xref: /openbmc/linux/fs/btrfs/raid56.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/mm.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	refcount_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kvzalloc(table_size, GFP_KERNEL);
222 	if (!table)
223 		return -ENOMEM;
224 
225 	spin_lock_init(&table->cache_lock);
226 	INIT_LIST_HEAD(&table->stripe_cache);
227 
228 	h = table->table;
229 
230 	for (i = 0; i < num_entries; i++) {
231 		cur = h + i;
232 		INIT_LIST_HEAD(&cur->hash_list);
233 		spin_lock_init(&cur->lock);
234 		init_waitqueue_head(&cur->wait);
235 	}
236 
237 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 	if (x)
239 		kvfree(x);
240 	return 0;
241 }
242 
243 /*
244  * caching an rbio means to copy anything from the
245  * bio_pages array into the stripe_pages array.  We
246  * use the page uptodate bit in the stripe cache array
247  * to indicate if it has valid data
248  *
249  * once the caching is done, we set the cache ready
250  * bit.
251  */
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 	int i;
255 	char *s;
256 	char *d;
257 	int ret;
258 
259 	ret = alloc_rbio_pages(rbio);
260 	if (ret)
261 		return;
262 
263 	for (i = 0; i < rbio->nr_pages; i++) {
264 		if (!rbio->bio_pages[i])
265 			continue;
266 
267 		s = kmap(rbio->bio_pages[i]);
268 		d = kmap(rbio->stripe_pages[i]);
269 
270 		memcpy(d, s, PAGE_SIZE);
271 
272 		kunmap(rbio->bio_pages[i]);
273 		kunmap(rbio->stripe_pages[i]);
274 		SetPageUptodate(rbio->stripe_pages[i]);
275 	}
276 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278 
279 /*
280  * we hash on the first logical address of the stripe
281  */
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 	u64 num = rbio->bbio->raid_map[0];
285 
286 	/*
287 	 * we shift down quite a bit.  We're using byte
288 	 * addressing, and most of the lower bits are zeros.
289 	 * This tends to upset hash_64, and it consistently
290 	 * returns just one or two different values.
291 	 *
292 	 * shifting off the lower bits fixes things.
293 	 */
294 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296 
297 /*
298  * stealing an rbio means taking all the uptodate pages from the stripe
299  * array in the source rbio and putting them into the destination rbio
300  */
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 	int i;
304 	struct page *s;
305 	struct page *d;
306 
307 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 		return;
309 
310 	for (i = 0; i < dest->nr_pages; i++) {
311 		s = src->stripe_pages[i];
312 		if (!s || !PageUptodate(s)) {
313 			continue;
314 		}
315 
316 		d = dest->stripe_pages[i];
317 		if (d)
318 			__free_page(d);
319 
320 		dest->stripe_pages[i] = s;
321 		src->stripe_pages[i] = NULL;
322 	}
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	dest->generic_bio_cnt += victim->generic_bio_cnt;
338 	bio_list_init(&victim->bio_list);
339 }
340 
341 /*
342  * used to prune items that are in the cache.  The caller
343  * must hold the hash table lock.
344  */
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 {
347 	int bucket = rbio_bucket(rbio);
348 	struct btrfs_stripe_hash_table *table;
349 	struct btrfs_stripe_hash *h;
350 	int freeit = 0;
351 
352 	/*
353 	 * check the bit again under the hash table lock.
354 	 */
355 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 		return;
357 
358 	table = rbio->fs_info->stripe_hash_table;
359 	h = table->table + bucket;
360 
361 	/* hold the lock for the bucket because we may be
362 	 * removing it from the hash table
363 	 */
364 	spin_lock(&h->lock);
365 
366 	/*
367 	 * hold the lock for the bio list because we need
368 	 * to make sure the bio list is empty
369 	 */
370 	spin_lock(&rbio->bio_list_lock);
371 
372 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 		list_del_init(&rbio->stripe_cache);
374 		table->cache_size -= 1;
375 		freeit = 1;
376 
377 		/* if the bio list isn't empty, this rbio is
378 		 * still involved in an IO.  We take it out
379 		 * of the cache list, and drop the ref that
380 		 * was held for the list.
381 		 *
382 		 * If the bio_list was empty, we also remove
383 		 * the rbio from the hash_table, and drop
384 		 * the corresponding ref
385 		 */
386 		if (bio_list_empty(&rbio->bio_list)) {
387 			if (!list_empty(&rbio->hash_list)) {
388 				list_del_init(&rbio->hash_list);
389 				refcount_dec(&rbio->refs);
390 				BUG_ON(!list_empty(&rbio->plug_list));
391 			}
392 		}
393 	}
394 
395 	spin_unlock(&rbio->bio_list_lock);
396 	spin_unlock(&h->lock);
397 
398 	if (freeit)
399 		__free_raid_bio(rbio);
400 }
401 
402 /*
403  * prune a given rbio from the cache
404  */
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 {
407 	struct btrfs_stripe_hash_table *table;
408 	unsigned long flags;
409 
410 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 		return;
412 
413 	table = rbio->fs_info->stripe_hash_table;
414 
415 	spin_lock_irqsave(&table->cache_lock, flags);
416 	__remove_rbio_from_cache(rbio);
417 	spin_unlock_irqrestore(&table->cache_lock, flags);
418 }
419 
420 /*
421  * remove everything in the cache
422  */
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 {
425 	struct btrfs_stripe_hash_table *table;
426 	unsigned long flags;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock_irqsave(&table->cache_lock, flags);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock_irqrestore(&table->cache_lock, flags);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 	unsigned long flags;
469 
470 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 		return;
472 
473 	table = rbio->fs_info->stripe_hash_table;
474 
475 	spin_lock_irqsave(&table->cache_lock, flags);
476 	spin_lock(&rbio->bio_list_lock);
477 
478 	/* bump our ref if we were not in the list before */
479 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 		refcount_inc(&rbio->refs);
481 
482 	if (!list_empty(&rbio->stripe_cache)){
483 		list_move(&rbio->stripe_cache, &table->stripe_cache);
484 	} else {
485 		list_add(&rbio->stripe_cache, &table->stripe_cache);
486 		table->cache_size += 1;
487 	}
488 
489 	spin_unlock(&rbio->bio_list_lock);
490 
491 	if (table->cache_size > RBIO_CACHE_SIZE) {
492 		struct btrfs_raid_bio *found;
493 
494 		found = list_entry(table->stripe_cache.prev,
495 				  struct btrfs_raid_bio,
496 				  stripe_cache);
497 
498 		if (found != rbio)
499 			__remove_rbio_from_cache(found);
500 	}
501 
502 	spin_unlock_irqrestore(&table->cache_lock, flags);
503 }
504 
505 /*
506  * helper function to run the xor_blocks api.  It is only
507  * able to do MAX_XOR_BLOCKS at a time, so we need to
508  * loop through.
509  */
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 {
512 	int src_off = 0;
513 	int xor_src_cnt = 0;
514 	void *dest = pages[src_cnt];
515 
516 	while(src_cnt > 0) {
517 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519 
520 		src_cnt -= xor_src_cnt;
521 		src_off += xor_src_cnt;
522 	}
523 }
524 
525 /*
526  * returns true if the bio list inside this rbio
527  * covers an entire stripe (no rmw required).
528  * Must be called with the bio list lock held, or
529  * at a time when you know it is impossible to add
530  * new bios into the list
531  */
532 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533 {
534 	unsigned long size = rbio->bio_list_bytes;
535 	int ret = 1;
536 
537 	if (size != rbio->nr_data * rbio->stripe_len)
538 		ret = 0;
539 
540 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 	return ret;
542 }
543 
544 static int rbio_is_full(struct btrfs_raid_bio *rbio)
545 {
546 	unsigned long flags;
547 	int ret;
548 
549 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 	ret = __rbio_is_full(rbio);
551 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 	return ret;
553 }
554 
555 /*
556  * returns 1 if it is safe to merge two rbios together.
557  * The merging is safe if the two rbios correspond to
558  * the same stripe and if they are both going in the same
559  * direction (read vs write), and if neither one is
560  * locked for final IO
561  *
562  * The caller is responsible for locking such that
563  * rmw_locked is safe to test
564  */
565 static int rbio_can_merge(struct btrfs_raid_bio *last,
566 			  struct btrfs_raid_bio *cur)
567 {
568 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 		return 0;
571 
572 	/*
573 	 * we can't merge with cached rbios, since the
574 	 * idea is that when we merge the destination
575 	 * rbio is going to run our IO for us.  We can
576 	 * steal from cached rbios though, other functions
577 	 * handle that.
578 	 */
579 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
581 		return 0;
582 
583 	if (last->bbio->raid_map[0] !=
584 	    cur->bbio->raid_map[0])
585 		return 0;
586 
587 	/* we can't merge with different operations */
588 	if (last->operation != cur->operation)
589 		return 0;
590 	/*
591 	 * We've need read the full stripe from the drive.
592 	 * check and repair the parity and write the new results.
593 	 *
594 	 * We're not allowed to add any new bios to the
595 	 * bio list here, anyone else that wants to
596 	 * change this stripe needs to do their own rmw.
