xref: /openbmc/linux/fs/btrfs/raid56.c (revision 9aa2cba7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "misc.h"
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "volumes.h"
21 #include "raid56.h"
22 #include "async-thread.h"
23 #include "file-item.h"
24 #include "btrfs_inode.h"
25 
26 /* set when additional merges to this rbio are not allowed */
27 #define RBIO_RMW_LOCKED_BIT	1
28 
29 /*
30  * set when this rbio is sitting in the hash, but it is just a cache
31  * of past RMW
32  */
33 #define RBIO_CACHE_BIT		2
34 
35 /*
36  * set when it is safe to trust the stripe_pages for caching
37  */
38 #define RBIO_CACHE_READY_BIT	3
39 
40 #define RBIO_CACHE_SIZE 1024
41 
42 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
43 
44 /* Used by the raid56 code to lock stripes for read/modify/write */
45 struct btrfs_stripe_hash {
46 	struct list_head hash_list;
47 	spinlock_t lock;
48 };
49 
50 /* Used by the raid56 code to lock stripes for read/modify/write */
51 struct btrfs_stripe_hash_table {
52 	struct list_head stripe_cache;
53 	spinlock_t cache_lock;
54 	int cache_size;
55 	struct btrfs_stripe_hash table[];
56 };
57 
58 /*
59  * A bvec like structure to present a sector inside a page.
60  *
61  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62  */
63 struct sector_ptr {
64 	struct page *page;
65 	unsigned int pgoff:24;
66 	unsigned int uptodate:8;
67 };
68 
69 static void rmw_rbio_work(struct work_struct *work);
70 static void rmw_rbio_work_locked(struct work_struct *work);
71 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73 
74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
75 static void scrub_rbio_work_locked(struct work_struct *work);
76 
77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78 {
79 	bitmap_free(rbio->error_bitmap);
80 	kfree(rbio->stripe_pages);
81 	kfree(rbio->bio_sectors);
82 	kfree(rbio->stripe_sectors);
83 	kfree(rbio->finish_pointers);
84 }
85 
86 static void free_raid_bio(struct btrfs_raid_bio *rbio)
87 {
88 	int i;
89 
90 	if (!refcount_dec_and_test(&rbio->refs))
91 		return;
92 
93 	WARN_ON(!list_empty(&rbio->stripe_cache));
94 	WARN_ON(!list_empty(&rbio->hash_list));
95 	WARN_ON(!bio_list_empty(&rbio->bio_list));
96 
97 	for (i = 0; i < rbio->nr_pages; i++) {
98 		if (rbio->stripe_pages[i]) {
99 			__free_page(rbio->stripe_pages[i]);
100 			rbio->stripe_pages[i] = NULL;
101 		}
102 	}
103 
104 	btrfs_put_bioc(rbio->bioc);
105 	free_raid_bio_pointers(rbio);
106 	kfree(rbio);
107 }
108 
109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110 {
111 	INIT_WORK(&rbio->work, work_func);
112 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 }
114 
115 /*
116  * the stripe hash table is used for locking, and to collect
117  * bios in hopes of making a full stripe
118  */
119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120 {
121 	struct btrfs_stripe_hash_table *table;
122 	struct btrfs_stripe_hash_table *x;
123 	struct btrfs_stripe_hash *cur;
124 	struct btrfs_stripe_hash *h;
125 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 	int i;
127 
128 	if (info->stripe_hash_table)
129 		return 0;
130 
131 	/*
132 	 * The table is large, starting with order 4 and can go as high as
133 	 * order 7 in case lock debugging is turned on.
134 	 *
135 	 * Try harder to allocate and fallback to vmalloc to lower the chance
136 	 * of a failing mount.
137 	 */
138 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 	if (!table)
140 		return -ENOMEM;
141 
142 	spin_lock_init(&table->cache_lock);
143 	INIT_LIST_HEAD(&table->stripe_cache);
144 
145 	h = table->table;
146 
147 	for (i = 0; i < num_entries; i++) {
148 		cur = h + i;
149 		INIT_LIST_HEAD(&cur->hash_list);
150 		spin_lock_init(&cur->lock);
151 	}
152 
153 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
154 	kvfree(x);
155 	return 0;
156 }
157 
158 /*
159  * caching an rbio means to copy anything from the
160  * bio_sectors array into the stripe_pages array.  We
161  * use the page uptodate bit in the stripe cache array
162  * to indicate if it has valid data
163  *
164  * once the caching is done, we set the cache ready
165  * bit.
