1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 atomic_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 222 if (!table) { 223 table = vzalloc(table_size); 224 if (!table) 225 return -ENOMEM; 226 } 227 228 spin_lock_init(&table->cache_lock); 229 INIT_LIST_HEAD(&table->stripe_cache); 230 231 h = table->table; 232 233 for (i = 0; i < num_entries; i++) { 234 cur = h + i; 235 INIT_LIST_HEAD(&cur->hash_list); 236 spin_lock_init(&cur->lock); 237 init_waitqueue_head(&cur->wait); 238 } 239 240 x = cmpxchg(&info->stripe_hash_table, NULL, table); 241 if (x) 242 kvfree(x); 243 return 0; 244 } 245 246 /* 247 * caching an rbio means to copy anything from the 248 * bio_pages array into the stripe_pages array. We 249 * use the page uptodate bit in the stripe cache array 250 * to indicate if it has valid data 251 * 252 * once the caching is done, we set the cache ready 253 * bit. 254 */ 255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 256 { 257 int i; 258 char *s; 259 char *d; 260 int ret; 261 262 ret = alloc_rbio_pages(rbio); 263 if (ret) 264 return; 265 266 for (i = 0; i < rbio->nr_pages; i++) { 267 if (!rbio->bio_pages[i]) 268 continue; 269 270 s = kmap(rbio->bio_pages[i]); 271 d = kmap(rbio->stripe_pages[i]); 272 273 memcpy(d, s, PAGE_CACHE_SIZE); 274 275 kunmap(rbio->bio_pages[i]); 276 kunmap(rbio->stripe_pages[i]); 277 SetPageUptodate(rbio->stripe_pages[i]); 278 } 279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 280 } 281 282 /* 283 * we hash on the first logical address of the stripe 284 */ 285 static int rbio_bucket(struct btrfs_raid_bio *rbio) 286 { 287 u64 num = rbio->bbio->raid_map[0]; 288 289 /* 290 * we shift down quite a bit. We're using byte 291 * addressing, and most of the lower bits are zeros. 292 * This tends to upset hash_64, and it consistently 293 * returns just one or two different values. 294 * 295 * shifting off the lower bits fixes things. 296 */ 297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 298 } 299 300 /* 301 * stealing an rbio means taking all the uptodate pages from the stripe 302 * array in the source rbio and putting them into the destination rbio 303 */ 304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 305 { 306 int i; 307 struct page *s; 308 struct page *d; 309 310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 311 return; 312 313 for (i = 0; i < dest->nr_pages; i++) { 314 s = src->stripe_pages[i]; 315 if (!s || !PageUptodate(s)) { 316 continue; 317 } 318 319 d = dest->stripe_pages[i]; 320 if (d) 321 __free_page(d); 322 323 dest->stripe_pages[i] = s; 324 src->stripe_pages[i] = NULL; 325 } 326 } 327 328 /* 329 * merging means we take the bio_list from the victim and 330 * splice it into the destination. The victim should 331 * be discarded afterwards. 332 * 333 * must be called with dest->rbio_list_lock held 334 */ 335 static void merge_rbio(struct btrfs_raid_bio *dest, 336 struct btrfs_raid_bio *victim) 337 { 338 bio_list_merge(&dest->bio_list, &victim->bio_list); 339 dest->bio_list_bytes += victim->bio_list_bytes; 340 dest->generic_bio_cnt += victim->generic_bio_cnt; 341 bio_list_init(&victim->bio_list); 342 } 343 344 /* 345 * used to prune items that are in the cache. The caller 346 * must hold the hash table lock. 347 */ 348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 349 { 350 int bucket = rbio_bucket(rbio); 351 struct btrfs_stripe_hash_table *table; 352 struct btrfs_stripe_hash *h; 353 int freeit = 0; 354 355 /* 356 * check the bit again under the hash table lock. 357 */ 358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 359 return; 360 361 table = rbio->fs_info->stripe_hash_table; 362 h = table->table + bucket; 363 364 /* hold the lock for the bucket because we may be 365 * removing it from the hash table 366 */ 367 spin_lock(&h->lock); 368 369 /* 370 * hold the lock for the bio list because we need 371 * to make sure the bio list is empty 372 */ 373 spin_lock(&rbio->bio_list_lock); 374 375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 376 list_del_init(&rbio->stripe_cache); 377 table->cache_size -= 1; 378 freeit = 1; 379 380 /* if the bio list isn't empty, this rbio is 381 * still involved in an IO. We take it out 382 * of the cache list, and drop the ref that 383 * was held for the list. 384 * 385 * If the bio_list was empty, we also remove 386 * the rbio from the hash_table, and drop 387 * the corresponding ref 388 */ 389 if (bio_list_empty(&rbio->bio_list)) { 390 if (!list_empty(&rbio->hash_list)) { 391 list_del_init(&rbio->hash_list); 392 atomic_dec(&rbio->refs); 393 BUG_ON(!list_empty(&rbio->plug_list)); 394 } 395 } 396 } 397 398 spin_unlock(&rbio->bio_list_lock); 399 spin_unlock(&h->lock); 400 401 if (freeit) 402 __free_raid_bio(rbio); 403 } 404 405 /* 406 * prune a given rbio from the cache 407 */ 408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 409 { 410 struct btrfs_stripe_hash_table *table; 411 unsigned long flags; 412 413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 414 return; 415 416 table = rbio->fs_info->stripe_hash_table; 417 418 spin_lock_irqsave(&table->cache_lock, flags); 419 __remove_rbio_from_cache(rbio); 420 spin_unlock_irqrestore(&table->cache_lock, flags); 421 } 422 423 /* 424 * remove everything in the cache 425 */ 426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 427 { 428 struct btrfs_stripe_hash_table *table; 429 unsigned long flags; 430 struct btrfs_raid_bio *rbio; 431 432 table = info->stripe_hash_table; 433 434 spin_lock_irqsave(&table->cache_lock, flags); 435 while (!list_empty(&table->stripe_cache)) { 436 rbio = list_entry(table->stripe_cache.next, 437 struct btrfs_raid_bio, 438 stripe_cache); 439 __remove_rbio_from_cache(rbio); 440 } 441 spin_unlock_irqrestore(&table->cache_lock, flags); 442 } 443 444 /* 445 * remove all cached entries and free the hash table 446 * used by unmount 447 */ 448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 449 { 450 if (!info->stripe_hash_table) 451 return; 452 btrfs_clear_rbio_cache(info); 453 kvfree(info->stripe_hash_table); 454 info->stripe_hash_table = NULL; 455 } 456 457 /* 458 * insert an rbio into the stripe cache. It 459 * must have already been prepared by calling 460 * cache_rbio_pages 461 * 462 * If this rbio was already cached, it gets 463 * moved to the front of the lru. 464 * 465 * If the size of the rbio cache is too big, we 466 * prune an item. 467 */ 468 static void cache_rbio(struct btrfs_raid_bio *rbio) 469 { 470 struct btrfs_stripe_hash_table *table; 471 unsigned long flags; 472 473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 474 return; 475 476 table = rbio->fs_info->stripe_hash_table; 477 478 spin_lock_irqsave(&table->cache_lock, flags); 479 spin_lock(&rbio->bio_list_lock); 480 481 /* bump our ref if we were not in the list before */ 482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 483 atomic_inc(&rbio->refs); 484 485 if (!list_empty(&rbio->stripe_cache)){ 486 list_move(&rbio->stripe_cache, &table->stripe_cache); 487 } else { 488 list_add(&rbio->stripe_cache, &table->stripe_cache); 489 table->cache_size += 1; 490 } 491 492 spin_unlock(&rbio->bio_list_lock); 493 494 if (table->cache_size > RBIO_CACHE_SIZE) { 495 struct btrfs_raid_bio *found; 496 497 found = list_entry(table->stripe_cache.prev, 498 struct btrfs_raid_bio, 499 stripe_cache); 500 501 if (found != rbio) 502 __remove_rbio_from_cache(found); 503 } 504 505 spin_unlock_irqrestore(&table->cache_lock, flags); 506 return; 507 } 508 509 /* 510 * helper function to run the xor_blocks api. It is only 511 * able to do MAX_XOR_BLOCKS at a time, so we need to 512 * loop through. 513 */ 514 static void run_xor(void **pages, int src_cnt, ssize_t len) 515 { 516 int src_off = 0; 517 int xor_src_cnt = 0; 518 void *dest = pages[src_cnt]; 519 520 while(src_cnt > 0) { 521 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 522 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 523 524 src_cnt -= xor_src_cnt; 525 src_off += xor_src_cnt; 526 } 527 } 528 529 /* 530 * returns true if the bio list inside this rbio 531 * covers an entire stripe (no rmw required). 532 * Must be called with the bio list lock held, or 533 * at a time when you know it is impossible to add 534 * new bios into the list 535 */ 536 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 537 { 538 unsigned long size = rbio->bio_list_bytes; 539 int ret = 1; 540 541 if (size != rbio->nr_data * rbio->stripe_len) 542 ret = 0; 543 544 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 545 return ret; 546 } 547 548 static int rbio_is_full(struct btrfs_raid_bio *rbio) 549 { 550 unsigned long flags; 551 int ret; 552 553 spin_lock_irqsave(&rbio->bio_list_lock, flags); 554 ret = __rbio_is_full(rbio); 555 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 556 return ret; 557 } 558 559 /* 560 * returns 1 if it is safe to merge two rbios together. 