597 	 */
598 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
600 		return 0;
601 
602 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 		return 0;
605 
606 	return 1;
607 }
608 
609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 				  int index)
611 {
612 	return stripe * rbio->stripe_npages + index;
613 }
614 
615 /*
616  * these are just the pages from the rbio array, not from anything
617  * the FS sent down to us
618  */
619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 				     int index)
621 {
622 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623 }
624 
625 /*
626  * helper to index into the pstripe
627  */
628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629 {
630 	return rbio_stripe_page(rbio, rbio->nr_data, index);
631 }
632 
633 /*
634  * helper to index into the qstripe, returns null
635  * if there is no qstripe
636  */
637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638 {
639 	if (rbio->nr_data + 1 == rbio->real_stripes)
640 		return NULL;
641 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
642 }
643 
644 /*
645  * The first stripe in the table for a logical address
646  * has the lock.  rbios are added in one of three ways:
647  *
648  * 1) Nobody has the stripe locked yet.  The rbio is given
649  * the lock and 0 is returned.  The caller must start the IO
650  * themselves.
651  *
652  * 2) Someone has the stripe locked, but we're able to merge
653  * with the lock owner.  The rbio is freed and the IO will
654  * start automatically along with the existing rbio.  1 is returned.
655  *
656  * 3) Someone has the stripe locked, but we're not able to merge.
657  * The rbio is added to the lock owner's plug list, or merged into
658  * an rbio already on the plug list.  When the lock owner unlocks,
659  * the next rbio on the list is run and the IO is started automatically.
660  * 1 is returned
661  *
662  * If we return 0, the caller still owns the rbio and must continue with
663  * IO submission.  If we return 1, the caller must assume the rbio has
664  * already been freed.
665  */
666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667 {
668 	int bucket = rbio_bucket(rbio);
669 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 	struct btrfs_raid_bio *cur;
671 	struct btrfs_raid_bio *pending;
672 	unsigned long flags;
673 	DEFINE_WAIT(wait);
674 	struct btrfs_raid_bio *freeit = NULL;
675 	struct btrfs_raid_bio *cache_drop = NULL;
676 	int ret = 0;
677 
678 	spin_lock_irqsave(&h->lock, flags);
679 	list_for_each_entry(cur, &h->hash_list, hash_list) {
680 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
681 			spin_lock(&cur->bio_list_lock);
682 
683 			/* can we steal this cached rbio's pages? */
684 			if (bio_list_empty(&cur->bio_list) &&
685 			    list_empty(&cur->plug_list) &&
686 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 				list_del_init(&cur->hash_list);
689 				refcount_dec(&cur->refs);
690 
691 				steal_rbio(cur, rbio);
692 				cache_drop = cur;
693 				spin_unlock(&cur->bio_list_lock);
694 
695 				goto lockit;
696 			}
697 
698 			/* can we merge into the lock owner? */
699 			if (rbio_can_merge(cur, rbio)) {
700 				merge_rbio(cur, rbio);
701 				spin_unlock(&cur->bio_list_lock);
702 				freeit = rbio;
703 				ret = 1;
704 				goto out;
705 			}
706 
707 
708 			/*
709 			 * we couldn't merge with the running
710 			 * rbio, see if we can merge with the
711 			 * pending ones.  We don't have to
712 			 * check for rmw_locked because there
713 			 * is no way they are inside finish_rmw
714 			 * right now
715 			 */
716 			list_for_each_entry(pending, &cur->plug_list,
717 					    plug_list) {
718 				if (rbio_can_merge(pending, rbio)) {
719 					merge_rbio(pending, rbio);
720 					spin_unlock(&cur->bio_list_lock);
721 					freeit = rbio;
722 					ret = 1;
723 					goto out;
724 				}
725 			}
726 
727 			/* no merging, put us on the tail of the plug list,
728 			 * our rbio will be started with the currently
729 			 * running rbio unlocks
730 			 */
731 			list_add_tail(&rbio->plug_list, &cur->plug_list);
732 			spin_unlock(&cur->bio_list_lock);
733 			ret = 1;
734 			goto out;
735 		}
736 	}
737 lockit:
738 	refcount_inc(&rbio->refs);
739 	list_add(&rbio->hash_list, &h->hash_list);
740 out:
741 	spin_unlock_irqrestore(&h->lock, flags);
742 	if (cache_drop)
743 		remove_rbio_from_cache(cache_drop);
744 	if (freeit)
745 		__free_raid_bio(freeit);
746 	return ret;
747 }
748 
749 /*
750  * called as rmw or parity rebuild is completed.  If the plug list has more
751  * rbios waiting for this stripe, the next one on the list will be started
752  */
753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754 {
755 	int bucket;
756 	struct btrfs_stripe_hash *h;
757 	unsigned long flags;
758 	int keep_cache = 0;
759 
760 	bucket = rbio_bucket(rbio);
761 	h = rbio->fs_info->stripe_hash_table->table + bucket;
762 
763 	if (list_empty(&rbio->plug_list))
764 		cache_rbio(rbio);
765 
766 	spin_lock_irqsave(&h->lock, flags);
767 	spin_lock(&rbio->bio_list_lock);
768 
769 	if (!list_empty(&rbio->hash_list)) {
770 		/*
771 		 * if we're still cached and there is no other IO
772 		 * to perform, just leave this rbio here for others
773 		 * to steal from later
774 		 */
775 		if (list_empty(&rbio->plug_list) &&
776 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 			keep_cache = 1;
778 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 			BUG_ON(!bio_list_empty(&rbio->bio_list));
780 			goto done;
781 		}
782 
783 		list_del_init(&rbio->hash_list);
784 		refcount_dec(&rbio->refs);
785 
786 		/*
787 		 * we use the plug list to hold all the rbios
788 		 * waiting for the chance to lock this stripe.
789 		 * hand the lock over to one of them.
790 		 */
791 		if (!list_empty(&rbio->plug_list)) {
792 			struct btrfs_raid_bio *next;
793 			struct list_head *head = rbio->plug_list.next;
794 
795 			next = list_entry(head, struct btrfs_raid_bio,
796 					  plug_list);
797 
798 			list_del_init(&rbio->plug_list);
799 
800 			list_add(&next->hash_list, &h->hash_list);
801 			refcount_inc(&next->refs);
802 			spin_unlock(&rbio->bio_list_lock);
803 			spin_unlock_irqrestore(&h->lock, flags);
804 
805 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
806 				async_read_rebuild(next);
807 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 				steal_rbio(rbio, next);
809 				async_read_rebuild(next);
810 			} else if (next->operation == BTRFS_RBIO_WRITE) {
811 				steal_rbio(rbio, next);
812 				async_rmw_stripe(next);
813 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 				steal_rbio(rbio, next);
815 				async_scrub_parity(next);
816 			}
817 
818 			goto done_nolock;
819 			/*
820 			 * The barrier for this waitqueue_active is not needed,
821 			 * we're protected by h->lock and can't miss a wakeup.
822 			 */
823 		} else if (waitqueue_active(&h->wait)) {
824 			spin_unlock(&rbio->bio_list_lock);
825 			spin_unlock_irqrestore(&h->lock, flags);
826 			wake_up(&h->wait);
827 			goto done_nolock;
828 		}
829 	}
830 done:
831 	spin_unlock(&rbio->bio_list_lock);
832 	spin_unlock_irqrestore(&h->lock, flags);
833 
834 done_nolock:
835 	if (!keep_cache)
836 		remove_rbio_from_cache(rbio);
837 }
838 
839 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840 {
841 	int i;
842 
843 	if (!refcount_dec_and_test(&rbio->refs))
844 		return;
845 
846 	WARN_ON(!list_empty(&rbio->stripe_cache));
847 	WARN_ON(!list_empty(&rbio->hash_list));
848 	WARN_ON(!bio_list_empty(&rbio->bio_list));
849 
850 	for (i = 0; i < rbio->nr_pages; i++) {
851 		if (rbio->stripe_pages[i]) {
852 			__free_page(rbio->stripe_pages[i]);
853 			rbio->stripe_pages[i] = NULL;
854 		}
855 	}
856 
857 	btrfs_put_bbio(rbio->bbio);
858 	kfree(rbio);
859 }
860 
861 static void free_raid_bio(struct btrfs_raid_bio *rbio)
862 {
863 	unlock_stripe(rbio);
864 	__free_raid_bio(rbio);
865 }
866 
867 /*
868  * this frees the rbio and runs through all the bios in the
869  * bio_list and calls end_io on them
870  */
871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
872 {
873 	struct bio *cur = bio_list_get(&rbio->bio_list);
874 	struct bio *next;
875 
876 	if (rbio->generic_bio_cnt)
877 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878 
879 	free_raid_bio(rbio);
880 
881 	while (cur) {
882 		next = cur->bi_next;
883 		cur->bi_next = NULL;
884 		cur->bi_status = err;
885 		bio_endio(cur);
886 		cur = next;
887 	}
888 }
889 
890 /*
891  * end io function used by finish_rmw.  When we finally
892  * get here, we've written a full stripe
893  */
894 static void raid_write_end_io(struct bio *bio)
895 {
896 	struct btrfs_raid_bio *rbio = bio->bi_private;
897 	blk_status_t err = bio->bi_status;
898 	int max_errors;
899 
900 	if (err)
901 		fail_bio_stripe(rbio, bio);
902 
903 	bio_put(bio);
904 
905 	if (!atomic_dec_and_test(&rbio->stripes_pending))
906 		return;
907 
908 	err = BLK_STS_OK;
909 
910 	/* OK, we have read all the stripes we need to. */
911 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 		     0 : rbio->bbio->max_errors;
913 	if (atomic_read(&rbio->error) > max_errors)
914 		err = BLK_STS_IOERR;
915 
916 	rbio_orig_end_io(rbio, err);
917 }
918 
919 /*
920  * the read/modify/write code wants to use the original bio for
921  * any pages it included, and then use the rbio for everything
922  * else.  This function decides if a given index (stripe number)
923  * and page number in that stripe fall inside the original bio
924  * or the rbio.