166  */
167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168 {
169 	int i;
170 	int ret;
171 
172 	ret = alloc_rbio_pages(rbio);
173 	if (ret)
174 		return;
175 
176 	for (i = 0; i < rbio->nr_sectors; i++) {
177 		/* Some range not covered by bio (partial write), skip it */
178 		if (!rbio->bio_sectors[i].page) {
179 			/*
180 			 * Even if the sector is not covered by bio, if it is
181 			 * a data sector it should still be uptodate as it is
182 			 * read from disk.
183 			 */
184 			if (i < rbio->nr_data * rbio->stripe_nsectors)
185 				ASSERT(rbio->stripe_sectors[i].uptodate);
186 			continue;
187 		}
188 
189 		ASSERT(rbio->stripe_sectors[i].page);
190 		memcpy_page(rbio->stripe_sectors[i].page,
191 			    rbio->stripe_sectors[i].pgoff,
192 			    rbio->bio_sectors[i].page,
193 			    rbio->bio_sectors[i].pgoff,
194 			    rbio->bioc->fs_info->sectorsize);
195 		rbio->stripe_sectors[i].uptodate = 1;
196 	}
197 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198 }
199 
200 /*
201  * we hash on the first logical address of the stripe
202  */
203 static int rbio_bucket(struct btrfs_raid_bio *rbio)
204 {
205 	u64 num = rbio->bioc->full_stripe_logical;
206 
207 	/*
208 	 * we shift down quite a bit.  We're using byte
209 	 * addressing, and most of the lower bits are zeros.
210 	 * This tends to upset hash_64, and it consistently
211 	 * returns just one or two different values.
212 	 *
213 	 * shifting off the lower bits fixes things.
214 	 */
215 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216 }
217 
218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 				       unsigned int page_nr)
220 {
221 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 	int i;
224 
225 	ASSERT(page_nr < rbio->nr_pages);
226 
227 	for (i = sectors_per_page * page_nr;
228 	     i < sectors_per_page * page_nr + sectors_per_page;
229 	     i++) {
230 		if (!rbio->stripe_sectors[i].uptodate)
231 			return false;
232 	}
233 	return true;
234 }
235 
236 /*
237  * Update the stripe_sectors[] array to use correct page and pgoff
238  *
239  * Should be called every time any page pointer in stripes_pages[] got modified.
240  */
241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242 {
243 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 	u32 offset;
245 	int i;
246 
247 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 		int page_index = offset >> PAGE_SHIFT;
249 
250 		ASSERT(page_index < rbio->nr_pages);
251 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 	}
254 }
255 
256 static void steal_rbio_page(struct btrfs_raid_bio *src,
257 			    struct btrfs_raid_bio *dest, int page_nr)
258 {
259 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 	int i;
262 
263 	if (dest->stripe_pages[page_nr])
264 		__free_page(dest->stripe_pages[page_nr]);
265 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 	src->stripe_pages[page_nr] = NULL;
267 
268 	/* Also update the sector->uptodate bits. */
269 	for (i = sectors_per_page * page_nr;
270 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
271 		dest->stripe_sectors[i].uptodate = true;
272 }
273 
274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275 {
276 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 			      rbio->bioc->fs_info->sectorsize_bits;
278 
279 	/*
280 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 	 * we won't have a page which is half data half parity.
282 	 *
283 	 * Thus if the first sector of the page belongs to data stripes, then
284 	 * the full page belongs to data stripes.
285 	 */
286 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287 }
288 
289 /*
290  * Stealing an rbio means taking all the uptodate pages from the stripe array
291  * in the source rbio and putting them into the destination rbio.
292  *
293  * This will also update the involved stripe_sectors[] which are referring to
294  * the old pages.
295  */
296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297 {
298 	int i;
299 
300 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 		return;
302 
303 	for (i = 0; i < dest->nr_pages; i++) {
304 		struct page *p = src->stripe_pages[i];
305 
306 		/*
307 		 * We don't need to steal P/Q pages as they will always be
308 		 * regenerated for RMW or full write anyway.
309 		 */
310 		if (!is_data_stripe_page(src, i))
311 			continue;
312 
313 		/*
314 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 		 * all data stripe pages present and uptodate.
