xref: /openbmc/linux/fs/btrfs/raid56.c (revision a977d045)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/mm.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	refcount_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kvzalloc(table_size, GFP_KERNEL);
222 	if (!table)
223 		return -ENOMEM;
224 
225 	spin_lock_init(&table->cache_lock);
226 	INIT_LIST_HEAD(&table->stripe_cache);
227 
228 	h = table->table;
229 
230 	for (i = 0; i < num_entries; i++) {
231 		cur = h + i;
232 		INIT_LIST_HEAD(&cur->hash_list);
233 		spin_lock_init(&cur->lock);
234 		init_waitqueue_head(&cur->wait);
235 	}
236 
237 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 	if (x)
239 		kvfree(x);
240 	return 0;
241 }
242 
243 /*
244  * caching an rbio means to copy anything from the
245  * bio_pages array into the stripe_pages array.  We
246  * use the page uptodate bit in the stripe cache array
247  * to indicate if it has valid data
248  *
249  * once the caching is done, we set the cache ready
250  * bit.
251  */
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 	int i;
255 	char *s;
256 	char *d;
257 	int ret;
258 
259 	ret = alloc_rbio_pages(rbio);
260 	if (ret)
261 		return;
262 
263 	for (i = 0; i < rbio->nr_pages; i++) {
264 		if (!rbio->bio_pages[i])
265 			continue;
266 
267 		s = kmap(rbio->bio_pages[i]);
268 		d = kmap(rbio->stripe_pages[i]);
269 
270 		memcpy(d, s, PAGE_SIZE);
271 
272 		kunmap(rbio->bio_pages[i]);
273 		kunmap(rbio->stripe_pages[i]);
274 		SetPageUptodate(rbio->stripe_pages[i]);
275 	}
276 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278 
279 /*
280  * we hash on the first logical address of the stripe
281  */
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 	u64 num = rbio->bbio->raid_map[0];
285 
286 	/*
287 	 * we shift down quite a bit.  We're using byte
288 	 * addressing, and most of the lower bits are zeros.
289 	 * This tends to upset hash_64, and it consistently
290 	 * returns just one or two different values.
291 	 *
292 	 * shifting off the lower bits fixes things.
293 	 */
294 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296 
297 /*
298  * stealing an rbio means taking all the uptodate pages from the stripe
299  * array in the source rbio and putting them into the destination rbio
300  */
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 	int i;
304 	struct page *s;
305 	struct page *d;
306 
307 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 		return;
309 
310 	for (i = 0; i < dest->nr_pages; i++) {
311 		s = src->stripe_pages[i];
312 		if (!s || !PageUptodate(s)) {
313 			continue;
314 		}
315 
316 		d = dest->stripe_pages[i];
317 		if (d)
318 			__free_page(d);
319 
320 		dest->stripe_pages[i] = s;
321 		src->stripe_pages[i] = NULL;
322 	}
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	dest->generic_bio_cnt += victim->generic_bio_cnt;
338 	bio_list_init(&victim->bio_list);
339 }
340 
341 /*
342  * used to prune items that are in the cache.  The caller
343  * must hold the hash table lock.
344  */
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 	int bucket = rbio_bucket(rbio);
348 	struct btrfs_stripe_hash_table *table;
349 	struct btrfs_stripe_hash *h;
350 	int freeit = 0;
351 
352 	/*
353 	 * check the bit again under the hash table lock.
354 	 */
355 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 		return;
357 
358 	table = rbio->fs_info->stripe_hash_table;
359 	h = table->table + bucket;
360 
361 	/* hold the lock for the bucket because we may be
362 	 * removing it from the hash table
363 	 */
364 	spin_lock(&h->lock);
365 
366 	/*
367 	 * hold the lock for the bio list because we need
368 	 * to make sure the bio list is empty
369 	 */
370 	spin_lock(&rbio->bio_list_lock);
371 
372 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 		list_del_init(&rbio->stripe_cache);
374 		table->cache_size -= 1;
375 		freeit = 1;
376 
377 		/* if the bio list isn't empty, this rbio is
378 		 * still involved in an IO.  We take it out
379 		 * of the cache list, and drop the ref that
380 		 * was held for the list.
381 		 *
382 		 * If the bio_list was empty, we also remove
383 		 * the rbio from the hash_table, and drop
384 		 * the corresponding ref
385 		 */
386 		if (bio_list_empty(&rbio->bio_list)) {
387 			if (!list_empty(&rbio->hash_list)) {
388 				list_del_init(&rbio->hash_list);
389 				refcount_dec(&rbio->refs);
390 				BUG_ON(!list_empty(&rbio->plug_list));
391 			}
392 		}
393 	}
394 
395 	spin_unlock(&rbio->bio_list_lock);
396 	spin_unlock(&h->lock);
397 
398 	if (freeit)
399 		__free_raid_bio(rbio);
400 }
401 
402 /*
403  * prune a given rbio from the cache
404  */
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 	struct btrfs_stripe_hash_table *table;
408 	unsigned long flags;
409 
410 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 		return;
412 
413 	table = rbio->fs_info->stripe_hash_table;
414 
415 	spin_lock_irqsave(&table->cache_lock, flags);
416 	__remove_rbio_from_cache(rbio);
417 	spin_unlock_irqrestore(&table->cache_lock, flags);
418 }
419 
420 /*
421  * remove everything in the cache
422  */
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 	struct btrfs_stripe_hash_table *table;
426 	unsigned long flags;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock_irqsave(&table->cache_lock, flags);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock_irqrestore(&table->cache_lock, flags);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 	unsigned long flags;
469 
470 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 		return;
472 
473 	table = rbio->fs_info->stripe_hash_table;
474 
475 	spin_lock_irqsave(&table->cache_lock, flags);
476 	spin_lock(&rbio->bio_list_lock);
477 
478 	/* bump our ref if we were not in the list before */
479 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 		refcount_inc(&rbio->refs);
481 
482 	if (!list_empty(&rbio->stripe_cache)){
483 		list_move(&rbio->stripe_cache, &table->stripe_cache);
484 	} else {
485 		list_add(&rbio->stripe_cache, &table->stripe_cache);
486 		table->cache_size += 1;
487 	}
488 
489 	spin_unlock(&rbio->bio_list_lock);
490 
491 	if (table->cache_size > RBIO_CACHE_SIZE) {
492 		struct btrfs_raid_bio *found;
493 
494 		found = list_entry(table->stripe_cache.prev,
495 				  struct btrfs_raid_bio,
496 				  stripe_cache);
497 
498 		if (found != rbio)
499 			__remove_rbio_from_cache(found);
500 	}
501 
502 	spin_unlock_irqrestore(&table->cache_lock, flags);
503 }
504 
505 /*
506  * helper function to run the xor_blocks api.  It is only
507  * able to do MAX_XOR_BLOCKS at a time, so we need to
508  * loop through.
509  */
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 {
512 	int src_off = 0;
513 	int xor_src_cnt = 0;
514 	void *dest = pages[src_cnt];
515 
516 	while(src_cnt > 0) {
517 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519 
520 		src_cnt -= xor_src_cnt;
521 		src_off += xor_src_cnt;
522 	}
523 }
524 
525 /*
526  * returns true if the bio list inside this rbio
527  * covers an entire stripe (no rmw required).
528  * Must be called with the bio list lock held, or
529  * at a time when you know it is impossible to add
530  * new bios into the list
531  */
532 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533 {
534 	unsigned long size = rbio->bio_list_bytes;
535 	int ret = 1;
536 
537 	if (size != rbio->nr_data * rbio->stripe_len)
538 		ret = 0;
539 
540 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 	return ret;
542 }
543 
544 static int rbio_is_full(struct btrfs_raid_bio *rbio)
545 {
546 	unsigned long flags;
547 	int ret;
548 
549 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 	ret = __rbio_is_full(rbio);
551 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 	return ret;
553 }
554 
555 /*
556  * returns 1 if it is safe to merge two rbios together.
557  * The merging is safe if the two rbios correspond to
558  * the same stripe and if they are both going in the same
559  * direction (read vs write), and if neither one is
560  * locked for final IO
561  *
562  * The caller is responsible for locking such that
563  * rmw_locked is safe to test
564  */
565 static int rbio_can_merge(struct btrfs_raid_bio *last,
566 			  struct btrfs_raid_bio *cur)
567 {
568 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 		return 0;
571 
572 	/*
573 	 * we can't merge with cached rbios, since the
574 	 * idea is that when we merge the destination
575 	 * rbio is going to run our IO for us.  We can
576 	 * steal from cached rbios though, other functions
577 	 * handle that.
578 	 */
579 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
581 		return 0;
582 
583 	if (last->bbio->raid_map[0] !=
584 	    cur->bbio->raid_map[0])
585 		return 0;
586 
587 	/* we can't merge with different operations */
588 	if (last->operation != cur->operation)
589 		return 0;
590 	/*
591 	 * We've need read the full stripe from the drive.
592 	 * check and repair the parity and write the new results.
593 	 *
594 	 * We're not allowed to add any new bios to the
595 	 * bio list here, anyone else that wants to
596 	 * change this stripe needs to do their own rmw.
