 			 * running rbio unlocks
735 			 */
736 			list_add_tail(&rbio->plug_list, &cur->plug_list);
737 			spin_unlock(&cur->bio_list_lock);
738 			ret = 1;
739 			goto out;
740 		}
741 	}
742 lockit:
743 	atomic_inc(&rbio->refs);
744 	list_add(&rbio->hash_list, &h->hash_list);
745 out:
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	if (cache_drop)
748 		remove_rbio_from_cache(cache_drop);
749 	if (freeit)
750 		__free_raid_bio(freeit);
751 	return ret;
752 }
753 
754 /*
755  * called as rmw or parity rebuild is completed.  If the plug list has more
756  * rbios waiting for this stripe, the next one on the list will be started
757  */
758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759 {
760 	int bucket;
761 	struct btrfs_stripe_hash *h;
762 	unsigned long flags;
763 	int keep_cache = 0;
764 
765 	bucket = rbio_bucket(rbio);
766 	h = rbio->fs_info->stripe_hash_table->table + bucket;
767 
768 	if (list_empty(&rbio->plug_list))
769 		cache_rbio(rbio);
770 
771 	spin_lock_irqsave(&h->lock, flags);
772 	spin_lock(&rbio->bio_list_lock);
773 
774 	if (!list_empty(&rbio->hash_list)) {
775 		/*
776 		 * if we're still cached and there is no other IO
777 		 * to perform, just leave this rbio here for others
778 		 * to steal from later
779 		 */
780 		if (list_empty(&rbio->plug_list) &&
781 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 			keep_cache = 1;
783 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 			BUG_ON(!bio_list_empty(&rbio->bio_list));
785 			goto done;
786 		}
787 
788 		list_del_init(&rbio->hash_list);
789 		atomic_dec(&rbio->refs);
790 
791 		/*
792 		 * we use the plug list to hold all the rbios
793 		 * waiting for the chance to lock this stripe.
794 		 * hand the lock over to one of them.
795 		 */
796 		if (!list_empty(&rbio->plug_list)) {
797 			struct btrfs_raid_bio *next;
798 			struct list_head *head = rbio->plug_list.next;
799 
800 			next = list_entry(head, struct btrfs_raid_bio,
801 					  plug_list);
802 
803 			list_del_init(&rbio->plug_list);
804 
805 			list_add(&next->hash_list, &h->hash_list);
806 			atomic_inc(&next->refs);
807 			spin_unlock(&rbio->bio_list_lock);
808 			spin_unlock_irqrestore(&h->lock, flags);
809 
810 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 				async_read_rebuild(next);
812 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 				steal_rbio(rbio, next);
814 				async_read_rebuild(next);
815 			} else if (next->operation == BTRFS_RBIO_WRITE) {
816 				steal_rbio(rbio, next);
817 				async_rmw_stripe(next);
818 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 				steal_rbio(rbio, next);
820 				async_scrub_parity(next);
821 			}
822 
823 			goto done_nolock;
824 			/*
825 			 * The barrier for this waitqueue_active is not needed,
826 			 * we're protected by h->lock and can't miss a wakeup.
827 			 */
828 		} else if (waitqueue_active(&h->wait)) {
829 			spin_unlock(&rbio->bio_list_lock);
830 			spin_unlock_irqrestore(&h->lock, flags);
831 			wake_up(&h->wait);
832 			goto done_nolock;
833 		}
834 	}
835 done:
836 	spin_unlock(&rbio->bio_list_lock);
837 	spin_unlock_irqrestore(&h->lock, flags);
838 
839 done_nolock:
840 	if (!keep_cache)
841 		remove_rbio_from_cache(rbio);
842 }
843 
844 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845 {
846 	int i;
847 
848 	WARN_ON(atomic_read(&rbio->refs) < 0);
849 	if (!atomic_dec_and_test(&rbio->refs))
850 		return;
851 
852 	WARN_ON(!list_empty(&rbio->stripe_cache));
853 	WARN_ON(!list_empty(&rbio->hash_list));
854 	WARN_ON(!bio_list_empty(&rbio->bio_list));
855 
856 	for (i = 0; i < rbio->nr_pages; i++) {
857 		if (rbio->stripe_pages[i]) {
858 			__free_page(rbio->stripe_pages[i]);
859 			rbio->stripe_pages[i] = NULL;
860 		}
861 	}
862 
863 	btrfs_put_bbio(rbio->bbio);
864 	kfree(rbio);
865 }
866 
867 static void free_raid_bio(struct btrfs_raid_bio *rbio)
868 {
869 	unlock_stripe(rbio);
870 	__free_raid_bio(rbio);
871 }
872 
873 /*
874  * this frees the rbio and runs through all the bios in the
875  * bio_list and calls end_io on them
876  */
877 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
878 {
879 	struct bio *cur = bio_list_get(&rbio->bio_list);
880 	struct bio *next;
881 
882 	if (rbio->generic_bio_cnt)
883 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884 
885 	free_raid_bio(rbio);
886 
887 	while (cur) {
888 		next = cur->bi_next;
889 		cur->bi_next = NULL;
890 		cur->bi_error = err;
891 		bio_endio(cur);
892 		cur = next;
893 	}
894 }
895 
896 /*
897  * end io function used by finish_rmw.  When we finally
898  * get here, we've written a full stripe
899  */
900 static void raid_write_end_io(struct bio *bio)
901 {
902 	struct btrfs_raid_bio *rbio = bio->bi_private;
903 	int err = bio->bi_error;
904 	int max_errors;
905 
906 	if (err)
907 		fail_bio_stripe(rbio, bio);
908 
909 	bio_put(bio);
910 
911 	if (!atomic_dec_and_test(&rbio->stripes_pending))
912 		return;
913 
914 	err = 0;
915 
916 	/* OK, we have read all the stripes we need to. */
917 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 		     0 : rbio->bbio->max_errors;
919 	if (atomic_read(&rbio->error) > max_errors)
920 		err = -EIO;
921 
922 	rbio_orig_end_io(rbio, err);
923 }
924 
925 /*
926  * the read/modify/write code wants to use the original bio for
927  * any pages it included, and then use the rbio for everything
928  * else.  This function decides if a given index (stripe number)
929  * and page number in that stripe fall inside the original bio
930  * or the rbio.
931  *
932  * if you set bio_list_only, you'll get a NULL back for any ranges
933  * that are outside the bio_list
934  *
935  * This doesn't take any refs on anything, you get a bare page pointer
936  * and the caller must bump refs as required.
937  *
938  * You must call index_rbio_pages once before you can trust
939  * the answers from this function.
940  */
941 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 				 int index, int pagenr, int bio_list_only)
943 {
944 	int chunk_page;
945 	struct page *p = NULL;
946 
947 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948 
949 	spin_lock_irq(&rbio->bio_list_lock);
950 	p = rbio->bio_pages[chunk_page];
951 	spin_unlock_irq(&rbio->bio_list_lock);
952 
953 	if (p || bio_list_only)
954 		return p;
955 
956 	return rbio->stripe_pages[chunk_page];
957 }
958 
959 /*
960  * number of pages we need for the entire stripe across all the
961  * drives
962  */
963 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964 {
965 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
966 }
967 
968 /*
969  * allocation and initial setup for the btrfs_raid_bio.  Not
970  * this does not allocate any pages for rbio->pages.