925  *
926  * if you set bio_list_only, you'll get a NULL back for any ranges
927  * that are outside the bio_list
928  *
929  * This doesn't take any refs on anything, you get a bare page pointer
930  * and the caller must bump refs as required.
931  *
932  * You must call index_rbio_pages once before you can trust
933  * the answers from this function.
934  */
935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 				 int index, int pagenr, int bio_list_only)
937 {
938 	int chunk_page;
939 	struct page *p = NULL;
940 
941 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
942 
943 	spin_lock_irq(&rbio->bio_list_lock);
944 	p = rbio->bio_pages[chunk_page];
945 	spin_unlock_irq(&rbio->bio_list_lock);
946 
947 	if (p || bio_list_only)
948 		return p;
949 
950 	return rbio->stripe_pages[chunk_page];
951 }
952 
953 /*
954  * number of pages we need for the entire stripe across all the
955  * drives
956  */
957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
958 {
959 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
960 }
961 
962 /*
963  * allocation and initial setup for the btrfs_raid_bio.  Not
964  * this does not allocate any pages for rbio->pages.
965  */
966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 					 struct btrfs_bio *bbio,
968 					 u64 stripe_len)
969 {
970 	struct btrfs_raid_bio *rbio;
971 	int nr_data = 0;
972 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
974 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
975 	void *p;
976 
977 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
978 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 		       sizeof(long), GFP_NOFS);
980 	if (!rbio)
981 		return ERR_PTR(-ENOMEM);
982 
983 	bio_list_init(&rbio->bio_list);
984 	INIT_LIST_HEAD(&rbio->plug_list);
985 	spin_lock_init(&rbio->bio_list_lock);
986 	INIT_LIST_HEAD(&rbio->stripe_cache);
987 	INIT_LIST_HEAD(&rbio->hash_list);
988 	rbio->bbio = bbio;
989 	rbio->fs_info = fs_info;
990 	rbio->stripe_len = stripe_len;
991 	rbio->nr_pages = num_pages;
992 	rbio->real_stripes = real_stripes;
993 	rbio->stripe_npages = stripe_npages;
994 	rbio->faila = -1;
995 	rbio->failb = -1;
996 	refcount_set(&rbio->refs, 1);
997 	atomic_set(&rbio->error, 0);
998 	atomic_set(&rbio->stripes_pending, 0);
999 
1000 	/*
1001 	 * the stripe_pages and bio_pages array point to the extra
1002 	 * memory we allocated past the end of the rbio
1003 	 */
1004 	p = rbio + 1;
1005 	rbio->stripe_pages = p;
1006 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1007 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1008 
1009 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 		nr_data = real_stripes - 1;
1011 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1012 		nr_data = real_stripes - 2;
1013 	else
1014 		BUG();
1015 
1016 	rbio->nr_data = nr_data;
1017 	return rbio;
1018 }
1019 
1020 /* allocate pages for all the stripes in the bio, including parity */
1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022 {
1023 	int i;
1024 	struct page *page;
1025 
1026 	for (i = 0; i < rbio->nr_pages; i++) {
1027 		if (rbio->stripe_pages[i])
1028 			continue;
1029 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 		if (!page)
1031 			return -ENOMEM;
1032 		rbio->stripe_pages[i] = page;
1033 	}
1034 	return 0;
1035 }
1036 
1037 /* only allocate pages for p/q stripes */
1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039 {
1040 	int i;
1041 	struct page *page;
1042 
1043 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1044 
1045 	for (; i < rbio->nr_pages; i++) {
1046 		if (rbio->stripe_pages[i])
1047 			continue;
1048 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 		if (!page)
1050 			return -ENOMEM;
1051 		rbio->stripe_pages[i] = page;
1052 	}
1053 	return 0;
1054 }
1055 
1056 /*
1057  * add a single page from a specific stripe into our list of bios for IO
1058  * this will try to merge into existing bios if possible, and returns
1059  * zero if all went well.
1060  */
1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 			    struct bio_list *bio_list,
1063 			    struct page *page,
1064 			    int stripe_nr,
1065 			    unsigned long page_index,
1066 			    unsigned long bio_max_len)
1067 {
1068 	struct bio *last = bio_list->tail;
1069 	u64 last_end = 0;
1070 	int ret;
1071 	struct bio *bio;
1072 	struct btrfs_bio_stripe *stripe;
1073 	u64 disk_start;
1074 
1075 	stripe = &rbio->bbio->stripes[stripe_nr];
1076 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1077 
1078 	/* if the device is missing, just fail this stripe */
1079 	if (!stripe->dev->bdev)
1080 		return fail_rbio_index(rbio, stripe_nr);
1081 
1082 	/* see if we can add this page onto our existing bio */
1083 	if (last) {
1084 		last_end = (u64)last->bi_iter.bi_sector << 9;
1085 		last_end += last->bi_iter.bi_size;
1086 
1087 		/*
1088 		 * we can't merge these if they are from different
1089 		 * devices or if they are not contiguous
1090 		 */
1091 		if (last_end == disk_start && stripe->dev->bdev &&
1092 		    !last->bi_status &&
1093 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1094 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1095 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1096 			if (ret == PAGE_SIZE)
1097 				return 0;
1098 		}
1099 	}
1100 
1101 	/* put a new bio on the list */
1102 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1103 	bio->bi_iter.bi_size = 0;
1104 	bio_set_dev(bio, stripe->dev->bdev);
1105 	bio->bi_iter.bi_sector = disk_start >> 9;
1106 
1107 	bio_add_page(bio, page, PAGE_SIZE, 0);
1108 	bio_list_add(bio_list, bio);
1109 	return 0;
1110 }
1111 
1112 /*
1113  * while we're doing the read/modify/write cycle, we could
1114  * have errors in reading pages off the disk.  This checks
1115  * for errors and if we're not able to read the page it'll
1116  * trigger parity reconstruction.  The rmw will be finished
1117  * after we've reconstructed the failed stripes
1118  */
1119 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1120 {
1121 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1122 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1123 		__raid56_parity_recover(rbio);
1124 	} else {
1125 		finish_rmw(rbio);
1126 	}
1127 }
1128 
1129 /*
1130  * helper function to walk our bio list and populate the bio_pages array with
1131  * the result.  This seems expensive, but it is faster than constantly
1132  * searching through the bio list as we setup the IO in finish_rmw or stripe
1133  * reconstruction.
1134  *
1135  * This must be called before you trust the answers from page_in_rbio
1136  */
1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138 {
1139 	struct bio *bio;
1140 	u64 start;
1141 	unsigned long stripe_offset;
1142 	unsigned long page_index;
1143 
1144 	spin_lock_irq(&rbio->bio_list_lock);
1145 	bio_list_for_each(bio, &rbio->bio_list) {
1146 		struct bio_vec bvec;
1147 		struct bvec_iter iter;
1148 		int i = 0;
1149 
1150 		start = (u64)bio->bi_iter.bi_sector << 9;
1151 		stripe_offset = start - rbio->bbio->raid_map[0];
1152 		page_index = stripe_offset >> PAGE_SHIFT;
1153 
1154 		if (bio_flagged(bio, BIO_CLONED))
1155 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1156 
1157 		bio_for_each_segment(bvec, bio, iter) {
1158 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1159 			i++;
1160 		}
1161 	}
1162 	spin_unlock_irq(&rbio->bio_list_lock);
1163 }
1164 
1165 /*
1166  * this is called from one of two situations.  We either
1167  * have a full stripe from the higher layers, or we've read all
1168  * the missing bits off disk.
1169  *
1170  * This will calculate the parity and then send down any
1171  * changed blocks.
1172  */
1173 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174 {
1175 	struct btrfs_bio *bbio = rbio->bbio;
1176 	void *pointers[rbio->real_stripes];
1177 	int nr_data = rbio->nr_data;
1178 	int stripe;
1179 	int pagenr;
1180 	int p_stripe = -1;
1181 	int q_stripe = -1;
1182 	struct bio_list bio_list;
1183 	struct bio *bio;
1184 	int ret;
1185 
1186 	bio_list_init(&bio_list);
1187 
1188 	if (rbio->real_stripes - rbio->nr_data == 1) {
1189 		p_stripe = rbio->real_stripes - 1;
1190 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1191 		p_stripe = rbio->real_stripes - 2;
1192 		q_stripe = rbio->real_stripes - 1;
1193 	} else {
1194 		BUG();
1195 	}
1196 
1197 	/* at this point we either have a full stripe,
1198 	 * or we've read the full stripe from the drive.