597 	 */
598 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
600 		return 0;
601 
602 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 		return 0;
605 
606 	return 1;
607 }
608 
609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 				  int index)
611 {
612 	return stripe * rbio->stripe_npages + index;
613 }
614 
615 /*
616  * these are just the pages from the rbio array, not from anything
617  * the FS sent down to us
618  */
619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 				     int index)
621 {
622 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623 }
624 
625 /*
626  * helper to index into the pstripe
627  */
628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629 {
630 	return rbio_stripe_page(rbio, rbio->nr_data, index);
631 }
632 
633 /*
634  * helper to index into the qstripe, returns null
635  * if there is no qstripe
636  */
637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638 {
639 	if (rbio->nr_data + 1 == rbio->real_stripes)
640 		return NULL;
641 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
642 }
643 
644 /*
645  * The first stripe in the table for a logical address
646  * has the lock.  rbios are added in one of three ways:
647  *
648  * 1) Nobody has the stripe locked yet.  The rbio is given
649  * the lock and 0 is returned.  The caller must start the IO
650  * themselves.
651  *
652  * 2) Someone has the stripe locked, but we're able to merge
653  * with the lock owner.  The rbio is freed and the IO will
654  * start automatically along with the existing rbio.  1 is returned.
655  *
656  * 3) Someone has the stripe locked, but we're not able to merge.
657  * The rbio is added to the lock owner's plug list, or merged into
658  * an rbio already on the plug list.  When the lock owner unlocks,
659  * the next rbio on the list is run and the IO is started automatically.
660  * 1 is returned
661  *
662  * If we return 0, the caller still owns the rbio and must continue with
663  * IO submission.  If we return 1, the caller must assume the rbio has
664  * already been freed.
665  */
666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667 {
668 	int bucket = rbio_bucket(rbio);
669 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 	struct btrfs_raid_bio *cur;
671 	struct btrfs_raid_bio *pending;
672 	unsigned long flags;
673 	DEFINE_WAIT(wait);
674 	struct btrfs_raid_bio *freeit = NULL;
675 	struct btrfs_raid_bio *cache_drop = NULL;
676 	int ret = 0;
677 
678 	spin_lock_irqsave(&h->lock, flags);
679 	list_for_each_entry(cur, &h->hash_list, hash_list) {
680 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
681 			spin_lock(&cur->bio_list_lock);
682 
683 			/* can we steal this cached rbio's pages? */
684 			if (bio_list_empty(&cur->bio_list) &&
685 			    list_empty(&cur->plug_list) &&
686 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 				list_del_init(&cur->hash_list);
689 				refcount_dec(&cur->refs);
690 
691 				steal_rbio(cur, rbio);
692 				cache_drop = cur;
693 				spin_unlock(&cur->bio_list_lock);
694 
695 				goto lockit;
696 			}
697 
698 			/* can we merge into the lock owner? */
699 			if (rbio_can_merge(cur, rbio)) {
700 				merge_rbio(cur, rbio);
701 				spin_unlock(&cur->bio_list_lock);
702 				freeit = rbio;
703 				ret = 1;
704 				goto out;
705 			}
706 
707 
708 			/*
709 			 * we couldn't merge with the running
710 			 * rbio, see if we can merge with the
711 			 * pending ones.  We don't have to
712 			 * check for rmw_locked because there
713 			 * is no way they are inside finish_rmw
714 			 * right now
715 			 */
716 			list_for_each_entry(pending, &cur->plug_list,
717 					    plug_list) {
718 				if (rbio_can_merge(pending, rbio)) {
719 					merge_rbio(pending, rbio);
720 					spin_unlock(&cur->bio_list_lock);
721 					freeit = rbio;
722 					ret = 1;
723 					goto out;
724 				}
725 			}
726 
727 			/* no merging, put us on the tail of the plug list,
728 			 * our rbio will be started with the currently
729 			 * running rbio unlocks
730 			 */
731 			list_add_tail(&rbio->plug_list, &cur->plug_list);
732 			spin_unlock(&cur->bio_list_lock);
733 			ret = 1;
734 			goto out;
735 		}
736 	}
737 lockit:
738 	refcount_inc(&rbio->refs);
739 	list_add(&rbio->hash_list, &h->hash_list);
740 out:
741 	spin_unlock_irqrestore(&h->lock, flags);
742 	if (cache_drop)
743 		remove_rbio_from_cache(cache_drop);
744 	if (freeit)
745 		__free_raid_bio(freeit);
746 	return ret;
747 }
748 
749 /*
750  * called as rmw or parity rebuild is completed.  If the plug list has more
751  * rbios waiting for this stripe, the next one on the list will be started
752  */
753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754 {
755 	int bucket;
756 	struct btrfs_stripe_hash *h;
757 	unsigned long flags;
758 	int keep_cache = 0;
759 
760 	bucket = rbio_bucket(rbio);
761 	h = rbio->fs_info->stripe_hash_table->table + bucket;
762 
763 	if (list_empty(&rbio->plug_list))
764 		cache_rbio(rbio);
765 
766 	spin_lock_irqsave(&h->lock, flags);
767 	spin_lock(&rbio->bio_list_lock);
768 
769 	if (!list_empty(&rbio->hash_list)) {
770 		/*
771 		 * if we're still cached and there is no other IO
772 		 * to perform, just leave this rbio here for others
773 		 * to steal from later
774 		 */
775 		if (list_empty(&rbio->plug_list) &&
776 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 			keep_cache = 1;
778 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 			BUG_ON(!bio_list_empty(&rbio->bio_list));
780 			goto done;
781 		}
782 
783 		list_del_init(&rbio->hash_list);
784 		refcount_dec(&rbio->refs);
785 
786 		/*
787 		 * we use the plug list to hold all the rbios
788 		 * waiting for the chance to lock this stripe.
789 		 * hand the lock over to one of them.
790 		 */
791 		if (!list_empty(&rbio->plug_list)) {
792 			struct btrfs_raid_bio *next;
793 			struct list_head *head = rbio->plug_list.next;
794 
795 			next = list_entry(head, struct btrfs_raid_bio,
796 					  plug_list);
797 
798 			list_del_init(&rbio->plug_list);
799 
800 			list_add(&next->hash_list, &h->hash_list);
801 			refcount_inc(&next->refs);
802 			spin_unlock(&rbio->bio_list_lock);
803 			spin_unlock_irqrestore(&h->lock, flags);
804 
805 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
806 				async_read_rebuild(next);
807 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 				steal_rbio(rbio, next);
809 				async_read_rebuild(next);
810 			} else if (next->operation == BTRFS_RBIO_WRITE) {
811 				steal_rbio(rbio, next);
812 				async_rmw_stripe(next);
813 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 				steal_rbio(rbio, next);
815 				async_scrub_parity(next);
816 			}
817 
818 			goto done_nolock;
819 			/*
820 			 * The barrier for this waitqueue_active is not needed,
821 			 * we're protected by h->lock and can't miss a wakeup.
822 			 */
823 		} else if (waitqueue_active(&h->wait)) {
824 			spin_unlock(&rbio->bio_list_lock);
825 			spin_unlock_irqrestore(&h->lock, flags);
826 			wake_up(&h->wait);
827 			goto done_nolock;
828 		}
829 	}
830 done:
831 	spin_unlock(&rbio->bio_list_lock);
832 	spin_unlock_irqrestore(&h->lock, flags);
833 
834 done_nolock:
835 	if (!keep_cache)
836 		remove_rbio_from_cache(rbio);
837 }
838 
839 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840 {
841 	int i;
842 
843 	if (!refcount_dec_and_test(&rbio->refs))
844 		return;
845 
846 	WARN_ON(!list_empty(&rbio->stripe_cache));
847 	WARN_ON(!list_empty(&rbio->hash_list));
848 	WARN_ON(!bio_list_empty(&rbio->bio_list));
849 
850 	for (i = 0; i < rbio->nr_pages; i++) {
851 		if (rbio->stripe_pages[i]) {
852 			__free_page(rbio->stripe_pages[i]);
853 			rbio->stripe_pages[i] = NULL;
854 		}
855 	}
856 
857 	btrfs_put_bbio(rbio->bbio);
858 	kfree(rbio);
859 }
860 
861 static void free_raid_bio(struct btrfs_raid_bio *rbio)
862 {
863 	unlock_stripe(rbio);
864 	__free_raid_bio(rbio);
865 }
866 
867 /*
868  * this frees the rbio and runs through all the bios in the
869  * bio_list and calls end_io on them
870  */
871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
872 {
873 	struct bio *cur = bio_list_get(&rbio->bio_list);
874 	struct bio *next;
875 
876 	if (rbio->generic_bio_cnt)
877 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878 
879 	free_raid_bio(rbio);
880 
881 	while (cur) {
882 		next = cur->bi_next;
883 		cur->bi_next = NULL;
884 		cur->bi_status = err;
885 		bio_endio(cur);
886 		cur = next;
887 	}
888 }
889 
890 /*
891  * end io function used by finish_rmw.  When we finally
892  * get here, we've written a full stripe
893  */
894 static void raid_write_end_io(struct bio *bio)
895 {
896 	struct btrfs_raid_bio *rbio = bio->bi_private;
897 	blk_status_t err = bio->bi_status;
898 	int max_errors;
899 
900 	if (err)
901 		fail_bio_stripe(rbio, bio);
902 
903 	bio_put(bio);
904 
905 	if (!atomic_dec_and_test(&rbio->stripes_pending))
906 		return;
907 
908 	err = 0;
909 
910 	/* OK, we have read all the stripes we need to. */
911 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 		     0 : rbio->bbio->max_errors;
913 	if (atomic_read(&rbio->error) > max_errors)
914 		err = BLK_STS_IOERR;
915 
916 	rbio_orig_end_io(rbio, err);
917 }
918 
919 /*
920  * the read/modify/write code wants to use the original bio for
921  * any pages it included, and then use the rbio for everything
922  * else.  This function decides if a given index (stripe number)
923  * and page number in that stripe fall inside the original bio
924  * or the rbio.