971  */
972 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
973 			  struct btrfs_bio *bbio, u64 stripe_len)
974 {
975 	struct btrfs_raid_bio *rbio;
976 	int nr_data = 0;
977 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
978 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
979 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
980 	void *p;
981 
982 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
983 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
984 		       sizeof(long), GFP_NOFS);
985 	if (!rbio)
986 		return ERR_PTR(-ENOMEM);
987 
988 	bio_list_init(&rbio->bio_list);
989 	INIT_LIST_HEAD(&rbio->plug_list);
990 	spin_lock_init(&rbio->bio_list_lock);
991 	INIT_LIST_HEAD(&rbio->stripe_cache);
992 	INIT_LIST_HEAD(&rbio->hash_list);
993 	rbio->bbio = bbio;
994 	rbio->fs_info = root->fs_info;
995 	rbio->stripe_len = stripe_len;
996 	rbio->nr_pages = num_pages;
997 	rbio->real_stripes = real_stripes;
998 	rbio->stripe_npages = stripe_npages;
999 	rbio->faila = -1;
1000 	rbio->failb = -1;
1001 	atomic_set(&rbio->refs, 1);
1002 	atomic_set(&rbio->error, 0);
1003 	atomic_set(&rbio->stripes_pending, 0);
1004 
1005 	/*
1006 	 * the stripe_pages and bio_pages array point to the extra
1007 	 * memory we allocated past the end of the rbio
1008 	 */
1009 	p = rbio + 1;
1010 	rbio->stripe_pages = p;
1011 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013 
1014 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015 		nr_data = real_stripes - 1;
1016 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017 		nr_data = real_stripes - 2;
1018 	else
1019 		BUG();
1020 
1021 	rbio->nr_data = nr_data;
1022 	return rbio;
1023 }
1024 
1025 /* allocate pages for all the stripes in the bio, including parity */
1026 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027 {
1028 	int i;
1029 	struct page *page;
1030 
1031 	for (i = 0; i < rbio->nr_pages; i++) {
1032 		if (rbio->stripe_pages[i])
1033 			continue;
1034 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035 		if (!page)
1036 			return -ENOMEM;
1037 		rbio->stripe_pages[i] = page;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /* only allocate pages for p/q stripes */
1043 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044 {
1045 	int i;
1046 	struct page *page;
1047 
1048 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049 
1050 	for (; i < rbio->nr_pages; i++) {
1051 		if (rbio->stripe_pages[i])
1052 			continue;
1053 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054 		if (!page)
1055 			return -ENOMEM;
1056 		rbio->stripe_pages[i] = page;
1057 	}
1058 	return 0;
1059 }
1060 
1061 /*
1062  * add a single page from a specific stripe into our list of bios for IO
1063  * this will try to merge into existing bios if possible, and returns
1064  * zero if all went well.
1065  */
1066 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067 			    struct bio_list *bio_list,
1068 			    struct page *page,
1069 			    int stripe_nr,
1070 			    unsigned long page_index,
1071 			    unsigned long bio_max_len)
1072 {
1073 	struct bio *last = bio_list->tail;
1074 	u64 last_end = 0;
1075 	int ret;
1076 	struct bio *bio;
1077 	struct btrfs_bio_stripe *stripe;
1078 	u64 disk_start;
1079 
1080 	stripe = &rbio->bbio->stripes[stripe_nr];
1081 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082 
1083 	/* if the device is missing, just fail this stripe */
1084 	if (!stripe->dev->bdev)
1085 		return fail_rbio_index(rbio, stripe_nr);
1086 
1087 	/* see if we can add this page onto our existing bio */
1088 	if (last) {
1089 		last_end = (u64)last->bi_iter.bi_sector << 9;
1090 		last_end += last->bi_iter.bi_size;
1091 
1092 		/*
1093 		 * we can't merge these if they are from different
1094 		 * devices or if they are not contiguous
1095 		 */
1096 		if (last_end == disk_start && stripe->dev->bdev &&
1097 		    !last->bi_error &&
1098 		    last->bi_bdev == stripe->dev->bdev) {
1099 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100 			if (ret == PAGE_SIZE)
1101 				return 0;
1102 		}
1103 	}
1104 
1105 	/* put a new bio on the list */
1106 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107 	if (!bio)
1108 		return -ENOMEM;
1109 
1110 	bio->bi_iter.bi_size = 0;
1111 	bio->bi_bdev = stripe->dev->bdev;
1112 	bio->bi_iter.bi_sector = disk_start >> 9;
1113 
1114 	bio_add_page(bio, page, PAGE_SIZE, 0);
1115 	bio_list_add(bio_list, bio);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * while we're doing the read/modify/write cycle, we could
1121  * have errors in reading pages off the disk.  This checks
1122  * for errors and if we're not able to read the page it'll
1123  * trigger parity reconstruction.  The rmw will be finished
1124  * after we've reconstructed the failed stripes
1125  */
1126 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127 {
1128 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 		__raid56_parity_recover(rbio);
1131 	} else {
1132 		finish_rmw(rbio);
1133 	}
1134 }
1135 
1136 /*
1137  * helper function to walk our bio list and populate the bio_pages array with
1138  * the result.  This seems expensive, but it is faster than constantly
1139  * searching through the bio list as we setup the IO in finish_rmw or stripe
1140  * reconstruction.
1141  *
1142  * This must be called before you trust the answers from page_in_rbio
1143  */
1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145 {
1146 	struct bio *bio;
1147 	u64 start;
1148 	unsigned long stripe_offset;
1149 	unsigned long page_index;
1150 	struct page *p;
1151 	int i;
1152 
1153 	spin_lock_irq(&rbio->bio_list_lock);
1154 	bio_list_for_each(bio, &rbio->bio_list) {
1155 		start = (u64)bio->bi_iter.bi_sector << 9;
1156 		stripe_offset = start - rbio->bbio->raid_map[0];
1157 		page_index = stripe_offset >> PAGE_SHIFT;
1158 
1159 		for (i = 0; i < bio->bi_vcnt; i++) {
1160 			p = bio->bi_io_vec[i].bv_page;
1161 			rbio->bio_pages[page_index + i] = p;
1162 		}
1163 	}
1164 	spin_unlock_irq(&rbio->bio_list_lock);
1165 }
1166 
1167 /*
1168  * this is called from one of two situations.  We either
1169  * have a full stripe from the higher layers, or we've read all
1170  * the missing bits off disk.
1171  *
1172  * This will calculate the parity and then send down any
1173  * changed blocks.
1174  */
1175 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176 {
1177 	struct btrfs_bio *bbio = rbio->bbio;
1178 	void *pointers[rbio->real_stripes];
1179 	int nr_data = rbio->nr_data;
1180 	int stripe;
1181 	int pagenr;
1182 	int p_stripe = -1;
1183 	int q_stripe = -1;
1184 	struct bio_list bio_list;
1185 	struct bio *bio;
1186 	int ret;
1187 
1188 	bio_list_init(&bio_list);
1189 
1190 	if (rbio->real_stripes - rbio->nr_data == 1) {
1191 		p_stripe = rbio->real_stripes - 1;
1192 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1193 		p_stripe = rbio->real_stripes - 2;
1194 		q_stripe = rbio->real_stripes - 1;
1195 	} else {
1196 		BUG();
1197 	}
1198 
1199 	/* at this point we either have a full stripe,
1200 	 * or we've read the full stripe from the drive.
1201 	 * recalculate the parity and write the new results.
1202 	 *
1203 	 * We're not allowed to add any new bios to the
1204 	 * bio list here, anyone else that wants to
1205 	 * change this stripe needs to do their own rmw.
