xref: /openbmc/linux/fs/btrfs/raid56.c (revision 9b68f30b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "misc.h"
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "volumes.h"
21 #include "raid56.h"
22 #include "async-thread.h"
23 #include "file-item.h"
24 #include "btrfs_inode.h"
25 
26 /* set when additional merges to this rbio are not allowed */
27 #define RBIO_RMW_LOCKED_BIT	1
28 
29 /*
30  * set when this rbio is sitting in the hash, but it is just a cache
31  * of past RMW
32  */
33 #define RBIO_CACHE_BIT		2
34 
35 /*
36  * set when it is safe to trust the stripe_pages for caching
37  */
38 #define RBIO_CACHE_READY_BIT	3
39 
40 #define RBIO_CACHE_SIZE 1024
41 
42 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
43 
44 /* Used by the raid56 code to lock stripes for read/modify/write */
45 struct btrfs_stripe_hash {
46 	struct list_head hash_list;
47 	spinlock_t lock;
48 };
49 
50 /* Used by the raid56 code to lock stripes for read/modify/write */
51 struct btrfs_stripe_hash_table {
52 	struct list_head stripe_cache;
53 	spinlock_t cache_lock;
54 	int cache_size;
55 	struct btrfs_stripe_hash table[];
56 };
57 
58 /*
59  * A bvec like structure to present a sector inside a page.
60  *
61  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62  */
63 struct sector_ptr {
64 	struct page *page;
65 	unsigned int pgoff:24;
66 	unsigned int uptodate:8;
67 };
68 
69 static void rmw_rbio_work(struct work_struct *work);
70 static void rmw_rbio_work_locked(struct work_struct *work);
71 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73 
74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
75 static void scrub_rbio_work_locked(struct work_struct *work);
76 
77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78 {
79 	bitmap_free(rbio->error_bitmap);
80 	kfree(rbio->stripe_pages);
81 	kfree(rbio->bio_sectors);
82 	kfree(rbio->stripe_sectors);
83 	kfree(rbio->finish_pointers);
84 }
85 
86 static void free_raid_bio(struct btrfs_raid_bio *rbio)
87 {
88 	int i;
89 
90 	if (!refcount_dec_and_test(&rbio->refs))
91 		return;
92 
93 	WARN_ON(!list_empty(&rbio->stripe_cache));
94 	WARN_ON(!list_empty(&rbio->hash_list));
95 	WARN_ON(!bio_list_empty(&rbio->bio_list));
96 
97 	for (i = 0; i < rbio->nr_pages; i++) {
98 		if (rbio->stripe_pages[i]) {
99 			__free_page(rbio->stripe_pages[i]);
100 			rbio->stripe_pages[i] = NULL;
101 		}
102 	}
103 
104 	btrfs_put_bioc(rbio->bioc);
105 	free_raid_bio_pointers(rbio);
106 	kfree(rbio);
107 }
108 
109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110 {
111 	INIT_WORK(&rbio->work, work_func);
112 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 }
114 
115 /*
116  * the stripe hash table is used for locking, and to collect
117  * bios in hopes of making a full stripe
118  */
119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120 {
121 	struct btrfs_stripe_hash_table *table;
122 	struct btrfs_stripe_hash_table *x;
123 	struct btrfs_stripe_hash *cur;
124 	struct btrfs_stripe_hash *h;
125 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 	int i;
127 
128 	if (info->stripe_hash_table)
129 		return 0;
130 
131 	/*
132 	 * The table is large, starting with order 4 and can go as high as
133 	 * order 7 in case lock debugging is turned on.
134 	 *
135 	 * Try harder to allocate and fallback to vmalloc to lower the chance
136 	 * of a failing mount.
137 	 */
138 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 	if (!table)
140 		return -ENOMEM;
141 
142 	spin_lock_init(&table->cache_lock);
143 	INIT_LIST_HEAD(&table->stripe_cache);
144 
145 	h = table->table;
146 
147 	for (i = 0; i < num_entries; i++) {
148 		cur = h + i;
149 		INIT_LIST_HEAD(&cur->hash_list);
150 		spin_lock_init(&cur->lock);
151 	}
152 
153 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
154 	kvfree(x);
155 	return 0;
156 }
157 
158 /*
159  * caching an rbio means to copy anything from the
160  * bio_sectors array into the stripe_pages array.  We
161  * use the page uptodate bit in the stripe cache array
162  * to indicate if it has valid data
163  *
164  * once the caching is done, we set the cache ready
165  * bit.
166  */
167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168 {
169 	int i;
170 	int ret;
171 
172 	ret = alloc_rbio_pages(rbio);
173 	if (ret)
174 		return;
175 
176 	for (i = 0; i < rbio->nr_sectors; i++) {
177 		/* Some range not covered by bio (partial write), skip it */
178 		if (!rbio->bio_sectors[i].page) {
179 			/*
180 			 * Even if the sector is not covered by bio, if it is
181 			 * a data sector it should still be uptodate as it is
182 			 * read from disk.
183 			 */
184 			if (i < rbio->nr_data * rbio->stripe_nsectors)
185 				ASSERT(rbio->stripe_sectors[i].uptodate);
186 			continue;
187 		}
188 
189 		ASSERT(rbio->stripe_sectors[i].page);
190 		memcpy_page(rbio->stripe_sectors[i].page,
191 			    rbio->stripe_sectors[i].pgoff,
192 			    rbio->bio_sectors[i].page,
193 			    rbio->bio_sectors[i].pgoff,
194 			    rbio->bioc->fs_info->sectorsize);
195 		rbio->stripe_sectors[i].uptodate = 1;
196 	}
197 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198 }
199 
200 /*
201  * we hash on the first logical address of the stripe
202  */
203 static int rbio_bucket(struct btrfs_raid_bio *rbio)
204 {
205 	u64 num = rbio->bioc->full_stripe_logical;
206 
207 	/*
208 	 * we shift down quite a bit.  We're using byte
209 	 * addressing, and most of the lower bits are zeros.
210 	 * This tends to upset hash_64, and it consistently
211 	 * returns just one or two different values.
212 	 *
213 	 * shifting off the lower bits fixes things.
214 	 */
215 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216 }
217 
218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 				       unsigned int page_nr)
220 {
221 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 	int i;
224 
225 	ASSERT(page_nr < rbio->nr_pages);
226 
227 	for (i = sectors_per_page * page_nr;
228 	     i < sectors_per_page * page_nr + sectors_per_page;
229 	     i++) {
230 		if (!rbio->stripe_sectors[i].uptodate)
231 			return false;
232 	}
233 	return true;
234 }
235 
236 /*
237  * Update the stripe_sectors[] array to use correct page and pgoff
238  *
239  * Should be called every time any page pointer in stripes_pages[] got modified.
240  */
241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242 {
243 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 	u32 offset;
245 	int i;
246 
247 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 		int page_index = offset >> PAGE_SHIFT;
249 
250 		ASSERT(page_index < rbio->nr_pages);
251 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 	}
254 }
255 
256 static void steal_rbio_page(struct btrfs_raid_bio *src,
257 			    struct btrfs_raid_bio *dest, int page_nr)
258 {
259 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 	int i;
262 
263 	if (dest->stripe_pages[page_nr])
264 		__free_page(dest->stripe_pages[page_nr]);
265 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 	src->stripe_pages[page_nr] = NULL;
267 
268 	/* Also update the sector->uptodate bits. */
269 	for (i = sectors_per_page * page_nr;
270 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
271 		dest->stripe_sectors[i].uptodate = true;
272 }
273 
274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275 {
276 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 			      rbio->bioc->fs_info->sectorsize_bits;
278 
279 	/*
280 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 	 * we won't have a page which is half data half parity.
282 	 *
283 	 * Thus if the first sector of the page belongs to data stripes, then
284 	 * the full page belongs to data stripes.
285 	 */
286 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287 }
288 
289 /*
290  * Stealing an rbio means taking all the uptodate pages from the stripe array
291  * in the source rbio and putting them into the destination rbio.
292  *
293  * This will also update the involved stripe_sectors[] which are referring to
294  * the old pages.
295  */
296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297 {
298 	int i;
299 
300 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 		return;
302 
303 	for (i = 0; i < dest->nr_pages; i++) {
304 		struct page *p = src->stripe_pages[i];
305 
306 		/*
307 		 * We don't need to steal P/Q pages as they will always be
308 		 * regenerated for RMW or full write anyway.
309 		 */
310 		if (!is_data_stripe_page(src, i))
311 			continue;
312 
313 		/*
314 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 		 * all data stripe pages present and uptodate.
316 		 */
317 		ASSERT(p);
318 		ASSERT(full_page_sectors_uptodate(src, i));
319 		steal_rbio_page(src, dest, i);
320 	}
321 	index_stripe_sectors(dest);
322 	index_stripe_sectors(src);
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	/* Also inherit the bitmaps from @victim. */
338 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 		  dest->stripe_nsectors);
340 	bio_list_init(&victim->bio_list);
341 }
342 
343 /*
344  * used to prune items that are in the cache.  The caller
345  * must hold the hash table lock.
346  */
347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348 {
349 	int bucket = rbio_bucket(rbio);
350 	struct btrfs_stripe_hash_table *table;
351 	struct btrfs_stripe_hash *h;
352 	int freeit = 0;
353 
354 	/*
355 	 * check the bit again under the hash table lock.
356 	 */
357 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 		return;
359 
360 	table = rbio->bioc->fs_info->stripe_hash_table;
361 	h = table->table + bucket;
362 
363 	/* hold the lock for the bucket because we may be
364 	 * removing it from the hash table
365 	 */
366 	spin_lock(&h->lock);
367 
368 	/*
369 	 * hold the lock for the bio list because we need
370 	 * to make sure the bio list is empty
371 	 */
372 	spin_lock(&rbio->bio_list_lock);
373 
374 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 		list_del_init(&rbio->stripe_cache);
376 		table->cache_size -= 1;
377 		freeit = 1;
378 
379 		/* if the bio list isn't empty, this rbio is
380 		 * still involved in an IO.  We take it out
381 		 * of the cache list, and drop the ref that
382 		 * was held for the list.