561 * The merging is safe if the two rbios correspond to 562 * the same stripe and if they are both going in the same 563 * direction (read vs write), and if neither one is 564 * locked for final IO 565 * 566 * The caller is responsible for locking such that 567 * rmw_locked is safe to test 568 */ 569 static int rbio_can_merge(struct btrfs_raid_bio *last, 570 struct btrfs_raid_bio *cur) 571 { 572 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 573 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 574 return 0; 575 576 /* 577 * we can't merge with cached rbios, since the 578 * idea is that when we merge the destination 579 * rbio is going to run our IO for us. We can 580 * steal from cached rbio's though, other functions 581 * handle that. 582 */ 583 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 584 test_bit(RBIO_CACHE_BIT, &cur->flags)) 585 return 0; 586 587 if (last->bbio->raid_map[0] != 588 cur->bbio->raid_map[0]) 589 return 0; 590 591 /* we can't merge with different operations */ 592 if (last->operation != cur->operation) 593 return 0; 594 /* 595 * We've need read the full stripe from the drive. 596 * check and repair the parity and write the new results. 597 * 598 * We're not allowed to add any new bios to the 599 * bio list here, anyone else that wants to 600 * change this stripe needs to do their own rmw. 601 */ 602 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 603 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 604 return 0; 605 606 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 607 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 608 return 0; 609 610 return 1; 611 } 612 613 /* 614 * helper to index into the pstripe 615 */ 616 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 617 { 618 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 619 return rbio->stripe_pages[index]; 620 } 621 622 /* 623 * helper to index into the qstripe, returns null 624 * if there is no qstripe 625 */ 626 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 627 { 628 if (rbio->nr_data + 1 == rbio->real_stripes) 629 return NULL; 630 631 index += ((rbio->nr_data + 1) * rbio->stripe_len) >> 632 PAGE_CACHE_SHIFT; 633 return rbio->stripe_pages[index]; 634 } 635 636 /* 637 * The first stripe in the table for a logical address 638 * has the lock. rbios are added in one of three ways: 639 * 640 * 1) Nobody has the stripe locked yet. The rbio is given 641 * the lock and 0 is returned. The caller must start the IO 642 * themselves. 643 * 644 * 2) Someone has the stripe locked, but we're able to merge 645 * with the lock owner. The rbio is freed and the IO will 646 * start automatically along with the existing rbio. 1 is returned. 647 * 648 * 3) Someone has the stripe locked, but we're not able to merge. 649 * The rbio is added to the lock owner's plug list, or merged into 650 * an rbio already on the plug list. When the lock owner unlocks, 651 * the next rbio on the list is run and the IO is started automatically. 652 * 1 is returned 653 * 654 * If we return 0, the caller still owns the rbio and must continue with 655 * IO submission. If we return 1, the caller must assume the rbio has 656 * already been freed. 657 */ 658 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 659 { 660 int bucket = rbio_bucket(rbio); 661 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 662 struct btrfs_raid_bio *cur; 663 struct btrfs_raid_bio *pending; 664 unsigned long flags; 665 DEFINE_WAIT(wait); 666 struct btrfs_raid_bio *freeit = NULL; 667 struct btrfs_raid_bio *cache_drop = NULL; 668 int ret = 0; 669 int walk = 0; 670 671 spin_lock_irqsave(&h->lock, flags); 672 list_for_each_entry(cur, &h->hash_list, hash_list) { 673 walk++; 674 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 675 spin_lock(&cur->bio_list_lock); 676 677 /* can we steal this cached rbio's pages? */ 678 if (bio_list_empty(&cur->bio_list) && 679 list_empty(&cur->plug_list) && 680 test_bit(RBIO_CACHE_BIT, &cur->flags) && 681 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 682 list_del_init(&cur->hash_list); 683 atomic_dec(&cur->refs); 684 685 steal_rbio(cur, rbio); 686 cache_drop = cur; 687 spin_unlock(&cur->bio_list_lock); 688 689 goto lockit; 690 } 691 692 /* can we merge into the lock owner? */ 693 if (rbio_can_merge(cur, rbio)) { 694 merge_rbio(cur, rbio); 695 spin_unlock(&cur->bio_list_lock); 696 freeit = rbio; 697 ret = 1; 698 goto out; 699 } 700 701 702 /* 703 * we couldn't merge with the running 704 * rbio, see if we can merge with the 705 * pending ones. We don't have to 706 * check for rmw_locked because there 707 * is no way they are inside finish_rmw 708 * right now 709 */ 710 list_for_each_entry(pending, &cur->plug_list, 711 plug_list) { 712 if (rbio_can_merge(pending, rbio)) { 713 merge_rbio(pending, rbio); 714 spin_unlock(&cur->bio_list_lock); 715 freeit = rbio; 716 ret = 1; 717 goto out; 718 } 719 } 720 721 /* no merging, put us on the tail of the plug list, 722 * our rbio will be started with the currently 723 * running rbio unlocks 724 */ 725 list_add_tail(&rbio->plug_list, &cur->plug_list); 726 spin_unlock(&cur->bio_list_lock); 727 ret = 1; 728 goto out; 729 } 730 } 731 lockit: 732 atomic_inc(&rbio->refs); 733 list_add(&rbio->hash_list, &h->hash_list); 734 out: 735 spin_unlock_irqrestore(&h->lock, flags); 736 if (cache_drop) 737 remove_rbio_from_cache(cache_drop); 738 if (freeit) 739 __free_raid_bio(freeit); 740 return ret; 741 } 742 743 /* 744 * called as rmw or parity rebuild is completed. If the plug list has more 745 * rbios waiting for this stripe, the next one on the list will be started 746 */ 747 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 748 { 749 int bucket; 750 struct btrfs_stripe_hash *h; 751 unsigned long flags; 752 int keep_cache = 0; 753 754 bucket = rbio_bucket(rbio); 755 h = rbio->fs_info->stripe_hash_table->table + bucket; 756 757 if (list_empty(&rbio->plug_list)) 758 cache_rbio(rbio); 759 760 spin_lock_irqsave(&h->lock, flags); 761 spin_lock(&rbio->bio_list_lock); 762 763 if (!list_empty(&rbio->hash_list)) { 764 /* 765 * if we're still cached and there is no other IO 766 * to perform, just leave this rbio here for others 767 * to steal from later 768 */ 769 if (list_empty(&rbio->plug_list) && 770 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 771 keep_cache = 1; 772 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 773 BUG_ON(!bio_list_empty(&rbio->bio_list)); 774 goto done; 775 } 776 777 list_del_init(&rbio->hash_list); 778 atomic_dec(&rbio->refs); 779 780 /* 781 * we use the plug list to hold all the rbios 782 * waiting for the chance to lock this stripe. 783 * hand the lock over to one of them. 784 */ 785 if (!list_empty(&rbio->plug_list)) { 786 struct btrfs_raid_bio *next; 787 struct list_head *head = rbio->plug_list.next; 788 789 next = list_entry(head, struct btrfs_raid_bio, 790 plug_list); 791 792 list_del_init(&rbio->plug_list); 793 794 list_add(&next->hash_list, &h->hash_list); 795 atomic_inc(&next->refs); 796 spin_unlock(&rbio->bio_list_lock); 797 spin_unlock_irqrestore(&h->lock, flags); 798 799 if (next->operation == BTRFS_RBIO_READ_REBUILD) 800 async_read_rebuild(next); 801 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 802 steal_rbio(rbio, next); 803 async_read_rebuild(next); 804 } else if (next->operation == BTRFS_RBIO_WRITE) { 805 steal_rbio(rbio, next); 806 async_rmw_stripe(next); 807 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 808 steal_rbio(rbio, next); 809 async_scrub_parity(next); 810 } 811 812 goto done_nolock; 813 /* 814 * The barrier for this waitqueue_active is not needed, 815 * we're protected by h->lock and can't miss a wakeup. 