1206 	 */
1207 	spin_lock_irq(&rbio->bio_list_lock);
1208 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209 	spin_unlock_irq(&rbio->bio_list_lock);
1210 
1211 	atomic_set(&rbio->error, 0);
1212 
1213 	/*
1214 	 * now that we've set rmw_locked, run through the
1215 	 * bio list one last time and map the page pointers
1216 	 *
1217 	 * We don't cache full rbios because we're assuming
1218 	 * the higher layers are unlikely to use this area of
1219 	 * the disk again soon.  If they do use it again,
1220 	 * hopefully they will send another full bio.
1221 	 */
1222 	index_rbio_pages(rbio);
1223 	if (!rbio_is_full(rbio))
1224 		cache_rbio_pages(rbio);
1225 	else
1226 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227 
1228 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229 		struct page *p;
1230 		/* first collect one page from each data stripe */
1231 		for (stripe = 0; stripe < nr_data; stripe++) {
1232 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1233 			pointers[stripe] = kmap(p);
1234 		}
1235 
1236 		/* then add the parity stripe */
1237 		p = rbio_pstripe_page(rbio, pagenr);
1238 		SetPageUptodate(p);
1239 		pointers[stripe++] = kmap(p);
1240 
1241 		if (q_stripe != -1) {
1242 
1243 			/*
1244 			 * raid6, add the qstripe and call the
1245 			 * library function to fill in our p/q
1246 			 */
1247 			p = rbio_qstripe_page(rbio, pagenr);
1248 			SetPageUptodate(p);
1249 			pointers[stripe++] = kmap(p);
1250 
1251 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252 						pointers);
1253 		} else {
1254 			/* raid5 */
1255 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257 		}
1258 
1259 
1260 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262 	}
1263 
1264 	/*
1265 	 * time to start writing.  Make bios for everything from the
1266 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267 	 * everything else.
1268 	 */
1269 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271 			struct page *page;
1272 			if (stripe < rbio->nr_data) {
1273 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 				if (!page)
1275 					continue;
1276 			} else {
1277 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278 			}
1279 
1280 			ret = rbio_add_io_page(rbio, &bio_list,
1281 				       page, stripe, pagenr, rbio->stripe_len);
1282 			if (ret)
1283 				goto cleanup;
1284 		}
1285 	}
1286 
1287 	if (likely(!bbio->num_tgtdevs))
1288 		goto write_data;
1289 
1290 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291 		if (!bbio->tgtdev_map[stripe])
1292 			continue;
1293 
1294 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295 			struct page *page;
1296 			if (stripe < rbio->nr_data) {
1297 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 				if (!page)
1299 					continue;
1300 			} else {
1301 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302 			}
1303 
1304 			ret = rbio_add_io_page(rbio, &bio_list, page,
1305 					       rbio->bbio->tgtdev_map[stripe],
1306 					       pagenr, rbio->stripe_len);
1307 			if (ret)
1308 				goto cleanup;
1309 		}
1310 	}
1311 
1312 write_data:
1313 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315 
1316 	while (1) {
1317 		bio = bio_list_pop(&bio_list);
1318 		if (!bio)
1319 			break;
1320 
1321 		bio->bi_private = rbio;
1322 		bio->bi_end_io = raid_write_end_io;
1323 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1324 
1325 		submit_bio(bio);
1326 	}
1327 	return;
1328 
1329 cleanup:
1330 	rbio_orig_end_io(rbio, -EIO);
1331 }
1332 
1333 /*
1334  * helper to find the stripe number for a given bio.  Used to figure out which
1335  * stripe has failed.  This expects the bio to correspond to a physical disk,
1336  * so it looks up based on physical sector numbers.
1337  */
1338 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1339 			   struct bio *bio)
1340 {
1341 	u64 physical = bio->bi_iter.bi_sector;
1342 	u64 stripe_start;
1343 	int i;
1344 	struct btrfs_bio_stripe *stripe;
1345 
1346 	physical <<= 9;
1347 
1348 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1349 		stripe = &rbio->bbio->stripes[i];
1350 		stripe_start = stripe->physical;
1351 		if (physical >= stripe_start &&
1352 		    physical < stripe_start + rbio->stripe_len &&
1353 		    bio->bi_bdev == stripe->dev->bdev) {
1354 			return i;
1355 		}
1356 	}
1357 	return -1;
1358 }
1359 
1360 /*
1361  * helper to find the stripe number for a given
1362  * bio (before mapping).  Used to figure out which stripe has
1363  * failed.  This looks up based on logical block numbers.
1364  */
1365 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1366 				   struct bio *bio)
1367 {
1368 	u64 logical = bio->bi_iter.bi_sector;
1369 	u64 stripe_start;
1370 	int i;
1371 
1372 	logical <<= 9;
1373 
1374 	for (i = 0; i < rbio->nr_data; i++) {
1375 		stripe_start = rbio->bbio->raid_map[i];
1376 		if (logical >= stripe_start &&
1377 		    logical < stripe_start + rbio->stripe_len) {
1378 			return i;
1379 		}
1380 	}
1381 	return -1;
1382 }
1383 
1384 /*
1385  * returns -EIO if we had too many failures
1386  */
1387 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1388 {
1389 	unsigned long flags;
1390 	int ret = 0;
1391 
1392 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1393 
1394 	/* we already know this stripe is bad, move on */
1395 	if (rbio->faila == failed || rbio->failb == failed)
1396 		goto out;
1397 
1398 	if (rbio->faila == -1) {
1399 		/* first failure on this rbio */
1400 		rbio->faila = failed;
1401 		atomic_inc(&rbio->error);
1402 	} else if (rbio->failb == -1) {
1403 		/* second failure on this rbio */
1404 		rbio->failb = failed;
1405 		atomic_inc(&rbio->error);
1406 	} else {
1407 		ret = -EIO;
1408 	}
1409 out:
1410 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1411 
1412 	return ret;
1413 }
1414 
1415 /*
1416  * helper to fail a stripe based on a physical disk
1417  * bio.
1418  */
1419 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1420 			   struct bio *bio)
1421 {
1422 	int failed = find_bio_stripe(rbio, bio);
1423 
1424 	if (failed < 0)
1425 		return -EIO;
1426 
1427 	return fail_rbio_index(rbio, failed);
1428 }
1429 
1430 /*
1431  * this sets each page in the bio uptodate.  It should only be used on private
1432  * rbio pages, nothing that comes in from the higher layers
1433  */
1434 static void set_bio_pages_uptodate(struct bio *bio)
1435 {
1436 	int i;
1437 	struct page *p;
1438 
1439 	for (i = 0; i < bio->bi_vcnt; i++) {
1440 		p = bio->bi_io_vec[i].bv_page;
1441 		SetPageUptodate(p);
1442 	}
1443 }
1444 
1445 /*
1446  * end io for the read phase of the rmw cycle.  All the bios here are physical
1447  * stripe bios we've read from the disk so we can recalculate the parity of the
1448  * stripe.