383 		 *
384 		 * If the bio_list was empty, we also remove
385 		 * the rbio from the hash_table, and drop
386 		 * the corresponding ref
387 		 */
388 		if (bio_list_empty(&rbio->bio_list)) {
389 			if (!list_empty(&rbio->hash_list)) {
390 				list_del_init(&rbio->hash_list);
391 				refcount_dec(&rbio->refs);
392 				BUG_ON(!list_empty(&rbio->plug_list));
393 			}
394 		}
395 	}
396 
397 	spin_unlock(&rbio->bio_list_lock);
398 	spin_unlock(&h->lock);
399 
400 	if (freeit)
401 		free_raid_bio(rbio);
402 }
403 
404 /*
405  * prune a given rbio from the cache
406  */
407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408 {
409 	struct btrfs_stripe_hash_table *table;
410 
411 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 		return;
413 
414 	table = rbio->bioc->fs_info->stripe_hash_table;
415 
416 	spin_lock(&table->cache_lock);
417 	__remove_rbio_from_cache(rbio);
418 	spin_unlock(&table->cache_lock);
419 }
420 
421 /*
422  * remove everything in the cache
423  */
424 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 {
426 	struct btrfs_stripe_hash_table *table;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock(&table->cache_lock);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock(&table->cache_lock);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 
469 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 		return;
471 
472 	table = rbio->bioc->fs_info->stripe_hash_table;
473 
474 	spin_lock(&table->cache_lock);
475 	spin_lock(&rbio->bio_list_lock);
476 
477 	/* bump our ref if we were not in the list before */
478 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
479 		refcount_inc(&rbio->refs);
480 
481 	if (!list_empty(&rbio->stripe_cache)){
482 		list_move(&rbio->stripe_cache, &table->stripe_cache);
483 	} else {
484 		list_add(&rbio->stripe_cache, &table->stripe_cache);
485 		table->cache_size += 1;
486 	}
487 
488 	spin_unlock(&rbio->bio_list_lock);
489 
490 	if (table->cache_size > RBIO_CACHE_SIZE) {
491 		struct btrfs_raid_bio *found;
492 
493 		found = list_entry(table->stripe_cache.prev,
494 				  struct btrfs_raid_bio,
495 				  stripe_cache);
496 
497 		if (found != rbio)
498 			__remove_rbio_from_cache(found);
499 	}
500 
501 	spin_unlock(&table->cache_lock);
502 }
503 
504 /*
505  * helper function to run the xor_blocks api.  It is only
506  * able to do MAX_XOR_BLOCKS at a time, so we need to
507  * loop through.
508  */
509 static void run_xor(void **pages, int src_cnt, ssize_t len)
510 {
511 	int src_off = 0;
512 	int xor_src_cnt = 0;
513 	void *dest = pages[src_cnt];
514 
515 	while(src_cnt > 0) {
516 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518 
519 		src_cnt -= xor_src_cnt;
520 		src_off += xor_src_cnt;
521 	}
522 }
523 
524 /*
525  * Returns true if the bio list inside this rbio covers an entire stripe (no
526  * rmw required).
527  */
528 static int rbio_is_full(struct btrfs_raid_bio *rbio)
529 {
530 	unsigned long size = rbio->bio_list_bytes;
531 	int ret = 1;
532 
533 	spin_lock(&rbio->bio_list_lock);
534 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
535 		ret = 0;
536 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
537 	spin_unlock(&rbio->bio_list_lock);
538 
539 	return ret;
540 }
541 
542 /*
543  * returns 1 if it is safe to merge two rbios together.
544  * The merging is safe if the two rbios correspond to
545  * the same stripe and if they are both going in the same
546  * direction (read vs write), and if neither one is
547  * locked for final IO
548  *
549  * The caller is responsible for locking such that
550  * rmw_locked is safe to test
551  */
552 static int rbio_can_merge(struct btrfs_raid_bio *last,
553 			  struct btrfs_raid_bio *cur)
554 {
555 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 		return 0;
558 
559 	/*
560 	 * we can't merge with cached rbios, since the
561 	 * idea is that when we merge the destination
562 	 * rbio is going to run our IO for us.  We can
563 	 * steal from cached rbios though, other functions
564 	 * handle that.
565 	 */
566 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
568 		return 0;
569 
570 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
571 		return 0;
572 
573 	/* we can't merge with different operations */
574 	if (last->operation != cur->operation)
575 		return 0;
576 	/*
577 	 * We've need read the full stripe from the drive.
578 	 * check and repair the parity and write the new results.
579 	 *
580 	 * We're not allowed to add any new bios to the
581 	 * bio list here, anyone else that wants to
582 	 * change this stripe needs to do their own rmw.
583 	 */
584 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
585 		return 0;
586 
587 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
588 	    last->operation == BTRFS_RBIO_READ_REBUILD)
589 		return 0;
590 
591 	return 1;
592 }
593 
594 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
595 					     unsigned int stripe_nr,
596 					     unsigned int sector_nr)
597 {
598 	ASSERT(stripe_nr < rbio->real_stripes);
599 	ASSERT(sector_nr < rbio->stripe_nsectors);
600 
601 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
602 }
603 
604 /* Return a sector from rbio->stripe_sectors, not from the bio list */
605 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
606 					     unsigned int stripe_nr,
607 					     unsigned int sector_nr)
608 {
609 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
610 							      sector_nr)];
611 }
612 
613 /* Grab a sector inside P stripe */
614 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
615 					      unsigned int sector_nr)
616 {
617 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
618 }
619 
620 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
621 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
622 					      unsigned int sector_nr)
623 {
624 	if (rbio->nr_data + 1 == rbio->real_stripes)
625 		return NULL;
626 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
627 }
628 
629 /*
630  * The first stripe in the table for a logical address
631  * has the lock.  rbios are added in one of three ways:
632  *
633  * 1) Nobody has the stripe locked yet.  The rbio is given
634  * the lock and 0 is returned.  The caller must start the IO
635  * themselves.
636  *
637  * 2) Someone has the stripe locked, but we're able to merge
638  * with the lock owner.  The rbio is freed and the IO will
639  * start automatically along with the existing rbio.  1 is returned.
640  *
641  * 3) Someone has the stripe locked, but we're not able to merge.
642  * The rbio is added to the lock owner's plug list, or merged into
643  * an rbio already on the plug list.  When the lock owner unlocks,
644  * the next rbio on the list is run and the IO is started automatically.
645  * 1 is returned
646  *
647  * If we return 0, the caller still owns the rbio and must continue with
648  * IO submission.  If we return 1, the caller must assume the rbio has
649  * already been freed.
650  */
651 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
652 {
653 	struct btrfs_stripe_hash *h;
654 	struct btrfs_raid_bio *cur;
655 	struct btrfs_raid_bio *pending;
656 	struct btrfs_raid_bio *freeit = NULL;
657 	struct btrfs_raid_bio *cache_drop = NULL;
658 	int ret = 0;
659 
660 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
661 
662 	spin_lock(&h->lock);
663 	list_for_each_entry(cur, &h->hash_list, hash_list) {
664 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
665 			continue;
666 
667 		spin_lock(&cur->bio_list_lock);
668 
669 		/* Can we steal this cached rbio's pages? */
670 		if (bio_list_empty(&cur->bio_list) &&
671 		    list_empty(&cur->plug_list) &&
672 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
673 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
674 			list_del_init(&cur->hash_list);
675 			refcount_dec(&cur->refs);
676 
677 			steal_rbio(cur, rbio);
678 			cache_drop = cur;
679 			spin_unlock(&cur->bio_list_lock);
680 
681 			goto lockit;
682 		}
683 
684 		/* Can we merge into the lock owner? */
685 		if (rbio_can_merge(cur, rbio)) {
686 			merge_rbio(cur, rbio);
687 			spin_unlock(&cur->bio_list_lock);
688 			freeit = rbio;
689 			ret = 1;
690 			goto out;
691 		}
692 
693 
694 		/*
695 		 * We couldn't merge with the running rbio, see if we can merge
696 		 * with the pending ones.  We don't have to check for rmw_locked
697 		 * because there is no way they are inside finish_rmw right now
698 		 */
699 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
700 			if (rbio_can_merge(pending, rbio)) {
701 				merge_rbio(pending, rbio);
702 				spin_unlock(&cur->bio_list_lock);
703 				freeit = rbio;
704 				ret = 1;
705 				goto out;
706 			}
707 		}
708 
709 		/*
710 		 * No merging, put us on the tail of the plug list, our rbio
711 		 * will be started with the currently running rbio unlocks
712 		 */
713 		list_add_tail(&rbio->plug_list, &cur->plug_list);
714 		spin_unlock(&cur->bio_list_lock);
715 		ret = 1;
716 		goto out;
717 	}
718 lockit:
719 	refcount_inc(&rbio->refs);
720 	list_add(&rbio->hash_list, &h->hash_list);
721 out:
722 	spin_unlock(&h->lock);
723 	if (cache_drop)
724 		remove_rbio_from_cache(cache_drop);
725 	if (freeit)
726 		free_raid_bio(freeit);
727 	return ret;
728 }
729 
730 static void recover_rbio_work_locked(struct work_struct *work);
731 
732 /*
733  * called as rmw or parity rebuild is completed.  If the plug list has more
734  * rbios waiting for this stripe, the next one on the list will be started
735  */
736 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
737 {
738 	int bucket;
739 	struct btrfs_stripe_hash *h;
740 	int keep_cache = 0;
741 
742 	bucket = rbio_bucket(rbio);
743 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
744 
745 	if (list_empty(&rbio->plug_list))
746 		cache_rbio(rbio);
747 
748 	spin_lock(&h->lock);
749 	spin_lock(&rbio->bio_list_lock);
750 
751 	if (!list_empty(&rbio->hash_list)) {
752 		/*
753 		 * if we're still cached and there is no other IO
754 		 * to perform, just leave this rbio here for others
755 		 * to steal from later
756 		 */
757 		if (list_empty(&rbio->plug_list) &&
758 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
759 			keep_cache = 1;
760 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
761 			BUG_ON(!bio_list_empty(&rbio->bio_list));
762 			goto done;
763 		}
764 
765 		list_del_init(&rbio->hash_list);
766 		refcount_dec(&rbio->refs);
767 
768 		/*
769 		 * we use the plug list to hold all the rbios
770 		 * waiting for the chance to lock this stripe.