816 */ 817 } else if (waitqueue_active(&h->wait)) { 818 spin_unlock(&rbio->bio_list_lock); 819 spin_unlock_irqrestore(&h->lock, flags); 820 wake_up(&h->wait); 821 goto done_nolock; 822 } 823 } 824 done: 825 spin_unlock(&rbio->bio_list_lock); 826 spin_unlock_irqrestore(&h->lock, flags); 827 828 done_nolock: 829 if (!keep_cache) 830 remove_rbio_from_cache(rbio); 831 } 832 833 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 834 { 835 int i; 836 837 WARN_ON(atomic_read(&rbio->refs) < 0); 838 if (!atomic_dec_and_test(&rbio->refs)) 839 return; 840 841 WARN_ON(!list_empty(&rbio->stripe_cache)); 842 WARN_ON(!list_empty(&rbio->hash_list)); 843 WARN_ON(!bio_list_empty(&rbio->bio_list)); 844 845 for (i = 0; i < rbio->nr_pages; i++) { 846 if (rbio->stripe_pages[i]) { 847 __free_page(rbio->stripe_pages[i]); 848 rbio->stripe_pages[i] = NULL; 849 } 850 } 851 852 btrfs_put_bbio(rbio->bbio); 853 kfree(rbio); 854 } 855 856 static void free_raid_bio(struct btrfs_raid_bio *rbio) 857 { 858 unlock_stripe(rbio); 859 __free_raid_bio(rbio); 860 } 861 862 /* 863 * this frees the rbio and runs through all the bios in the 864 * bio_list and calls end_io on them 865 */ 866 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) 867 { 868 struct bio *cur = bio_list_get(&rbio->bio_list); 869 struct bio *next; 870 871 if (rbio->generic_bio_cnt) 872 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 873 874 free_raid_bio(rbio); 875 876 while (cur) { 877 next = cur->bi_next; 878 cur->bi_next = NULL; 879 cur->bi_error = err; 880 bio_endio(cur); 881 cur = next; 882 } 883 } 884 885 /* 886 * end io function used by finish_rmw. When we finally 887 * get here, we've written a full stripe 888 */ 889 static void raid_write_end_io(struct bio *bio) 890 { 891 struct btrfs_raid_bio *rbio = bio->bi_private; 892 int err = bio->bi_error; 893 894 if (err) 895 fail_bio_stripe(rbio, bio); 896 897 bio_put(bio); 898 899 if (!atomic_dec_and_test(&rbio->stripes_pending)) 900 return; 901 902 err = 0; 903 904 /* OK, we have read all the stripes we need to. */ 905 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 906 err = -EIO; 907 908 rbio_orig_end_io(rbio, err); 909 return; 910 } 911 912 /* 913 * the read/modify/write code wants to use the original bio for 914 * any pages it included, and then use the rbio for everything 915 * else. This function decides if a given index (stripe number) 916 * and page number in that stripe fall inside the original bio 917 * or the rbio. 918 * 919 * if you set bio_list_only, you'll get a NULL back for any ranges 920 * that are outside the bio_list 921 * 922 * This doesn't take any refs on anything, you get a bare page pointer 923 * and the caller must bump refs as required. 924 * 925 * You must call index_rbio_pages once before you can trust 926 * the answers from this function. 927 */ 928 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 929 int index, int pagenr, int bio_list_only) 930 { 931 int chunk_page; 932 struct page *p = NULL; 933 934 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 935 936 spin_lock_irq(&rbio->bio_list_lock); 937 p = rbio->bio_pages[chunk_page]; 938 spin_unlock_irq(&rbio->bio_list_lock); 939 940 if (p || bio_list_only) 941 return p; 942 943 return rbio->stripe_pages[chunk_page]; 944 } 945 946 /* 947 * number of pages we need for the entire stripe across all the 948 * drives 949 */ 950 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 951 { 952 unsigned long nr = stripe_len * nr_stripes; 953 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE); 954 } 955 956 /* 957 * allocation and initial setup for the btrfs_raid_bio. Not 958 * this does not allocate any pages for rbio->pages. 959 */ 960 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, 961 struct btrfs_bio *bbio, u64 stripe_len) 962 { 963 struct btrfs_raid_bio *rbio; 964 int nr_data = 0; 965 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 966 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 967 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 968 void *p; 969 970 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 971 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8), 972 GFP_NOFS); 973 if (!rbio) 974 return ERR_PTR(-ENOMEM); 975 976 bio_list_init(&rbio->bio_list); 977 INIT_LIST_HEAD(&rbio->plug_list); 978 spin_lock_init(&rbio->bio_list_lock); 979 INIT_LIST_HEAD(&rbio->stripe_cache); 980 INIT_LIST_HEAD(&rbio->hash_list); 981 rbio->bbio = bbio; 982 rbio->fs_info = root->fs_info; 983 rbio->stripe_len = stripe_len; 984 rbio->nr_pages = num_pages; 985 rbio->real_stripes = real_stripes; 986 rbio->stripe_npages = stripe_npages; 987 rbio->faila = -1; 988 rbio->failb = -1; 989 atomic_set(&rbio->refs, 1); 990 atomic_set(&rbio->error, 0); 991 atomic_set(&rbio->stripes_pending, 0); 992 993 /* 994 * the stripe_pages and bio_pages array point to the extra 995 * memory we allocated past the end of the rbio 996 */ 997 p = rbio + 1; 998 rbio->stripe_pages = p; 999 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1000 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1001 1002 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1003 nr_data = real_stripes - 1; 1004 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1005 nr_data = real_stripes - 2; 1006 else 1007 BUG(); 1008 1009 rbio->nr_data = nr_data; 1010 return rbio; 1011 } 1012 1013 /* allocate pages for all the stripes in the bio, including parity */ 1014 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1015 { 1016 int i; 1017 struct page *page; 1018 1019 for (i = 0; i < rbio->nr_pages; i++) { 1020 if (rbio->stripe_pages[i]) 1021 continue; 1022 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1023 if (!page) 1024 return -ENOMEM; 1025 rbio->stripe_pages[i] = page; 1026 ClearPageUptodate(page); 1027 } 1028 return 0; 1029 } 1030 1031 /* allocate pages for just the p/q stripes */ 1032 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1033 { 1034 int i; 1035 struct page *page; 1036 1037 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 1038 1039 for (; i < rbio->nr_pages; i++) { 1040 if (rbio->stripe_pages[i]) 1041 continue; 1042 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1043 if (!page) 1044 return -ENOMEM; 1045 rbio->stripe_pages[i] = page; 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * add a single page from a specific stripe into our list of bios for IO 1052 * this will try to merge into existing bios if possible, and returns 1053 * zero if all went well. 1054 */ 1055 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1056 struct bio_list *bio_list, 1057 struct page *page, 1058 int stripe_nr, 1059 unsigned long page_index, 1060 unsigned long bio_max_len) 1061 { 1062 struct bio *last = bio_list->tail; 1063 u64 last_end = 0; 1064 int ret; 1065 struct bio *bio; 1066 struct btrfs_bio_stripe *stripe; 1067 u64 disk_start; 1068 1069 stripe = &rbio->bbio->stripes[stripe_nr]; 1070 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); 1071 1072 /* if the device is missing, just fail this stripe */ 1073 if (!stripe->dev->bdev) 1074 return fail_rbio_index(rbio, stripe_nr); 1075 1076 /* see if we can add this page onto our existing bio */ 1077 if (last) { 1078 last_end = (u64)last->bi_iter.bi_sector << 9; 1079 last_end += last->bi_iter.bi_size; 1080 1081 /* 1082 * we can't merge these if they are from different 1083 * devices or if they are not contiguous 1084 */ 1085 if (last_end == disk_start && stripe->dev->bdev && 1086 !last->bi_error && 1087 last->bi_bdev == stripe->dev->bdev) { 1088 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); 1089 if (ret == PAGE_CACHE_SIZE) 1090 return 0; 1091 } 1092 } 1093 1094 /* put a new bio on the list */ 1095 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1096 if (!bio) 1097 return -ENOMEM; 1098 1099 bio->bi_iter.bi_size = 0; 1100 bio->bi_bdev = stripe->dev->bdev; 1101 bio->bi_iter.bi_sector = disk_start >> 9; 1102 1103 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 1104 bio_list_add(bio_list, bio); 1105 return 0; 1106 } 1107 1108 /* 1109 * while we're doing the read/modify/write cycle, we could 1110 * have errors in reading pages off the disk. This checks 1111 * for errors and if we're not able to read the page it'll 1112 * trigger parity reconstruction. The rmw will be finished 1113 * after we've reconstructed the failed stripes 1114 */ 1115 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1116 { 1117 if (rbio->faila >= 0 || rbio->failb >= 0) { 1118 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1119 __raid56_parity_recover(rbio); 1120 } else { 1121 finish_rmw(rbio); 1122 } 1123 } 1124 1125 /* 1126 * these are just the pages from the rbio array, not from anything 1127 * the FS sent down to us 1128 */ 1129 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) 1130 { 1131 int index; 1132 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); 1133 index += page; 1134 return rbio->stripe_pages[index]; 1135 } 1136 1137 /* 1138 * helper function to walk our bio list and populate the bio_pages array with 1139 * the result. This seems expensive, but it is faster than constantly 1140 * searching through the bio list as we setup the IO in finish_rmw or stripe 1141 * reconstruction. 