925  *
926  * if you set bio_list_only, you'll get a NULL back for any ranges
927  * that are outside the bio_list
928  *
929  * This doesn't take any refs on anything, you get a bare page pointer
930  * and the caller must bump refs as required.
931  *
932  * You must call index_rbio_pages once before you can trust
933  * the answers from this function.
934  */
935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 				 int index, int pagenr, int bio_list_only)
937 {
938 	int chunk_page;
939 	struct page *p = NULL;
940 
941 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
942 
943 	spin_lock_irq(&rbio->bio_list_lock);
944 	p = rbio->bio_pages[chunk_page];
945 	spin_unlock_irq(&rbio->bio_list_lock);
946 
947 	if (p || bio_list_only)
948 		return p;
949 
950 	return rbio->stripe_pages[chunk_page];
951 }
952 
953 /*
954  * number of pages we need for the entire stripe across all the
955  * drives
956  */
957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
958 {
959 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
960 }
961 
962 /*
963  * allocation and initial setup for the btrfs_raid_bio.  Not
964  * this does not allocate any pages for rbio->pages.
965  */
966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 					 struct btrfs_bio *bbio,
968 					 u64 stripe_len)
969 {
970 	struct btrfs_raid_bio *rbio;
971 	int nr_data = 0;
972 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
974 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
975 	void *p;
976 
977 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
978 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 		       sizeof(long), GFP_NOFS);
980 	if (!rbio)
981 		return ERR_PTR(-ENOMEM);
982 
983 	bio_list_init(&rbio->bio_list);
984 	INIT_LIST_HEAD(&rbio->plug_list);
985 	spin_lock_init(&rbio->bio_list_lock);
986 	INIT_LIST_HEAD(&rbio->stripe_cache);
987 	INIT_LIST_HEAD(&rbio->hash_list);
988 	rbio->bbio = bbio;
989 	rbio->fs_info = fs_info;
990 	rbio->stripe_len = stripe_len;
991 	rbio->nr_pages = num_pages;
992 	rbio->real_stripes = real_stripes;
993 	rbio->stripe_npages = stripe_npages;
994 	rbio->faila = -1;
995 	rbio->failb = -1;
996 	refcount_set(&rbio->refs, 1);
997 	atomic_set(&rbio->error, 0);
998 	atomic_set(&rbio->stripes_pending, 0);
999 
1000 	/*
1001 	 * the stripe_pages and bio_pages array point to the extra
1002 	 * memory we allocated past the end of the rbio
1003 	 */
1004 	p = rbio + 1;
1005 	rbio->stripe_pages = p;
1006 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1007 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1008 
1009 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 		nr_data = real_stripes - 1;
1011 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1012 		nr_data = real_stripes - 2;
1013 	else
1014 		BUG();
1015 
1016 	rbio->nr_data = nr_data;
1017 	return rbio;
1018 }
1019 
1020 /* allocate pages for all the stripes in the bio, including parity */
1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022 {
1023 	int i;
1024 	struct page *page;
1025 
1026 	for (i = 0; i < rbio->nr_pages; i++) {
1027 		if (rbio->stripe_pages[i])
1028 			continue;
1029 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 		if (!page)
1031 			return -ENOMEM;
1032 		rbio->stripe_pages[i] = page;
1033 	}
1034 	return 0;
1035 }
1036 
1037 /* only allocate pages for p/q stripes */
1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039 {
1040 	int i;
1041 	struct page *page;
1042 
1043 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1044 
1045 	for (; i < rbio->nr_pages; i++) {
1046 		if (rbio->stripe_pages[i])
1047 			continue;
1048 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 		if (!page)
1050 			return -ENOMEM;
1051 		rbio->stripe_pages[i] = page;
1052 	}
1053 	return 0;
1054 }
1055 
1056 /*
1057  * add a single page from a specific stripe into our list of bios for IO
1058  * this will try to merge into existing bios if possible, and returns
1059  * zero if all went well.
1060  */
1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 			    struct bio_list *bio_list,
1063 			    struct page *page,
1064 			    int stripe_nr,
1065 			    unsigned long page_index,
1066 			    unsigned long bio_max_len)
1067 {
1068 	struct bio *last = bio_list->tail;
1069 	u64 last_end = 0;
1070 	int ret;
1071 	struct bio *bio;
1072 	struct btrfs_bio_stripe *stripe;
1073 	u64 disk_start;
1074 
1075 	stripe = &rbio->bbio->stripes[stripe_nr];
1076 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1077 
1078 	/* if the device is missing, just fail this stripe */
1079 	if (!stripe->dev->bdev)
1080 		return fail_rbio_index(rbio, stripe_nr);
1081 
1082 	/* see if we can add this page onto our existing bio */
1083 	if (last) {
1084 		last_end = (u64)last->bi_iter.bi_sector << 9;
1085 		last_end += last->bi_iter.bi_size;
1086 
1087 		/*
1088 		 * we can't merge these if they are from different
1089 		 * devices or if they are not contiguous
1090 		 */
1091 		if (last_end == disk_start && stripe->dev->bdev &&
1092 		    !last->bi_status &&
1093 		    last->bi_bdev == stripe->dev->bdev) {
1094 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1095 			if (ret == PAGE_SIZE)
1096 				return 0;
1097 		}
1098 	}
1099 
1100 	/* put a new bio on the list */
1101 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1102 	bio->bi_iter.bi_size = 0;
1103 	bio->bi_bdev = stripe->dev->bdev;
1104 	bio->bi_iter.bi_sector = disk_start >> 9;
1105 
1106 	bio_add_page(bio, page, PAGE_SIZE, 0);
1107 	bio_list_add(bio_list, bio);
1108 	return 0;
1109 }
1110 
1111 /*
1112  * while we're doing the read/modify/write cycle, we could
1113  * have errors in reading pages off the disk.  This checks
1114  * for errors and if we're not able to read the page it'll
1115  * trigger parity reconstruction.  The rmw will be finished
1116  * after we've reconstructed the failed stripes
1117  */
1118 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1119 {
1120 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1121 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1122 		__raid56_parity_recover(rbio);
1123 	} else {
1124 		finish_rmw(rbio);
1125 	}
1126 }
1127 
1128 /*
1129  * helper function to walk our bio list and populate the bio_pages array with
1130  * the result.  This seems expensive, but it is faster than constantly
1131  * searching through the bio list as we setup the IO in finish_rmw or stripe
1132  * reconstruction.
1133  *
1134  * This must be called before you trust the answers from page_in_rbio
1135  */
1136 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1137 {
1138 	struct bio *bio;
1139 	u64 start;
1140 	unsigned long stripe_offset;
1141 	unsigned long page_index;
1142 
1143 	spin_lock_irq(&rbio->bio_list_lock);
1144 	bio_list_for_each(bio, &rbio->bio_list) {
1145 		struct bio_vec bvec;
1146 		struct bvec_iter iter;
1147 		int i = 0;
1148 
1149 		start = (u64)bio->bi_iter.bi_sector << 9;
1150 		stripe_offset = start - rbio->bbio->raid_map[0];
1151 		page_index = stripe_offset >> PAGE_SHIFT;
1152 
1153 		if (bio_flagged(bio, BIO_CLONED))
1154 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1155 
1156 		bio_for_each_segment(bvec, bio, iter) {
1157 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1158 			i++;
1159 		}
1160 	}
1161 	spin_unlock_irq(&rbio->bio_list_lock);
1162 }
1163 
1164 /*
1165  * this is called from one of two situations.  We either
1166  * have a full stripe from the higher layers, or we've read all
1167  * the missing bits off disk.
1168  *
1169  * This will calculate the parity and then send down any
1170  * changed blocks.