771 		 * hand the lock over to one of them.
772 		 */
773 		if (!list_empty(&rbio->plug_list)) {
774 			struct btrfs_raid_bio *next;
775 			struct list_head *head = rbio->plug_list.next;
776 
777 			next = list_entry(head, struct btrfs_raid_bio,
778 					  plug_list);
779 
780 			list_del_init(&rbio->plug_list);
781 
782 			list_add(&next->hash_list, &h->hash_list);
783 			refcount_inc(&next->refs);
784 			spin_unlock(&rbio->bio_list_lock);
785 			spin_unlock(&h->lock);
786 
787 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
788 				start_async_work(next, recover_rbio_work_locked);
789 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
790 				steal_rbio(rbio, next);
791 				start_async_work(next, recover_rbio_work_locked);
792 			} else if (next->operation == BTRFS_RBIO_WRITE) {
793 				steal_rbio(rbio, next);
794 				start_async_work(next, rmw_rbio_work_locked);
795 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
796 				steal_rbio(rbio, next);
797 				start_async_work(next, scrub_rbio_work_locked);
798 			}
799 
800 			goto done_nolock;
801 		}
802 	}
803 done:
804 	spin_unlock(&rbio->bio_list_lock);
805 	spin_unlock(&h->lock);
806 
807 done_nolock:
808 	if (!keep_cache)
809 		remove_rbio_from_cache(rbio);
810 }
811 
812 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
813 {
814 	struct bio *next;
815 
816 	while (cur) {
817 		next = cur->bi_next;
818 		cur->bi_next = NULL;
819 		cur->bi_status = err;
820 		bio_endio(cur);
821 		cur = next;
822 	}
823 }
824 
825 /*
826  * this frees the rbio and runs through all the bios in the
827  * bio_list and calls end_io on them
828  */
829 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
830 {
831 	struct bio *cur = bio_list_get(&rbio->bio_list);
832 	struct bio *extra;
833 
834 	kfree(rbio->csum_buf);
835 	bitmap_free(rbio->csum_bitmap);
836 	rbio->csum_buf = NULL;
837 	rbio->csum_bitmap = NULL;
838 
839 	/*
840 	 * Clear the data bitmap, as the rbio may be cached for later usage.
841 	 * do this before before unlock_stripe() so there will be no new bio
842 	 * for this bio.
843 	 */
844 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
845 
846 	/*
847 	 * At this moment, rbio->bio_list is empty, however since rbio does not
848 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
849 	 * hash list, rbio may be merged with others so that rbio->bio_list
850 	 * becomes non-empty.
851 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
852 	 * more and we can call bio_endio() on all queued bios.
853 	 */
854 	unlock_stripe(rbio);
855 	extra = bio_list_get(&rbio->bio_list);
856 	free_raid_bio(rbio);
857 
858 	rbio_endio_bio_list(cur, err);
859 	if (extra)
860 		rbio_endio_bio_list(extra, err);
861 }
862 
863 /*
864  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
865  *
866  * @rbio:               The raid bio
867  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
868  * @sector_nr:		Sector number inside the stripe,
869  *			valid range [0, stripe_nsectors)
870  * @bio_list_only:      Whether to use sectors inside the bio list only.
871  *
872  * The read/modify/write code wants to reuse the original bio page as much
873  * as possible, and only use stripe_sectors as fallback.
874  */
875 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
876 					 int stripe_nr, int sector_nr,
877 					 bool bio_list_only)
878 {
879 	struct sector_ptr *sector;
880 	int index;
881 
882 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
883 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
884 
885 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
886 	ASSERT(index >= 0 && index < rbio->nr_sectors);
887 
888 	spin_lock(&rbio->bio_list_lock);
889 	sector = &rbio->bio_sectors[index];
890 	if (sector->page || bio_list_only) {
891 		/* Don't return sector without a valid page pointer */
892 		if (!sector->page)
893 			sector = NULL;
894 		spin_unlock(&rbio->bio_list_lock);
895 		return sector;
896 	}
897 	spin_unlock(&rbio->bio_list_lock);
898 
899 	return &rbio->stripe_sectors[index];
900 }
901 
902 /*
903  * allocation and initial setup for the btrfs_raid_bio.  Not
904  * this does not allocate any pages for rbio->pages.
905  */
906 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
907 					 struct btrfs_io_context *bioc)
908 {
909 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
910 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
911 	const unsigned int num_pages = stripe_npages * real_stripes;
912 	const unsigned int stripe_nsectors =
913 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
914 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
915 	struct btrfs_raid_bio *rbio;
916 
917 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
918 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
919 	/*
920 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
921 	 * (at most 16) should be no larger than BITS_PER_LONG.
922 	 */
923 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
924 
925 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
926 	if (!rbio)
927 		return ERR_PTR(-ENOMEM);
928 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
929 				     GFP_NOFS);
930 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
931 				    GFP_NOFS);
932 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
933 				       GFP_NOFS);
934 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
935 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
936 
937 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
938 	    !rbio->finish_pointers || !rbio->error_bitmap) {
939 		free_raid_bio_pointers(rbio);
940 		kfree(rbio);
941 		return ERR_PTR(-ENOMEM);
942 	}
943 
944 	bio_list_init(&rbio->bio_list);
945 	init_waitqueue_head(&rbio->io_wait);
946 	INIT_LIST_HEAD(&rbio->plug_list);
947 	spin_lock_init(&rbio->bio_list_lock);
948 	INIT_LIST_HEAD(&rbio->stripe_cache);
949 	INIT_LIST_HEAD(&rbio->hash_list);
950 	btrfs_get_bioc(bioc);
951 	rbio->bioc = bioc;
952 	rbio->nr_pages = num_pages;
953 	rbio->nr_sectors = num_sectors;
954 	rbio->real_stripes = real_stripes;
955 	rbio->stripe_npages = stripe_npages;
956 	rbio->stripe_nsectors = stripe_nsectors;
957 	refcount_set(&rbio->refs, 1);
958 	atomic_set(&rbio->stripes_pending, 0);
959 
960 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
961 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
962 
963 	return rbio;
964 }
965 
966 /* allocate pages for all the stripes in the bio, including parity */
967 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
968 {
969 	int ret;
970 
971 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
972 	if (ret < 0)
973 		return ret;
974 	/* Mapping all sectors */
975 	index_stripe_sectors(rbio);
976 	return 0;
977 }
978 
979 /* only allocate pages for p/q stripes */
980 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
981 {
982 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
983 	int ret;
984 
985 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
986 				     rbio->stripe_pages + data_pages);
987 	if (ret < 0)
988 		return ret;
989 
990 	index_stripe_sectors(rbio);
991 	return 0;
992 }
993 
994 /*
995  * Return the total number of errors found in the vertical stripe of @sector_nr.
996  *
997  * @faila and @failb will also be updated to the first and second stripe
998  * number of the errors.
999  */
1000 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1001 				     int *faila, int *failb)
1002 {
1003 	int stripe_nr;
1004 	int found_errors = 0;
1005 
1006 	if (faila || failb) {
1007 		/*
1008 		 * Both @faila and @failb should be valid pointers if any of
1009 		 * them is specified.
1010 		 */
1011 		ASSERT(faila && failb);
1012 		*faila = -1;
1013 		*failb = -1;
1014 	}
1015 
1016 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1017 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1018 
1019 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1020 			found_errors++;
1021 			if (faila) {
1022 				/* Update faila and failb. */
1023 				if (*faila < 0)
1024 					*faila = stripe_nr;
1025 				else if (*failb < 0)
1026 					*failb = stripe_nr;
1027 			}
1028 		}
1029 	}
1030 	return found_errors;
1031 }
1032 
1033 /*
1034  * Add a single sector @sector into our list of bios for IO.
1035  *
1036  * Return 0 if everything went well.
1037  * Return <0 for error.
1038  */
1039 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1040 			      struct bio_list *bio_list,
1041 			      struct sector_ptr *sector,
1042 			      unsigned int stripe_nr,
1043 			      unsigned int sector_nr,
1044 			      enum req_op op)
1045 {
1046 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1047 	struct bio *last = bio_list->tail;
1048 	int ret;
1049 	struct bio *bio;
1050 	struct btrfs_io_stripe *stripe;
1051 	u64 disk_start;
1052 
1053 	/*
1054 	 * Note: here stripe_nr has taken device replace into consideration,
1055 	 * thus it can be larger than rbio->real_stripe.