1199 	 * recalculate the parity and write the new results.
1200 	 *
1201 	 * We're not allowed to add any new bios to the
1202 	 * bio list here, anyone else that wants to
1203 	 * change this stripe needs to do their own rmw.
1204 	 */
1205 	spin_lock_irq(&rbio->bio_list_lock);
1206 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1207 	spin_unlock_irq(&rbio->bio_list_lock);
1208 
1209 	atomic_set(&rbio->error, 0);
1210 
1211 	/*
1212 	 * now that we've set rmw_locked, run through the
1213 	 * bio list one last time and map the page pointers
1214 	 *
1215 	 * We don't cache full rbios because we're assuming
1216 	 * the higher layers are unlikely to use this area of
1217 	 * the disk again soon.  If they do use it again,
1218 	 * hopefully they will send another full bio.
1219 	 */
1220 	index_rbio_pages(rbio);
1221 	if (!rbio_is_full(rbio))
1222 		cache_rbio_pages(rbio);
1223 	else
1224 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1225 
1226 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1227 		struct page *p;
1228 		/* first collect one page from each data stripe */
1229 		for (stripe = 0; stripe < nr_data; stripe++) {
1230 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1231 			pointers[stripe] = kmap(p);
1232 		}
1233 
1234 		/* then add the parity stripe */
1235 		p = rbio_pstripe_page(rbio, pagenr);
1236 		SetPageUptodate(p);
1237 		pointers[stripe++] = kmap(p);
1238 
1239 		if (q_stripe != -1) {
1240 
1241 			/*
1242 			 * raid6, add the qstripe and call the
1243 			 * library function to fill in our p/q
1244 			 */
1245 			p = rbio_qstripe_page(rbio, pagenr);
1246 			SetPageUptodate(p);
1247 			pointers[stripe++] = kmap(p);
1248 
1249 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1250 						pointers);
1251 		} else {
1252 			/* raid5 */
1253 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1254 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1255 		}
1256 
1257 
1258 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1259 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1260 	}
1261 
1262 	/*
1263 	 * time to start writing.  Make bios for everything from the
1264 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1265 	 * everything else.
1266 	 */
1267 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1268 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1269 			struct page *page;
1270 			if (stripe < rbio->nr_data) {
1271 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1272 				if (!page)
1273 					continue;
1274 			} else {
1275 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1276 			}
1277 
1278 			ret = rbio_add_io_page(rbio, &bio_list,
1279 				       page, stripe, pagenr, rbio->stripe_len);
1280 			if (ret)
1281 				goto cleanup;
1282 		}
1283 	}
1284 
1285 	if (likely(!bbio->num_tgtdevs))
1286 		goto write_data;
1287 
1288 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289 		if (!bbio->tgtdev_map[stripe])
1290 			continue;
1291 
1292 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1293 			struct page *page;
1294 			if (stripe < rbio->nr_data) {
1295 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1296 				if (!page)
1297 					continue;
1298 			} else {
1299 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1300 			}
1301 
1302 			ret = rbio_add_io_page(rbio, &bio_list, page,
1303 					       rbio->bbio->tgtdev_map[stripe],
1304 					       pagenr, rbio->stripe_len);
1305 			if (ret)
1306 				goto cleanup;
1307 		}
1308 	}
1309 
1310 write_data:
1311 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1312 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1313 
1314 	while (1) {
1315 		bio = bio_list_pop(&bio_list);
1316 		if (!bio)
1317 			break;
1318 
1319 		bio->bi_private = rbio;
1320 		bio->bi_end_io = raid_write_end_io;
1321 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1322 
1323 		submit_bio(bio);
1324 	}
1325 	return;
1326 
1327 cleanup:
1328 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1329 
1330 	while ((bio = bio_list_pop(&bio_list)))
1331 		bio_put(bio);
1332 }
1333 
1334 /*
1335  * helper to find the stripe number for a given bio.  Used to figure out which
1336  * stripe has failed.  This expects the bio to correspond to a physical disk,
1337  * so it looks up based on physical sector numbers.
1338  */
1339 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1340 			   struct bio *bio)
1341 {
1342 	u64 physical = bio->bi_iter.bi_sector;
1343 	u64 stripe_start;
1344 	int i;
1345 	struct btrfs_bio_stripe *stripe;
1346 
1347 	physical <<= 9;
1348 
1349 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1350 		stripe = &rbio->bbio->stripes[i];
1351 		stripe_start = stripe->physical;
1352 		if (physical >= stripe_start &&
1353 		    physical < stripe_start + rbio->stripe_len &&
1354 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1355 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1356 			return i;
1357 		}
1358 	}
1359 	return -1;
1360 }
1361 
1362 /*
1363  * helper to find the stripe number for a given
1364  * bio (before mapping).  Used to figure out which stripe has
1365  * failed.  This looks up based on logical block numbers.
1366  */
1367 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1368 				   struct bio *bio)
1369 {
1370 	u64 logical = bio->bi_iter.bi_sector;
1371 	u64 stripe_start;
1372 	int i;
1373 
1374 	logical <<= 9;
1375 
1376 	for (i = 0; i < rbio->nr_data; i++) {
1377 		stripe_start = rbio->bbio->raid_map[i];
1378 		if (logical >= stripe_start &&
1379 		    logical < stripe_start + rbio->stripe_len) {
1380 			return i;
1381 		}
1382 	}
1383 	return -1;
1384 }
1385 
1386 /*
1387  * returns -EIO if we had too many failures
1388  */
1389 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1390 {
1391 	unsigned long flags;
1392 	int ret = 0;
1393 
1394 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1395 
1396 	/* we already know this stripe is bad, move on */
1397 	if (rbio->faila == failed || rbio->failb == failed)
1398 		goto out;
1399 
1400 	if (rbio->faila == -1) {
1401 		/* first failure on this rbio */
1402 		rbio->faila = failed;
1403 		atomic_inc(&rbio->error);
1404 	} else if (rbio->failb == -1) {
1405 		/* second failure on this rbio */
1406 		rbio->failb = failed;
1407 		atomic_inc(&rbio->error);
1408 	} else {
1409 		ret = -EIO;
1410 	}
1411 out:
1412 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1413 
1414 	return ret;
1415 }
1416 
1417 /*
1418  * helper to fail a stripe based on a physical disk
1419  * bio.
1420  */
1421 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1422 			   struct bio *bio)
1423 {
1424 	int failed = find_bio_stripe(rbio, bio);
1425 
1426 	if (failed < 0)
1427 		return -EIO;
1428 
1429 	return fail_rbio_index(rbio, failed);
1430 }
1431 
1432 /*
1433  * this sets each page in the bio uptodate.  It should only be used on private
1434  * rbio pages, nothing that comes in from the higher layers
1435  */
1436 static void set_bio_pages_uptodate(struct bio *bio)
1437 {
1438 	struct bio_vec bvec;
1439 	struct bvec_iter iter;
1440 
1441 	if (bio_flagged(bio, BIO_CLONED))
1442 		bio->bi_iter = btrfs_io_bio(bio)->iter;
1443 
1444 	bio_for_each_segment(bvec, bio, iter)
1445 		SetPageUptodate(bvec.bv_page);
1446 }
1447 
1448 /*
1449  * end io for the read phase of the rmw cycle.  All the bios here are physical
1450  * stripe bios we've read from the disk so we can recalculate the parity of the
1451  * stripe.
1452  *
1453  * This will usually kick off finish_rmw once all the bios are read in, but it
1454  * may trigger parity reconstruction if we had any errors along the way
1455  */
1456 static void raid_rmw_end_io(struct bio *bio)
1457 {
1458 	struct btrfs_raid_bio *rbio = bio->bi_private;
1459 
1460 	if (bio->bi_status)
1461 		fail_bio_stripe(rbio, bio);
1462 	else
1463 		set_bio_pages_uptodate(bio);
1464 
1465 	bio_put(bio);
1466 
1467 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1468 		return;
1469 
1470 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1471 		goto cleanup;
1472 
1473 	/*
1474 	 * this will normally call finish_rmw to start our write
1475 	 * but if there are any failed stripes we'll reconstruct
1476 	 * from parity first
1477 	 */
1478 	validate_rbio_for_rmw(rbio);
1479 	return;
1480 
1481 cleanup:
1482 
1483 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1484 }
1485 
1486 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1487 {
1488 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1489 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1490 }
1491 
1492 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1493 {
1494 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1495 			read_rebuild_work, NULL, NULL);
1496 
1497 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1498 }
1499 
1500 /*
1501  * the stripe must be locked by the caller.  It will
1502  * unlock after all the writes are done
1503  */
1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1505 {
1506 	int bios_to_read = 0;
1507 	struct bio_list bio_list;
1508 	int ret;
1509 	int pagenr;
1510 	int stripe;
1511 	struct bio *bio;
1512 
1513 	bio_list_init(&bio_list);
1514 
1515 	ret = alloc_rbio_pages(rbio);
1516 	if (ret)
1517 		goto cleanup;
1518 
1519 	index_rbio_pages(rbio);
1520 
1521 	atomic_set(&rbio->error, 0);
1522 	/*
1523 	 * build a list of bios to read all the missing parts of this
1524 	 * stripe
1525 	 */
1526 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1527 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1528 			struct page *page;
1529 			/*
1530 			 * we want to find all the pages missing from
1531 			 * the rbio and read them from the disk.  If
1532 			 * page_in_rbio finds a page in the bio list
1533 			 * we don't need to read it off the stripe.