1142 * 1143 * This must be called before you trust the answers from page_in_rbio 1144 */ 1145 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1146 { 1147 struct bio *bio; 1148 u64 start; 1149 unsigned long stripe_offset; 1150 unsigned long page_index; 1151 struct page *p; 1152 int i; 1153 1154 spin_lock_irq(&rbio->bio_list_lock); 1155 bio_list_for_each(bio, &rbio->bio_list) { 1156 start = (u64)bio->bi_iter.bi_sector << 9; 1157 stripe_offset = start - rbio->bbio->raid_map[0]; 1158 page_index = stripe_offset >> PAGE_CACHE_SHIFT; 1159 1160 for (i = 0; i < bio->bi_vcnt; i++) { 1161 p = bio->bi_io_vec[i].bv_page; 1162 rbio->bio_pages[page_index + i] = p; 1163 } 1164 } 1165 spin_unlock_irq(&rbio->bio_list_lock); 1166 } 1167 1168 /* 1169 * this is called from one of two situations. We either 1170 * have a full stripe from the higher layers, or we've read all 1171 * the missing bits off disk. 1172 * 1173 * This will calculate the parity and then send down any 1174 * changed blocks. 1175 */ 1176 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1177 { 1178 struct btrfs_bio *bbio = rbio->bbio; 1179 void *pointers[rbio->real_stripes]; 1180 int stripe_len = rbio->stripe_len; 1181 int nr_data = rbio->nr_data; 1182 int stripe; 1183 int pagenr; 1184 int p_stripe = -1; 1185 int q_stripe = -1; 1186 struct bio_list bio_list; 1187 struct bio *bio; 1188 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; 1189 int ret; 1190 1191 bio_list_init(&bio_list); 1192 1193 if (rbio->real_stripes - rbio->nr_data == 1) { 1194 p_stripe = rbio->real_stripes - 1; 1195 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1196 p_stripe = rbio->real_stripes - 2; 1197 q_stripe = rbio->real_stripes - 1; 1198 } else { 1199 BUG(); 1200 } 1201 1202 /* at this point we either have a full stripe, 1203 * or we've read the full stripe from the drive. 1204 * recalculate the parity and write the new results. 1205 * 1206 * We're not allowed to add any new bios to the 1207 * bio list here, anyone else that wants to 1208 * change this stripe needs to do their own rmw. 1209 */ 1210 spin_lock_irq(&rbio->bio_list_lock); 1211 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1212 spin_unlock_irq(&rbio->bio_list_lock); 1213 1214 atomic_set(&rbio->error, 0); 1215 1216 /* 1217 * now that we've set rmw_locked, run through the 1218 * bio list one last time and map the page pointers 1219 * 1220 * We don't cache full rbios because we're assuming 1221 * the higher layers are unlikely to use this area of 1222 * the disk again soon. If they do use it again, 1223 * hopefully they will send another full bio. 1224 */ 1225 index_rbio_pages(rbio); 1226 if (!rbio_is_full(rbio)) 1227 cache_rbio_pages(rbio); 1228 else 1229 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1230 1231 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1232 struct page *p; 1233 /* first collect one page from each data stripe */ 1234 for (stripe = 0; stripe < nr_data; stripe++) { 1235 p = page_in_rbio(rbio, stripe, pagenr, 0); 1236 pointers[stripe] = kmap(p); 1237 } 1238 1239 /* then add the parity stripe */ 1240 p = rbio_pstripe_page(rbio, pagenr); 1241 SetPageUptodate(p); 1242 pointers[stripe++] = kmap(p); 1243 1244 if (q_stripe != -1) { 1245 1246 /* 1247 * raid6, add the qstripe and call the 1248 * library function to fill in our p/q 1249 */ 1250 p = rbio_qstripe_page(rbio, pagenr); 1251 SetPageUptodate(p); 1252 pointers[stripe++] = kmap(p); 1253 1254 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1255 pointers); 1256 } else { 1257 /* raid5 */ 1258 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1259 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 1260 } 1261 1262 1263 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1264 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1265 } 1266 1267 /* 1268 * time to start writing. Make bios for everything from the 1269 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1270 * everything else. 1271 */ 1272 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1273 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1274 struct page *page; 1275 if (stripe < rbio->nr_data) { 1276 page = page_in_rbio(rbio, stripe, pagenr, 1); 1277 if (!page) 1278 continue; 1279 } else { 1280 page = rbio_stripe_page(rbio, stripe, pagenr); 1281 } 1282 1283 ret = rbio_add_io_page(rbio, &bio_list, 1284 page, stripe, pagenr, rbio->stripe_len); 1285 if (ret) 1286 goto cleanup; 1287 } 1288 } 1289 1290 if (likely(!bbio->num_tgtdevs)) 1291 goto write_data; 1292 1293 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1294 if (!bbio->tgtdev_map[stripe]) 1295 continue; 1296 1297 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1298 struct page *page; 1299 if (stripe < rbio->nr_data) { 1300 page = page_in_rbio(rbio, stripe, pagenr, 1); 1301 if (!page) 1302 continue; 1303 } else { 1304 page = rbio_stripe_page(rbio, stripe, pagenr); 1305 } 1306 1307 ret = rbio_add_io_page(rbio, &bio_list, page, 1308 rbio->bbio->tgtdev_map[stripe], 1309 pagenr, rbio->stripe_len); 1310 if (ret) 1311 goto cleanup; 1312 } 1313 } 1314 1315 write_data: 1316 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1317 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1318 1319 while (1) { 1320 bio = bio_list_pop(&bio_list); 1321 if (!bio) 1322 break; 1323 1324 bio->bi_private = rbio; 1325 bio->bi_end_io = raid_write_end_io; 1326 submit_bio(WRITE, bio); 1327 } 1328 return; 1329 1330 cleanup: 1331 rbio_orig_end_io(rbio, -EIO); 1332 } 1333 1334 /* 1335 * helper to find the stripe number for a given bio. Used to figure out which 1336 * stripe has failed. This expects the bio to correspond to a physical disk, 1337 * so it looks up based on physical sector numbers. 1338 */ 1339 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1340 struct bio *bio) 1341 { 1342 u64 physical = bio->bi_iter.bi_sector; 1343 u64 stripe_start; 1344 int i; 1345 struct btrfs_bio_stripe *stripe; 1346 1347 physical <<= 9; 1348 1349 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1350 stripe = &rbio->bbio->stripes[i]; 1351 stripe_start = stripe->physical; 1352 if (physical >= stripe_start && 1353 physical < stripe_start + rbio->stripe_len && 1354 bio->bi_bdev == stripe->dev->bdev) { 1355 return i; 1356 } 1357 } 1358 return -1; 1359 } 1360 1361 /* 1362 * helper to find the stripe number for a given 1363 * bio (before mapping). Used to figure out which stripe has 1364 * failed. This looks up based on logical block numbers. 1365 */ 1366 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1367 struct bio *bio) 1368 { 1369 u64 logical = bio->bi_iter.bi_sector; 1370 u64 stripe_start; 1371 int i; 1372 1373 logical <<= 9; 1374 1375 for (i = 0; i < rbio->nr_data; i++) { 1376 stripe_start = rbio->bbio->raid_map[i]; 1377 if (logical >= stripe_start && 1378 logical < stripe_start + rbio->stripe_len) { 1379 return i; 1380 } 1381 } 1382 return -1; 1383 } 1384 1385 /* 1386 * returns -EIO if we had too many failures 1387 */ 1388 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1389 { 1390 unsigned long flags; 1391 int ret = 0; 1392 1393 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1394 1395 /* we already know this stripe is bad, move on */ 1396 if (rbio->faila == failed || rbio->failb == failed) 1397 goto out; 1398 1399 if (rbio->faila == -1) { 1400 /* first failure on this rbio */ 1401 rbio->faila = failed; 1402 atomic_inc(&rbio->error); 1403 } else if (rbio->failb == -1) { 1404 /* second failure on this rbio */ 1405 rbio->failb = failed; 1406 atomic_inc(&rbio->error); 1407 } else { 1408 ret = -EIO; 1409 } 1410 out: 1411 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * helper to fail a stripe based on a physical disk 1418 * bio. 1419 */ 1420 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1421 struct bio *bio) 1422 { 1423 int failed = find_bio_stripe(rbio, bio); 1424 1425 if (failed < 0) 1426 return -EIO; 1427 1428 return fail_rbio_index(rbio, failed); 1429 } 1430 1431 /* 1432 * this sets each page in the bio uptodate. It should only be used on private 1433 * rbio pages, nothing that comes in from the higher layers 1434 */ 1435 static void set_bio_pages_uptodate(struct bio *bio) 1436 { 1437 int i; 1438 struct page *p; 1439 1440 for (i = 0; i < bio->bi_vcnt; i++) { 1441 p = bio->bi_io_vec[i].bv_page; 1442 SetPageUptodate(p); 1443 } 1444 } 1445 1446 /* 1447 * end io for the read phase of the rmw cycle. All the bios here are physical 1448 * stripe bios we've read from the disk so we can recalculate the parity of the 1449 * stripe. 