1449  *
1450  * This will usually kick off finish_rmw once all the bios are read in, but it
1451  * may trigger parity reconstruction if we had any errors along the way
1452  */
1453 static void raid_rmw_end_io(struct bio *bio)
1454 {
1455 	struct btrfs_raid_bio *rbio = bio->bi_private;
1456 
1457 	if (bio->bi_error)
1458 		fail_bio_stripe(rbio, bio);
1459 	else
1460 		set_bio_pages_uptodate(bio);
1461 
1462 	bio_put(bio);
1463 
1464 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1465 		return;
1466 
1467 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1468 		goto cleanup;
1469 
1470 	/*
1471 	 * this will normally call finish_rmw to start our write
1472 	 * but if there are any failed stripes we'll reconstruct
1473 	 * from parity first
1474 	 */
1475 	validate_rbio_for_rmw(rbio);
1476 	return;
1477 
1478 cleanup:
1479 
1480 	rbio_orig_end_io(rbio, -EIO);
1481 }
1482 
1483 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1484 {
1485 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1486 			rmw_work, NULL, NULL);
1487 
1488 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1489 			 &rbio->work);
1490 }
1491 
1492 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1493 {
1494 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1495 			read_rebuild_work, NULL, NULL);
1496 
1497 	btrfs_queue_work(rbio->fs_info->rmw_workers,
1498 			 &rbio->work);
1499 }
1500 
1501 /*
1502  * the stripe must be locked by the caller.  It will
1503  * unlock after all the writes are done
1504  */
1505 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1506 {
1507 	int bios_to_read = 0;
1508 	struct bio_list bio_list;
1509 	int ret;
1510 	int pagenr;
1511 	int stripe;
1512 	struct bio *bio;
1513 
1514 	bio_list_init(&bio_list);
1515 
1516 	ret = alloc_rbio_pages(rbio);
1517 	if (ret)
1518 		goto cleanup;
1519 
1520 	index_rbio_pages(rbio);
1521 
1522 	atomic_set(&rbio->error, 0);
1523 	/*
1524 	 * build a list of bios to read all the missing parts of this
1525 	 * stripe
1526 	 */
1527 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1528 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1529 			struct page *page;
1530 			/*
1531 			 * we want to find all the pages missing from
1532 			 * the rbio and read them from the disk.  If
1533 			 * page_in_rbio finds a page in the bio list
1534 			 * we don't need to read it off the stripe.
1535 			 */
1536 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1537 			if (page)
1538 				continue;
1539 
1540 			page = rbio_stripe_page(rbio, stripe, pagenr);
1541 			/*
1542 			 * the bio cache may have handed us an uptodate
1543 			 * page.  If so, be happy and use it
1544 			 */
1545 			if (PageUptodate(page))
1546 				continue;
1547 
1548 			ret = rbio_add_io_page(rbio, &bio_list, page,
1549 				       stripe, pagenr, rbio->stripe_len);
1550 			if (ret)
1551 				goto cleanup;
1552 		}
1553 	}
1554 
1555 	bios_to_read = bio_list_size(&bio_list);
1556 	if (!bios_to_read) {
1557 		/*
1558 		 * this can happen if others have merged with
1559 		 * us, it means there is nothing left to read.
1560 		 * But if there are missing devices it may not be
1561 		 * safe to do the full stripe write yet.
1562 		 */
1563 		goto finish;
1564 	}
1565 
1566 	/*
1567 	 * the bbio may be freed once we submit the last bio.  Make sure
1568 	 * not to touch it after that
1569 	 */
1570 	atomic_set(&rbio->stripes_pending, bios_to_read);
1571 	while (1) {
1572 		bio = bio_list_pop(&bio_list);
1573 		if (!bio)
1574 			break;
1575 
1576 		bio->bi_private = rbio;
1577 		bio->bi_end_io = raid_rmw_end_io;
1578 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1579 
1580 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1581 				    BTRFS_WQ_ENDIO_RAID56);
1582 
1583 		submit_bio(bio);
1584 	}
1585 	/* the actual write will happen once the reads are done */
1586 	return 0;
1587 
1588 cleanup:
1589 	rbio_orig_end_io(rbio, -EIO);
1590 	return -EIO;
1591 
1592 finish:
1593 	validate_rbio_for_rmw(rbio);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * if the upper layers pass in a full stripe, we thank them by only allocating
1599  * enough pages to hold the parity, and sending it all down quickly.
1600  */
1601 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1602 {
1603 	int ret;
1604 
1605 	ret = alloc_rbio_parity_pages(rbio);
1606 	if (ret) {
1607 		__free_raid_bio(rbio);
1608 		return ret;
1609 	}
1610 
1611 	ret = lock_stripe_add(rbio);
1612 	if (ret == 0)
1613 		finish_rmw(rbio);
1614 	return 0;
1615 }
1616 
1617 /*
1618  * partial stripe writes get handed over to async helpers.
1619  * We're really hoping to merge a few more writes into this
1620  * rbio before calculating new parity
1621  */
1622 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1623 {
1624 	int ret;
1625 
1626 	ret = lock_stripe_add(rbio);
1627 	if (ret == 0)
1628 		async_rmw_stripe(rbio);
1629 	return 0;
1630 }
1631 
1632 /*
1633  * sometimes while we were reading from the drive to
1634  * recalculate parity, enough new bios come into create
1635  * a full stripe.  So we do a check here to see if we can
1636  * go directly to finish_rmw
1637  */
1638 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1639 {
1640 	/* head off into rmw land if we don't have a full stripe */
1641 	if (!rbio_is_full(rbio))
1642 		return partial_stripe_write(rbio);
1643 	return full_stripe_write(rbio);
1644 }
1645 
1646 /*
1647  * We use plugging call backs to collect full stripes.
1648  * Any time we get a partial stripe write while plugged
1649  * we collect it into a list.  When the unplug comes down,
1650  * we sort the list by logical block number and merge
1651  * everything we can into the same rbios
1652  */
1653 struct btrfs_plug_cb {
1654 	struct blk_plug_cb cb;
1655 	struct btrfs_fs_info *info;
1656 	struct list_head rbio_list;
1657 	struct btrfs_work work;
1658 };
1659 
1660 /*
1661  * rbios on the plug list are sorted for easier merging.
1662  */
1663 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1664 {
1665 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1666 						 plug_list);
1667 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1668 						 plug_list);
1669 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1670 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1671 
1672 	if (a_sector < b_sector)
1673 		return -1;
1674 	if (a_sector > b_sector)
1675 		return 1;
1676 	return 0;
1677 }
1678 
1679 static void run_plug(struct btrfs_plug_cb *plug)
1680 {
1681 	struct btrfs_raid_bio *cur;
1682 	struct btrfs_raid_bio *last = NULL;
1683 
1684 	/*
1685 	 * sort our plug list then try to merge
1686 	 * everything we can in hopes of creating full
1687 	 * stripes.
1688 	 */
1689 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1690 	while (!list_empty(&plug->rbio_list)) {
1691 		cur = list_entry(plug->rbio_list.next,
1692 				 struct btrfs_raid_bio, plug_list);
1693 		list_del_init(&cur->plug_list);
1694 
1695 		if (rbio_is_full(cur)) {
1696 			/* we have a full stripe, send it down */
1697 			full_stripe_write(cur);
1698 			continue;
1699 		}
1700 		if (last) {
1701 			if (rbio_can_merge(last, cur)) {
1702 				merge_rbio(last, cur);
1703 				__free_raid_bio(cur);
1704 				continue;
1705 
1706 			}
1707 			__raid56_parity_write(last);
1708 		}
1709 		last = cur;
1710 	}
1711 	if (last) {
1712 		__raid56_parity_write(last);
1713 	}
1714 	kfree(plug);
1715 }
1716 
1717 /*
1718  * if the unplug comes from schedule, we have to push the
1719  * work off to a helper thread
1720  */
1721 static void unplug_work(struct btrfs_work *work)
1722 {
1723 	struct btrfs_plug_cb *plug;
1724 	plug = container_of(work, struct btrfs_plug_cb, work);
1725 	run_plug(plug);
1726 }
1727 
1728 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1729 {
1730 	struct btrfs_plug_cb *plug;
1731 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1732 
1733 	if (from_schedule) {
1734 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1735 				unplug_work, NULL, NULL);
1736 		btrfs_queue_work(plug->info->rmw_workers,
1737 				 &plug->work);
1738 		return;
1739 	}
1740 	run_plug(plug);
1741 }
1742 
1743 /*
1744  * our main entry point for writes from the rest of the FS.