1056 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1057 	 */
1058 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1059 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1060 	ASSERT(sector->page);
1061 
1062 	stripe = &rbio->bioc->stripes[stripe_nr];
1063 	disk_start = stripe->physical + sector_nr * sectorsize;
1064 
1065 	/* if the device is missing, just fail this stripe */
1066 	if (!stripe->dev->bdev) {
1067 		int found_errors;
1068 
1069 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1070 			rbio->error_bitmap);
1071 
1072 		/* Check if we have reached tolerance early. */
1073 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1074 							 NULL, NULL);
1075 		if (found_errors > rbio->bioc->max_errors)
1076 			return -EIO;
1077 		return 0;
1078 	}
1079 
1080 	/* see if we can add this page onto our existing bio */
1081 	if (last) {
1082 		u64 last_end = last->bi_iter.bi_sector << 9;
1083 		last_end += last->bi_iter.bi_size;
1084 
1085 		/*
1086 		 * we can't merge these if they are from different
1087 		 * devices or if they are not contiguous
1088 		 */
1089 		if (last_end == disk_start && !last->bi_status &&
1090 		    last->bi_bdev == stripe->dev->bdev) {
1091 			ret = bio_add_page(last, sector->page, sectorsize,
1092 					   sector->pgoff);
1093 			if (ret == sectorsize)
1094 				return 0;
1095 		}
1096 	}
1097 
1098 	/* put a new bio on the list */
1099 	bio = bio_alloc(stripe->dev->bdev,
1100 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1101 			op, GFP_NOFS);
1102 	bio->bi_iter.bi_sector = disk_start >> 9;
1103 	bio->bi_private = rbio;
1104 
1105 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1106 	bio_list_add(bio_list, bio);
1107 	return 0;
1108 }
1109 
1110 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1111 {
1112 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1113 	struct bio_vec bvec;
1114 	struct bvec_iter iter;
1115 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1116 		     rbio->bioc->full_stripe_logical;
1117 
1118 	bio_for_each_segment(bvec, bio, iter) {
1119 		u32 bvec_offset;
1120 
1121 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1122 		     bvec_offset += sectorsize, offset += sectorsize) {
1123 			int index = offset / sectorsize;
1124 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1125 
1126 			sector->page = bvec.bv_page;
1127 			sector->pgoff = bvec.bv_offset + bvec_offset;
1128 			ASSERT(sector->pgoff < PAGE_SIZE);
1129 		}
1130 	}
1131 }
1132 
1133 /*
1134  * helper function to walk our bio list and populate the bio_pages array with
1135  * the result.  This seems expensive, but it is faster than constantly
1136  * searching through the bio list as we setup the IO in finish_rmw or stripe
1137  * reconstruction.
1138  *
1139  * This must be called before you trust the answers from page_in_rbio
1140  */
1141 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1142 {
1143 	struct bio *bio;
1144 
1145 	spin_lock(&rbio->bio_list_lock);
1146 	bio_list_for_each(bio, &rbio->bio_list)
1147 		index_one_bio(rbio, bio);
1148 
1149 	spin_unlock(&rbio->bio_list_lock);
1150 }
1151 
1152 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1153 			       struct raid56_bio_trace_info *trace_info)
1154 {
1155 	const struct btrfs_io_context *bioc = rbio->bioc;
1156 	int i;
1157 
1158 	ASSERT(bioc);
1159 
1160 	/* We rely on bio->bi_bdev to find the stripe number. */
1161 	if (!bio->bi_bdev)
1162 		goto not_found;
1163 
1164 	for (i = 0; i < bioc->num_stripes; i++) {
1165 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1166 			continue;
1167 		trace_info->stripe_nr = i;
1168 		trace_info->devid = bioc->stripes[i].dev->devid;
1169 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1170 				     bioc->stripes[i].physical;
1171 		return;
1172 	}
1173 
1174 not_found:
1175 	trace_info->devid = -1;
1176 	trace_info->offset = -1;
1177 	trace_info->stripe_nr = -1;
1178 }
1179 
1180 static inline void bio_list_put(struct bio_list *bio_list)
1181 {
1182 	struct bio *bio;
1183 
1184 	while ((bio = bio_list_pop(bio_list)))
1185 		bio_put(bio);
1186 }
1187 
1188 /* Generate PQ for one vertical stripe. */
1189 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1190 {
1191 	void **pointers = rbio->finish_pointers;
1192 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1193 	struct sector_ptr *sector;
1194 	int stripe;
1195 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1196 
1197 	/* First collect one sector from each data stripe */
1198 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1199 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1200 		pointers[stripe] = kmap_local_page(sector->page) +
1201 				   sector->pgoff;
1202 	}
1203 
1204 	/* Then add the parity stripe */
1205 	sector = rbio_pstripe_sector(rbio, sectornr);
1206 	sector->uptodate = 1;
1207 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1208 
1209 	if (has_qstripe) {
1210 		/*
1211 		 * RAID6, add the qstripe and call the library function
1212 		 * to fill in our p/q
1213 		 */
1214 		sector = rbio_qstripe_sector(rbio, sectornr);
1215 		sector->uptodate = 1;
1216 		pointers[stripe++] = kmap_local_page(sector->page) +
1217 				     sector->pgoff;
1218 
1219 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1220 					pointers);
1221 	} else {
1222 		/* raid5 */
1223 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1224 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1225 	}
1226 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1227 		kunmap_local(pointers[stripe]);
1228 }
1229 
1230 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1231 				   struct bio_list *bio_list)
1232 {
1233 	/* The total sector number inside the full stripe. */
1234 	int total_sector_nr;
1235 	int sectornr;
1236 	int stripe;
1237 	int ret;
1238 
1239 	ASSERT(bio_list_size(bio_list) == 0);
1240 
1241 	/* We should have at least one data sector. */
1242 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1243 
1244 	/*
1245 	 * Reset errors, as we may have errors inherited from from degraded
1246 	 * write.
1247 	 */
1248 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1249 
1250 	/*
1251 	 * Start assembly.  Make bios for everything from the higher layers (the
1252 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1253 	 */
1254 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1255 	     total_sector_nr++) {
1256 		struct sector_ptr *sector;
1257 
1258 		stripe = total_sector_nr / rbio->stripe_nsectors;
1259 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1260 
1261 		/* This vertical stripe has no data, skip it. */
1262 		if (!test_bit(sectornr, &rbio->dbitmap))
1263 			continue;
1264 
1265 		if (stripe < rbio->nr_data) {
1266 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1267 			if (!sector)
1268 				continue;
1269 		} else {
1270 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1271 		}
1272 
1273 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1274 					 sectornr, REQ_OP_WRITE);
1275 		if (ret)
1276 			goto error;
1277 	}
1278 
1279 	if (likely(!rbio->bioc->replace_nr_stripes))
1280 		return 0;
1281 
1282 	/*
1283 	 * Make a copy for the replace target device.
1284 	 *
1285 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1286 	 */
1287 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1288 
1289 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1290 	     total_sector_nr++) {
1291 		struct sector_ptr *sector;
1292 
1293 		stripe = total_sector_nr / rbio->stripe_nsectors;
1294 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1295 
1296 		/*
1297 		 * For RAID56, there is only one device that can be replaced,
1298 		 * and replace_stripe_src[0] indicates the stripe number we
1299 		 * need to copy from.
1300 		 */
1301 		if (stripe != rbio->bioc->replace_stripe_src) {
1302 			/*
1303 			 * We can skip the whole stripe completely, note
1304 			 * total_sector_nr will be increased by one anyway.
1305 			 */
1306 			ASSERT(sectornr == 0);
1307 			total_sector_nr += rbio->stripe_nsectors - 1;
1308 			continue;
1309 		}
1310 
1311 		/* This vertical stripe has no data, skip it. */
1312 		if (!test_bit(sectornr, &rbio->dbitmap))
1313 			continue;
1314 
1315 		if (stripe < rbio->nr_data) {
1316 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1317 			if (!sector)
1318 				continue;
1319 		} else {
1320 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1321 		}
1322 
1323 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1324 					 rbio->real_stripes,
1325 					 sectornr, REQ_OP_WRITE);
1326 		if (ret)
1327 			goto error;
1328 	}
1329 
1330 	return 0;
1331 error:
1332 	bio_list_put(bio_list);
1333 	return -EIO;
1334 }
1335 
1336 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1337 {
1338 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1339 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1340 		     rbio->bioc->full_stripe_logical;
1341 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1342 
1343 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1344 
1345 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1346 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1347 
1348 	/*
1349 	 * Special handling for raid56_alloc_missing_rbio() used by
1350 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1351 	 * pass an empty bio here.  Thus we have to find out the missing device
1352 	 * and mark the stripe error instead.
1353 	 */
1354 	if (bio->bi_iter.bi_size == 0) {
1355 		bool found_missing = false;
1356 		int stripe_nr;
1357 
1358 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1359 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1360 				found_missing = true;
1361 				bitmap_set(rbio->error_bitmap,
1362 					   stripe_nr * rbio->stripe_nsectors,
1363 					   rbio->stripe_nsectors);
1364 			}
1365 		}
1366 		ASSERT(found_missing);
1367 	}
1368 }
1369 
1370 /*
1371  * For subpage case, we can no longer set page Up-to-date directly for
1372  * stripe_pages[], thus we need to locate the sector.
1373  */
1374 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1375 					     struct page *page,
1376 					     unsigned int pgoff)
1377 {
1378 	int i;
1379 
1380 	for (i = 0; i < rbio->nr_sectors; i++) {
1381 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1382 
1383 		if (sector->page == page && sector->pgoff == pgoff)
1384 			return sector;
1385 	}
1386 	return NULL;
1387 }
1388 
1389 /*
1390  * this sets each page in the bio uptodate.  It should only be used on private
1391  * rbio pages, nothing that comes in from the higher layers
1392  */
1393 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1394 {
1395 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1396 	struct bio_vec *bvec;
1397 	struct bvec_iter_all iter_all;
1398 
1399 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1400 
1401 	bio_for_each_segment_all(bvec, bio, iter_all) {
1402 		struct sector_ptr *sector;
1403 		int pgoff;
1404 
1405 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1406 		     pgoff += sectorsize) {
1407 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1408 			ASSERT(sector);
1409 			if (sector)
1410 				sector->uptodate = 1;
1411 		}
1412 	}
1413 }
1414 
1415 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1416 {
1417 	struct bio_vec *bv = bio_first_bvec_all(bio);
1418 	int i;
1419 
1420 	for (i = 0; i < rbio->nr_sectors; i++) {
1421 		struct sector_ptr *sector;
1422 
1423 		sector = &rbio->stripe_sectors[i];
1424 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1425 			break;
1426 		sector = &rbio->bio_sectors[i];
1427 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1428 			break;
1429 	}
1430 	ASSERT(i < rbio->nr_sectors);
1431 	return i;
1432 }
1433 
1434 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1435 {
1436 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1437 	u32 bio_size = 0;
1438 	struct bio_vec *bvec;
1439 	int i;
1440 
1441 	bio_for_each_bvec_all(bvec, bio, i)
1442 		bio_size += bvec->bv_len;
1443 
1444 	/*
1445 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1446 	 * call bitmap_set() without protection.