1450 * 1451 * This will usually kick off finish_rmw once all the bios are read in, but it 1452 * may trigger parity reconstruction if we had any errors along the way 1453 */ 1454 static void raid_rmw_end_io(struct bio *bio) 1455 { 1456 struct btrfs_raid_bio *rbio = bio->bi_private; 1457 1458 if (bio->bi_error) 1459 fail_bio_stripe(rbio, bio); 1460 else 1461 set_bio_pages_uptodate(bio); 1462 1463 bio_put(bio); 1464 1465 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1466 return; 1467 1468 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1469 goto cleanup; 1470 1471 /* 1472 * this will normally call finish_rmw to start our write 1473 * but if there are any failed stripes we'll reconstruct 1474 * from parity first 1475 */ 1476 validate_rbio_for_rmw(rbio); 1477 return; 1478 1479 cleanup: 1480 1481 rbio_orig_end_io(rbio, -EIO); 1482 } 1483 1484 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1485 { 1486 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1487 rmw_work, NULL, NULL); 1488 1489 btrfs_queue_work(rbio->fs_info->rmw_workers, 1490 &rbio->work); 1491 } 1492 1493 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1494 { 1495 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1496 read_rebuild_work, NULL, NULL); 1497 1498 btrfs_queue_work(rbio->fs_info->rmw_workers, 1499 &rbio->work); 1500 } 1501 1502 /* 1503 * the stripe must be locked by the caller. It will 1504 * unlock after all the writes are done 1505 */ 1506 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1507 { 1508 int bios_to_read = 0; 1509 struct bio_list bio_list; 1510 int ret; 1511 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1512 int pagenr; 1513 int stripe; 1514 struct bio *bio; 1515 1516 bio_list_init(&bio_list); 1517 1518 ret = alloc_rbio_pages(rbio); 1519 if (ret) 1520 goto cleanup; 1521 1522 index_rbio_pages(rbio); 1523 1524 atomic_set(&rbio->error, 0); 1525 /* 1526 * build a list of bios to read all the missing parts of this 1527 * stripe 1528 */ 1529 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1530 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1531 struct page *page; 1532 /* 1533 * we want to find all the pages missing from 1534 * the rbio and read them from the disk. If 1535 * page_in_rbio finds a page in the bio list 1536 * we don't need to read it off the stripe. 1537 */ 1538 page = page_in_rbio(rbio, stripe, pagenr, 1); 1539 if (page) 1540 continue; 1541 1542 page = rbio_stripe_page(rbio, stripe, pagenr); 1543 /* 1544 * the bio cache may have handed us an uptodate 1545 * page. If so, be happy and use it 1546 */ 1547 if (PageUptodate(page)) 1548 continue; 1549 1550 ret = rbio_add_io_page(rbio, &bio_list, page, 1551 stripe, pagenr, rbio->stripe_len); 1552 if (ret) 1553 goto cleanup; 1554 } 1555 } 1556 1557 bios_to_read = bio_list_size(&bio_list); 1558 if (!bios_to_read) { 1559 /* 1560 * this can happen if others have merged with 1561 * us, it means there is nothing left to read. 1562 * But if there are missing devices it may not be 1563 * safe to do the full stripe write yet. 1564 */ 1565 goto finish; 1566 } 1567 1568 /* 1569 * the bbio may be freed once we submit the last bio. Make sure 1570 * not to touch it after that 1571 */ 1572 atomic_set(&rbio->stripes_pending, bios_to_read); 1573 while (1) { 1574 bio = bio_list_pop(&bio_list); 1575 if (!bio) 1576 break; 1577 1578 bio->bi_private = rbio; 1579 bio->bi_end_io = raid_rmw_end_io; 1580 1581 btrfs_bio_wq_end_io(rbio->fs_info, bio, 1582 BTRFS_WQ_ENDIO_RAID56); 1583 1584 submit_bio(READ, bio); 1585 } 1586 /* the actual write will happen once the reads are done */ 1587 return 0; 1588 1589 cleanup: 1590 rbio_orig_end_io(rbio, -EIO); 1591 return -EIO; 1592 1593 finish: 1594 validate_rbio_for_rmw(rbio); 1595 return 0; 1596 } 1597 1598 /* 1599 * if the upper layers pass in a full stripe, we thank them by only allocating 1600 * enough pages to hold the parity, and sending it all down quickly. 1601 */ 1602 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1603 { 1604 int ret; 1605 1606 ret = alloc_rbio_parity_pages(rbio); 1607 if (ret) { 1608 __free_raid_bio(rbio); 1609 return ret; 1610 } 1611 1612 ret = lock_stripe_add(rbio); 1613 if (ret == 0) 1614 finish_rmw(rbio); 1615 return 0; 1616 } 1617 1618 /* 1619 * partial stripe writes get handed over to async helpers. 1620 * We're really hoping to merge a few more writes into this 1621 * rbio before calculating new parity 1622 */ 1623 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1624 { 1625 int ret; 1626 1627 ret = lock_stripe_add(rbio); 1628 if (ret == 0) 1629 async_rmw_stripe(rbio); 1630 return 0; 1631 } 1632 1633 /* 1634 * sometimes while we were reading from the drive to 1635 * recalculate parity, enough new bios come into create 1636 * a full stripe. So we do a check here to see if we can 1637 * go directly to finish_rmw 1638 */ 1639 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1640 { 1641 /* head off into rmw land if we don't have a full stripe */ 1642 if (!rbio_is_full(rbio)) 1643 return partial_stripe_write(rbio); 1644 return full_stripe_write(rbio); 1645 } 1646 1647 /* 1648 * We use plugging call backs to collect full stripes. 1649 * Any time we get a partial stripe write while plugged 1650 * we collect it into a list. When the unplug comes down, 1651 * we sort the list by logical block number and merge 1652 * everything we can into the same rbios 1653 */ 1654 struct btrfs_plug_cb { 1655 struct blk_plug_cb cb; 1656 struct btrfs_fs_info *info; 1657 struct list_head rbio_list; 1658 struct btrfs_work work; 1659 }; 1660 1661 /* 1662 * rbios on the plug list are sorted for easier merging. 1663 */ 1664 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1665 { 1666 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1667 plug_list); 1668 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1669 plug_list); 1670 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1671 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1672 1673 if (a_sector < b_sector) 1674 return -1; 1675 if (a_sector > b_sector) 1676 return 1; 1677 return 0; 1678 } 1679 1680 static void run_plug(struct btrfs_plug_cb *plug) 1681 { 1682 struct btrfs_raid_bio *cur; 1683 struct btrfs_raid_bio *last = NULL; 1684 1685 /* 1686 * sort our plug list then try to merge 1687 * everything we can in hopes of creating full 1688 * stripes. 1689 */ 1690 list_sort(NULL, &plug->rbio_list, plug_cmp); 1691 while (!list_empty(&plug->rbio_list)) { 1692 cur = list_entry(plug->rbio_list.next, 1693 struct btrfs_raid_bio, plug_list); 1694 list_del_init(&cur->plug_list); 1695 1696 if (rbio_is_full(cur)) { 1697 /* we have a full stripe, send it down */ 1698 full_stripe_write(cur); 1699 continue; 1700 } 1701 if (last) { 1702 if (rbio_can_merge(last, cur)) { 1703 merge_rbio(last, cur); 1704 __free_raid_bio(cur); 1705 continue; 1706 1707 } 1708 __raid56_parity_write(last); 1709 } 1710 last = cur; 1711 } 1712 if (last) { 1713 __raid56_parity_write(last); 1714 } 1715 kfree(plug); 1716 } 1717 1718 /* 1719 * if the unplug comes from schedule, we have to push the 1720 * work off to a helper thread 1721 */ 1722 static void unplug_work(struct btrfs_work *work) 1723 { 1724 struct btrfs_plug_cb *plug; 1725 plug = container_of(work, struct btrfs_plug_cb, work); 1726 run_plug(plug); 1727 } 1728 1729 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1730 { 1731 struct btrfs_plug_cb *plug; 1732 plug = container_of(cb, struct btrfs_plug_cb, cb); 1733 1734 if (from_schedule) { 1735 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1736 unplug_work, NULL, NULL); 1737 btrfs_queue_work(plug->info->rmw_workers, 1738 &plug->work); 1739 return; 1740 } 1741 run_plug(plug); 1742 } 1743 1744 /* 1745 * our main entry point for writes from the rest of the FS. 1746 */ 1747 int raid56_parity_write(struct btrfs_root *root, struct bio *bio, 1748 struct btrfs_bio *bbio, u64 stripe_len) 1749 { 1750 struct btrfs_raid_bio *rbio; 1751 struct btrfs_plug_cb *plug = NULL; 1752 struct blk_plug_cb *cb; 1753 int ret; 1754 1755 rbio = alloc_rbio(root, bbio, stripe_len); 1756 if (IS_ERR(rbio)) { 1757 btrfs_put_bbio(bbio); 1758 return PTR_ERR(rbio); 1759 } 1760 bio_list_add(&rbio->bio_list, bio); 1761 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1762 rbio->operation = BTRFS_RBIO_WRITE; 1763 1764 btrfs_bio_counter_inc_noblocked(root->fs_info); 1765 rbio->generic_bio_cnt = 1; 1766 1767 /* 1768 * don't plug on full rbios, just get them out the door 1769 * as quickly as we can 1770 */ 1771 if (rbio_is_full(rbio)) { 1772 ret = full_stripe_write(rbio); 1773 if (ret) 1774 btrfs_bio_counter_dec(root->fs_info); 1775 return ret; 1776 } 1777 1778 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, 1779 sizeof(*plug)); 1780 if (cb) { 1781 plug = container_of(cb, struct btrfs_plug_cb, cb); 1782 if (!plug->info) { 1783 plug->info = root->fs_info; 1784 INIT_LIST_HEAD(&plug->rbio_list); 