1745  */
1746 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1747 			struct btrfs_bio *bbio, u64 stripe_len)
1748 {
1749 	struct btrfs_raid_bio *rbio;
1750 	struct btrfs_plug_cb *plug = NULL;
1751 	struct blk_plug_cb *cb;
1752 	int ret;
1753 
1754 	rbio = alloc_rbio(root, bbio, stripe_len);
1755 	if (IS_ERR(rbio)) {
1756 		btrfs_put_bbio(bbio);
1757 		return PTR_ERR(rbio);
1758 	}
1759 	bio_list_add(&rbio->bio_list, bio);
1760 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1761 	rbio->operation = BTRFS_RBIO_WRITE;
1762 
1763 	btrfs_bio_counter_inc_noblocked(root->fs_info);
1764 	rbio->generic_bio_cnt = 1;
1765 
1766 	/*
1767 	 * don't plug on full rbios, just get them out the door
1768 	 * as quickly as we can
1769 	 */
1770 	if (rbio_is_full(rbio)) {
1771 		ret = full_stripe_write(rbio);
1772 		if (ret)
1773 			btrfs_bio_counter_dec(root->fs_info);
1774 		return ret;
1775 	}
1776 
1777 	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1778 			       sizeof(*plug));
1779 	if (cb) {
1780 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1781 		if (!plug->info) {
1782 			plug->info = root->fs_info;
1783 			INIT_LIST_HEAD(&plug->rbio_list);
1784 		}
1785 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1786 		ret = 0;
1787 	} else {
1788 		ret = __raid56_parity_write(rbio);
1789 		if (ret)
1790 			btrfs_bio_counter_dec(root->fs_info);
1791 	}
1792 	return ret;
1793 }
1794 
1795 /*
1796  * all parity reconstruction happens here.  We've read in everything
1797  * we can find from the drives and this does the heavy lifting of
1798  * sorting the good from the bad.
1799  */
1800 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1801 {
1802 	int pagenr, stripe;
1803 	void **pointers;
1804 	int faila = -1, failb = -1;
1805 	struct page *page;
1806 	int err;
1807 	int i;
1808 
1809 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1810 	if (!pointers) {
1811 		err = -ENOMEM;
1812 		goto cleanup_io;
1813 	}
1814 
1815 	faila = rbio->faila;
1816 	failb = rbio->failb;
1817 
1818 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1819 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1820 		spin_lock_irq(&rbio->bio_list_lock);
1821 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1822 		spin_unlock_irq(&rbio->bio_list_lock);
1823 	}
1824 
1825 	index_rbio_pages(rbio);
1826 
1827 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1828 		/*
1829 		 * Now we just use bitmap to mark the horizontal stripes in
1830 		 * which we have data when doing parity scrub.
1831 		 */
1832 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1833 		    !test_bit(pagenr, rbio->dbitmap))
1834 			continue;
1835 
1836 		/* setup our array of pointers with pages
1837 		 * from each stripe
1838 		 */
1839 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1840 			/*
1841 			 * if we're rebuilding a read, we have to use
1842 			 * pages from the bio list
1843 			 */
1844 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1845 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1846 			    (stripe == faila || stripe == failb)) {
1847 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1848 			} else {
1849 				page = rbio_stripe_page(rbio, stripe, pagenr);
1850 			}
1851 			pointers[stripe] = kmap(page);
1852 		}
1853 
1854 		/* all raid6 handling here */
1855 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1856 			/*
1857 			 * single failure, rebuild from parity raid5
1858 			 * style
1859 			 */
1860 			if (failb < 0) {
1861 				if (faila == rbio->nr_data) {
1862 					/*
1863 					 * Just the P stripe has failed, without
1864 					 * a bad data or Q stripe.
1865 					 * TODO, we should redo the xor here.
1866 					 */
1867 					err = -EIO;
1868 					goto cleanup;
1869 				}
1870 				/*
1871 				 * a single failure in raid6 is rebuilt
1872 				 * in the pstripe code below
1873 				 */
1874 				goto pstripe;
1875 			}
1876 
1877 			/* make sure our ps and qs are in order */
1878 			if (faila > failb) {
1879 				int tmp = failb;
1880 				failb = faila;
1881 				faila = tmp;
1882 			}
1883 
1884 			/* if the q stripe is failed, do a pstripe reconstruction
1885 			 * from the xors.
1886 			 * If both the q stripe and the P stripe are failed, we're
1887 			 * here due to a crc mismatch and we can't give them the
1888 			 * data they want
1889 			 */
1890 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1891 				if (rbio->bbio->raid_map[faila] ==
1892 				    RAID5_P_STRIPE) {
1893 					err = -EIO;
1894 					goto cleanup;
1895 				}
1896 				/*
1897 				 * otherwise we have one bad data stripe and
1898 				 * a good P stripe.  raid5!
1899 				 */
1900 				goto pstripe;
1901 			}
1902 
1903 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1904 				raid6_datap_recov(rbio->real_stripes,
1905 						  PAGE_SIZE, faila, pointers);
1906 			} else {
1907 				raid6_2data_recov(rbio->real_stripes,
1908 						  PAGE_SIZE, faila, failb,
1909 						  pointers);
1910 			}
1911 		} else {
1912 			void *p;
1913 
1914 			/* rebuild from P stripe here (raid5 or raid6) */
1915 			BUG_ON(failb != -1);
1916 pstripe:
1917 			/* Copy parity block into failed block to start with */
1918 			memcpy(pointers[faila],
1919 			       pointers[rbio->nr_data],
1920 			       PAGE_SIZE);
1921 
1922 			/* rearrange the pointer array */
1923 			p = pointers[faila];
1924 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1925 				pointers[stripe] = pointers[stripe + 1];
1926 			pointers[rbio->nr_data - 1] = p;
1927 
1928 			/* xor in the rest */
1929 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1930 		}
1931 		/* if we're doing this rebuild as part of an rmw, go through
1932 		 * and set all of our private rbio pages in the
1933 		 * failed stripes as uptodate.  This way finish_rmw will
1934 		 * know they can be trusted.  If this was a read reconstruction,
1935 		 * other endio functions will fiddle the uptodate bits
1936 		 */
1937 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1938 			for (i = 0;  i < rbio->stripe_npages; i++) {
1939 				if (faila != -1) {
1940 					page = rbio_stripe_page(rbio, faila, i);
1941 					SetPageUptodate(page);
1942 				}
1943 				if (failb != -1) {
1944 					page = rbio_stripe_page(rbio, failb, i);
1945 					SetPageUptodate(page);
1946 				}
1947 			}
1948 		}
1949 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1950 			/*
1951 			 * if we're rebuilding a read, we have to use
1952 			 * pages from the bio list
1953 			 */
1954 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1955 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1956 			    (stripe == faila || stripe == failb)) {
1957 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1958 			} else {
1959 				page = rbio_stripe_page(rbio, stripe, pagenr);
1960 			}
1961 			kunmap(page);
1962 		}
1963 	}
1964 
1965 	err = 0;
1966 cleanup:
1967 	kfree(pointers);
1968 
1969 cleanup_io:
1970 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1971 		if (err == 0)
1972 			cache_rbio_pages(rbio);
1973 		else
1974 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1975 
1976 		rbio_orig_end_io(rbio, err);
1977 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1978 		rbio_orig_end_io(rbio, err);
1979 	} else if (err == 0) {
1980 		rbio->faila = -1;
1981 		rbio->failb = -1;
1982 
1983 		if (rbio->operation == BTRFS_RBIO_WRITE)
1984 			finish_rmw(rbio);
1985 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1986 			finish_parity_scrub(rbio, 0);
1987 		else
1988 			BUG();
1989 	} else {
1990 		rbio_orig_end_io(rbio, err);
1991 	}
1992 }
1993 
1994 /*
1995  * This is called only for stripes we've read from disk to
1996  * reconstruct the parity.