1534 			 */
1535 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1536 			if (page)
1537 				continue;
1538 
1539 			page = rbio_stripe_page(rbio, stripe, pagenr);
1540 			/*
1541 			 * the bio cache may have handed us an uptodate
1542 			 * page.  If so, be happy and use it
1543 			 */
1544 			if (PageUptodate(page))
1545 				continue;
1546 
1547 			ret = rbio_add_io_page(rbio, &bio_list, page,
1548 				       stripe, pagenr, rbio->stripe_len);
1549 			if (ret)
1550 				goto cleanup;
1551 		}
1552 	}
1553 
1554 	bios_to_read = bio_list_size(&bio_list);
1555 	if (!bios_to_read) {
1556 		/*
1557 		 * this can happen if others have merged with
1558 		 * us, it means there is nothing left to read.
1559 		 * But if there are missing devices it may not be
1560 		 * safe to do the full stripe write yet.
1561 		 */
1562 		goto finish;
1563 	}
1564 
1565 	/*
1566 	 * the bbio may be freed once we submit the last bio.  Make sure
1567 	 * not to touch it after that
1568 	 */
1569 	atomic_set(&rbio->stripes_pending, bios_to_read);
1570 	while (1) {
1571 		bio = bio_list_pop(&bio_list);
1572 		if (!bio)
1573 			break;
1574 
1575 		bio->bi_private = rbio;
1576 		bio->bi_end_io = raid_rmw_end_io;
1577 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1578 
1579 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1580 
1581 		submit_bio(bio);
1582 	}
1583 	/* the actual write will happen once the reads are done */
1584 	return 0;
1585 
1586 cleanup:
1587 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1588 
1589 	while ((bio = bio_list_pop(&bio_list)))
1590 		bio_put(bio);
1591 
1592 	return -EIO;
1593 
1594 finish:
1595 	validate_rbio_for_rmw(rbio);
1596 	return 0;
1597 }
1598 
1599 /*
1600  * if the upper layers pass in a full stripe, we thank them by only allocating
1601  * enough pages to hold the parity, and sending it all down quickly.
1602  */
1603 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1604 {
1605 	int ret;
1606 
1607 	ret = alloc_rbio_parity_pages(rbio);
1608 	if (ret) {
1609 		__free_raid_bio(rbio);
1610 		return ret;
1611 	}
1612 
1613 	ret = lock_stripe_add(rbio);
1614 	if (ret == 0)
1615 		finish_rmw(rbio);
1616 	return 0;
1617 }
1618 
1619 /*
1620  * partial stripe writes get handed over to async helpers.
1621  * We're really hoping to merge a few more writes into this
1622  * rbio before calculating new parity
1623  */
1624 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1625 {
1626 	int ret;
1627 
1628 	ret = lock_stripe_add(rbio);
1629 	if (ret == 0)
1630 		async_rmw_stripe(rbio);
1631 	return 0;
1632 }
1633 
1634 /*
1635  * sometimes while we were reading from the drive to
1636  * recalculate parity, enough new bios come into create
1637  * a full stripe.  So we do a check here to see if we can
1638  * go directly to finish_rmw
1639  */
1640 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1641 {
1642 	/* head off into rmw land if we don't have a full stripe */
1643 	if (!rbio_is_full(rbio))
1644 		return partial_stripe_write(rbio);
1645 	return full_stripe_write(rbio);
1646 }
1647 
1648 /*
1649  * We use plugging call backs to collect full stripes.
1650  * Any time we get a partial stripe write while plugged
1651  * we collect it into a list.  When the unplug comes down,
1652  * we sort the list by logical block number and merge
1653  * everything we can into the same rbios
1654  */
1655 struct btrfs_plug_cb {
1656 	struct blk_plug_cb cb;
1657 	struct btrfs_fs_info *info;
1658 	struct list_head rbio_list;
1659 	struct btrfs_work work;
1660 };
1661 
1662 /*
1663  * rbios on the plug list are sorted for easier merging.
1664  */
1665 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1666 {
1667 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1668 						 plug_list);
1669 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1670 						 plug_list);
1671 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1672 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1673 
1674 	if (a_sector < b_sector)
1675 		return -1;
1676 	if (a_sector > b_sector)
1677 		return 1;
1678 	return 0;
1679 }
1680 
1681 static void run_plug(struct btrfs_plug_cb *plug)
1682 {
1683 	struct btrfs_raid_bio *cur;
1684 	struct btrfs_raid_bio *last = NULL;
1685 
1686 	/*
1687 	 * sort our plug list then try to merge
1688 	 * everything we can in hopes of creating full
1689 	 * stripes.
1690 	 */
1691 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1692 	while (!list_empty(&plug->rbio_list)) {
1693 		cur = list_entry(plug->rbio_list.next,
1694 				 struct btrfs_raid_bio, plug_list);
1695 		list_del_init(&cur->plug_list);
1696 
1697 		if (rbio_is_full(cur)) {
1698 			/* we have a full stripe, send it down */
1699 			full_stripe_write(cur);
1700 			continue;
1701 		}
1702 		if (last) {
1703 			if (rbio_can_merge(last, cur)) {
1704 				merge_rbio(last, cur);
1705 				__free_raid_bio(cur);
1706 				continue;
1707 
1708 			}
1709 			__raid56_parity_write(last);
1710 		}
1711 		last = cur;
1712 	}
1713 	if (last) {
1714 		__raid56_parity_write(last);
1715 	}
1716 	kfree(plug);
1717 }
1718 
1719 /*
1720  * if the unplug comes from schedule, we have to push the
1721  * work off to a helper thread
1722  */
1723 static void unplug_work(struct btrfs_work *work)
1724 {
1725 	struct btrfs_plug_cb *plug;
1726 	plug = container_of(work, struct btrfs_plug_cb, work);
1727 	run_plug(plug);
1728 }
1729 
1730 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1731 {
1732 	struct btrfs_plug_cb *plug;
1733 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1734 
1735 	if (from_schedule) {
1736 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1737 				unplug_work, NULL, NULL);
1738 		btrfs_queue_work(plug->info->rmw_workers,
1739 				 &plug->work);
1740 		return;
1741 	}
1742 	run_plug(plug);
1743 }
1744 
1745 /*
1746  * our main entry point for writes from the rest of the FS.
1747  */
1748 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1749 			struct btrfs_bio *bbio, u64 stripe_len)
1750 {
1751 	struct btrfs_raid_bio *rbio;
1752 	struct btrfs_plug_cb *plug = NULL;
1753 	struct blk_plug_cb *cb;
1754 	int ret;
1755 
1756 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1757 	if (IS_ERR(rbio)) {
1758 		btrfs_put_bbio(bbio);
1759 		return PTR_ERR(rbio);
1760 	}
1761 	bio_list_add(&rbio->bio_list, bio);
1762 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1763 	rbio->operation = BTRFS_RBIO_WRITE;
1764 
1765 	btrfs_bio_counter_inc_noblocked(fs_info);
1766 	rbio->generic_bio_cnt = 1;
1767 
1768 	/*
1769 	 * don't plug on full rbios, just get them out the door
1770 	 * as quickly as we can
1771 	 */
1772 	if (rbio_is_full(rbio)) {
1773 		ret = full_stripe_write(rbio);
1774 		if (ret)
1775 			btrfs_bio_counter_dec(fs_info);
1776 		return ret;
1777 	}
1778 
1779 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1780 	if (cb) {
1781 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1782 		if (!plug->info) {
1783 			plug->info = fs_info;
1784 			INIT_LIST_HEAD(&plug->rbio_list);
1785 		}
1786 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1787 		ret = 0;
1788 	} else {
1789 		ret = __raid56_parity_write(rbio);
1790 		if (ret)
1791 			btrfs_bio_counter_dec(fs_info);
1792 	}
1793 	return ret;
1794 }
1795 
1796 /*
1797  * all parity reconstruction happens here.  We've read in everything
1798  * we can find from the drives and this does the heavy lifting of
1799  * sorting the good from the bad.
1800  */
1801 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1802 {
1803 	int pagenr, stripe;
1804 	void **pointers;
1805 	int faila = -1, failb = -1;
1806 	struct page *page;
1807 	blk_status_t err;
1808 	int i;
1809 
1810 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1811 	if (!pointers) {
1812 		err = BLK_STS_RESOURCE;
1813 		goto cleanup_io;
1814 	}
1815 
1816 	faila = rbio->faila;
1817 	failb = rbio->failb;
1818 
1819 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1820 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1821 		spin_lock_irq(&rbio->bio_list_lock);
1822 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1823 		spin_unlock_irq(&rbio->bio_list_lock);
1824 	}
1825 
1826 	index_rbio_pages(rbio);
1827 
1828 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1829 		/*
1830 		 * Now we just use bitmap to mark the horizontal stripes in
1831 		 * which we have data when doing parity scrub.