316 		 */
317 		ASSERT(p);
318 		ASSERT(full_page_sectors_uptodate(src, i));
319 		steal_rbio_page(src, dest, i);
320 	}
321 	index_stripe_sectors(dest);
322 	index_stripe_sectors(src);
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	/* Also inherit the bitmaps from @victim. */
338 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 		  dest->stripe_nsectors);
340 	bio_list_init(&victim->bio_list);
341 }
342 
343 /*
344  * used to prune items that are in the cache.  The caller
345  * must hold the hash table lock.
346  */
347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348 {
349 	int bucket = rbio_bucket(rbio);
350 	struct btrfs_stripe_hash_table *table;
351 	struct btrfs_stripe_hash *h;
352 	int freeit = 0;
353 
354 	/*
355 	 * check the bit again under the hash table lock.
356 	 */
357 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 		return;
359 
360 	table = rbio->bioc->fs_info->stripe_hash_table;
361 	h = table->table + bucket;
362 
363 	/* hold the lock for the bucket because we may be
364 	 * removing it from the hash table
365 	 */
366 	spin_lock(&h->lock);
367 
368 	/*
369 	 * hold the lock for the bio list because we need
370 	 * to make sure the bio list is empty
371 	 */
372 	spin_lock(&rbio->bio_list_lock);
373 
374 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 		list_del_init(&rbio->stripe_cache);
376 		table->cache_size -= 1;
377 		freeit = 1;
378 
379 		/* if the bio list isn't empty, this rbio is
380 		 * still involved in an IO.  We take it out
381 		 * of the cache list, and drop the ref that
382 		 * was held for the list.
383 		 *
384 		 * If the bio_list was empty, we also remove
385 		 * the rbio from the hash_table, and drop
386 		 * the corresponding ref
387 		 */
388 		if (bio_list_empty(&rbio->bio_list)) {
389 			if (!list_empty(&rbio->hash_list)) {
390 				list_del_init(&rbio->hash_list);
391 				refcount_dec(&rbio->refs);
392 				BUG_ON(!list_empty(&rbio->plug_list));
393 			}
394 		}
395 	}
396 
397 	spin_unlock(&rbio->bio_list_lock);
398 	spin_unlock(&h->lock);
399 
400 	if (freeit)
401 		free_raid_bio(rbio);
402 }
403 
404 /*
405  * prune a given rbio from the cache
406  */
407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408 {
409 	struct btrfs_stripe_hash_table *table;
410 
411 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 		return;
413 
414 	table = rbio->bioc->fs_info->stripe_hash_table;
415 
416 	spin_lock(&table->cache_lock);
417 	__remove_rbio_from_cache(rbio);
418 	spin_unlock(&table->cache_lock);
419 }
420 
421 /*
422  * remove everything in the cache
423  */
424 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 {
426 	struct btrfs_stripe_hash_table *table;
427 	struct btrfs_raid_bio *rbio;
428 
429 	table = info->stripe_hash_table;
430 
431 	spin_lock(&table->cache_lock);
432 	while (!list_empty(&table->stripe_cache)) {
433 		rbio = list_entry(table->stripe_cache.next,
434 				  struct btrfs_raid_bio,
435 				  stripe_cache);
436 		__remove_rbio_from_cache(rbio);
437 	}
438 	spin_unlock(&table->cache_lock);
439 }
440 
441 /*
442  * remove all cached entries and free the hash table
443  * used by unmount
444  */
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 	if (!info->stripe_hash_table)
448 		return;
449 	btrfs_clear_rbio_cache(info);
450 	kvfree(info->stripe_hash_table);
451 	info->stripe_hash_table = NULL;
452 }
453 
454 /*
455  * insert an rbio into the stripe cache.  It
456  * must have already been prepared by calling
457  * cache_rbio_pages
458  *
459  * If this rbio was already cached, it gets
460  * moved to the front of the lru.
461  *
462  * If the size of the rbio cache is too big, we
463  * prune an item.
464  */
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 	struct btrfs_stripe_hash_table *table;
468 
469 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 		return;
471 
472 	table = rbio->bioc->fs_info->stripe_hash_table;
473 
474 	spin_lock(&table->cache_lock);
475 	spin_lock(&rbio->bio_list_lock);
476 
477 	/* bump our ref if we were not in the list before */
478 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
479 		refcount_inc(&rbio->refs);
480 
481 	if (!list_empty(&rbio->stripe_cache)){
482 		list_move(&rbio->stripe_cache, &table->stripe_cache);
483 	} else {
484 		list_add(&rbio->stripe_cache, &table->stripe_cache);
485 		table->cache_size += 1;
486 	}
487 
488 	spin_unlock(&rbio->bio_list_lock);
489 
490 	if (table->cache_size > RBIO_CACHE_SIZE) {
491 		struct btrfs_raid_bio *found;
492 
493 		found = list_entry(table->stripe_cache.prev,
494 				  struct btrfs_raid_bio,
495 				  stripe_cache);
496 
497 		if (found != rbio)
498 			__remove_rbio_from_cache(found);
499 	}
500 
501 	spin_unlock(&table->cache_lock);
502 }
503 
504 /*
505  * helper function to run the xor_blocks api.  It is only
506  * able to do MAX_XOR_BLOCKS at a time, so we need to
507  * loop through.