1447 	 *
1448 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1449 	 */
1450 	for (i = total_sector_nr; i < total_sector_nr +
1451 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1452 		set_bit(i, rbio->error_bitmap);
1453 }
1454 
1455 /* Verify the data sectors at read time. */
1456 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1457 				    struct bio *bio)
1458 {
1459 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1460 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1461 	struct bio_vec *bvec;
1462 	struct bvec_iter_all iter_all;
1463 
1464 	/* No data csum for the whole stripe, no need to verify. */
1465 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1466 		return;
1467 
1468 	/* P/Q stripes, they have no data csum to verify against. */
1469 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1470 		return;
1471 
1472 	bio_for_each_segment_all(bvec, bio, iter_all) {
1473 		int bv_offset;
1474 
1475 		for (bv_offset = bvec->bv_offset;
1476 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1477 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1478 			u8 csum_buf[BTRFS_CSUM_SIZE];
1479 			u8 *expected_csum = rbio->csum_buf +
1480 					    total_sector_nr * fs_info->csum_size;
1481 			int ret;
1482 
1483 			/* No csum for this sector, skip to the next sector. */
1484 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1485 				continue;
1486 
1487 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1488 				bv_offset, csum_buf, expected_csum);
1489 			if (ret < 0)
1490 				set_bit(total_sector_nr, rbio->error_bitmap);
1491 		}
1492 	}
1493 }
1494 
1495 static void raid_wait_read_end_io(struct bio *bio)
1496 {
1497 	struct btrfs_raid_bio *rbio = bio->bi_private;
1498 
1499 	if (bio->bi_status) {
1500 		rbio_update_error_bitmap(rbio, bio);
1501 	} else {
1502 		set_bio_pages_uptodate(rbio, bio);
1503 		verify_bio_data_sectors(rbio, bio);
1504 	}
1505 
1506 	bio_put(bio);
1507 	if (atomic_dec_and_test(&rbio->stripes_pending))
1508 		wake_up(&rbio->io_wait);
1509 }
1510 
1511 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1512 			     struct bio_list *bio_list)
1513 {
1514 	struct bio *bio;
1515 
1516 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1517 	while ((bio = bio_list_pop(bio_list))) {
1518 		bio->bi_end_io = raid_wait_read_end_io;
1519 
1520 		if (trace_raid56_scrub_read_recover_enabled()) {
1521 			struct raid56_bio_trace_info trace_info = { 0 };
1522 
1523 			bio_get_trace_info(rbio, bio, &trace_info);
1524 			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
1525 		}
1526 		submit_bio(bio);
1527 	}
1528 
1529 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1530 }
1531 
1532 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1533 {
1534 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1535 	int ret;
1536 
1537 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1538 	if (ret < 0)
1539 		return ret;
1540 
1541 	index_stripe_sectors(rbio);
1542 	return 0;
1543 }
1544 
1545 /*
1546  * We use plugging call backs to collect full stripes.
1547  * Any time we get a partial stripe write while plugged
1548  * we collect it into a list.  When the unplug comes down,
1549  * we sort the list by logical block number and merge
1550  * everything we can into the same rbios
1551  */
1552 struct btrfs_plug_cb {
1553 	struct blk_plug_cb cb;
1554 	struct btrfs_fs_info *info;
1555 	struct list_head rbio_list;
1556 	struct work_struct work;
1557 };
1558 
1559 /*
1560  * rbios on the plug list are sorted for easier merging.
1561  */
1562 static int plug_cmp(void *priv, const struct list_head *a,
1563 		    const struct list_head *b)
1564 {
1565 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1566 						       plug_list);
1567 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1568 						       plug_list);
1569 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1570 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1571 
1572 	if (a_sector < b_sector)
1573 		return -1;
1574 	if (a_sector > b_sector)
1575 		return 1;
1576 	return 0;
1577 }
1578 
1579 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1580 {
1581 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1582 	struct btrfs_raid_bio *cur;
1583 	struct btrfs_raid_bio *last = NULL;
1584 
1585 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1586 
1587 	while (!list_empty(&plug->rbio_list)) {
1588 		cur = list_entry(plug->rbio_list.next,
1589 				 struct btrfs_raid_bio, plug_list);
1590 		list_del_init(&cur->plug_list);
1591 
1592 		if (rbio_is_full(cur)) {
1593 			/* We have a full stripe, queue it down. */
1594 			start_async_work(cur, rmw_rbio_work);
1595 			continue;
1596 		}
1597 		if (last) {
1598 			if (rbio_can_merge(last, cur)) {
1599 				merge_rbio(last, cur);
1600 				free_raid_bio(cur);
1601 				continue;
1602 			}
1603 			start_async_work(last, rmw_rbio_work);
1604 		}
1605 		last = cur;
1606 	}
1607 	if (last)
1608 		start_async_work(last, rmw_rbio_work);
1609 	kfree(plug);
1610 }
1611 
1612 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1613 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1614 {
1615 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1616 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1617 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1618 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1619 	const u32 sectorsize = fs_info->sectorsize;
1620 	u64 cur_logical;
1621 
1622 	ASSERT(orig_logical >= full_stripe_start &&
1623 	       orig_logical + orig_len <= full_stripe_start +
1624 	       rbio->nr_data * BTRFS_STRIPE_LEN);
1625 
1626 	bio_list_add(&rbio->bio_list, orig_bio);
1627 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1628 
1629 	/* Update the dbitmap. */
1630 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1631 	     cur_logical += sectorsize) {
1632 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1633 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1634 
1635 		set_bit(bit, &rbio->dbitmap);
1636 	}
1637 }
1638 
1639 /*
1640  * our main entry point for writes from the rest of the FS.
1641  */
1642 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1643 {
1644 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1645 	struct btrfs_raid_bio *rbio;
1646 	struct btrfs_plug_cb *plug = NULL;
1647 	struct blk_plug_cb *cb;
1648 
1649 	rbio = alloc_rbio(fs_info, bioc);
1650 	if (IS_ERR(rbio)) {
1651 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1652 		bio_endio(bio);
1653 		return;
1654 	}
1655 	rbio->operation = BTRFS_RBIO_WRITE;
1656 	rbio_add_bio(rbio, bio);
1657 
1658 	/*
1659 	 * Don't plug on full rbios, just get them out the door
1660 	 * as quickly as we can
1661 	 */
1662 	if (!rbio_is_full(rbio)) {
1663 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1664 		if (cb) {
1665 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1666 			if (!plug->info) {
1667 				plug->info = fs_info;
1668 				INIT_LIST_HEAD(&plug->rbio_list);
1669 			}
1670 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1671 			return;
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * Either we don't have any existing plug, or we're doing a full stripe,
1677 	 * queue the rmw work now.
1678 	 */
1679 	start_async_work(rbio, rmw_rbio_work);
1680 }
1681 
1682 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1683 			     int stripe_nr, int sector_nr)
1684 {
1685 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1686 	struct sector_ptr *sector;
1687 	u8 csum_buf[BTRFS_CSUM_SIZE];
1688 	u8 *csum_expected;
1689 	int ret;
1690 
1691 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1692 		return 0;
1693 
1694 	/* No way to verify P/Q as they are not covered by data csum. */
1695 	if (stripe_nr >= rbio->nr_data)
1696 		return 0;
1697 	/*
1698 	 * If we're rebuilding a read, we have to use pages from the
1699 	 * bio list if possible.
1700 	 */
1701 	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1702 	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1703 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1704 	} else {
1705 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1706 	}
1707 
1708 	ASSERT(sector->page);
1709 
1710 	csum_expected = rbio->csum_buf +
1711 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1712 			fs_info->csum_size;
1713 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1714 				      csum_buf, csum_expected);
1715 	return ret;
1716 }
1717 
1718 /*
1719  * Recover a vertical stripe specified by @sector_nr.
1720  * @*pointers are the pre-allocated pointers by the caller, so we don't
1721  * need to allocate/free the pointers again and again.
1722  */
1723 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1724 			    void **pointers, void **unmap_array)
1725 {
1726 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1727 	struct sector_ptr *sector;
1728 	const u32 sectorsize = fs_info->sectorsize;
1729 	int found_errors;
1730 	int faila;
1731 	int failb;
1732 	int stripe_nr;
1733 	int ret = 0;
1734 
1735 	/*
1736 	 * Now we just use bitmap to mark the horizontal stripes in
1737 	 * which we have data when doing parity scrub.
1738 	 */
1739 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1740 	    !test_bit(sector_nr, &rbio->dbitmap))
1741 		return 0;
1742 
1743 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1744 						 &failb);
1745 	/*
1746 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1747 	 * which only part of a stripe failed csum check.
1748 	 */
1749 	if (!found_errors)
1750 		return 0;
1751 
1752 	if (found_errors > rbio->bioc->max_errors)
1753 		return -EIO;
1754 
1755 	/*
1756 	 * Setup our array of pointers with sectors from each stripe
1757 	 *
1758 	 * NOTE: store a duplicate array of pointers to preserve the
1759 	 * pointer order.