1832 		 */
1833 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1834 		    !test_bit(pagenr, rbio->dbitmap))
1835 			continue;
1836 
1837 		/* setup our array of pointers with pages
1838 		 * from each stripe
1839 		 */
1840 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1841 			/*
1842 			 * if we're rebuilding a read, we have to use
1843 			 * pages from the bio list
1844 			 */
1845 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1846 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1847 			    (stripe == faila || stripe == failb)) {
1848 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1849 			} else {
1850 				page = rbio_stripe_page(rbio, stripe, pagenr);
1851 			}
1852 			pointers[stripe] = kmap(page);
1853 		}
1854 
1855 		/* all raid6 handling here */
1856 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1857 			/*
1858 			 * single failure, rebuild from parity raid5
1859 			 * style
1860 			 */
1861 			if (failb < 0) {
1862 				if (faila == rbio->nr_data) {
1863 					/*
1864 					 * Just the P stripe has failed, without
1865 					 * a bad data or Q stripe.
1866 					 * TODO, we should redo the xor here.
1867 					 */
1868 					err = BLK_STS_IOERR;
1869 					goto cleanup;
1870 				}
1871 				/*
1872 				 * a single failure in raid6 is rebuilt
1873 				 * in the pstripe code below
1874 				 */
1875 				goto pstripe;
1876 			}
1877 
1878 			/* make sure our ps and qs are in order */
1879 			if (faila > failb) {
1880 				int tmp = failb;
1881 				failb = faila;
1882 				faila = tmp;
1883 			}
1884 
1885 			/* if the q stripe is failed, do a pstripe reconstruction
1886 			 * from the xors.
1887 			 * If both the q stripe and the P stripe are failed, we're
1888 			 * here due to a crc mismatch and we can't give them the
1889 			 * data they want
1890 			 */
1891 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1892 				if (rbio->bbio->raid_map[faila] ==
1893 				    RAID5_P_STRIPE) {
1894 					err = BLK_STS_IOERR;
1895 					goto cleanup;
1896 				}
1897 				/*
1898 				 * otherwise we have one bad data stripe and
1899 				 * a good P stripe.  raid5!
1900 				 */
1901 				goto pstripe;
1902 			}
1903 
1904 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1905 				raid6_datap_recov(rbio->real_stripes,
1906 						  PAGE_SIZE, faila, pointers);
1907 			} else {
1908 				raid6_2data_recov(rbio->real_stripes,
1909 						  PAGE_SIZE, faila, failb,
1910 						  pointers);
1911 			}
1912 		} else {
1913 			void *p;
1914 
1915 			/* rebuild from P stripe here (raid5 or raid6) */
1916 			BUG_ON(failb != -1);
1917 pstripe:
1918 			/* Copy parity block into failed block to start with */
1919 			memcpy(pointers[faila],
1920 			       pointers[rbio->nr_data],
1921 			       PAGE_SIZE);
1922 
1923 			/* rearrange the pointer array */
1924 			p = pointers[faila];
1925 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1926 				pointers[stripe] = pointers[stripe + 1];
1927 			pointers[rbio->nr_data - 1] = p;
1928 
1929 			/* xor in the rest */
1930 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1931 		}
1932 		/* if we're doing this rebuild as part of an rmw, go through
1933 		 * and set all of our private rbio pages in the
1934 		 * failed stripes as uptodate.  This way finish_rmw will
1935 		 * know they can be trusted.  If this was a read reconstruction,
1936 		 * other endio functions will fiddle the uptodate bits
1937 		 */
1938 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1939 			for (i = 0;  i < rbio->stripe_npages; i++) {
1940 				if (faila != -1) {
1941 					page = rbio_stripe_page(rbio, faila, i);
1942 					SetPageUptodate(page);
1943 				}
1944 				if (failb != -1) {
1945 					page = rbio_stripe_page(rbio, failb, i);
1946 					SetPageUptodate(page);
1947 				}
1948 			}
1949 		}
1950 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1951 			/*
1952 			 * if we're rebuilding a read, we have to use
1953 			 * pages from the bio list
1954 			 */
1955 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1956 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1957 			    (stripe == faila || stripe == failb)) {
1958 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1959 			} else {
1960 				page = rbio_stripe_page(rbio, stripe, pagenr);
1961 			}
1962 			kunmap(page);
1963 		}
1964 	}
1965 
1966 	err = BLK_STS_OK;
1967 cleanup:
1968 	kfree(pointers);
1969 
1970 cleanup_io:
1971 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1972 		if (err == BLK_STS_OK)
1973 			cache_rbio_pages(rbio);
1974 		else
1975 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1976 
1977 		rbio_orig_end_io(rbio, err);
1978 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1979 		rbio_orig_end_io(rbio, err);
1980 	} else if (err == BLK_STS_OK) {
1981 		rbio->faila = -1;
1982 		rbio->failb = -1;
1983 
1984 		if (rbio->operation == BTRFS_RBIO_WRITE)
1985 			finish_rmw(rbio);
1986 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1987 			finish_parity_scrub(rbio, 0);
1988 		else
1989 			BUG();
1990 	} else {
1991 		rbio_orig_end_io(rbio, err);
1992 	}
1993 }
1994 
1995 /*
1996  * This is called only for stripes we've read from disk to
1997  * reconstruct the parity.
1998  */
1999 static void raid_recover_end_io(struct bio *bio)
2000 {
2001 	struct btrfs_raid_bio *rbio = bio->bi_private;
2002 
2003 	/*
2004 	 * we only read stripe pages off the disk, set them
2005 	 * up to date if there were no errors
2006 	 */
2007 	if (bio->bi_status)
2008 		fail_bio_stripe(rbio, bio);
2009 	else
2010 		set_bio_pages_uptodate(bio);
2011 	bio_put(bio);
2012 
2013 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2014 		return;
2015 
2016 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2017 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2018 	else
2019 		__raid_recover_end_io(rbio);
2020 }
2021 
2022 /*
2023  * reads everything we need off the disk to reconstruct
2024  * the parity. endio handlers trigger final reconstruction
2025  * when the IO is done.
2026  *
2027  * This is used both for reads from the higher layers and for
2028  * parity construction required to finish a rmw cycle.
2029  */
2030 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2031 {
2032 	int bios_to_read = 0;
2033 	struct bio_list bio_list;
2034 	int ret;
2035 	int pagenr;
2036 	int stripe;
2037 	struct bio *bio;
2038 
2039 	bio_list_init(&bio_list);
2040 
2041 	ret = alloc_rbio_pages(rbio);
2042 	if (ret)
2043 		goto cleanup;
2044 
2045 	atomic_set(&rbio->error, 0);
2046 
2047 	/*
2048 	 * read everything that hasn't failed.  Thanks to the
2049 	 * stripe cache, it is possible that some or all of these
2050 	 * pages are going to be uptodate.
2051 	 */
2052 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2053 		if (rbio->faila == stripe || rbio->failb == stripe) {
2054 			atomic_inc(&rbio->error);
2055 			continue;
2056 		}
2057 
2058 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2059 			struct page *p;
2060 
2061 			/*
2062 			 * the rmw code may have already read this
2063 			 * page in
2064 			 */
2065 			p = rbio_stripe_page(rbio, stripe, pagenr);
2066 			if (PageUptodate(p))
2067 				continue;
2068 
2069 			ret = rbio_add_io_page(rbio, &bio_list,
2070 				       rbio_stripe_page(rbio, stripe, pagenr),
2071 				       stripe, pagenr, rbio->stripe_len);
2072 			if (ret < 0)
2073 				goto cleanup;
2074 		}
2075 	}
2076 
2077 	bios_to_read = bio_list_size(&bio_list);
2078 	if (!bios_to_read) {
2079 		/*
2080 		 * we might have no bios to read just because the pages
2081 		 * were up to date, or we might have no bios to read because
2082 		 * the devices were gone.
2083 		 */
2084 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2085 			__raid_recover_end_io(rbio);
2086 			goto out;
2087 		} else {
2088 			goto cleanup;
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * the bbio may be freed once we submit the last bio.  Make sure
2094 	 * not to touch it after that
2095 	 */
2096 	atomic_set(&rbio->stripes_pending, bios_to_read);
2097 	while (1) {
2098 		bio = bio_list_pop(&bio_list);
2099 		if (!bio)
2100 			break;
2101 
2102 		bio->bi_private = rbio;
2103 		bio->bi_end_io = raid_recover_end_io;
2104 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2105 
2106 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2107 
2108 		submit_bio(bio);
2109 	}
2110 out:
2111 	return 0;
2112 
2113 cleanup:
2114 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2115 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2116 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2117 
2118 	while ((bio = bio_list_pop(&bio_list)))
2119 		bio_put(bio);
2120 
2121 	return -EIO;
2122 }
2123 
2124 /*
2125  * the main entry point for reads from the higher layers.  This
2126  * is really only called when the normal read path had a failure,
2127  * so we assume the bio they send down corresponds to a failed part
2128  * of the drive.