1997  */
1998 static void raid_recover_end_io(struct bio *bio)
1999 {
2000 	struct btrfs_raid_bio *rbio = bio->bi_private;
2001 
2002 	/*
2003 	 * we only read stripe pages off the disk, set them
2004 	 * up to date if there were no errors
2005 	 */
2006 	if (bio->bi_error)
2007 		fail_bio_stripe(rbio, bio);
2008 	else
2009 		set_bio_pages_uptodate(bio);
2010 	bio_put(bio);
2011 
2012 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2013 		return;
2014 
2015 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2016 		rbio_orig_end_io(rbio, -EIO);
2017 	else
2018 		__raid_recover_end_io(rbio);
2019 }
2020 
2021 /*
2022  * reads everything we need off the disk to reconstruct
2023  * the parity. endio handlers trigger final reconstruction
2024  * when the IO is done.
2025  *
2026  * This is used both for reads from the higher layers and for
2027  * parity construction required to finish a rmw cycle.
2028  */
2029 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2030 {
2031 	int bios_to_read = 0;
2032 	struct bio_list bio_list;
2033 	int ret;
2034 	int pagenr;
2035 	int stripe;
2036 	struct bio *bio;
2037 
2038 	bio_list_init(&bio_list);
2039 
2040 	ret = alloc_rbio_pages(rbio);
2041 	if (ret)
2042 		goto cleanup;
2043 
2044 	atomic_set(&rbio->error, 0);
2045 
2046 	/*
2047 	 * read everything that hasn't failed.  Thanks to the
2048 	 * stripe cache, it is possible that some or all of these
2049 	 * pages are going to be uptodate.
2050 	 */
2051 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2052 		if (rbio->faila == stripe || rbio->failb == stripe) {
2053 			atomic_inc(&rbio->error);
2054 			continue;
2055 		}
2056 
2057 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2058 			struct page *p;
2059 
2060 			/*
2061 			 * the rmw code may have already read this
2062 			 * page in
2063 			 */
2064 			p = rbio_stripe_page(rbio, stripe, pagenr);
2065 			if (PageUptodate(p))
2066 				continue;
2067 
2068 			ret = rbio_add_io_page(rbio, &bio_list,
2069 				       rbio_stripe_page(rbio, stripe, pagenr),
2070 				       stripe, pagenr, rbio->stripe_len);
2071 			if (ret < 0)
2072 				goto cleanup;
2073 		}
2074 	}
2075 
2076 	bios_to_read = bio_list_size(&bio_list);
2077 	if (!bios_to_read) {
2078 		/*
2079 		 * we might have no bios to read just because the pages
2080 		 * were up to date, or we might have no bios to read because
2081 		 * the devices were gone.
2082 		 */
2083 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2084 			__raid_recover_end_io(rbio);
2085 			goto out;
2086 		} else {
2087 			goto cleanup;
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * the bbio may be freed once we submit the last bio.  Make sure
2093 	 * not to touch it after that
2094 	 */
2095 	atomic_set(&rbio->stripes_pending, bios_to_read);
2096 	while (1) {
2097 		bio = bio_list_pop(&bio_list);
2098 		if (!bio)
2099 			break;
2100 
2101 		bio->bi_private = rbio;
2102 		bio->bi_end_io = raid_recover_end_io;
2103 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2104 
2105 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2106 				    BTRFS_WQ_ENDIO_RAID56);
2107 
2108 		submit_bio(bio);
2109 	}
2110 out:
2111 	return 0;
2112 
2113 cleanup:
2114 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2115 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2116 		rbio_orig_end_io(rbio, -EIO);
2117 	return -EIO;
2118 }
2119 
2120 /*
2121  * the main entry point for reads from the higher layers.  This
2122  * is really only called when the normal read path had a failure,
2123  * so we assume the bio they send down corresponds to a failed part
2124  * of the drive.
2125  */
2126 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2127 			  struct btrfs_bio *bbio, u64 stripe_len,
2128 			  int mirror_num, int generic_io)
2129 {
2130 	struct btrfs_raid_bio *rbio;
2131 	int ret;
2132 
2133 	rbio = alloc_rbio(root, bbio, stripe_len);
2134 	if (IS_ERR(rbio)) {
2135 		if (generic_io)
2136 			btrfs_put_bbio(bbio);
2137 		return PTR_ERR(rbio);
2138 	}
2139 
2140 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2141 	bio_list_add(&rbio->bio_list, bio);
2142 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2143 
2144 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2145 	if (rbio->faila == -1) {
2146 		BUG();
2147 		if (generic_io)
2148 			btrfs_put_bbio(bbio);
2149 		kfree(rbio);
2150 		return -EIO;
2151 	}
2152 
2153 	if (generic_io) {
2154 		btrfs_bio_counter_inc_noblocked(root->fs_info);
2155 		rbio->generic_bio_cnt = 1;
2156 	} else {
2157 		btrfs_get_bbio(bbio);
2158 	}
2159 
2160 	/*
2161 	 * reconstruct from the q stripe if they are
2162 	 * asking for mirror 3
2163 	 */
2164 	if (mirror_num == 3)
2165 		rbio->failb = rbio->real_stripes - 2;
2166 
2167 	ret = lock_stripe_add(rbio);
2168 
2169 	/*
2170 	 * __raid56_parity_recover will end the bio with
2171 	 * any errors it hits.  We don't want to return
2172 	 * its error value up the stack because our caller
2173 	 * will end up calling bio_endio with any nonzero
2174 	 * return
2175 	 */
2176 	if (ret == 0)
2177 		__raid56_parity_recover(rbio);
2178 	/*
2179 	 * our rbio has been added to the list of
2180 	 * rbios that will be handled after the
2181 	 * currently lock owner is done
2182 	 */
2183 	return 0;
2184 
2185 }
2186 
2187 static void rmw_work(struct btrfs_work *work)
2188 {
2189 	struct btrfs_raid_bio *rbio;
2190 
2191 	rbio = container_of(work, struct btrfs_raid_bio, work);
2192 	raid56_rmw_stripe(rbio);
2193 }
2194 
2195 static void read_rebuild_work(struct btrfs_work *work)
2196 {
2197 	struct btrfs_raid_bio *rbio;
2198 
2199 	rbio = container_of(work, struct btrfs_raid_bio, work);
2200 	__raid56_parity_recover(rbio);
2201 }
2202 
2203 /*
2204  * The following code is used to scrub/replace the parity stripe
2205  *
2206  * Note: We need make sure all the pages that add into the scrub/replace
2207  * raid bio are correct and not be changed during the scrub/replace. That
2208  * is those pages just hold metadata or file data with checksum.