1171  */
1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1173 {
1174 	struct btrfs_bio *bbio = rbio->bbio;
1175 	void *pointers[rbio->real_stripes];
1176 	int nr_data = rbio->nr_data;
1177 	int stripe;
1178 	int pagenr;
1179 	int p_stripe = -1;
1180 	int q_stripe = -1;
1181 	struct bio_list bio_list;
1182 	struct bio *bio;
1183 	int ret;
1184 
1185 	bio_list_init(&bio_list);
1186 
1187 	if (rbio->real_stripes - rbio->nr_data == 1) {
1188 		p_stripe = rbio->real_stripes - 1;
1189 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1190 		p_stripe = rbio->real_stripes - 2;
1191 		q_stripe = rbio->real_stripes - 1;
1192 	} else {
1193 		BUG();
1194 	}
1195 
1196 	/* at this point we either have a full stripe,
1197 	 * or we've read the full stripe from the drive.
1198 	 * recalculate the parity and write the new results.
1199 	 *
1200 	 * We're not allowed to add any new bios to the
1201 	 * bio list here, anyone else that wants to
1202 	 * change this stripe needs to do their own rmw.
1203 	 */
1204 	spin_lock_irq(&rbio->bio_list_lock);
1205 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1206 	spin_unlock_irq(&rbio->bio_list_lock);
1207 
1208 	atomic_set(&rbio->error, 0);
1209 
1210 	/*
1211 	 * now that we've set rmw_locked, run through the
1212 	 * bio list one last time and map the page pointers
1213 	 *
1214 	 * We don't cache full rbios because we're assuming
1215 	 * the higher layers are unlikely to use this area of
1216 	 * the disk again soon.  If they do use it again,
1217 	 * hopefully they will send another full bio.
1218 	 */
1219 	index_rbio_pages(rbio);
1220 	if (!rbio_is_full(rbio))
1221 		cache_rbio_pages(rbio);
1222 	else
1223 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1224 
1225 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1226 		struct page *p;
1227 		/* first collect one page from each data stripe */
1228 		for (stripe = 0; stripe < nr_data; stripe++) {
1229 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1230 			pointers[stripe] = kmap(p);
1231 		}
1232 
1233 		/* then add the parity stripe */
1234 		p = rbio_pstripe_page(rbio, pagenr);
1235 		SetPageUptodate(p);
1236 		pointers[stripe++] = kmap(p);
1237 
1238 		if (q_stripe != -1) {
1239 
1240 			/*
1241 			 * raid6, add the qstripe and call the
1242 			 * library function to fill in our p/q
1243 			 */
1244 			p = rbio_qstripe_page(rbio, pagenr);
1245 			SetPageUptodate(p);
1246 			pointers[stripe++] = kmap(p);
1247 
1248 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1249 						pointers);
1250 		} else {
1251 			/* raid5 */
1252 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1253 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1254 		}
1255 
1256 
1257 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1258 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1259 	}
1260 
1261 	/*
1262 	 * time to start writing.  Make bios for everything from the
1263 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1264 	 * everything else.
1265 	 */
1266 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1267 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1268 			struct page *page;
1269 			if (stripe < rbio->nr_data) {
1270 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1271 				if (!page)
1272 					continue;
1273 			} else {
1274 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1275 			}
1276 
1277 			ret = rbio_add_io_page(rbio, &bio_list,
1278 				       page, stripe, pagenr, rbio->stripe_len);
1279 			if (ret)
1280 				goto cleanup;
1281 		}
1282 	}
1283 
1284 	if (likely(!bbio->num_tgtdevs))
1285 		goto write_data;
1286 
1287 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1288 		if (!bbio->tgtdev_map[stripe])
1289 			continue;
1290 
1291 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1292 			struct page *page;
1293 			if (stripe < rbio->nr_data) {
1294 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1295 				if (!page)
1296 					continue;
1297 			} else {
1298 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1299 			}
1300 
1301 			ret = rbio_add_io_page(rbio, &bio_list, page,
1302 					       rbio->bbio->tgtdev_map[stripe],
1303 					       pagenr, rbio->stripe_len);
1304 			if (ret)
1305 				goto cleanup;
1306 		}
1307 	}
1308 
1309 write_data:
1310 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1311 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1312 
1313 	while (1) {
1314 		bio = bio_list_pop(&bio_list);
1315 		if (!bio)
1316 			break;
1317 
1318 		bio->bi_private = rbio;
1319 		bio->bi_end_io = raid_write_end_io;
1320 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1321 
1322 		submit_bio(bio);
1323 	}
1324 	return;
1325 
1326 cleanup:
1327 	rbio_orig_end_io(rbio, -EIO);
1328 }
1329 
1330 /*
1331  * helper to find the stripe number for a given bio.  Used to figure out which
1332  * stripe has failed.  This expects the bio to correspond to a physical disk,
1333  * so it looks up based on physical sector numbers.
1334  */
1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1336 			   struct bio *bio)
1337 {
1338 	u64 physical = bio->bi_iter.bi_sector;
1339 	u64 stripe_start;
1340 	int i;
1341 	struct btrfs_bio_stripe *stripe;
1342 
1343 	physical <<= 9;
1344 
1345 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1346 		stripe = &rbio->bbio->stripes[i];
1347 		stripe_start = stripe->physical;
1348 		if (physical >= stripe_start &&
1349 		    physical < stripe_start + rbio->stripe_len &&
1350 		    bio->bi_bdev == stripe->dev->bdev) {
1351 			return i;
1352 		}
1353 	}
1354 	return -1;
1355 }
1356 
1357 /*
1358  * helper to find the stripe number for a given
1359  * bio (before mapping).  Used to figure out which stripe has
1360  * failed.  This looks up based on logical block numbers.
1361  */
1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1363 				   struct bio *bio)
1364 {
1365 	u64 logical = bio->bi_iter.bi_sector;
1366 	u64 stripe_start;
1367 	int i;
1368 
1369 	logical <<= 9;
1370 
1371 	for (i = 0; i < rbio->nr_data; i++) {
1372 		stripe_start = rbio->bbio->raid_map[i];
1373 		if (logical >= stripe_start &&
1374 		    logical < stripe_start + rbio->stripe_len) {
1375 			return i;
1376 		}
1377 	}
1378 	return -1;
1379 }
1380 
1381 /*
1382  * returns -EIO if we had too many failures
1383  */
1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1385 {
1386 	unsigned long flags;
1387 	int ret = 0;
1388 
1389 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1390 
1391 	/* we already know this stripe is bad, move on */
1392 	if (rbio->faila == failed || rbio->failb == failed)
1393 		goto out;
1394 
1395 	if (rbio->faila == -1) {
1396 		/* first failure on this rbio */
1397 		rbio->faila = failed;
1398 		atomic_inc(&rbio->error);
1399 	} else if (rbio->failb == -1) {
1400 		/* second failure on this rbio */
1401 		rbio->failb = failed;
1402 		atomic_inc(&rbio->error);
1403 	} else {
1404 		ret = -EIO;
1405 	}
1406 out:
1407 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * helper to fail a stripe based on a physical disk
1414  * bio.
1415  */
1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1417 			   struct bio *bio)
1418 {
1419 	int failed = find_bio_stripe(rbio, bio);
1420 
1421 	if (failed < 0)
1422 		return -EIO;
1423 
1424 	return fail_rbio_index(rbio, failed);
1425 }
1426 
1427 /*
1428  * this sets each page in the bio uptodate.  It should only be used on private
1429  * rbio pages, nothing that comes in from the higher layers
1430  */
1431 static void set_bio_pages_uptodate(struct bio *bio)
1432 {
1433 	struct bio_vec bvec;
1434 	struct bvec_iter iter;
1435 
1436 	if (bio_flagged(bio, BIO_CLONED))
1437 		bio->bi_iter = btrfs_io_bio(bio)->iter;
1438 
1439 	bio_for_each_segment(bvec, bio, iter)
1440 		SetPageUptodate(bvec.bv_page);
1441 }
1442 
1443 /*
1444  * end io for the read phase of the rmw cycle.  All the bios here are physical
1445  * stripe bios we've read from the disk so we can recalculate the parity of the
1446  * stripe.
1447  *
1448  * This will usually kick off finish_rmw once all the bios are read in, but it
1449  * may trigger parity reconstruction if we had any errors along the way
1450  */
1451 static void raid_rmw_end_io(struct bio *bio)
1452 {
1453 	struct btrfs_raid_bio *rbio = bio->bi_private;
1454 
1455 	if (bio->bi_status)
1456 		fail_bio_stripe(rbio, bio);
1457 	else
1458 		set_bio_pages_uptodate(bio);
1459 
1460 	bio_put(bio);
1461 
1462 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1463 		return;
1464 
1465 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466 		goto cleanup;
1467 
1468 	/*
1469 	 * this will normally call finish_rmw to start our write
1470 	 * but if there are any failed stripes we'll reconstruct
1471 	 * from parity first
1472 	 */
1473 	validate_rbio_for_rmw(rbio);
1474 	return;
1475 
1476 cleanup:
1477 
1478 	rbio_orig_end_io(rbio, -EIO);
1479 }
1480 
1481 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482 {
1483 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1484 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1485 }
1486 
1487 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1488 {
1489 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1490 			read_rebuild_work, NULL, NULL);
1491 
1492 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1493 }
1494 
1495 /*
1496  * the stripe must be locked by the caller.  It will
1497  * unlock after all the writes are done
1498  */
1499 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1500 {
1501 	int bios_to_read = 0;
1502 	struct bio_list bio_list;
1503 	int ret;
1504 	int pagenr;
1505 	int stripe;
1506 	struct bio *bio;
1507 
1508 	bio_list_init(&bio_list);
1509 
1510 	ret = alloc_rbio_pages(rbio);
1511 	if (ret)
1512 		goto cleanup;
1513 
1514 	index_rbio_pages(rbio);
1515 
1516 	atomic_set(&rbio->error, 0);
1517 	/*
1518 	 * build a list of bios to read all the missing parts of this
1519 	 * stripe
1520 	 */
1521 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1522 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1523 			struct page *page;
1524 			/*
1525 			 * we want to find all the pages missing from
1526 			 * the rbio and read them from the disk.  If
1527 			 * page_in_rbio finds a page in the bio list
1528 			 * we don't need to read it off the stripe.