508  */
509 static void run_xor(void **pages, int src_cnt, ssize_t len)
510 {
511 	int src_off = 0;
512 	int xor_src_cnt = 0;
513 	void *dest = pages[src_cnt];
514 
515 	while(src_cnt > 0) {
516 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518 
519 		src_cnt -= xor_src_cnt;
520 		src_off += xor_src_cnt;
521 	}
522 }
523 
524 /*
525  * Returns true if the bio list inside this rbio covers an entire stripe (no
526  * rmw required).
527  */
528 static int rbio_is_full(struct btrfs_raid_bio *rbio)
529 {
530 	unsigned long size = rbio->bio_list_bytes;
531 	int ret = 1;
532 
533 	spin_lock(&rbio->bio_list_lock);
534 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
535 		ret = 0;
536 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
537 	spin_unlock(&rbio->bio_list_lock);
538 
539 	return ret;
540 }
541 
542 /*
543  * returns 1 if it is safe to merge two rbios together.
544  * The merging is safe if the two rbios correspond to
545  * the same stripe and if they are both going in the same
546  * direction (read vs write), and if neither one is
547  * locked for final IO
548  *
549  * The caller is responsible for locking such that
550  * rmw_locked is safe to test
551  */
552 static int rbio_can_merge(struct btrfs_raid_bio *last,
553 			  struct btrfs_raid_bio *cur)
554 {
555 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 		return 0;
558 
559 	/*
560 	 * we can't merge with cached rbios, since the
561 	 * idea is that when we merge the destination
562 	 * rbio is going to run our IO for us.  We can
563 	 * steal from cached rbios though, other functions
564 	 * handle that.
565 	 */
566 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
568 		return 0;
569 
570 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
571 		return 0;
572 
573 	/* we can't merge with different operations */
574 	if (last->operation != cur->operation)
575 		return 0;
576 	/*
577 	 * We've need read the full stripe from the drive.
578 	 * check and repair the parity and write the new results.
579 	 *
580 	 * We're not allowed to add any new bios to the
581 	 * bio list here, anyone else that wants to
582 	 * change this stripe needs to do their own rmw.
583 	 */
584 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
585 		return 0;
586 
587 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
588 		return 0;
589 
590 	return 1;
591 }
592 
593 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
594 					     unsigned int stripe_nr,
595 					     unsigned int sector_nr)
596 {
597 	ASSERT(stripe_nr < rbio->real_stripes);
598 	ASSERT(sector_nr < rbio->stripe_nsectors);
599 
600 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
601 }
602 
603 /* Return a sector from rbio->stripe_sectors, not from the bio list */
604 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
605 					     unsigned int stripe_nr,
606 					     unsigned int sector_nr)
607 {
608 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
609 							      sector_nr)];
610 }
611 
612 /* Grab a sector inside P stripe */
613 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
614 					      unsigned int sector_nr)
615 {
616 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
617 }
618 
619 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
620 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
621 					      unsigned int sector_nr)
622 {
623 	if (rbio->nr_data + 1 == rbio->real_stripes)
624 		return NULL;
625 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
626 }
627 
628 /*
629  * The first stripe in the table for a logical address
630  * has the lock.  rbios are added in one of three ways:
631  *
632  * 1) Nobody has the stripe locked yet.  The rbio is given
633  * the lock and 0 is returned.  The caller must start the IO
634  * themselves.
635  *
636  * 2) Someone has the stripe locked, but we're able to merge
637  * with the lock owner.  The rbio is freed and the IO will
638  * start automatically along with the existing rbio.  1 is returned.
639  *
640  * 3) Someone has the stripe locked, but we're not able to merge.
641  * The rbio is added to the lock owner's plug list, or merged into
642  * an rbio already on the plug list.  When the lock owner unlocks,
643  * the next rbio on the list is run and the IO is started automatically.