2209  */
2210 
2211 struct btrfs_raid_bio *
2212 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2213 			       struct btrfs_bio *bbio, u64 stripe_len,
2214 			       struct btrfs_device *scrub_dev,
2215 			       unsigned long *dbitmap, int stripe_nsectors)
2216 {
2217 	struct btrfs_raid_bio *rbio;
2218 	int i;
2219 
2220 	rbio = alloc_rbio(root, bbio, stripe_len);
2221 	if (IS_ERR(rbio))
2222 		return NULL;
2223 	bio_list_add(&rbio->bio_list, bio);
2224 	/*
2225 	 * This is a special bio which is used to hold the completion handler
2226 	 * and make the scrub rbio is similar to the other types
2227 	 */
2228 	ASSERT(!bio->bi_iter.bi_size);
2229 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2230 
2231 	for (i = 0; i < rbio->real_stripes; i++) {
2232 		if (bbio->stripes[i].dev == scrub_dev) {
2233 			rbio->scrubp = i;
2234 			break;
2235 		}
2236 	}
2237 
2238 	/* Now we just support the sectorsize equals to page size */
2239 	ASSERT(root->sectorsize == PAGE_SIZE);
2240 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2241 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2242 
2243 	return rbio;
2244 }
2245 
2246 /* Used for both parity scrub and missing. */
2247 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2248 			    u64 logical)
2249 {
2250 	int stripe_offset;
2251 	int index;
2252 
2253 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2254 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2255 				rbio->stripe_len * rbio->nr_data);
2256 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2257 	index = stripe_offset >> PAGE_SHIFT;
2258 	rbio->bio_pages[index] = page;
2259 }
2260 
2261 /*
2262  * We just scrub the parity that we have correct data on the same horizontal,
2263  * so we needn't allocate all pages for all the stripes.
2264  */
2265 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2266 {
2267 	int i;
2268 	int bit;
2269 	int index;
2270 	struct page *page;
2271 
2272 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2273 		for (i = 0; i < rbio->real_stripes; i++) {
2274 			index = i * rbio->stripe_npages + bit;
2275 			if (rbio->stripe_pages[index])
2276 				continue;
2277 
2278 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2279 			if (!page)
2280 				return -ENOMEM;
2281 			rbio->stripe_pages[index] = page;
2282 		}
2283 	}
2284 	return 0;
2285 }
2286 
2287 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2288 					 int need_check)
2289 {
2290 	struct btrfs_bio *bbio = rbio->bbio;
2291 	void *pointers[rbio->real_stripes];
2292 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2293 	int nr_data = rbio->nr_data;
2294 	int stripe;
2295 	int pagenr;
2296 	int p_stripe = -1;
2297 	int q_stripe = -1;
2298 	struct page *p_page = NULL;
2299 	struct page *q_page = NULL;
2300 	struct bio_list bio_list;
2301 	struct bio *bio;
2302 	int is_replace = 0;
2303 	int ret;
2304 
2305 	bio_list_init(&bio_list);
2306 
2307 	if (rbio->real_stripes - rbio->nr_data == 1) {
2308 		p_stripe = rbio->real_stripes - 1;
2309 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2310 		p_stripe = rbio->real_stripes - 2;
2311 		q_stripe = rbio->real_stripes - 1;
2312 	} else {
2313 		BUG();
2314 	}
2315 
2316 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2317 		is_replace = 1;
2318 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2319 	}
2320 
2321 	/*
2322 	 * Because the higher layers(scrubber) are unlikely to
2323 	 * use this area of the disk again soon, so don't cache
2324 	 * it.
2325 	 */
2326 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2327 
2328 	if (!need_check)
2329 		goto writeback;
2330 
2331 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2332 	if (!p_page)
2333 		goto cleanup;
2334 	SetPageUptodate(p_page);
2335 
2336 	if (q_stripe != -1) {
2337 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2338 		if (!q_page) {
2339 			__free_page(p_page);
2340 			goto cleanup;
2341 		}
2342 		SetPageUptodate(q_page);
2343 	}
2344 
2345 	atomic_set(&rbio->error, 0);
2346 
2347 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2348 		struct page *p;
2349 		void *parity;
2350 		/* first collect one page from each data stripe */
2351 		for (stripe = 0; stripe < nr_data; stripe++) {
2352 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2353 			pointers[stripe] = kmap(p);
2354 		}
2355 
2356 		/* then add the parity stripe */
2357 		pointers[stripe++] = kmap(p_page);
2358 
2359 		if (q_stripe != -1) {
2360 
2361 			/*
2362 			 * raid6, add the qstripe and call the
2363 			 * library function to fill in our p/q
2364 			 */
2365 			pointers[stripe++] = kmap(q_page);
2366 
2367 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2368 						pointers);
2369 		} else {
2370 			/* raid5 */
2371 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2372 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2373 		}
2374 
2375 		/* Check scrubbing parity and repair it */
2376 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2377 		parity = kmap(p);
2378 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2379 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2380 		else
2381 			/* Parity is right, needn't writeback */
2382 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2383 		kunmap(p);
2384 
2385 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2386 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2387 	}
2388 
2389 	__free_page(p_page);
2390 	if (q_page)
2391 		__free_page(q_page);
2392 
2393 writeback:
2394 	/*
2395 	 * time to start writing.  Make bios for everything from the
2396 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2397 	 * everything else.
2398 	 */
2399 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2400 		struct page *page;
2401 
2402 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2403 		ret = rbio_add_io_page(rbio, &bio_list,
2404 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2405 		if (ret)
2406 			goto cleanup;
2407 	}
2408 
2409 	if (!is_replace)
2410 		goto submit_write;
2411 
2412 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2413 		struct page *page;
2414 
2415 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2416 		ret = rbio_add_io_page(rbio, &bio_list, page,
2417 				       bbio->tgtdev_map[rbio->scrubp],
2418 				       pagenr, rbio->stripe_len);
2419 		if (ret)
2420 			goto cleanup;
2421 	}
2422 
2423 submit_write:
2424 	nr_data = bio_list_size(&bio_list);
2425 	if (!nr_data) {
2426 		/* Every parity is right */
2427 		rbio_orig_end_io(rbio, 0);
2428 		return;
2429 	}
2430 
2431 	atomic_set(&rbio->stripes_pending, nr_data);
2432 
2433 	while (1) {
2434 		bio = bio_list_pop(&bio_list);
2435 		if (!bio)
2436 			break;
2437 
2438 		bio->bi_private = rbio;
2439 		bio->bi_end_io = raid_write_end_io;
2440 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2441 
2442 		submit_bio(bio);
2443 	}
2444 	return;
2445 
2446 cleanup:
2447 	rbio_orig_end_io(rbio, -EIO);
2448 }
2449 
2450 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2451 {
2452 	if (stripe >= 0 && stripe < rbio->nr_data)
2453 		return 1;
2454 	return 0;
2455 }
2456 
2457 /*
2458  * While we're doing the parity check and repair, we could have errors
2459  * in reading pages off the disk.  This checks for errors and if we're
2460  * not able to read the page it'll trigger parity reconstruction.  The
2461  * parity scrub will be finished after we've reconstructed the failed
2462  * stripes
2463  */
2464 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2465 {
2466 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2467 		goto cleanup;
2468 
2469 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2470 		int dfail = 0, failp = -1;
2471 
2472 		if (is_data_stripe(rbio, rbio->faila))
2473 			dfail++;
2474 		else if (is_parity_stripe(rbio->faila))
2475 			failp = rbio->faila;
2476 
2477 		if (is_data_stripe(rbio, rbio->failb))
2478 			dfail++;
2479 		else if (is_parity_stripe(rbio->failb))
2480 			failp = rbio->failb;
2481 
2482 		/*
2483 		 * Because we can not use a scrubbing parity to repair
2484 		 * the data, so the capability of the repair is declined.