1529 			 */
1530 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1531 			if (page)
1532 				continue;
1533 
1534 			page = rbio_stripe_page(rbio, stripe, pagenr);
1535 			/*
1536 			 * the bio cache may have handed us an uptodate
1537 			 * page.  If so, be happy and use it
1538 			 */
1539 			if (PageUptodate(page))
1540 				continue;
1541 
1542 			ret = rbio_add_io_page(rbio, &bio_list, page,
1543 				       stripe, pagenr, rbio->stripe_len);
1544 			if (ret)
1545 				goto cleanup;
1546 		}
1547 	}
1548 
1549 	bios_to_read = bio_list_size(&bio_list);
1550 	if (!bios_to_read) {
1551 		/*
1552 		 * this can happen if others have merged with
1553 		 * us, it means there is nothing left to read.
1554 		 * But if there are missing devices it may not be
1555 		 * safe to do the full stripe write yet.
1556 		 */
1557 		goto finish;
1558 	}
1559 
1560 	/*
1561 	 * the bbio may be freed once we submit the last bio.  Make sure
1562 	 * not to touch it after that
1563 	 */
1564 	atomic_set(&rbio->stripes_pending, bios_to_read);
1565 	while (1) {
1566 		bio = bio_list_pop(&bio_list);
1567 		if (!bio)
1568 			break;
1569 
1570 		bio->bi_private = rbio;
1571 		bio->bi_end_io = raid_rmw_end_io;
1572 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1573 
1574 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1575 
1576 		submit_bio(bio);
1577 	}
1578 	/* the actual write will happen once the reads are done */
1579 	return 0;
1580 
1581 cleanup:
1582 	rbio_orig_end_io(rbio, -EIO);
1583 	return -EIO;
1584 
1585 finish:
1586 	validate_rbio_for_rmw(rbio);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * if the upper layers pass in a full stripe, we thank them by only allocating
1592  * enough pages to hold the parity, and sending it all down quickly.
1593  */
1594 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1595 {
1596 	int ret;
1597 
1598 	ret = alloc_rbio_parity_pages(rbio);
1599 	if (ret) {
1600 		__free_raid_bio(rbio);
1601 		return ret;
1602 	}
1603 
1604 	ret = lock_stripe_add(rbio);
1605 	if (ret == 0)
1606 		finish_rmw(rbio);
1607 	return 0;
1608 }
1609 
1610 /*
1611  * partial stripe writes get handed over to async helpers.
1612  * We're really hoping to merge a few more writes into this
1613  * rbio before calculating new parity
1614  */
1615 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1616 {
1617 	int ret;
1618 
1619 	ret = lock_stripe_add(rbio);
1620 	if (ret == 0)
1621 		async_rmw_stripe(rbio);
1622 	return 0;
1623 }
1624 
1625 /*
1626  * sometimes while we were reading from the drive to
1627  * recalculate parity, enough new bios come into create
1628  * a full stripe.  So we do a check here to see if we can
1629  * go directly to finish_rmw
1630  */
1631 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1632 {
1633 	/* head off into rmw land if we don't have a full stripe */
1634 	if (!rbio_is_full(rbio))
1635 		return partial_stripe_write(rbio);
1636 	return full_stripe_write(rbio);
1637 }
1638 
1639 /*
1640  * We use plugging call backs to collect full stripes.
1641  * Any time we get a partial stripe write while plugged
1642  * we collect it into a list.  When the unplug comes down,
1643  * we sort the list by logical block number and merge
1644  * everything we can into the same rbios
1645  */
1646 struct btrfs_plug_cb {
1647 	struct blk_plug_cb cb;
1648 	struct btrfs_fs_info *info;
1649 	struct list_head rbio_list;
1650 	struct btrfs_work work;
1651 };
1652 
1653 /*
1654  * rbios on the plug list are sorted for easier merging.
1655  */
1656 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1657 {
1658 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1659 						 plug_list);
1660 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1661 						 plug_list);
1662 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1663 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1664 
1665 	if (a_sector < b_sector)
1666 		return -1;
1667 	if (a_sector > b_sector)
1668 		return 1;
1669 	return 0;
1670 }
1671 
1672 static void run_plug(struct btrfs_plug_cb *plug)
1673 {
1674 	struct btrfs_raid_bio *cur;
1675 	struct btrfs_raid_bio *last = NULL;
1676 
1677 	/*
1678 	 * sort our plug list then try to merge
1679 	 * everything we can in hopes of creating full
1680 	 * stripes.
1681 	 */
1682 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1683 	while (!list_empty(&plug->rbio_list)) {
1684 		cur = list_entry(plug->rbio_list.next,
1685 				 struct btrfs_raid_bio, plug_list);
1686 		list_del_init(&cur->plug_list);
1687 
1688 		if (rbio_is_full(cur)) {
1689 			/* we have a full stripe, send it down */
1690 			full_stripe_write(cur);
1691 			continue;
1692 		}
1693 		if (last) {
1694 			if (rbio_can_merge(last, cur)) {
1695 				merge_rbio(last, cur);
1696 				__free_raid_bio(cur);
1697 				continue;
1698 
1699 			}
1700 			__raid56_parity_write(last);
1701 		}
1702 		last = cur;
1703 	}
1704 	if (last) {
1705 		__raid56_parity_write(last);
1706 	}
1707 	kfree(plug);
1708 }
1709 
1710 /*
1711  * if the unplug comes from schedule, we have to push the
1712  * work off to a helper thread
1713  */
1714 static void unplug_work(struct btrfs_work *work)
1715 {
1716 	struct btrfs_plug_cb *plug;
1717 	plug = container_of(work, struct btrfs_plug_cb, work);
1718 	run_plug(plug);
1719 }
1720 
1721 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1722 {
1723 	struct btrfs_plug_cb *plug;
1724 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1725 
1726 	if (from_schedule) {
1727 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1728 				unplug_work, NULL, NULL);
1729 		btrfs_queue_work(plug->info->rmw_workers,
1730 				 &plug->work);
1731 		return;
1732 	}
1733 	run_plug(plug);
1734 }
1735 
1736 /*
1737  * our main entry point for writes from the rest of the FS.
1738  */
1739 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1740 			struct btrfs_bio *bbio, u64 stripe_len)
1741 {
1742 	struct btrfs_raid_bio *rbio;
1743 	struct btrfs_plug_cb *plug = NULL;
1744 	struct blk_plug_cb *cb;
1745 	int ret;
1746 
1747 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1748 	if (IS_ERR(rbio)) {
1749 		btrfs_put_bbio(bbio);
1750 		return PTR_ERR(rbio);
1751 	}
1752 	bio_list_add(&rbio->bio_list, bio);
1753 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1754 	rbio->operation = BTRFS_RBIO_WRITE;
1755 
1756 	btrfs_bio_counter_inc_noblocked(fs_info);
1757 	rbio->generic_bio_cnt = 1;
1758 
1759 	/*
1760 	 * don't plug on full rbios, just get them out the door
1761 	 * as quickly as we can
1762 	 */
1763 	if (rbio_is_full(rbio)) {
1764 		ret = full_stripe_write(rbio);
1765 		if (ret)
1766 			btrfs_bio_counter_dec(fs_info);
1767 		return ret;
1768 	}
1769 
1770 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1771 	if (cb) {
1772 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1773 		if (!plug->info) {
1774 			plug->info = fs_info;
1775 			INIT_LIST_HEAD(&plug->rbio_list);
1776 		}
1777 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1778 		ret = 0;
1779 	} else {
1780 		ret = __raid56_parity_write(rbio);
1781 		if (ret)
1782 			btrfs_bio_counter_dec(fs_info);
1783 	}
1784 	return ret;
1785 }
1786 
1787 /*
1788  * all parity reconstruction happens here.  We've read in everything
1789  * we can find from the drives and this does the heavy lifting of
1790  * sorting the good from the bad.