644  * 1 is returned
645  *
646  * If we return 0, the caller still owns the rbio and must continue with
647  * IO submission.  If we return 1, the caller must assume the rbio has
648  * already been freed.
649  */
650 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
651 {
652 	struct btrfs_stripe_hash *h;
653 	struct btrfs_raid_bio *cur;
654 	struct btrfs_raid_bio *pending;
655 	struct btrfs_raid_bio *freeit = NULL;
656 	struct btrfs_raid_bio *cache_drop = NULL;
657 	int ret = 0;
658 
659 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
660 
661 	spin_lock(&h->lock);
662 	list_for_each_entry(cur, &h->hash_list, hash_list) {
663 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
664 			continue;
665 
666 		spin_lock(&cur->bio_list_lock);
667 
668 		/* Can we steal this cached rbio's pages? */
669 		if (bio_list_empty(&cur->bio_list) &&
670 		    list_empty(&cur->plug_list) &&
671 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
672 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
673 			list_del_init(&cur->hash_list);
674 			refcount_dec(&cur->refs);
675 
676 			steal_rbio(cur, rbio);
677 			cache_drop = cur;
678 			spin_unlock(&cur->bio_list_lock);
679 
680 			goto lockit;
681 		}
682 
683 		/* Can we merge into the lock owner? */
684 		if (rbio_can_merge(cur, rbio)) {
685 			merge_rbio(cur, rbio);
686 			spin_unlock(&cur->bio_list_lock);
687 			freeit = rbio;
688 			ret = 1;
689 			goto out;
690 		}
691 
692 
693 		/*
694 		 * We couldn't merge with the running rbio, see if we can merge
695 		 * with the pending ones.  We don't have to check for rmw_locked
696 		 * because there is no way they are inside finish_rmw right now
697 		 */
698 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
699 			if (rbio_can_merge(pending, rbio)) {
700 				merge_rbio(pending, rbio);
701 				spin_unlock(&cur->bio_list_lock);
702 				freeit = rbio;
703 				ret = 1;
704 				goto out;
705 			}
706 		}
707 
708 		/*
709 		 * No merging, put us on the tail of the plug list, our rbio
710 		 * will be started with the currently running rbio unlocks
711 		 */
712 		list_add_tail(&rbio->plug_list, &cur->plug_list);
713 		spin_unlock(&cur->bio_list_lock);
714 		ret = 1;
715 		goto out;
716 	}
717 lockit:
718 	refcount_inc(&rbio->refs);
719 	list_add(&rbio->hash_list, &h->hash_list);
720 out:
721 	spin_unlock(&h->lock);
722 	if (cache_drop)
723 		remove_rbio_from_cache(cache_drop);
724 	if (freeit)
725 		free_raid_bio(freeit);
726 	return ret;
727 }
728 
729 static void recover_rbio_work_locked(struct work_struct *work);
730 
731 /*
732  * called as rmw or parity rebuild is completed.  If the plug list has more
733  * rbios waiting for this stripe, the next one on the list will be started
734  */
735 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
736 {
737 	int bucket;
738 	struct btrfs_stripe_hash *h;
739 	int keep_cache = 0;
740 
741 	bucket = rbio_bucket(rbio);
742 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
743 
744 	if (list_empty(&rbio->plug_list))
745 		cache_rbio(rbio);
746 
747 	spin_lock(&h->lock);
748 	spin_lock(&rbio->bio_list_lock);
749 
750 	if (!list_empty(&rbio->hash_list)) {
751 		/*
752 		 * if we're still cached and there is no other IO
753 		 * to perform, just leave this rbio here for others
754 		 * to steal from later
755 		 */
756 		if (list_empty(&rbio->plug_list) &&
757 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
758 			keep_cache = 1;
759 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
760 			BUG_ON(!bio_list_empty(&rbio->bio_list));
761 			goto done;
762 		}
763 
764 		list_del_init(&rbio->hash_list);
765 		refcount_dec(&rbio->refs);
766 
767 		/*
768 		 * we use the plug list to hold all the rbios
769 		 * waiting for the chance to lock this stripe.
770 		 * hand the lock over to one of them.