1785 } 1786 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1787 ret = 0; 1788 } else { 1789 ret = __raid56_parity_write(rbio); 1790 if (ret) 1791 btrfs_bio_counter_dec(root->fs_info); 1792 } 1793 return ret; 1794 } 1795 1796 /* 1797 * all parity reconstruction happens here. We've read in everything 1798 * we can find from the drives and this does the heavy lifting of 1799 * sorting the good from the bad. 1800 */ 1801 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1802 { 1803 int pagenr, stripe; 1804 void **pointers; 1805 int faila = -1, failb = -1; 1806 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1807 struct page *page; 1808 int err; 1809 int i; 1810 1811 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1812 if (!pointers) { 1813 err = -ENOMEM; 1814 goto cleanup_io; 1815 } 1816 1817 faila = rbio->faila; 1818 failb = rbio->failb; 1819 1820 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1821 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1822 spin_lock_irq(&rbio->bio_list_lock); 1823 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1824 spin_unlock_irq(&rbio->bio_list_lock); 1825 } 1826 1827 index_rbio_pages(rbio); 1828 1829 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1830 /* 1831 * Now we just use bitmap to mark the horizontal stripes in 1832 * which we have data when doing parity scrub. 1833 */ 1834 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1835 !test_bit(pagenr, rbio->dbitmap)) 1836 continue; 1837 1838 /* setup our array of pointers with pages 1839 * from each stripe 1840 */ 1841 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1842 /* 1843 * if we're rebuilding a read, we have to use 1844 * pages from the bio list 1845 */ 1846 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1847 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1848 (stripe == faila || stripe == failb)) { 1849 page = page_in_rbio(rbio, stripe, pagenr, 0); 1850 } else { 1851 page = rbio_stripe_page(rbio, stripe, pagenr); 1852 } 1853 pointers[stripe] = kmap(page); 1854 } 1855 1856 /* all raid6 handling here */ 1857 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1858 /* 1859 * single failure, rebuild from parity raid5 1860 * style 1861 */ 1862 if (failb < 0) { 1863 if (faila == rbio->nr_data) { 1864 /* 1865 * Just the P stripe has failed, without 1866 * a bad data or Q stripe. 1867 * TODO, we should redo the xor here. 1868 */ 1869 err = -EIO; 1870 goto cleanup; 1871 } 1872 /* 1873 * a single failure in raid6 is rebuilt 1874 * in the pstripe code below 1875 */ 1876 goto pstripe; 1877 } 1878 1879 /* make sure our ps and qs are in order */ 1880 if (faila > failb) { 1881 int tmp = failb; 1882 failb = faila; 1883 faila = tmp; 1884 } 1885 1886 /* if the q stripe is failed, do a pstripe reconstruction 1887 * from the xors. 1888 * If both the q stripe and the P stripe are failed, we're 1889 * here due to a crc mismatch and we can't give them the 1890 * data they want 1891 */ 1892 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1893 if (rbio->bbio->raid_map[faila] == 1894 RAID5_P_STRIPE) { 1895 err = -EIO; 1896 goto cleanup; 1897 } 1898 /* 1899 * otherwise we have one bad data stripe and 1900 * a good P stripe. raid5! 1901 */ 1902 goto pstripe; 1903 } 1904 1905 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1906 raid6_datap_recov(rbio->real_stripes, 1907 PAGE_SIZE, faila, pointers); 1908 } else { 1909 raid6_2data_recov(rbio->real_stripes, 1910 PAGE_SIZE, faila, failb, 1911 pointers); 1912 } 1913 } else { 1914 void *p; 1915 1916 /* rebuild from P stripe here (raid5 or raid6) */ 1917 BUG_ON(failb != -1); 1918 pstripe: 1919 /* Copy parity block into failed block to start with */ 1920 memcpy(pointers[faila], 1921 pointers[rbio->nr_data], 1922 PAGE_CACHE_SIZE); 1923 1924 /* rearrange the pointer array */ 1925 p = pointers[faila]; 1926 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1927 pointers[stripe] = pointers[stripe + 1]; 1928 pointers[rbio->nr_data - 1] = p; 1929 1930 /* xor in the rest */ 1931 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); 1932 } 1933 /* if we're doing this rebuild as part of an rmw, go through 1934 * and set all of our private rbio pages in the 1935 * failed stripes as uptodate. This way finish_rmw will 1936 * know they can be trusted. If this was a read reconstruction, 1937 * other endio functions will fiddle the uptodate bits 1938 */ 1939 if (rbio->operation == BTRFS_RBIO_WRITE) { 1940 for (i = 0; i < nr_pages; i++) { 1941 if (faila != -1) { 1942 page = rbio_stripe_page(rbio, faila, i); 1943 SetPageUptodate(page); 1944 } 1945 if (failb != -1) { 1946 page = rbio_stripe_page(rbio, failb, i); 1947 SetPageUptodate(page); 1948 } 1949 } 1950 } 1951 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1952 /* 1953 * if we're rebuilding a read, we have to use 1954 * pages from the bio list 1955 */ 1956 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1957 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1958 (stripe == faila || stripe == failb)) { 1959 page = page_in_rbio(rbio, stripe, pagenr, 0); 1960 } else { 1961 page = rbio_stripe_page(rbio, stripe, pagenr); 1962 } 1963 kunmap(page); 1964 } 1965 } 1966 1967 err = 0; 1968 cleanup: 1969 kfree(pointers); 1970 1971 cleanup_io: 1972 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1973 if (err == 0) 1974 cache_rbio_pages(rbio); 1975 else 1976 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1977 1978 rbio_orig_end_io(rbio, err); 1979 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1980 rbio_orig_end_io(rbio, err); 1981 } else if (err == 0) { 1982 rbio->faila = -1; 1983 rbio->failb = -1; 1984 1985 if (rbio->operation == BTRFS_RBIO_WRITE) 1986 finish_rmw(rbio); 1987 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1988 finish_parity_scrub(rbio, 0); 1989 else 1990 BUG(); 1991 } else { 1992 rbio_orig_end_io(rbio, err); 1993 } 1994 } 1995 1996 /* 1997 * This is called only for stripes we've read from disk to 1998 * reconstruct the parity. 1999 */ 2000 static void raid_recover_end_io(struct bio *bio) 2001 { 2002 struct btrfs_raid_bio *rbio = bio->bi_private; 2003 2004 /* 2005 * we only read stripe pages off the disk, set them 2006 * up to date if there were no errors 2007 */ 2008 if (bio->bi_error) 2009 fail_bio_stripe(rbio, bio); 2010 else 2011 set_bio_pages_uptodate(bio); 2012 bio_put(bio); 2013 2014 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2015 return; 2016 2017 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2018 rbio_orig_end_io(rbio, -EIO); 2019 else 2020 __raid_recover_end_io(rbio); 2021 } 2022 2023 /* 2024 * reads everything we need off the disk to reconstruct 2025 * the parity. endio handlers trigger final reconstruction 2026 * when the IO is done. 2027 * 2028 * This is used both for reads from the higher layers and for 2029 * parity construction required to finish a rmw cycle. 2030 */ 2031 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2032 { 2033 int bios_to_read = 0; 2034 struct bio_list bio_list; 2035 int ret; 2036 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 2037 int pagenr; 2038 int stripe; 2039 struct bio *bio; 2040 2041 bio_list_init(&bio_list); 2042 2043 ret = alloc_rbio_pages(rbio); 2044 if (ret) 2045 goto cleanup; 2046 2047 atomic_set(&rbio->error, 0); 2048 2049 /* 2050 * read everything that hasn't failed. Thanks to the 2051 * stripe cache, it is possible that some or all of these 2052 * pages are going to be uptodate. 2053 */ 2054 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2055 if (rbio->faila == stripe || rbio->failb == stripe) { 2056 atomic_inc(&rbio->error); 2057 continue; 2058 } 2059 2060 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 2061 struct page *p; 2062 2063 /* 2064 * the rmw code may have already read this 2065 * page in 2066 */ 2067 p = rbio_stripe_page(rbio, stripe, pagenr); 2068 if (PageUptodate(p)) 2069 continue; 2070 2071 ret = rbio_add_io_page(rbio, &bio_list, 2072 rbio_stripe_page(rbio, stripe, pagenr), 2073 stripe, pagenr, rbio->stripe_len); 2074 if (ret < 0) 2075 goto cleanup; 2076 } 2077 } 2078 2079 bios_to_read = bio_list_size(&bio_list); 2080 if (!bios_to_read) { 2081 /* 2082 * we might have no bios to read just because the pages 2083 * were up to date, or we might have no bios to read because 2084 * the devices were gone. 2085 */ 2086 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2087 __raid_recover_end_io(rbio); 2088 goto out; 2089 } else { 2090 goto cleanup; 2091 } 2092 } 2093 2094 /* 2095 * the bbio may be freed once we submit the last bio. Make sure 2096 * not to touch it after that 2097 */ 2098 atomic_set(&rbio->stripes_pending, bios_to_read); 2099 while (1) { 2100 bio = bio_list_pop(&bio_list); 2101 if (!bio) 2102 break; 2103 2104 bio->bi_private = rbio; 2105 bio->bi_end_io = raid_recover_end_io; 2106 2107 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2108 BTRFS_WQ_ENDIO_RAID56); 2109 2110 submit_bio(READ, bio); 2111 } 2112 out: 2113 return 0; 2114 2115 cleanup: 2116 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2117 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2118 rbio_orig_end_io(rbio, -EIO); 2119 return -EIO; 2120 } 2121 2122 /* 2123 * the main entry point for reads from the higher layers. This 2124 * is really only called when the normal read path had a failure, 2125 * so we assume the bio they send down corresponds to a failed part 2126 * of the drive. 