2129  */
2130 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2131 			  struct btrfs_bio *bbio, u64 stripe_len,
2132 			  int mirror_num, int generic_io)
2133 {
2134 	struct btrfs_raid_bio *rbio;
2135 	int ret;
2136 
2137 	if (generic_io) {
2138 		ASSERT(bbio->mirror_num == mirror_num);
2139 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2140 	}
2141 
2142 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2143 	if (IS_ERR(rbio)) {
2144 		if (generic_io)
2145 			btrfs_put_bbio(bbio);
2146 		return PTR_ERR(rbio);
2147 	}
2148 
2149 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2150 	bio_list_add(&rbio->bio_list, bio);
2151 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2152 
2153 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2154 	if (rbio->faila == -1) {
2155 		btrfs_warn(fs_info,
2156 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2157 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2158 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2159 		if (generic_io)
2160 			btrfs_put_bbio(bbio);
2161 		kfree(rbio);
2162 		return -EIO;
2163 	}
2164 
2165 	if (generic_io) {
2166 		btrfs_bio_counter_inc_noblocked(fs_info);
2167 		rbio->generic_bio_cnt = 1;
2168 	} else {
2169 		btrfs_get_bbio(bbio);
2170 	}
2171 
2172 	/*
2173 	 * reconstruct from the q stripe if they are
2174 	 * asking for mirror 3
2175 	 */
2176 	if (mirror_num == 3)
2177 		rbio->failb = rbio->real_stripes - 2;
2178 
2179 	ret = lock_stripe_add(rbio);
2180 
2181 	/*
2182 	 * __raid56_parity_recover will end the bio with
2183 	 * any errors it hits.  We don't want to return
2184 	 * its error value up the stack because our caller
2185 	 * will end up calling bio_endio with any nonzero
2186 	 * return
2187 	 */
2188 	if (ret == 0)
2189 		__raid56_parity_recover(rbio);
2190 	/*
2191 	 * our rbio has been added to the list of
2192 	 * rbios that will be handled after the
2193 	 * currently lock owner is done
2194 	 */
2195 	return 0;
2196 
2197 }
2198 
2199 static void rmw_work(struct btrfs_work *work)
2200 {
2201 	struct btrfs_raid_bio *rbio;
2202 
2203 	rbio = container_of(work, struct btrfs_raid_bio, work);
2204 	raid56_rmw_stripe(rbio);
2205 }
2206 
2207 static void read_rebuild_work(struct btrfs_work *work)
2208 {
2209 	struct btrfs_raid_bio *rbio;
2210 
2211 	rbio = container_of(work, struct btrfs_raid_bio, work);
2212 	__raid56_parity_recover(rbio);
2213 }
2214 
2215 /*
2216  * The following code is used to scrub/replace the parity stripe
2217  *
2218  * Caller must have already increased bio_counter for getting @bbio.
2219  *
2220  * Note: We need make sure all the pages that add into the scrub/replace
2221  * raid bio are correct and not be changed during the scrub/replace. That
2222  * is those pages just hold metadata or file data with checksum.
2223  */
2224 
2225 struct btrfs_raid_bio *
2226 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2227 			       struct btrfs_bio *bbio, u64 stripe_len,
2228 			       struct btrfs_device *scrub_dev,
2229 			       unsigned long *dbitmap, int stripe_nsectors)
2230 {
2231 	struct btrfs_raid_bio *rbio;
2232 	int i;
2233 
2234 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2235 	if (IS_ERR(rbio))
2236 		return NULL;
2237 	bio_list_add(&rbio->bio_list, bio);
2238 	/*
2239 	 * This is a special bio which is used to hold the completion handler
2240 	 * and make the scrub rbio is similar to the other types
2241 	 */
2242 	ASSERT(!bio->bi_iter.bi_size);
2243 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2244 
2245 	/*
2246 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2247 	 * to the end position, so this search can start from the first parity
2248 	 * stripe.
2249 	 */
2250 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2251 		if (bbio->stripes[i].dev == scrub_dev) {
2252 			rbio->scrubp = i;
2253 			break;
2254 		}
2255 	}
2256 	ASSERT(i < rbio->real_stripes);
2257 
2258 	/* Now we just support the sectorsize equals to page size */
2259 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2260 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2261 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2262 
2263 	/*
2264 	 * We have already increased bio_counter when getting bbio, record it
2265 	 * so we can free it at rbio_orig_end_io().
2266 	 */
2267 	rbio->generic_bio_cnt = 1;
2268 
2269 	return rbio;
2270 }
2271 
2272 /* Used for both parity scrub and missing. */
2273 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2274 			    u64 logical)
2275 {
2276 	int stripe_offset;
2277 	int index;
2278 
2279 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2280 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2281 				rbio->stripe_len * rbio->nr_data);
2282 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2283 	index = stripe_offset >> PAGE_SHIFT;
2284 	rbio->bio_pages[index] = page;
2285 }
2286 
2287 /*
2288  * We just scrub the parity that we have correct data on the same horizontal,
2289  * so we needn't allocate all pages for all the stripes.
2290  */
2291 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2292 {
2293 	int i;
2294 	int bit;
2295 	int index;
2296 	struct page *page;
2297 
2298 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2299 		for (i = 0; i < rbio->real_stripes; i++) {
2300 			index = i * rbio->stripe_npages + bit;
2301 			if (rbio->stripe_pages[index])
2302 				continue;
2303 
2304 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2305 			if (!page)
2306 				return -ENOMEM;
2307 			rbio->stripe_pages[index] = page;
2308 		}
2309 	}
2310 	return 0;
2311 }
2312 
2313 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2314 					 int need_check)
2315 {
2316 	struct btrfs_bio *bbio = rbio->bbio;
2317 	void *pointers[rbio->real_stripes];
2318 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2319 	int nr_data = rbio->nr_data;
2320 	int stripe;
2321 	int pagenr;
2322 	int p_stripe = -1;
2323 	int q_stripe = -1;
2324 	struct page *p_page = NULL;
2325 	struct page *q_page = NULL;
2326 	struct bio_list bio_list;
2327 	struct bio *bio;
2328 	int is_replace = 0;
2329 	int ret;
2330 
2331 	bio_list_init(&bio_list);
2332 
2333 	if (rbio->real_stripes - rbio->nr_data == 1) {
2334 		p_stripe = rbio->real_stripes - 1;
2335 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2336 		p_stripe = rbio->real_stripes - 2;
2337 		q_stripe = rbio->real_stripes - 1;
2338 	} else {
2339 		BUG();
2340 	}
2341 
2342 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2343 		is_replace = 1;
2344 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2345 	}
2346 
2347 	/*
2348 	 * Because the higher layers(scrubber) are unlikely to
2349 	 * use this area of the disk again soon, so don't cache
2350 	 * it.
2351 	 */
2352 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2353 
2354 	if (!need_check)
2355 		goto writeback;
2356 
2357 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2358 	if (!p_page)
2359 		goto cleanup;
2360 	SetPageUptodate(p_page);
2361 
2362 	if (q_stripe != -1) {
2363 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2364 		if (!q_page) {
2365 			__free_page(p_page);
2366 			goto cleanup;
2367 		}
2368 		SetPageUptodate(q_page);
2369 	}
2370 
2371 	atomic_set(&rbio->error, 0);
2372 
2373 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2374 		struct page *p;
2375 		void *parity;
2376 		/* first collect one page from each data stripe */
2377 		for (stripe = 0; stripe < nr_data; stripe++) {
2378 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2379 			pointers[stripe] = kmap(p);
2380 		}
2381 
2382 		/* then add the parity stripe */
2383 		pointers[stripe++] = kmap(p_page);
2384 
2385 		if (q_stripe != -1) {
2386 
2387 			/*
2388 			 * raid6, add the qstripe and call the
2389 			 * library function to fill in our p/q
2390 			 */
2391 			pointers[stripe++] = kmap(q_page);
2392 
2393 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2394 						pointers);
2395 		} else {
2396 			/* raid5 */
2397 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2398 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2399 		}
2400 
2401 		/* Check scrubbing parity and repair it */
2402 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2403 		parity = kmap(p);
2404 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2405 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2406 		else
2407 			/* Parity is right, needn't writeback */
2408 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2409 		kunmap(p);
2410 
2411 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2412 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2413 	}
2414 
2415 	__free_page(p_page);
2416 	if (q_page)
2417 		__free_page(q_page);
2418 
2419 writeback:
2420 	/*
2421 	 * time to start writing.  Make bios for everything from the
2422 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2423 	 * everything else.