1791  */
1792 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1793 {
1794 	int pagenr, stripe;
1795 	void **pointers;
1796 	int faila = -1, failb = -1;
1797 	struct page *page;
1798 	int err;
1799 	int i;
1800 
1801 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1802 	if (!pointers) {
1803 		err = -ENOMEM;
1804 		goto cleanup_io;
1805 	}
1806 
1807 	faila = rbio->faila;
1808 	failb = rbio->failb;
1809 
1810 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1811 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1812 		spin_lock_irq(&rbio->bio_list_lock);
1813 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1814 		spin_unlock_irq(&rbio->bio_list_lock);
1815 	}
1816 
1817 	index_rbio_pages(rbio);
1818 
1819 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1820 		/*
1821 		 * Now we just use bitmap to mark the horizontal stripes in
1822 		 * which we have data when doing parity scrub.
1823 		 */
1824 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1825 		    !test_bit(pagenr, rbio->dbitmap))
1826 			continue;
1827 
1828 		/* setup our array of pointers with pages
1829 		 * from each stripe
1830 		 */
1831 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1832 			/*
1833 			 * if we're rebuilding a read, we have to use
1834 			 * pages from the bio list
1835 			 */
1836 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1837 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1838 			    (stripe == faila || stripe == failb)) {
1839 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1840 			} else {
1841 				page = rbio_stripe_page(rbio, stripe, pagenr);
1842 			}
1843 			pointers[stripe] = kmap(page);
1844 		}
1845 
1846 		/* all raid6 handling here */
1847 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1848 			/*
1849 			 * single failure, rebuild from parity raid5
1850 			 * style
1851 			 */
1852 			if (failb < 0) {
1853 				if (faila == rbio->nr_data) {
1854 					/*
1855 					 * Just the P stripe has failed, without
1856 					 * a bad data or Q stripe.
1857 					 * TODO, we should redo the xor here.
1858 					 */
1859 					err = -EIO;
1860 					goto cleanup;
1861 				}
1862 				/*
1863 				 * a single failure in raid6 is rebuilt
1864 				 * in the pstripe code below
1865 				 */
1866 				goto pstripe;
1867 			}
1868 
1869 			/* make sure our ps and qs are in order */
1870 			if (faila > failb) {
1871 				int tmp = failb;
1872 				failb = faila;
1873 				faila = tmp;
1874 			}
1875 
1876 			/* if the q stripe is failed, do a pstripe reconstruction
1877 			 * from the xors.
1878 			 * If both the q stripe and the P stripe are failed, we're
1879 			 * here due to a crc mismatch and we can't give them the
1880 			 * data they want
1881 			 */
1882 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1883 				if (rbio->bbio->raid_map[faila] ==
1884 				    RAID5_P_STRIPE) {
1885 					err = -EIO;
1886 					goto cleanup;
1887 				}
1888 				/*
1889 				 * otherwise we have one bad data stripe and
1890 				 * a good P stripe.  raid5!
1891 				 */
1892 				goto pstripe;
1893 			}
1894 
1895 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1896 				raid6_datap_recov(rbio->real_stripes,
1897 						  PAGE_SIZE, faila, pointers);
1898 			} else {
1899 				raid6_2data_recov(rbio->real_stripes,
1900 						  PAGE_SIZE, faila, failb,
1901 						  pointers);
1902 			}
1903 		} else {
1904 			void *p;
1905 
1906 			/* rebuild from P stripe here (raid5 or raid6) */
1907 			BUG_ON(failb != -1);
1908 pstripe:
1909 			/* Copy parity block into failed block to start with */
1910 			memcpy(pointers[faila],
1911 			       pointers[rbio->nr_data],
1912 			       PAGE_SIZE);
1913 
1914 			/* rearrange the pointer array */
1915 			p = pointers[faila];
1916 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1917 				pointers[stripe] = pointers[stripe + 1];
1918 			pointers[rbio->nr_data - 1] = p;
1919 
1920 			/* xor in the rest */
1921 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1922 		}
1923 		/* if we're doing this rebuild as part of an rmw, go through
1924 		 * and set all of our private rbio pages in the
1925 		 * failed stripes as uptodate.  This way finish_rmw will
1926 		 * know they can be trusted.  If this was a read reconstruction,
1927 		 * other endio functions will fiddle the uptodate bits
1928 		 */
1929 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1930 			for (i = 0;  i < rbio->stripe_npages; i++) {
1931 				if (faila != -1) {
1932 					page = rbio_stripe_page(rbio, faila, i);
1933 					SetPageUptodate(page);
1934 				}
1935 				if (failb != -1) {
1936 					page = rbio_stripe_page(rbio, failb, i);
1937 					SetPageUptodate(page);
1938 				}
1939 			}
1940 		}
1941 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1942 			/*
1943 			 * if we're rebuilding a read, we have to use
1944 			 * pages from the bio list
1945 			 */
1946 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1947 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1948 			    (stripe == faila || stripe == failb)) {
1949 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1950 			} else {
1951 				page = rbio_stripe_page(rbio, stripe, pagenr);
1952 			}
1953 			kunmap(page);
1954 		}
1955 	}
1956 
1957 	err = 0;
1958 cleanup:
1959 	kfree(pointers);
1960 
1961 cleanup_io:
1962 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1963 		if (err == 0)
1964 			cache_rbio_pages(rbio);
1965 		else
1966 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1967 
1968 		rbio_orig_end_io(rbio, err);
1969 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1970 		rbio_orig_end_io(rbio, err);
1971 	} else if (err == 0) {
1972 		rbio->faila = -1;
1973 		rbio->failb = -1;
1974 
1975 		if (rbio->operation == BTRFS_RBIO_WRITE)
1976 			finish_rmw(rbio);
1977 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1978 			finish_parity_scrub(rbio, 0);
1979 		else
1980 			BUG();
1981 	} else {
1982 		rbio_orig_end_io(rbio, err);
1983 	}
1984 }
1985 
1986 /*
1987  * This is called only for stripes we've read from disk to
1988  * reconstruct the parity.
1989  */
1990 static void raid_recover_end_io(struct bio *bio)
1991 {
1992 	struct btrfs_raid_bio *rbio = bio->bi_private;
1993 
1994 	/*
1995 	 * we only read stripe pages off the disk, set them
1996 	 * up to date if there were no errors
1997 	 */
1998 	if (bio->bi_status)
1999 		fail_bio_stripe(rbio, bio);
2000 	else
2001 		set_bio_pages_uptodate(bio);
2002 	bio_put(bio);
2003 
2004 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2005 		return;
2006 
2007 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2008 		rbio_orig_end_io(rbio, -EIO);
2009 	else
2010 		__raid_recover_end_io(rbio);
2011 }
2012 
2013 /*
2014  * reads everything we need off the disk to reconstruct
2015  * the parity. endio handlers trigger final reconstruction
2016  * when the IO is done.
2017  *
2018  * This is used both for reads from the higher layers and for
2019  * parity construction required to finish a rmw cycle.
2020  */
2021 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2022 {
2023 	int bios_to_read = 0;
2024 	struct bio_list bio_list;
2025 	int ret;
2026 	int pagenr;
2027 	int stripe;
2028 	struct bio *bio;
2029 
2030 	bio_list_init(&bio_list);
2031 
2032 	ret = alloc_rbio_pages(rbio);
2033 	if (ret)
2034 		goto cleanup;
2035 
2036 	atomic_set(&rbio->error, 0);
2037 
2038 	/*
2039 	 * read everything that hasn't failed.  Thanks to the
2040 	 * stripe cache, it is possible that some or all of these
2041 	 * pages are going to be uptodate.
2042 	 */
2043 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2044 		if (rbio->faila == stripe || rbio->failb == stripe) {
2045 			atomic_inc(&rbio->error);
2046 			continue;
2047 		}
2048 
2049 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2050 			struct page *p;
2051 
2052 			/*
2053 			 * the rmw code may have already read this
2054 			 * page in
2055 			 */
2056 			p = rbio_stripe_page(rbio, stripe, pagenr);
2057 			if (PageUptodate(p))
2058 				continue;
2059 
2060 			ret = rbio_add_io_page(rbio, &bio_list,
2061 				       rbio_stripe_page(rbio, stripe, pagenr),
2062 				       stripe, pagenr, rbio->stripe_len);
2063 			if (ret < 0)
2064 				goto cleanup;
2065 		}
2066 	}
2067 
2068 	bios_to_read = bio_list_size(&bio_list);
2069 	if (!bios_to_read) {
2070 		/*
2071 		 * we might have no bios to read just because the pages
2072 		 * were up to date, or we might have no bios to read because
2073 		 * the devices were gone.
2074 		 */
2075 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2076 			__raid_recover_end_io(rbio);
2077 			goto out;
2078 		} else {
2079 			goto cleanup;
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * the bbio may be freed once we submit the last bio.  Make sure
2085 	 * not to touch it after that
2086 	 */
2087 	atomic_set(&rbio->stripes_pending, bios_to_read);
2088 	while (1) {
2089 		bio = bio_list_pop(&bio_list);
2090 		if (!bio)
2091 			break;
2092 
2093 		bio->bi_private = rbio;
2094 		bio->bi_end_io = raid_recover_end_io;
2095 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2096 
2097 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2098 
2099 		submit_bio(bio);
2100 	}
2101 out:
2102 	return 0;
2103 
2104 cleanup:
2105 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2106 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2107 		rbio_orig_end_io(rbio, -EIO);
2108 	return -EIO;
2109 }
2110 
2111 /*
2112  * the main entry point for reads from the higher layers.  This
2113  * is really only called when the normal read path had a failure,
2114  * so we assume the bio they send down corresponds to a failed part
2115  * of the drive.