1760 	 */
1761 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1762 		/*
1763 		 * If we're rebuilding a read, we have to use pages from the
1764 		 * bio list if possible.
1765 		 */
1766 		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1767 		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1768 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1769 		} else {
1770 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1771 		}
1772 		ASSERT(sector->page);
1773 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1774 				   sector->pgoff;
1775 		unmap_array[stripe_nr] = pointers[stripe_nr];
1776 	}
1777 
1778 	/* All raid6 handling here */
1779 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1780 		/* Single failure, rebuild from parity raid5 style */
1781 		if (failb < 0) {
1782 			if (faila == rbio->nr_data)
1783 				/*
1784 				 * Just the P stripe has failed, without
1785 				 * a bad data or Q stripe.
1786 				 * We have nothing to do, just skip the
1787 				 * recovery for this stripe.
1788 				 */
1789 				goto cleanup;
1790 			/*
1791 			 * a single failure in raid6 is rebuilt
1792 			 * in the pstripe code below
1793 			 */
1794 			goto pstripe;
1795 		}
1796 
1797 		/*
1798 		 * If the q stripe is failed, do a pstripe reconstruction from
1799 		 * the xors.
1800 		 * If both the q stripe and the P stripe are failed, we're
1801 		 * here due to a crc mismatch and we can't give them the
1802 		 * data they want.
1803 		 */
1804 		if (failb == rbio->real_stripes - 1) {
1805 			if (faila == rbio->real_stripes - 2)
1806 				/*
1807 				 * Only P and Q are corrupted.
1808 				 * We only care about data stripes recovery,
1809 				 * can skip this vertical stripe.
1810 				 */
1811 				goto cleanup;
1812 			/*
1813 			 * Otherwise we have one bad data stripe and
1814 			 * a good P stripe.  raid5!
1815 			 */
1816 			goto pstripe;
1817 		}
1818 
1819 		if (failb == rbio->real_stripes - 2) {
1820 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1821 					  faila, pointers);
1822 		} else {
1823 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1824 					  faila, failb, pointers);
1825 		}
1826 	} else {
1827 		void *p;
1828 
1829 		/* Rebuild from P stripe here (raid5 or raid6). */
1830 		ASSERT(failb == -1);
1831 pstripe:
1832 		/* Copy parity block into failed block to start with */
1833 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1834 
1835 		/* Rearrange the pointer array */
1836 		p = pointers[faila];
1837 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1838 		     stripe_nr++)
1839 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1840 		pointers[rbio->nr_data - 1] = p;
1841 
1842 		/* Xor in the rest */
1843 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1844 
1845 	}
1846 
1847 	/*
1848 	 * No matter if this is a RMW or recovery, we should have all
1849 	 * failed sectors repaired in the vertical stripe, thus they are now
1850 	 * uptodate.
1851 	 * Especially if we determine to cache the rbio, we need to
1852 	 * have at least all data sectors uptodate.
1853 	 *
1854 	 * If possible, also check if the repaired sector matches its data
1855 	 * checksum.
1856 	 */
1857 	if (faila >= 0) {
1858 		ret = verify_one_sector(rbio, faila, sector_nr);
1859 		if (ret < 0)
1860 			goto cleanup;
1861 
1862 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1863 		sector->uptodate = 1;
1864 	}
1865 	if (failb >= 0) {
1866 		ret = verify_one_sector(rbio, failb, sector_nr);
1867 		if (ret < 0)
1868 			goto cleanup;
1869 
1870 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1871 		sector->uptodate = 1;
1872 	}
1873 
1874 cleanup:
1875 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1876 		kunmap_local(unmap_array[stripe_nr]);
1877 	return ret;
1878 }
1879 
1880 static int recover_sectors(struct btrfs_raid_bio *rbio)
1881 {
1882 	void **pointers = NULL;
1883 	void **unmap_array = NULL;
1884 	int sectornr;
1885 	int ret = 0;
1886 
1887 	/*
1888 	 * @pointers array stores the pointer for each sector.
1889 	 *
1890 	 * @unmap_array stores copy of pointers that does not get reordered
1891 	 * during reconstruction so that kunmap_local works.
1892 	 */
1893 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1894 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1895 	if (!pointers || !unmap_array) {
1896 		ret = -ENOMEM;
1897 		goto out;
1898 	}
1899 
1900 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1901 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1902 		spin_lock(&rbio->bio_list_lock);
1903 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1904 		spin_unlock(&rbio->bio_list_lock);
1905 	}
1906 
1907 	index_rbio_pages(rbio);
1908 
1909 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1910 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1911 		if (ret < 0)
1912 			break;
1913 	}
1914 
1915 out:
1916 	kfree(pointers);
1917 	kfree(unmap_array);
1918 	return ret;
1919 }
1920 
1921 static void recover_rbio(struct btrfs_raid_bio *rbio)
1922 {
1923 	struct bio_list bio_list = BIO_EMPTY_LIST;
1924 	int total_sector_nr;
1925 	int ret = 0;
1926 
1927 	/*
1928 	 * Either we're doing recover for a read failure or degraded write,
1929 	 * caller should have set error bitmap correctly.
1930 	 */
1931 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1932 
1933 	/* For recovery, we need to read all sectors including P/Q. */
1934 	ret = alloc_rbio_pages(rbio);
1935 	if (ret < 0)
1936 		goto out;
1937 
1938 	index_rbio_pages(rbio);
1939 
1940 	/*
1941 	 * Read everything that hasn't failed. However this time we will
1942 	 * not trust any cached sector.
1943 	 * As we may read out some stale data but higher layer is not reading
1944 	 * that stale part.
1945 	 *
1946 	 * So here we always re-read everything in recovery path.
1947 	 */
1948 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1949 	     total_sector_nr++) {
1950 		int stripe = total_sector_nr / rbio->stripe_nsectors;
1951 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1952 		struct sector_ptr *sector;
1953 
1954 		/*
1955 		 * Skip the range which has error.  It can be a range which is
1956 		 * marked error (for csum mismatch), or it can be a missing
1957 		 * device.
1958 		 */
1959 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1960 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1961 			/*
1962 			 * Also set the error bit for missing device, which
1963 			 * may not yet have its error bit set.
1964 			 */
1965 			set_bit(total_sector_nr, rbio->error_bitmap);
1966 			continue;
1967 		}
1968 
1969 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1970 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1971 					 sectornr, REQ_OP_READ);
1972 		if (ret < 0) {
1973 			bio_list_put(&bio_list);
1974 			goto out;
1975 		}
1976 	}
1977 
1978 	submit_read_wait_bio_list(rbio, &bio_list);
1979 	ret = recover_sectors(rbio);
1980 out:
1981 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1982 }
1983 
1984 static void recover_rbio_work(struct work_struct *work)
1985 {
1986 	struct btrfs_raid_bio *rbio;
1987 
1988 	rbio = container_of(work, struct btrfs_raid_bio, work);
1989 	if (!lock_stripe_add(rbio))
1990 		recover_rbio(rbio);
1991 }
1992 
1993 static void recover_rbio_work_locked(struct work_struct *work)
1994 {
1995 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1996 }
1997 
1998 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1999 {
2000 	bool found = false;
2001 	int sector_nr;
2002 
2003 	/*
2004 	 * This is for RAID6 extra recovery tries, thus mirror number should
2005 	 * be large than 2.
2006 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2007 	 * RAID5 methods.
2008 	 */
2009 	ASSERT(mirror_num > 2);
2010 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2011 		int found_errors;
2012 		int faila;
2013 		int failb;
2014 
2015 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2016 							 &faila, &failb);
2017 		/* This vertical stripe doesn't have errors. */
2018 		if (!found_errors)
2019 			continue;
2020 
2021 		/*
2022 		 * If we found errors, there should be only one error marked
2023 		 * by previous set_rbio_range_error().
2024 		 */
2025 		ASSERT(found_errors == 1);
2026 		found = true;
2027 
2028 		/* Now select another stripe to mark as error. */
2029 		failb = rbio->real_stripes - (mirror_num - 1);
2030 		if (failb <= faila)
2031 			failb--;
2032 
2033 		/* Set the extra bit in error bitmap. */
2034 		if (failb >= 0)
2035 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2036 				rbio->error_bitmap);
2037 	}
2038 
2039 	/* We should found at least one vertical stripe with error.*/
2040 	ASSERT(found);
2041 }
2042 
2043 /*
2044  * the main entry point for reads from the higher layers.  This
2045  * is really only called when the normal read path had a failure,
2046  * so we assume the bio they send down corresponds to a failed part
2047  * of the drive.
2048  */
2049 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2050 			   int mirror_num)
2051 {
2052 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2053 	struct btrfs_raid_bio *rbio;
2054 
2055 	rbio = alloc_rbio(fs_info, bioc);
2056 	if (IS_ERR(rbio)) {
2057 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2058 		bio_endio(bio);
2059 		return;
2060 	}
2061 
2062 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2063 	rbio_add_bio(rbio, bio);
2064 
2065 	set_rbio_range_error(rbio, bio);
2066 
2067 	/*
2068 	 * Loop retry:
2069 	 * for 'mirror == 2', reconstruct from all other stripes.
2070 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2071 	 */
2072 	if (mirror_num > 2)
2073 		set_rbio_raid6_extra_error(rbio, mirror_num);
2074 
2075 	start_async_work(rbio, recover_rbio_work);
2076 }
2077 
2078 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2079 {
2080 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2081 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2082 						       rbio->bioc->full_stripe_logical);
2083 	const u64 start = rbio->bioc->full_stripe_logical;
2084 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2085 			fs_info->sectorsize_bits;
2086 	int ret;
2087 
2088 	/* The rbio should not have its csum buffer initialized. */
2089 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2090 
2091 	/*
2092 	 * Skip the csum search if:
2093 	 *
2094 	 * - The rbio doesn't belong to data block groups
2095 	 *   Then we are doing IO for tree blocks, no need to search csums.