2127 */ 2128 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, 2129 struct btrfs_bio *bbio, u64 stripe_len, 2130 int mirror_num, int generic_io) 2131 { 2132 struct btrfs_raid_bio *rbio; 2133 int ret; 2134 2135 rbio = alloc_rbio(root, bbio, stripe_len); 2136 if (IS_ERR(rbio)) { 2137 if (generic_io) 2138 btrfs_put_bbio(bbio); 2139 return PTR_ERR(rbio); 2140 } 2141 2142 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2143 bio_list_add(&rbio->bio_list, bio); 2144 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2145 2146 rbio->faila = find_logical_bio_stripe(rbio, bio); 2147 if (rbio->faila == -1) { 2148 BUG(); 2149 if (generic_io) 2150 btrfs_put_bbio(bbio); 2151 kfree(rbio); 2152 return -EIO; 2153 } 2154 2155 if (generic_io) { 2156 btrfs_bio_counter_inc_noblocked(root->fs_info); 2157 rbio->generic_bio_cnt = 1; 2158 } else { 2159 btrfs_get_bbio(bbio); 2160 } 2161 2162 /* 2163 * reconstruct from the q stripe if they are 2164 * asking for mirror 3 2165 */ 2166 if (mirror_num == 3) 2167 rbio->failb = rbio->real_stripes - 2; 2168 2169 ret = lock_stripe_add(rbio); 2170 2171 /* 2172 * __raid56_parity_recover will end the bio with 2173 * any errors it hits. We don't want to return 2174 * its error value up the stack because our caller 2175 * will end up calling bio_endio with any nonzero 2176 * return 2177 */ 2178 if (ret == 0) 2179 __raid56_parity_recover(rbio); 2180 /* 2181 * our rbio has been added to the list of 2182 * rbios that will be handled after the 2183 * currently lock owner is done 2184 */ 2185 return 0; 2186 2187 } 2188 2189 static void rmw_work(struct btrfs_work *work) 2190 { 2191 struct btrfs_raid_bio *rbio; 2192 2193 rbio = container_of(work, struct btrfs_raid_bio, work); 2194 raid56_rmw_stripe(rbio); 2195 } 2196 2197 static void read_rebuild_work(struct btrfs_work *work) 2198 { 2199 struct btrfs_raid_bio *rbio; 2200 2201 rbio = container_of(work, struct btrfs_raid_bio, work); 2202 __raid56_parity_recover(rbio); 2203 } 2204 2205 /* 2206 * The following code is used to scrub/replace the parity stripe 2207 * 2208 * Note: We need make sure all the pages that add into the scrub/replace 2209 * raid bio are correct and not be changed during the scrub/replace. That 2210 * is those pages just hold metadata or file data with checksum. 2211 */ 2212 2213 struct btrfs_raid_bio * 2214 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, 2215 struct btrfs_bio *bbio, u64 stripe_len, 2216 struct btrfs_device *scrub_dev, 2217 unsigned long *dbitmap, int stripe_nsectors) 2218 { 2219 struct btrfs_raid_bio *rbio; 2220 int i; 2221 2222 rbio = alloc_rbio(root, bbio, stripe_len); 2223 if (IS_ERR(rbio)) 2224 return NULL; 2225 bio_list_add(&rbio->bio_list, bio); 2226 /* 2227 * This is a special bio which is used to hold the completion handler 2228 * and make the scrub rbio is similar to the other types 2229 */ 2230 ASSERT(!bio->bi_iter.bi_size); 2231 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2232 2233 for (i = 0; i < rbio->real_stripes; i++) { 2234 if (bbio->stripes[i].dev == scrub_dev) { 2235 rbio->scrubp = i; 2236 break; 2237 } 2238 } 2239 2240 /* Now we just support the sectorsize equals to page size */ 2241 ASSERT(root->sectorsize == PAGE_SIZE); 2242 ASSERT(rbio->stripe_npages == stripe_nsectors); 2243 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2244 2245 return rbio; 2246 } 2247 2248 /* Used for both parity scrub and missing. */ 2249 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2250 u64 logical) 2251 { 2252 int stripe_offset; 2253 int index; 2254 2255 ASSERT(logical >= rbio->bbio->raid_map[0]); 2256 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2257 rbio->stripe_len * rbio->nr_data); 2258 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2259 index = stripe_offset >> PAGE_CACHE_SHIFT; 2260 rbio->bio_pages[index] = page; 2261 } 2262 2263 /* 2264 * We just scrub the parity that we have correct data on the same horizontal, 2265 * so we needn't allocate all pages for all the stripes. 2266 */ 2267 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2268 { 2269 int i; 2270 int bit; 2271 int index; 2272 struct page *page; 2273 2274 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2275 for (i = 0; i < rbio->real_stripes; i++) { 2276 index = i * rbio->stripe_npages + bit; 2277 if (rbio->stripe_pages[index]) 2278 continue; 2279 2280 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2281 if (!page) 2282 return -ENOMEM; 2283 rbio->stripe_pages[index] = page; 2284 ClearPageUptodate(page); 2285 } 2286 } 2287 return 0; 2288 } 2289 2290 /* 2291 * end io function used by finish_rmw. When we finally 2292 * get here, we've written a full stripe 2293 */ 2294 static void raid_write_parity_end_io(struct bio *bio) 2295 { 2296 struct btrfs_raid_bio *rbio = bio->bi_private; 2297 int err = bio->bi_error; 2298 2299 if (bio->bi_error) 2300 fail_bio_stripe(rbio, bio); 2301 2302 bio_put(bio); 2303 2304 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2305 return; 2306 2307 err = 0; 2308 2309 if (atomic_read(&rbio->error)) 2310 err = -EIO; 2311 2312 rbio_orig_end_io(rbio, err); 2313 } 2314 2315 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2316 int need_check) 2317 { 2318 struct btrfs_bio *bbio = rbio->bbio; 2319 void *pointers[rbio->real_stripes]; 2320 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2321 int nr_data = rbio->nr_data; 2322 int stripe; 2323 int pagenr; 2324 int p_stripe = -1; 2325 int q_stripe = -1; 2326 struct page *p_page = NULL; 2327 struct page *q_page = NULL; 2328 struct bio_list bio_list; 2329 struct bio *bio; 2330 int is_replace = 0; 2331 int ret; 2332 2333 bio_list_init(&bio_list); 2334 2335 if (rbio->real_stripes - rbio->nr_data == 1) { 2336 p_stripe = rbio->real_stripes - 1; 2337 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2338 p_stripe = rbio->real_stripes - 2; 2339 q_stripe = rbio->real_stripes - 1; 2340 } else { 2341 BUG(); 2342 } 2343 2344 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2345 is_replace = 1; 2346 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2347 } 2348 2349 /* 2350 * Because the higher layers(scrubber) are unlikely to 2351 * use this area of the disk again soon, so don't cache 2352 * it. 2353 */ 2354 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2355 2356 if (!need_check) 2357 goto writeback; 2358 2359 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2360 if (!p_page) 2361 goto cleanup; 2362 SetPageUptodate(p_page); 2363 2364 if (q_stripe != -1) { 2365 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2366 if (!q_page) { 2367 __free_page(p_page); 2368 goto cleanup; 2369 } 2370 SetPageUptodate(q_page); 2371 } 2372 2373 atomic_set(&rbio->error, 0); 2374 2375 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2376 struct page *p; 2377 void *parity; 2378 /* first collect one page from each data stripe */ 2379 for (stripe = 0; stripe < nr_data; stripe++) { 2380 p = page_in_rbio(rbio, stripe, pagenr, 0); 2381 pointers[stripe] = kmap(p); 2382 } 2383 2384 /* then add the parity stripe */ 2385 pointers[stripe++] = kmap(p_page); 2386 2387 if (q_stripe != -1) { 2388 2389 /* 2390 * raid6, add the qstripe and call the 2391 * library function to fill in our p/q 2392 */ 2393 pointers[stripe++] = kmap(q_page); 2394 2395 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2396 pointers); 2397 } else { 2398 /* raid5 */ 2399 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2400 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 2401 } 2402 2403 /* Check scrubbing pairty and repair it */ 2404 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2405 parity = kmap(p); 2406 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) 2407 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); 2408 else 2409 /* Parity is right, needn't writeback */ 2410 bitmap_clear(rbio->dbitmap, pagenr, 