2116  */
2117 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2118 			  struct btrfs_bio *bbio, u64 stripe_len,
2119 			  int mirror_num, int generic_io)
2120 {
2121 	struct btrfs_raid_bio *rbio;
2122 	int ret;
2123 
2124 	if (generic_io) {
2125 		ASSERT(bbio->mirror_num == mirror_num);
2126 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2127 	}
2128 
2129 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2130 	if (IS_ERR(rbio)) {
2131 		if (generic_io)
2132 			btrfs_put_bbio(bbio);
2133 		return PTR_ERR(rbio);
2134 	}
2135 
2136 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137 	bio_list_add(&rbio->bio_list, bio);
2138 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2139 
2140 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2141 	if (rbio->faila == -1) {
2142 		btrfs_warn(fs_info,
2143 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2144 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2145 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2146 		if (generic_io)
2147 			btrfs_put_bbio(bbio);
2148 		kfree(rbio);
2149 		return -EIO;
2150 	}
2151 
2152 	if (generic_io) {
2153 		btrfs_bio_counter_inc_noblocked(fs_info);
2154 		rbio->generic_bio_cnt = 1;
2155 	} else {
2156 		btrfs_get_bbio(bbio);
2157 	}
2158 
2159 	/*
2160 	 * reconstruct from the q stripe if they are
2161 	 * asking for mirror 3
2162 	 */
2163 	if (mirror_num == 3)
2164 		rbio->failb = rbio->real_stripes - 2;
2165 
2166 	ret = lock_stripe_add(rbio);
2167 
2168 	/*
2169 	 * __raid56_parity_recover will end the bio with
2170 	 * any errors it hits.  We don't want to return
2171 	 * its error value up the stack because our caller
2172 	 * will end up calling bio_endio with any nonzero
2173 	 * return
2174 	 */
2175 	if (ret == 0)
2176 		__raid56_parity_recover(rbio);
2177 	/*
2178 	 * our rbio has been added to the list of
2179 	 * rbios that will be handled after the
2180 	 * currently lock owner is done
2181 	 */
2182 	return 0;
2183 
2184 }
2185 
2186 static void rmw_work(struct btrfs_work *work)
2187 {
2188 	struct btrfs_raid_bio *rbio;
2189 
2190 	rbio = container_of(work, struct btrfs_raid_bio, work);
2191 	raid56_rmw_stripe(rbio);
2192 }
2193 
2194 static void read_rebuild_work(struct btrfs_work *work)
2195 {
2196 	struct btrfs_raid_bio *rbio;
2197 
2198 	rbio = container_of(work, struct btrfs_raid_bio, work);
2199 	__raid56_parity_recover(rbio);
2200 }
2201 
2202 /*
2203  * The following code is used to scrub/replace the parity stripe
2204  *
2205  * Caller must have already increased bio_counter for getting @bbio.
2206  *
2207  * Note: We need make sure all the pages that add into the scrub/replace
2208  * raid bio are correct and not be changed during the scrub/replace. That
2209  * is those pages just hold metadata or file data with checksum.
2210  */
2211 
2212 struct btrfs_raid_bio *
2213 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2214 			       struct btrfs_bio *bbio, u64 stripe_len,
2215 			       struct btrfs_device *scrub_dev,
2216 			       unsigned long *dbitmap, int stripe_nsectors)
2217 {
2218 	struct btrfs_raid_bio *rbio;
2219 	int i;
2220 
2221 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2222 	if (IS_ERR(rbio))
2223 		return NULL;
2224 	bio_list_add(&rbio->bio_list, bio);
2225 	/*
2226 	 * This is a special bio which is used to hold the completion handler
2227 	 * and make the scrub rbio is similar to the other types
2228 	 */
2229 	ASSERT(!bio->bi_iter.bi_size);
2230 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2231 
2232 	for (i = 0; i < rbio->real_stripes; i++) {
2233 		if (bbio->stripes[i].dev == scrub_dev) {
2234 			rbio->scrubp = i;
2235 			break;
2236 		}
2237 	}
2238 
2239 	/* Now we just support the sectorsize equals to page size */
2240 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2241 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2242 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2243 
2244 	/*
2245 	 * We have already increased bio_counter when getting bbio, record it
2246 	 * so we can free it at rbio_orig_end_io().
2247 	 */
2248 	rbio->generic_bio_cnt = 1;
2249 
2250 	return rbio;
2251 }
2252 
2253 /* Used for both parity scrub and missing. */
2254 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2255 			    u64 logical)
2256 {
2257 	int stripe_offset;
2258 	int index;
2259 
2260 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2261 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2262 				rbio->stripe_len * rbio->nr_data);
2263 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2264 	index = stripe_offset >> PAGE_SHIFT;
2265 	rbio->bio_pages[index] = page;
2266 }
2267 
2268 /*
2269  * We just scrub the parity that we have correct data on the same horizontal,
2270  * so we needn't allocate all pages for all the stripes.
2271  */
2272 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2273 {
2274 	int i;
2275 	int bit;
2276 	int index;
2277 	struct page *page;
2278 
2279 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2280 		for (i = 0; i < rbio->real_stripes; i++) {
2281 			index = i * rbio->stripe_npages + bit;
2282 			if (rbio->stripe_pages[index])
2283 				continue;
2284 
2285 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2286 			if (!page)
2287 				return -ENOMEM;
2288 			rbio->stripe_pages[index] = page;
2289 		}
2290 	}
2291 	return 0;
2292 }
2293 
2294 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2295 					 int need_check)
2296 {
2297 	struct btrfs_bio *bbio = rbio->bbio;
2298 	void *pointers[rbio->real_stripes];
2299 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2300 	int nr_data = rbio->nr_data;
2301 	int stripe;
2302 	int pagenr;
2303 	int p_stripe = -1;
2304 	int q_stripe = -1;
2305 	struct page *p_page = NULL;
2306 	struct page *q_page = NULL;
2307 	struct bio_list bio_list;
2308 	struct bio *bio;
2309 	int is_replace = 0;
2310 	int ret;
2311 
2312 	bio_list_init(&bio_list);
2313 
2314 	if (rbio->real_stripes - rbio->nr_data == 1) {
2315 		p_stripe = rbio->real_stripes - 1;
2316 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2317 		p_stripe = rbio->real_stripes - 2;
2318 		q_stripe = rbio->real_stripes - 1;
2319 	} else {
2320 		BUG();
2321 	}
2322 
2323 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2324 		is_replace = 1;
2325 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2326 	}
2327 
2328 	/*
2329 	 * Because the higher layers(scrubber) are unlikely to
2330 	 * use this area of the disk again soon, so don't cache
2331 	 * it.
2332 	 */
2333 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2334 
2335 	if (!need_check)
2336 		goto writeback;
2337 
2338 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2339 	if (!p_page)
2340 		goto cleanup;
2341 	SetPageUptodate(p_page);
2342 
2343 	if (q_stripe != -1) {
2344 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2345 		if (!q_page) {
2346 			__free_page(p_page);
2347 			goto cleanup;
2348 		}
2349 		SetPageUptodate(q_page);
2350 	}
2351 
2352 	atomic_set(&rbio->error, 0);
2353 
2354 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2355 		struct page *p;
2356 		void *parity;
2357 		/* first collect one page from each data stripe */
2358 		for (stripe = 0; stripe < nr_data; stripe++) {
2359 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2360 			pointers[stripe] = kmap(p);
2361 		}
2362 
2363 		/* then add the parity stripe */
2364 		pointers[stripe++] = kmap(p_page);
2365 
2366 		if (q_stripe != -1) {
2367 
2368 			/*
2369 			 * raid6, add the qstripe and call the
2370 			 * library function to fill in our p/q
2371 			 */
2372 			pointers[stripe++] = kmap(q_page);
2373 
2374 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2375 						pointers);
2376 		} else {
2377 			/* raid5 */
2378 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2379 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2380 		}
2381 
2382 		/* Check scrubbing parity and repair it */
2383 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2384 		parity = kmap(p);
2385 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2386 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2387 		else
2388 			/* Parity is right, needn't writeback */
2389 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2390 		kunmap(p);
2391 
2392 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2393 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2394 	}
2395 
2396 	__free_page(p_page);
2397 	if (q_page)
2398 		__free_page(q_page);
2399 
2400 writeback:
2401 	/*
2402 	 * time to start writing.  Make bios for everything from the
2403 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2404 	 * everything else.