2096 	 *
2097 	 * - The rbio belongs to mixed block groups
2098 	 *   This is to avoid deadlock, as we're already holding the full
2099 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2100 	 *   raid56 recovery, we will deadlock.
2101 	 */
2102 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2103 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2104 		return;
2105 
2106 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2107 				 fs_info->csum_size, GFP_NOFS);
2108 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2109 					  GFP_NOFS);
2110 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2111 		ret = -ENOMEM;
2112 		goto error;
2113 	}
2114 
2115 	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2116 					rbio->csum_buf, rbio->csum_bitmap, false);
2117 	if (ret < 0)
2118 		goto error;
2119 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2120 		goto no_csum;
2121 	return;
2122 
2123 error:
2124 	/*
2125 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2126 	 * we can still continue.  But better to warn users that RMW is no
2127 	 * longer safe for this particular sub-stripe write.
2128 	 */
2129 	btrfs_warn_rl(fs_info,
2130 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2131 			rbio->bioc->full_stripe_logical, ret);
2132 no_csum:
2133 	kfree(rbio->csum_buf);
2134 	bitmap_free(rbio->csum_bitmap);
2135 	rbio->csum_buf = NULL;
2136 	rbio->csum_bitmap = NULL;
2137 }
2138 
2139 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2140 {
2141 	struct bio_list bio_list = BIO_EMPTY_LIST;
2142 	int total_sector_nr;
2143 	int ret = 0;
2144 
2145 	/*
2146 	 * Fill the data csums we need for data verification.  We need to fill
2147 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2148 	 * verify the data sectors.
2149 	 */
2150 	fill_data_csums(rbio);
2151 
2152 	/*
2153 	 * Build a list of bios to read all sectors (including data and P/Q).
2154 	 *
2155 	 * This behavior is to compensate the later csum verification and recovery.
2156 	 */
2157 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2158 	     total_sector_nr++) {
2159 		struct sector_ptr *sector;
2160 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2161 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2162 
2163 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2164 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2165 			       stripe, sectornr, REQ_OP_READ);
2166 		if (ret) {
2167 			bio_list_put(&bio_list);
2168 			return ret;
2169 		}
2170 	}
2171 
2172 	/*
2173 	 * We may or may not have any corrupted sectors (including missing dev
2174 	 * and csum mismatch), just let recover_sectors() to handle them all.
2175 	 */
2176 	submit_read_wait_bio_list(rbio, &bio_list);
2177 	return recover_sectors(rbio);
2178 }
2179 
2180 static void raid_wait_write_end_io(struct bio *bio)
2181 {
2182 	struct btrfs_raid_bio *rbio = bio->bi_private;
2183 	blk_status_t err = bio->bi_status;
2184 
2185 	if (err)
2186 		rbio_update_error_bitmap(rbio, bio);
2187 	bio_put(bio);
2188 	if (atomic_dec_and_test(&rbio->stripes_pending))
2189 		wake_up(&rbio->io_wait);
2190 }
2191 
2192 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2193 			      struct bio_list *bio_list)
2194 {
2195 	struct bio *bio;
2196 
2197 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2198 	while ((bio = bio_list_pop(bio_list))) {
2199 		bio->bi_end_io = raid_wait_write_end_io;
2200 
2201 		if (trace_raid56_write_stripe_enabled()) {
2202 			struct raid56_bio_trace_info trace_info = { 0 };
2203 
2204 			bio_get_trace_info(rbio, bio, &trace_info);
2205 			trace_raid56_write_stripe(rbio, bio, &trace_info);
2206 		}
2207 		submit_bio(bio);
2208 	}
2209 }
2210 
2211 /*
2212  * To determine if we need to read any sector from the disk.
2213  * Should only be utilized in RMW path, to skip cached rbio.
2214  */
2215 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2216 {
2217 	int i;
2218 
2219 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2220 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2221 
2222 		/*
2223 		 * We have a sector which doesn't have page nor uptodate,
2224 		 * thus this rbio can not be cached one, as cached one must
2225 		 * have all its data sectors present and uptodate.
2226 		 */
2227 		if (!sector->page || !sector->uptodate)
2228 			return true;
2229 	}
2230 	return false;
2231 }
2232 
2233 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2234 {
2235 	struct bio_list bio_list;
2236 	int sectornr;
2237 	int ret = 0;
2238 
2239 	/*
2240 	 * Allocate the pages for parity first, as P/Q pages will always be
2241 	 * needed for both full-stripe and sub-stripe writes.
2242 	 */
2243 	ret = alloc_rbio_parity_pages(rbio);
2244 	if (ret < 0)
2245 		goto out;
2246 
2247 	/*
2248 	 * Either full stripe write, or we have every data sector already
2249 	 * cached, can go to write path immediately.
2250 	 */
2251 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2252 		/*
2253 		 * Now we're doing sub-stripe write, also need all data stripes
2254 		 * to do the full RMW.
2255 		 */
2256 		ret = alloc_rbio_data_pages(rbio);
2257 		if (ret < 0)
2258 			goto out;
2259 
2260 		index_rbio_pages(rbio);
2261 
2262 		ret = rmw_read_wait_recover(rbio);
2263 		if (ret < 0)
2264 			goto out;
2265 	}
2266 
2267 	/*
2268 	 * At this stage we're not allowed to add any new bios to the
2269 	 * bio list any more, anyone else that wants to change this stripe
2270 	 * needs to do their own rmw.
2271 	 */
2272 	spin_lock(&rbio->bio_list_lock);
2273 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2274 	spin_unlock(&rbio->bio_list_lock);
2275 
2276 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2277 
2278 	index_rbio_pages(rbio);
2279 
2280 	/*
2281 	 * We don't cache full rbios because we're assuming
2282 	 * the higher layers are unlikely to use this area of
2283 	 * the disk again soon.  If they do use it again,
2284 	 * hopefully they will send another full bio.
2285 	 */
2286 	if (!rbio_is_full(rbio))
2287 		cache_rbio_pages(rbio);
2288 	else
2289 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2290 
2291 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2292 		generate_pq_vertical(rbio, sectornr);
2293 
2294 	bio_list_init(&bio_list);
2295 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2296 	if (ret < 0)
2297 		goto out;
2298 
2299 	/* We should have at least one bio assembled. */
2300 	ASSERT(bio_list_size(&bio_list));
2301 	submit_write_bios(rbio, &bio_list);
2302 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2303 
2304 	/* We may have more errors than our tolerance during the read. */
2305 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2306 		int found_errors;
2307 
2308 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2309 		if (found_errors > rbio->bioc->max_errors) {
2310 			ret = -EIO;
2311 			break;
2312 		}
2313 	}
2314 out:
2315 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2316 }
2317 
2318 static void rmw_rbio_work(struct work_struct *work)
2319 {
2320 	struct btrfs_raid_bio *rbio;
2321 
2322 	rbio = container_of(work, struct btrfs_raid_bio, work);
2323 	if (lock_stripe_add(rbio) == 0)
2324 		rmw_rbio(rbio);
2325 }
2326 
2327 static void rmw_rbio_work_locked(struct work_struct *work)
2328 {
2329 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2330 }
2331 
2332 /*
2333  * The following code is used to scrub/replace the parity stripe
2334  *
2335  * Caller must have already increased bio_counter for getting @bioc.
2336  *
2337  * Note: We need make sure all the pages that add into the scrub/replace
2338  * raid bio are correct and not be changed during the scrub/replace. That
2339  * is those pages just hold metadata or file data with checksum.
2340  */
2341 
2342 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2343 				struct btrfs_io_context *bioc,
2344 				struct btrfs_device *scrub_dev,
2345 				unsigned long *dbitmap, int stripe_nsectors)
2346 {
2347 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2348 	struct btrfs_raid_bio *rbio;
2349 	int i;
2350 
2351 	rbio = alloc_rbio(fs_info, bioc);
2352 	if (IS_ERR(rbio))
2353 		return NULL;
2354 	bio_list_add(&rbio->bio_list, bio);
2355 	/*
2356 	 * This is a special bio which is used to hold the completion handler
2357 	 * and make the scrub rbio is similar to the other types
2358 	 */
2359 	ASSERT(!bio->bi_iter.bi_size);
2360 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2361 
2362 	/*
2363 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2364 	 * to the end position, so this search can start from the first parity
2365 	 * stripe.
2366 	 */
2367 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2368 		if (bioc->stripes[i].dev == scrub_dev) {
2369 			rbio->scrubp = i;
2370 			break;
2371 		}
2372 	}
2373 	ASSERT(i < rbio->real_stripes);
2374 
2375 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2376 	return rbio;
2377 }
2378 
2379 /*
2380  * We just scrub the parity that we have correct data on the same horizontal,
2381  * so we needn't allocate all pages for all the stripes.