2485 		 * (In the case of RAID5, we can not repair anything)
2486 		 */
2487 		if (dfail > rbio->bbio->max_errors - 1)
2488 			goto cleanup;
2489 
2490 		/*
2491 		 * If all data is good, only parity is correctly, just
2492 		 * repair the parity.
2493 		 */
2494 		if (dfail == 0) {
2495 			finish_parity_scrub(rbio, 0);
2496 			return;
2497 		}
2498 
2499 		/*
2500 		 * Here means we got one corrupted data stripe and one
2501 		 * corrupted parity on RAID6, if the corrupted parity
2502 		 * is scrubbing parity, luckily, use the other one to repair
2503 		 * the data, or we can not repair the data stripe.
2504 		 */
2505 		if (failp != rbio->scrubp)
2506 			goto cleanup;
2507 
2508 		__raid_recover_end_io(rbio);
2509 	} else {
2510 		finish_parity_scrub(rbio, 1);
2511 	}
2512 	return;
2513 
2514 cleanup:
2515 	rbio_orig_end_io(rbio, -EIO);
2516 }
2517 
2518 /*
2519  * end io for the read phase of the rmw cycle.  All the bios here are physical
2520  * stripe bios we've read from the disk so we can recalculate the parity of the
2521  * stripe.
2522  *
2523  * This will usually kick off finish_rmw once all the bios are read in, but it
2524  * may trigger parity reconstruction if we had any errors along the way
2525  */
2526 static void raid56_parity_scrub_end_io(struct bio *bio)
2527 {
2528 	struct btrfs_raid_bio *rbio = bio->bi_private;
2529 
2530 	if (bio->bi_error)
2531 		fail_bio_stripe(rbio, bio);
2532 	else
2533 		set_bio_pages_uptodate(bio);
2534 
2535 	bio_put(bio);
2536 
2537 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2538 		return;
2539 
2540 	/*
2541 	 * this will normally call finish_rmw to start our write
2542 	 * but if there are any failed stripes we'll reconstruct
2543 	 * from parity first
2544 	 */
2545 	validate_rbio_for_parity_scrub(rbio);
2546 }
2547 
2548 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2549 {
2550 	int bios_to_read = 0;
2551 	struct bio_list bio_list;
2552 	int ret;
2553 	int pagenr;
2554 	int stripe;
2555 	struct bio *bio;
2556 
2557 	ret = alloc_rbio_essential_pages(rbio);
2558 	if (ret)
2559 		goto cleanup;
2560 
2561 	bio_list_init(&bio_list);
2562 
2563 	atomic_set(&rbio->error, 0);
2564 	/*
2565 	 * build a list of bios to read all the missing parts of this
2566 	 * stripe
2567 	 */
2568 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2569 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2570 			struct page *page;
2571 			/*
2572 			 * we want to find all the pages missing from
2573 			 * the rbio and read them from the disk.  If
2574 			 * page_in_rbio finds a page in the bio list
2575 			 * we don't need to read it off the stripe.
2576 			 */
2577 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2578 			if (page)
2579 				continue;
2580 
2581 			page = rbio_stripe_page(rbio, stripe, pagenr);
2582 			/*
2583 			 * the bio cache may have handed us an uptodate
2584 			 * page.  If so, be happy and use it
2585 			 */
2586 			if (PageUptodate(page))
2587 				continue;
2588 
2589 			ret = rbio_add_io_page(rbio, &bio_list, page,
2590 				       stripe, pagenr, rbio->stripe_len);
2591 			if (ret)
2592 				goto cleanup;
2593 		}
2594 	}
2595 
2596 	bios_to_read = bio_list_size(&bio_list);
2597 	if (!bios_to_read) {
2598 		/*
2599 		 * this can happen if others have merged with
2600 		 * us, it means there is nothing left to read.
2601 		 * But if there are missing devices it may not be
2602 		 * safe to do the full stripe write yet.
2603 		 */
2604 		goto finish;
2605 	}
2606 
2607 	/*
2608 	 * the bbio may be freed once we submit the last bio.  Make sure
2609 	 * not to touch it after that
2610 	 */
2611 	atomic_set(&rbio->stripes_pending, bios_to_read);
2612 	while (1) {
2613 		bio = bio_list_pop(&bio_list);
2614 		if (!bio)
2615 			break;
2616 
2617 		bio->bi_private = rbio;
2618 		bio->bi_end_io = raid56_parity_scrub_end_io;
2619 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2620 
2621 		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2622 				    BTRFS_WQ_ENDIO_RAID56);
2623 
2624 		submit_bio(bio);
2625 	}
2626 	/* the actual write will happen once the reads are done */
2627 	return;
2628 
2629 cleanup:
2630 	rbio_orig_end_io(rbio, -EIO);
2631 	return;
2632 
2633 finish:
2634 	validate_rbio_for_parity_scrub(rbio);
2635 }
2636 
2637 static void scrub_parity_work(struct btrfs_work *work)
2638 {
2639 	struct btrfs_raid_bio *rbio;
2640 
2641 	rbio = container_of(work, struct btrfs_raid_bio, work);
2642 	raid56_parity_scrub_stripe(rbio);
2643 }
2644 
2645 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2646 {
2647 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2648 			scrub_parity_work, NULL, NULL);
2649 
2650 	btrfs_queue_work(rbio->fs_info->rmw_workers,
2651 			 &rbio->work);
2652 }
2653 
2654 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2655 {
2656 	if (!lock_stripe_add(rbio))
2657 		async_scrub_parity(rbio);
2658 }
2659 
2660 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2661 
2662 struct btrfs_raid_bio *
2663 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2664 			  struct btrfs_bio *bbio, u64 length)
2665 {
2666 	struct btrfs_raid_bio *rbio;
2667 
2668 	rbio = alloc_rbio(root, bbio, length);
2669 	if (IS_ERR(rbio))
2670 		return NULL;
2671 
2672 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2673 	bio_list_add(&rbio->bio_list, bio);
2674 	/*
2675 	 * This is a special bio which is used to hold the completion handler
2676 	 * and make the scrub rbio is similar to the other types
2677 	 */
2678 	ASSERT(!bio->bi_iter.bi_size);
2679 
2680 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2681 	if (rbio->faila == -1) {
2682 		BUG();
2683 		kfree(rbio);
2684 		return NULL;
2685 	}
2686 
2687 	return rbio;
2688 }
2689 
2690 static void missing_raid56_work(struct btrfs_work *work)
2691 {
2692 	struct btrfs_raid_bio *rbio;
2693 
2694 	rbio = container_of(work, struct btrfs_raid_bio, work);
2695 	__raid56_parity_recover(rbio);
2696 }
2697 
2698 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2699 {
2700 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2701 			missing_raid56_work, NULL, NULL);
2702 
2703 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2704 }
2705 
2706 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2707 {
2708 	if (!lock_stripe_add(rbio))
2709 		async_missing_raid56(rbio);
2710 }
2711