2405 	 */
2406 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2407 		struct page *page;
2408 
2409 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2410 		ret = rbio_add_io_page(rbio, &bio_list,
2411 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2412 		if (ret)
2413 			goto cleanup;
2414 	}
2415 
2416 	if (!is_replace)
2417 		goto submit_write;
2418 
2419 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2420 		struct page *page;
2421 
2422 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2423 		ret = rbio_add_io_page(rbio, &bio_list, page,
2424 				       bbio->tgtdev_map[rbio->scrubp],
2425 				       pagenr, rbio->stripe_len);
2426 		if (ret)
2427 			goto cleanup;
2428 	}
2429 
2430 submit_write:
2431 	nr_data = bio_list_size(&bio_list);
2432 	if (!nr_data) {
2433 		/* Every parity is right */
2434 		rbio_orig_end_io(rbio, 0);
2435 		return;
2436 	}
2437 
2438 	atomic_set(&rbio->stripes_pending, nr_data);
2439 
2440 	while (1) {
2441 		bio = bio_list_pop(&bio_list);
2442 		if (!bio)
2443 			break;
2444 
2445 		bio->bi_private = rbio;
2446 		bio->bi_end_io = raid_write_end_io;
2447 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2448 
2449 		submit_bio(bio);
2450 	}
2451 	return;
2452 
2453 cleanup:
2454 	rbio_orig_end_io(rbio, -EIO);
2455 }
2456 
2457 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2458 {
2459 	if (stripe >= 0 && stripe < rbio->nr_data)
2460 		return 1;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * While we're doing the parity check and repair, we could have errors
2466  * in reading pages off the disk.  This checks for errors and if we're
2467  * not able to read the page it'll trigger parity reconstruction.  The
2468  * parity scrub will be finished after we've reconstructed the failed
2469  * stripes
2470  */
2471 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2472 {
2473 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2474 		goto cleanup;
2475 
2476 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2477 		int dfail = 0, failp = -1;
2478 
2479 		if (is_data_stripe(rbio, rbio->faila))
2480 			dfail++;
2481 		else if (is_parity_stripe(rbio->faila))
2482 			failp = rbio->faila;
2483 
2484 		if (is_data_stripe(rbio, rbio->failb))
2485 			dfail++;
2486 		else if (is_parity_stripe(rbio->failb))
2487 			failp = rbio->failb;
2488 
2489 		/*
2490 		 * Because we can not use a scrubbing parity to repair
2491 		 * the data, so the capability of the repair is declined.
2492 		 * (In the case of RAID5, we can not repair anything)
2493 		 */
2494 		if (dfail > rbio->bbio->max_errors - 1)
2495 			goto cleanup;
2496 
2497 		/*
2498 		 * If all data is good, only parity is correctly, just
2499 		 * repair the parity.
2500 		 */
2501 		if (dfail == 0) {
2502 			finish_parity_scrub(rbio, 0);
2503 			return;
2504 		}
2505 
2506 		/*
2507 		 * Here means we got one corrupted data stripe and one
2508 		 * corrupted parity on RAID6, if the corrupted parity
2509 		 * is scrubbing parity, luckily, use the other one to repair
2510 		 * the data, or we can not repair the data stripe.
2511 		 */
2512 		if (failp != rbio->scrubp)
2513 			goto cleanup;
2514 
2515 		__raid_recover_end_io(rbio);
2516 	} else {
2517 		finish_parity_scrub(rbio, 1);
2518 	}
2519 	return;
2520 
2521 cleanup:
2522 	rbio_orig_end_io(rbio, -EIO);
2523 }
2524 
2525 /*
2526  * end io for the read phase of the rmw cycle.  All the bios here are physical
2527  * stripe bios we've read from the disk so we can recalculate the parity of the
2528  * stripe.
2529  *
2530  * This will usually kick off finish_rmw once all the bios are read in, but it
2531  * may trigger parity reconstruction if we had any errors along the way
2532  */
2533 static void raid56_parity_scrub_end_io(struct bio *bio)
2534 {
2535 	struct btrfs_raid_bio *rbio = bio->bi_private;
2536 
2537 	if (bio->bi_status)
2538 		fail_bio_stripe(rbio, bio);
2539 	else
2540 		set_bio_pages_uptodate(bio);
2541 
2542 	bio_put(bio);
2543 
2544 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2545 		return;
2546 
2547 	/*
2548 	 * this will normally call finish_rmw to start our write
2549 	 * but if there are any failed stripes we'll reconstruct
2550 	 * from parity first
2551 	 */
2552 	validate_rbio_for_parity_scrub(rbio);
2553 }
2554 
2555 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2556 {
2557 	int bios_to_read = 0;
2558 	struct bio_list bio_list;
2559 	int ret;
2560 	int pagenr;
2561 	int stripe;
2562 	struct bio *bio;
2563 
2564 	ret = alloc_rbio_essential_pages(rbio);
2565 	if (ret)
2566 		goto cleanup;
2567 
2568 	bio_list_init(&bio_list);
2569 
2570 	atomic_set(&rbio->error, 0);
2571 	/*
2572 	 * build a list of bios to read all the missing parts of this
2573 	 * stripe
2574 	 */
2575 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2576 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2577 			struct page *page;
2578 			/*
2579 			 * we want to find all the pages missing from
2580 			 * the rbio and read them from the disk.  If
2581 			 * page_in_rbio finds a page in the bio list
2582 			 * we don't need to read it off the stripe.
2583 			 */
2584 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2585 			if (page)
2586 				continue;
2587 
2588 			page = rbio_stripe_page(rbio, stripe, pagenr);
2589 			/*
2590 			 * the bio cache may have handed us an uptodate
2591 			 * page.  If so, be happy and use it
2592 			 */
2593 			if (PageUptodate(page))
2594 				continue;
2595 
2596 			ret = rbio_add_io_page(rbio, &bio_list, page,
2597 				       stripe, pagenr, rbio->stripe_len);
2598 			if (ret)
2599 				goto cleanup;
2600 		}
2601 	}
2602 
2603 	bios_to_read = bio_list_size(&bio_list);
2604 	if (!bios_to_read) {
2605 		/*
2606 		 * this can happen if others have merged with
2607 		 * us, it means there is nothing left to read.
2608 		 * But if there are missing devices it may not be
2609 		 * safe to do the full stripe write yet.
2610 		 */
2611 		goto finish;
2612 	}
2613 
2614 	/*
2615 	 * the bbio may be freed once we submit the last bio.  Make sure
2616 	 * not to touch it after that
2617 	 */
2618 	atomic_set(&rbio->stripes_pending, bios_to_read);
2619 	while (1) {
2620 		bio = bio_list_pop(&bio_list);
2621 		if (!bio)
2622 			break;
2623 
2624 		bio->bi_private = rbio;
2625 		bio->bi_end_io = raid56_parity_scrub_end_io;
2626 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2627 
2628 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2629 
2630 		submit_bio(bio);
2631 	}
2632 	/* the actual write will happen once the reads are done */
2633 	return;
2634 
2635 cleanup:
2636 	rbio_orig_end_io(rbio, -EIO);
2637 	return;
2638 
2639 finish:
2640 	validate_rbio_for_parity_scrub(rbio);
2641 }
2642 
2643 static void scrub_parity_work(struct btrfs_work *work)
2644 {
2645 	struct btrfs_raid_bio *rbio;
2646 
2647 	rbio = container_of(work, struct btrfs_raid_bio, work);
2648 	raid56_parity_scrub_stripe(rbio);
2649 }
2650 
2651 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2652 {
2653 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2654 			scrub_parity_work, NULL, NULL);
2655 
2656 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2657 }
2658 
2659 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2660 {
2661 	if (!lock_stripe_add(rbio))
2662 		async_scrub_parity(rbio);
2663 }
2664 
2665 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2666 
2667 struct btrfs_raid_bio *
2668 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2669 			  struct btrfs_bio *bbio, u64 length)
2670 {
2671 	struct btrfs_raid_bio *rbio;
2672 
2673 	rbio = alloc_rbio(fs_info, bbio, length);
2674 	if (IS_ERR(rbio))
2675 		return NULL;
2676 
2677 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2678 	bio_list_add(&rbio->bio_list, bio);
2679 	/*
2680 	 * This is a special bio which is used to hold the completion handler
2681 	 * and make the scrub rbio is similar to the other types
2682 	 */
2683 	ASSERT(!bio->bi_iter.bi_size);
2684 
2685 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2686 	if (rbio->faila == -1) {
2687 		BUG();
2688 		kfree(rbio);
2689 		return NULL;
2690 	}
2691 
2692 	/*
2693 	 * When we get bbio, we have already increased bio_counter, record it
2694 	 * so we can free it at rbio_orig_end_io()
2695 	 */
2696 	rbio->generic_bio_cnt = 1;
2697 
2698 	return rbio;
2699 }
2700 
2701 static void missing_raid56_work(struct btrfs_work *work)
2702 {
2703 	struct btrfs_raid_bio *rbio;
2704 
2705 	rbio = container_of(work, struct btrfs_raid_bio, work);
2706 	__raid56_parity_recover(rbio);
2707 }
2708 
2709 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2710 {
2711 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2712 			missing_raid56_work, NULL, NULL);
2713 
2714 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2715 }
2716 
2717 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2718 {
2719 	if (!lock_stripe_add(rbio))
2720 		async_missing_raid56(rbio);
2721 }
2722