1); 2411 kunmap(p); 2412 2413 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2414 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2415 } 2416 2417 __free_page(p_page); 2418 if (q_page) 2419 __free_page(q_page); 2420 2421 writeback: 2422 /* 2423 * time to start writing. Make bios for everything from the 2424 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2425 * everything else. 2426 */ 2427 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2428 struct page *page; 2429 2430 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2431 ret = rbio_add_io_page(rbio, &bio_list, 2432 page, rbio->scrubp, pagenr, rbio->stripe_len); 2433 if (ret) 2434 goto cleanup; 2435 } 2436 2437 if (!is_replace) 2438 goto submit_write; 2439 2440 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2441 struct page *page; 2442 2443 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2444 ret = rbio_add_io_page(rbio, &bio_list, page, 2445 bbio->tgtdev_map[rbio->scrubp], 2446 pagenr, rbio->stripe_len); 2447 if (ret) 2448 goto cleanup; 2449 } 2450 2451 submit_write: 2452 nr_data = bio_list_size(&bio_list); 2453 if (!nr_data) { 2454 /* Every parity is right */ 2455 rbio_orig_end_io(rbio, 0); 2456 return; 2457 } 2458 2459 atomic_set(&rbio->stripes_pending, nr_data); 2460 2461 while (1) { 2462 bio = bio_list_pop(&bio_list); 2463 if (!bio) 2464 break; 2465 2466 bio->bi_private = rbio; 2467 bio->bi_end_io = raid_write_parity_end_io; 2468 submit_bio(WRITE, bio); 2469 } 2470 return; 2471 2472 cleanup: 2473 rbio_orig_end_io(rbio, -EIO); 2474 } 2475 2476 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2477 { 2478 if (stripe >= 0 && stripe < rbio->nr_data) 2479 return 1; 2480 return 0; 2481 } 2482 2483 /* 2484 * While we're doing the parity check and repair, we could have errors 2485 * in reading pages off the disk. This checks for errors and if we're 2486 * not able to read the page it'll trigger parity reconstruction. The 2487 * parity scrub will be finished after we've reconstructed the failed 2488 * stripes 2489 */ 2490 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2491 { 2492 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2493 goto cleanup; 2494 2495 if (rbio->faila >= 0 || rbio->failb >= 0) { 2496 int dfail = 0, failp = -1; 2497 2498 if (is_data_stripe(rbio, rbio->faila)) 2499 dfail++; 2500 else if (is_parity_stripe(rbio->faila)) 2501 failp = rbio->faila; 2502 2503 if (is_data_stripe(rbio, rbio->failb)) 2504 dfail++; 2505 else if (is_parity_stripe(rbio->failb)) 2506 failp = rbio->failb; 2507 2508 /* 2509 * Because we can not use a scrubbing parity to repair 2510 * the data, so the capability of the repair is declined. 2511 * (In the case of RAID5, we can not repair anything) 2512 */ 2513 if (dfail > rbio->bbio->max_errors - 1) 2514 goto cleanup; 2515 2516 /* 2517 * If all data is good, only parity is correctly, just 2518 * repair the parity. 2519 */ 2520 if (dfail == 0) { 2521 finish_parity_scrub(rbio, 0); 2522 return; 2523 } 2524 2525 /* 2526 * Here means we got one corrupted data stripe and one 2527 * corrupted parity on RAID6, if the corrupted parity 2528 * is scrubbing parity, luckly, use the other one to repair 2529 * the data, or we can not repair the data stripe. 2530 */ 2531 if (failp != rbio->scrubp) 2532 goto cleanup; 2533 2534 __raid_recover_end_io(rbio); 2535 } else { 2536 finish_parity_scrub(rbio, 1); 2537 } 2538 return; 2539 2540 cleanup: 2541 rbio_orig_end_io(rbio, -EIO); 2542 } 2543 2544 /* 2545 * end io for the read phase of the rmw cycle. All the bios here are physical 2546 * stripe bios we've read from the disk so we can recalculate the parity of the 2547 * stripe. 2548 * 2549 * This will usually kick off finish_rmw once all the bios are read in, but it 2550 * may trigger parity reconstruction if we had any errors along the way 2551 */ 2552 static void raid56_parity_scrub_end_io(struct bio *bio) 2553 { 2554 struct btrfs_raid_bio *rbio = bio->bi_private; 2555 2556 if (bio->bi_error) 2557 fail_bio_stripe(rbio, bio); 2558 else 2559 set_bio_pages_uptodate(bio); 2560 2561 bio_put(bio); 2562 2563 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2564 return; 2565 2566 /* 2567 * this will normally call finish_rmw to start our write 2568 * but if there are any failed stripes we'll reconstruct 2569 * from parity first 2570 */ 2571 validate_rbio_for_parity_scrub(rbio); 2572 } 2573 2574 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2575 { 2576 int bios_to_read = 0; 2577 struct bio_list bio_list; 2578 int ret; 2579 int pagenr; 2580 int stripe; 2581 struct bio *bio; 2582 2583 ret = alloc_rbio_essential_pages(rbio); 2584 if (ret) 2585 goto cleanup; 2586 2587 bio_list_init(&bio_list); 2588 2589 atomic_set(&rbio->error, 0); 2590 /* 2591 * build a list of bios to read all the missing parts of this 2592 * stripe 2593 */ 2594 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2595 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2596 struct page *page; 2597 /* 2598 * we want to find all the pages missing from 2599 * the rbio and read them from the disk. If 2600 * page_in_rbio finds a page in the bio list 2601 * we don't need to read it off the stripe. 2602 */ 2603 page = page_in_rbio(rbio, stripe, pagenr, 1); 2604 if (page) 2605 continue; 2606 2607 page = rbio_stripe_page(rbio, stripe, pagenr); 2608 /* 2609 * the bio cache may have handed us an uptodate 2610 * page. If so, be happy and use it 2611 */ 2612 if (PageUptodate(page)) 2613 continue; 2614 2615 ret = rbio_add_io_page(rbio, &bio_list, page, 2616 stripe, pagenr, rbio->stripe_len); 2617 if (ret) 2618 goto cleanup; 2619 } 2620 } 2621 2622 bios_to_read = bio_list_size(&bio_list); 2623 if (!bios_to_read) { 2624 /* 2625 * this can happen if others have merged with 2626 * us, it means there is nothing left to read. 2627 * But if there are missing devices it may not be 2628 * safe to do the full stripe write yet. 2629 */ 2630 goto finish; 2631 } 2632 2633 /* 2634 * the bbio may be freed once we submit the last bio. Make sure 2635 * not to touch it after that 2636 */ 2637 atomic_set(&rbio->stripes_pending, bios_to_read); 2638 while (1) { 2639 bio = bio_list_pop(&bio_list); 2640 if (!bio) 2641 break; 2642 2643 bio->bi_private = rbio; 2644 bio->bi_end_io = raid56_parity_scrub_end_io; 2645 2646 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2647 BTRFS_WQ_ENDIO_RAID56); 2648 2649 submit_bio(READ, bio); 2650 } 2651 /* the actual write will happen once the reads are done */ 2652 return; 2653 2654 cleanup: 2655 rbio_orig_end_io(rbio, -EIO); 2656 return; 2657 2658 finish: 2659 validate_rbio_for_parity_scrub(rbio); 2660 } 2661 2662 static void scrub_parity_work(struct btrfs_work *work) 2663 { 2664 struct btrfs_raid_bio *rbio; 2665 2666 rbio = container_of(work, struct btrfs_raid_bio, work); 2667 raid56_parity_scrub_stripe(rbio); 2668 } 2669 2670 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2671 { 2672 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2673 scrub_parity_work, NULL, NULL); 2674 2675 btrfs_queue_work(rbio->fs_info->rmw_workers, 2676 &rbio->work); 2677 } 2678 2679 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2680 { 2681 if (!lock_stripe_add(rbio)) 2682 async_scrub_parity(rbio); 2683 } 2684 2685 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2686 2687 struct btrfs_raid_bio * 2688 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, 2689 struct btrfs_bio *bbio, u64 length) 2690 { 2691 struct btrfs_raid_bio *rbio; 2692 2693 rbio = alloc_rbio(root, bbio, length); 2694 if (IS_ERR(rbio)) 2695 return NULL; 2696 2697 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2698 bio_list_add(&rbio->bio_list, bio); 2699 /* 2700 * This is a special bio which is used to hold the completion handler 2701 * and make the scrub rbio is similar to the other types 2702 */ 2703 ASSERT(!bio->bi_iter.bi_size); 2704 2705 rbio->faila = find_logical_bio_stripe(rbio, bio); 2706 if (rbio->faila == -1) { 2707 BUG(); 2708 kfree(rbio); 2709 return NULL; 2710 } 2711 2712 return rbio; 2713 } 2714 2715 static void missing_raid56_work(struct btrfs_work *work) 2716 { 2717 struct btrfs_raid_bio *rbio; 2718 2719 rbio = container_of(work, struct btrfs_raid_bio, work); 2720 __raid56_parity_recover(rbio); 2721 } 2722 2723 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2724 { 2725 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2726 missing_raid56_work, NULL, NULL); 2727 2728 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2729 } 2730 2731 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2732 { 2733 if (!lock_stripe_add(rbio)) 2734 async_missing_raid56(rbio); 2735 } 2736