2424 	 */
2425 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2426 		struct page *page;
2427 
2428 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2429 		ret = rbio_add_io_page(rbio, &bio_list,
2430 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2431 		if (ret)
2432 			goto cleanup;
2433 	}
2434 
2435 	if (!is_replace)
2436 		goto submit_write;
2437 
2438 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2439 		struct page *page;
2440 
2441 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2442 		ret = rbio_add_io_page(rbio, &bio_list, page,
2443 				       bbio->tgtdev_map[rbio->scrubp],
2444 				       pagenr, rbio->stripe_len);
2445 		if (ret)
2446 			goto cleanup;
2447 	}
2448 
2449 submit_write:
2450 	nr_data = bio_list_size(&bio_list);
2451 	if (!nr_data) {
2452 		/* Every parity is right */
2453 		rbio_orig_end_io(rbio, BLK_STS_OK);
2454 		return;
2455 	}
2456 
2457 	atomic_set(&rbio->stripes_pending, nr_data);
2458 
2459 	while (1) {
2460 		bio = bio_list_pop(&bio_list);
2461 		if (!bio)
2462 			break;
2463 
2464 		bio->bi_private = rbio;
2465 		bio->bi_end_io = raid_write_end_io;
2466 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2467 
2468 		submit_bio(bio);
2469 	}
2470 	return;
2471 
2472 cleanup:
2473 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2474 
2475 	while ((bio = bio_list_pop(&bio_list)))
2476 		bio_put(bio);
2477 }
2478 
2479 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2480 {
2481 	if (stripe >= 0 && stripe < rbio->nr_data)
2482 		return 1;
2483 	return 0;
2484 }
2485 
2486 /*
2487  * While we're doing the parity check and repair, we could have errors
2488  * in reading pages off the disk.  This checks for errors and if we're
2489  * not able to read the page it'll trigger parity reconstruction.  The
2490  * parity scrub will be finished after we've reconstructed the failed
2491  * stripes
2492  */
2493 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2494 {
2495 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2496 		goto cleanup;
2497 
2498 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2499 		int dfail = 0, failp = -1;
2500 
2501 		if (is_data_stripe(rbio, rbio->faila))
2502 			dfail++;
2503 		else if (is_parity_stripe(rbio->faila))
2504 			failp = rbio->faila;
2505 
2506 		if (is_data_stripe(rbio, rbio->failb))
2507 			dfail++;
2508 		else if (is_parity_stripe(rbio->failb))
2509 			failp = rbio->failb;
2510 
2511 		/*
2512 		 * Because we can not use a scrubbing parity to repair
2513 		 * the data, so the capability of the repair is declined.
2514 		 * (In the case of RAID5, we can not repair anything)
2515 		 */
2516 		if (dfail > rbio->bbio->max_errors - 1)
2517 			goto cleanup;
2518 
2519 		/*
2520 		 * If all data is good, only parity is correctly, just
2521 		 * repair the parity.
2522 		 */
2523 		if (dfail == 0) {
2524 			finish_parity_scrub(rbio, 0);
2525 			return;
2526 		}
2527 
2528 		/*
2529 		 * Here means we got one corrupted data stripe and one
2530 		 * corrupted parity on RAID6, if the corrupted parity
2531 		 * is scrubbing parity, luckily, use the other one to repair
2532 		 * the data, or we can not repair the data stripe.
2533 		 */
2534 		if (failp != rbio->scrubp)
2535 			goto cleanup;
2536 
2537 		__raid_recover_end_io(rbio);
2538 	} else {
2539 		finish_parity_scrub(rbio, 1);
2540 	}
2541 	return;
2542 
2543 cleanup:
2544 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2545 }
2546 
2547 /*
2548  * end io for the read phase of the rmw cycle.  All the bios here are physical
2549  * stripe bios we've read from the disk so we can recalculate the parity of the
2550  * stripe.
2551  *
2552  * This will usually kick off finish_rmw once all the bios are read in, but it
2553  * may trigger parity reconstruction if we had any errors along the way
2554  */
2555 static void raid56_parity_scrub_end_io(struct bio *bio)
2556 {
2557 	struct btrfs_raid_bio *rbio = bio->bi_private;
2558 
2559 	if (bio->bi_status)
2560 		fail_bio_stripe(rbio, bio);
2561 	else
2562 		set_bio_pages_uptodate(bio);
2563 
2564 	bio_put(bio);
2565 
2566 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2567 		return;
2568 
2569 	/*
2570 	 * this will normally call finish_rmw to start our write
2571 	 * but if there are any failed stripes we'll reconstruct
2572 	 * from parity first
2573 	 */
2574 	validate_rbio_for_parity_scrub(rbio);
2575 }
2576 
2577 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2578 {
2579 	int bios_to_read = 0;
2580 	struct bio_list bio_list;
2581 	int ret;
2582 	int pagenr;
2583 	int stripe;
2584 	struct bio *bio;
2585 
2586 	bio_list_init(&bio_list);
2587 
2588 	ret = alloc_rbio_essential_pages(rbio);
2589 	if (ret)
2590 		goto cleanup;
2591 
2592 	atomic_set(&rbio->error, 0);
2593 	/*
2594 	 * build a list of bios to read all the missing parts of this
2595 	 * stripe
2596 	 */
2597 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2598 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2599 			struct page *page;
2600 			/*
2601 			 * we want to find all the pages missing from
2602 			 * the rbio and read them from the disk.  If
2603 			 * page_in_rbio finds a page in the bio list
2604 			 * we don't need to read it off the stripe.
2605 			 */
2606 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2607 			if (page)
2608 				continue;
2609 
2610 			page = rbio_stripe_page(rbio, stripe, pagenr);
2611 			/*
2612 			 * the bio cache may have handed us an uptodate
2613 			 * page.  If so, be happy and use it
2614 			 */
2615 			if (PageUptodate(page))
2616 				continue;
2617 
2618 			ret = rbio_add_io_page(rbio, &bio_list, page,
2619 				       stripe, pagenr, rbio->stripe_len);
2620 			if (ret)
2621 				goto cleanup;
2622 		}
2623 	}
2624 
2625 	bios_to_read = bio_list_size(&bio_list);
2626 	if (!bios_to_read) {
2627 		/*
2628 		 * this can happen if others have merged with
2629 		 * us, it means there is nothing left to read.
2630 		 * But if there are missing devices it may not be
2631 		 * safe to do the full stripe write yet.
2632 		 */
2633 		goto finish;
2634 	}
2635 
2636 	/*
2637 	 * the bbio may be freed once we submit the last bio.  Make sure
2638 	 * not to touch it after that
2639 	 */
2640 	atomic_set(&rbio->stripes_pending, bios_to_read);
2641 	while (1) {
2642 		bio = bio_list_pop(&bio_list);
2643 		if (!bio)
2644 			break;
2645 
2646 		bio->bi_private = rbio;
2647 		bio->bi_end_io = raid56_parity_scrub_end_io;
2648 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2649 
2650 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2651 
2652 		submit_bio(bio);
2653 	}
2654 	/* the actual write will happen once the reads are done */
2655 	return;
2656 
2657 cleanup:
2658 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2659 
2660 	while ((bio = bio_list_pop(&bio_list)))
2661 		bio_put(bio);
2662 
2663 	return;
2664 
2665 finish:
2666 	validate_rbio_for_parity_scrub(rbio);
2667 }
2668 
2669 static void scrub_parity_work(struct btrfs_work *work)
2670 {
2671 	struct btrfs_raid_bio *rbio;
2672 
2673 	rbio = container_of(work, struct btrfs_raid_bio, work);
2674 	raid56_parity_scrub_stripe(rbio);
2675 }
2676 
2677 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2678 {
2679 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2680 			scrub_parity_work, NULL, NULL);
2681 
2682 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2683 }
2684 
2685 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2686 {
2687 	if (!lock_stripe_add(rbio))
2688 		async_scrub_parity(rbio);
2689 }
2690 
2691 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2692 
2693 struct btrfs_raid_bio *
2694 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2695 			  struct btrfs_bio *bbio, u64 length)
2696 {
2697 	struct btrfs_raid_bio *rbio;
2698 
2699 	rbio = alloc_rbio(fs_info, bbio, length);
2700 	if (IS_ERR(rbio))
2701 		return NULL;
2702 
2703 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2704 	bio_list_add(&rbio->bio_list, bio);
2705 	/*
2706 	 * This is a special bio which is used to hold the completion handler
2707 	 * and make the scrub rbio is similar to the other types
2708 	 */
2709 	ASSERT(!bio->bi_iter.bi_size);
2710 
2711 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2712 	if (rbio->faila == -1) {
2713 		BUG();
2714 		kfree(rbio);
2715 		return NULL;
2716 	}
2717 
2718 	/*
2719 	 * When we get bbio, we have already increased bio_counter, record it
2720 	 * so we can free it at rbio_orig_end_io()
2721 	 */
2722 	rbio->generic_bio_cnt = 1;
2723 
2724 	return rbio;
2725 }
2726 
2727 static void missing_raid56_work(struct btrfs_work *work)
2728 {
2729 	struct btrfs_raid_bio *rbio;
2730 
2731 	rbio = container_of(work, struct btrfs_raid_bio, work);
2732 	__raid56_parity_recover(rbio);
2733 }
2734 
2735 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2736 {
2737 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2738 			missing_raid56_work, NULL, NULL);
2739 
2740 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2741 }
2742 
2743 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2744 {
2745 	if (!lock_stripe_add(rbio))
2746 		async_missing_raid56(rbio);
2747 }
2748