2382  */
2383 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2384 {
2385 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2386 	int total_sector_nr;
2387 
2388 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2389 	     total_sector_nr++) {
2390 		struct page *page;
2391 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2392 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2393 
2394 		if (!test_bit(sectornr, &rbio->dbitmap))
2395 			continue;
2396 		if (rbio->stripe_pages[index])
2397 			continue;
2398 		page = alloc_page(GFP_NOFS);
2399 		if (!page)
2400 			return -ENOMEM;
2401 		rbio->stripe_pages[index] = page;
2402 	}
2403 	index_stripe_sectors(rbio);
2404 	return 0;
2405 }
2406 
2407 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
2408 {
2409 	struct btrfs_io_context *bioc = rbio->bioc;
2410 	const u32 sectorsize = bioc->fs_info->sectorsize;
2411 	void **pointers = rbio->finish_pointers;
2412 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2413 	int nr_data = rbio->nr_data;
2414 	int stripe;
2415 	int sectornr;
2416 	bool has_qstripe;
2417 	struct sector_ptr p_sector = { 0 };
2418 	struct sector_ptr q_sector = { 0 };
2419 	struct bio_list bio_list;
2420 	int is_replace = 0;
2421 	int ret;
2422 
2423 	bio_list_init(&bio_list);
2424 
2425 	if (rbio->real_stripes - rbio->nr_data == 1)
2426 		has_qstripe = false;
2427 	else if (rbio->real_stripes - rbio->nr_data == 2)
2428 		has_qstripe = true;
2429 	else
2430 		BUG();
2431 
2432 	/*
2433 	 * Replace is running and our P/Q stripe is being replaced, then we
2434 	 * need to duplicate the final write to replace target.
2435 	 */
2436 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2437 		is_replace = 1;
2438 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2439 	}
2440 
2441 	/*
2442 	 * Because the higher layers(scrubber) are unlikely to
2443 	 * use this area of the disk again soon, so don't cache
2444 	 * it.
2445 	 */
2446 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2447 
2448 	if (!need_check)
2449 		goto writeback;
2450 
2451 	p_sector.page = alloc_page(GFP_NOFS);
2452 	if (!p_sector.page)
2453 		return -ENOMEM;
2454 	p_sector.pgoff = 0;
2455 	p_sector.uptodate = 1;
2456 
2457 	if (has_qstripe) {
2458 		/* RAID6, allocate and map temp space for the Q stripe */
2459 		q_sector.page = alloc_page(GFP_NOFS);
2460 		if (!q_sector.page) {
2461 			__free_page(p_sector.page);
2462 			p_sector.page = NULL;
2463 			return -ENOMEM;
2464 		}
2465 		q_sector.pgoff = 0;
2466 		q_sector.uptodate = 1;
2467 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2468 	}
2469 
2470 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2471 
2472 	/* Map the parity stripe just once */
2473 	pointers[nr_data] = kmap_local_page(p_sector.page);
2474 
2475 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2476 		struct sector_ptr *sector;
2477 		void *parity;
2478 
2479 		/* first collect one page from each data stripe */
2480 		for (stripe = 0; stripe < nr_data; stripe++) {
2481 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2482 			pointers[stripe] = kmap_local_page(sector->page) +
2483 					   sector->pgoff;
2484 		}
2485 
2486 		if (has_qstripe) {
2487 			/* RAID6, call the library function to fill in our P/Q */
2488 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2489 						pointers);
2490 		} else {
2491 			/* raid5 */
2492 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2493 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2494 		}
2495 
2496 		/* Check scrubbing parity and repair it */
2497 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2498 		parity = kmap_local_page(sector->page) + sector->pgoff;
2499 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2500 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2501 		else
2502 			/* Parity is right, needn't writeback */
2503 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2504 		kunmap_local(parity);
2505 
2506 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2507 			kunmap_local(pointers[stripe]);
2508 	}
2509 
2510 	kunmap_local(pointers[nr_data]);
2511 	__free_page(p_sector.page);
2512 	p_sector.page = NULL;
2513 	if (q_sector.page) {
2514 		kunmap_local(pointers[rbio->real_stripes - 1]);
2515 		__free_page(q_sector.page);
2516 		q_sector.page = NULL;
2517 	}
2518 
2519 writeback:
2520 	/*
2521 	 * time to start writing.  Make bios for everything from the
2522 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2523 	 * everything else.
2524 	 */
2525 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2526 		struct sector_ptr *sector;
2527 
2528 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2529 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2530 					 sectornr, REQ_OP_WRITE);
2531 		if (ret)
2532 			goto cleanup;
2533 	}
2534 
2535 	if (!is_replace)
2536 		goto submit_write;
2537 
2538 	/*
2539 	 * Replace is running and our parity stripe needs to be duplicated to
2540 	 * the target device.  Check we have a valid source stripe number.
2541 	 */
2542 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2543 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2544 		struct sector_ptr *sector;
2545 
2546 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2547 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2548 					 rbio->real_stripes,
2549 					 sectornr, REQ_OP_WRITE);
2550 		if (ret)
2551 			goto cleanup;
2552 	}
2553 
2554 submit_write:
2555 	submit_write_bios(rbio, &bio_list);
2556 	return 0;
2557 
2558 cleanup:
2559 	bio_list_put(&bio_list);
2560 	return ret;
2561 }
2562 
2563 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2564 {
2565 	if (stripe >= 0 && stripe < rbio->nr_data)
2566 		return 1;
2567 	return 0;
2568 }
2569 
2570 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2571 {
2572 	void **pointers = NULL;
2573 	void **unmap_array = NULL;
2574 	int sector_nr;
2575 	int ret = 0;
2576 
2577 	/*
2578 	 * @pointers array stores the pointer for each sector.
2579 	 *
2580 	 * @unmap_array stores copy of pointers that does not get reordered
2581 	 * during reconstruction so that kunmap_local works.
2582 	 */
2583 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2584 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2585 	if (!pointers || !unmap_array) {
2586 		ret = -ENOMEM;
2587 		goto out;
2588 	}
2589 
2590 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2591 		int dfail = 0, failp = -1;
2592 		int faila;
2593 		int failb;
2594 		int found_errors;
2595 
2596 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2597 							 &faila, &failb);
2598 		if (found_errors > rbio->bioc->max_errors) {
2599 			ret = -EIO;
2600 			goto out;
2601 		}
2602 		if (found_errors == 0)
2603 			continue;
2604 
2605 		/* We should have at least one error here. */
2606 		ASSERT(faila >= 0 || failb >= 0);
2607 
2608 		if (is_data_stripe(rbio, faila))
2609 			dfail++;
2610 		else if (is_parity_stripe(faila))
2611 			failp = faila;
2612 
2613 		if (is_data_stripe(rbio, failb))
2614 			dfail++;
2615 		else if (is_parity_stripe(failb))
2616 			failp = failb;
2617 		/*
2618 		 * Because we can not use a scrubbing parity to repair the
2619 		 * data, so the capability of the repair is declined.  (In the
2620 		 * case of RAID5, we can not repair anything.)
2621 		 */
2622 		if (dfail > rbio->bioc->max_errors - 1) {
2623 			ret = -EIO;
2624 			goto out;
2625 		}
2626 		/*
2627 		 * If all data is good, only parity is correctly, just repair
2628 		 * the parity, no need to recover data stripes.
2629 		 */
2630 		if (dfail == 0)
2631 			continue;
2632 
2633 		/*
2634 		 * Here means we got one corrupted data stripe and one
2635 		 * corrupted parity on RAID6, if the corrupted parity is
2636 		 * scrubbing parity, luckily, use the other one to repair the
2637 		 * data, or we can not repair the data stripe.
2638 		 */
2639 		if (failp != rbio->scrubp) {
2640 			ret = -EIO;
2641 			goto out;
2642 		}
2643 
2644 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2645 		if (ret < 0)
2646 			goto out;
2647 	}
2648 out:
2649 	kfree(pointers);
2650 	kfree(unmap_array);
2651 	return ret;
2652 }
2653 
2654 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2655 {
2656 	struct bio_list bio_list = BIO_EMPTY_LIST;
2657 	int total_sector_nr;
2658 	int ret = 0;
2659 
2660 	/* Build a list of bios to read all the missing parts. */
2661 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2662 	     total_sector_nr++) {
2663 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2664 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2665 		struct sector_ptr *sector;
2666 
2667 		/* No data in the vertical stripe, no need to read. */
2668 		if (!test_bit(sectornr, &rbio->dbitmap))
2669 			continue;
2670 
2671 		/*
2672 		 * We want to find all the sectors missing from the rbio and
2673 		 * read them from the disk. If sector_in_rbio() finds a sector
2674 		 * in the bio list we don't need to read it off the stripe.
2675 		 */
2676 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2677 		if (sector)
2678 			continue;
2679 
2680 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2681 		/*
2682 		 * The bio cache may have handed us an uptodate sector.  If so,
2683 		 * use it.
2684 		 */
2685 		if (sector->uptodate)
2686 			continue;
2687 
2688 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2689 					 sectornr, REQ_OP_READ);
2690 		if (ret) {
2691 			bio_list_put(&bio_list);
2692 			return ret;
2693 		}
2694 	}
2695 
2696 	submit_read_wait_bio_list(rbio, &bio_list);
2697 	return 0;
2698 }
2699 
2700 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2701 {
2702 	bool need_check = false;
2703 	int sector_nr;
2704 	int ret;
2705 
2706 	ret = alloc_rbio_essential_pages(rbio);
2707 	if (ret)
2708 		goto out;
2709 
2710 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2711 
2712 	ret = scrub_assemble_read_bios(rbio);
2713 	if (ret < 0)
2714 		goto out;
2715 
2716 	/* We may have some failures, recover the failed sectors first. */
2717 	ret = recover_scrub_rbio(rbio);
2718 	if (ret < 0)
2719 		goto out;
2720 
2721 	/*
2722 	 * We have every sector properly prepared. Can finish the scrub
2723 	 * and writeback the good content.
2724 	 */
2725 	ret = finish_parity_scrub(rbio, need_check);
2726 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2727 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2728 		int found_errors;
2729 
2730 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2731 		if (found_errors > rbio->bioc->max_errors) {
2732 			ret = -EIO;
2733 			break;
2734 		}
2735 	}
2736 out:
2737 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2738 }
2739 
2740 static void scrub_rbio_work_locked(struct work_struct *work)
2741 {
2742 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2743 }
2744 
2745 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2746 {
2747 	if (!lock_stripe_add(rbio))
2748 		start_async_work(rbio, scrub_rbio_work_locked);
2749 }
2750