771 		 */
772 		if (!list_empty(&rbio->plug_list)) {
773 			struct btrfs_raid_bio *next;
774 			struct list_head *head = rbio->plug_list.next;
775 
776 			next = list_entry(head, struct btrfs_raid_bio,
777 					  plug_list);
778 
779 			list_del_init(&rbio->plug_list);
780 
781 			list_add(&next->hash_list, &h->hash_list);
782 			refcount_inc(&next->refs);
783 			spin_unlock(&rbio->bio_list_lock);
784 			spin_unlock(&h->lock);
785 
786 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
787 				start_async_work(next, recover_rbio_work_locked);
788 			} else if (next->operation == BTRFS_RBIO_WRITE) {
789 				steal_rbio(rbio, next);
790 				start_async_work(next, rmw_rbio_work_locked);
791 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
792 				steal_rbio(rbio, next);
793 				start_async_work(next, scrub_rbio_work_locked);
794 			}
795 
796 			goto done_nolock;
797 		}
798 	}
799 done:
800 	spin_unlock(&rbio->bio_list_lock);
801 	spin_unlock(&h->lock);
802 
803 done_nolock:
804 	if (!keep_cache)
805 		remove_rbio_from_cache(rbio);
806 }
807 
808 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
809 {
810 	struct bio *next;
811 
812 	while (cur) {
813 		next = cur->bi_next;
814 		cur->bi_next = NULL;
815 		cur->bi_status = err;
816 		bio_endio(cur);
817 		cur = next;
818 	}
819 }
820 
821 /*
822  * this frees the rbio and runs through all the bios in the
823  * bio_list and calls end_io on them
824  */
825 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
826 {
827 	struct bio *cur = bio_list_get(&rbio->bio_list);
828 	struct bio *extra;
829 
830 	kfree(rbio->csum_buf);
831 	bitmap_free(rbio->csum_bitmap);
832 	rbio->csum_buf = NULL;
833 	rbio->csum_bitmap = NULL;
834 
835 	/*
836 	 * Clear the data bitmap, as the rbio may be cached for later usage.
837 	 * do this before before unlock_stripe() so there will be no new bio
838 	 * for this bio.
839 	 */
840 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
841 
842 	/*
843 	 * At this moment, rbio->bio_list is empty, however since rbio does not
844 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
845 	 * hash list, rbio may be merged with others so that rbio->bio_list
846 	 * becomes non-empty.
847 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
848 	 * more and we can call bio_endio() on all queued bios.
849 	 */
850 	unlock_stripe(rbio);
851 	extra = bio_list_get(&rbio->bio_list);
852 	free_raid_bio(rbio);
853 
854 	rbio_endio_bio_list(cur, err);
855 	if (extra)
856 		rbio_endio_bio_list(extra, err);
857 }
858 
859 /*
860  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
861  *
862  * @rbio:               The raid bio
863  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
864  * @sector_nr:		Sector number inside the stripe,
865  *			valid range [0, stripe_nsectors)
866  * @bio_list_only:      Whether to use sectors inside the bio list only.
867  *
868  * The read/modify/write code wants to reuse the original bio page as much
869  * as possible, and only use stripe_sectors as fallback.
870  */
871 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
872 					 int stripe_nr, int sector_nr,
873 					 bool bio_list_only)
874 {
875 	struct sector_ptr *sector;
876 	int index;
877 
878 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
879 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
880 
881 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
882 	ASSERT(index >= 0 && index < rbio->nr_sectors);
883 
884 	spin_lock(&rbio->bio_list_lock);
885 	sector = &rbio->bio_sectors[index];
886 	if (sector->page || bio_list_only) {
887 		/* Don't return sector without a valid page pointer */
888 		if (!sector->page)
889 			sector = NULL;
890 		spin_unlock(&rbio->bio_list_lock);
891 		return sector;
892 	}
893 	spin_unlock(&rbio->bio_list_lock);
894 
895 	return &rbio->stripe_sectors[index];
896 }
897 
898 /*
899  * allocation and initial setup for the btrfs_raid_bio.  Not
900  * this does not allocate any pages for rbio->pages.
901  */
902 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
903 					 struct btrfs_io_context *bioc)
904 {
905 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
906 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
907 	const unsigned int num_pages = stripe_npages * real_stripes;
908 	const unsigned int stripe_nsectors =
909 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
910 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
911 	struct btrfs_raid_bio *rbio;
912 
913 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
914 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
915 	/*
916 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
917 	 * (at most 16) should be no larger than BITS_PER_LONG.
918 	 */
919 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
920 
921 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
922 	if (!rbio)
923 		return ERR_PTR(-ENOMEM);
924 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
925 				     GFP_NOFS);
926 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
927 				    GFP_NOFS);
928 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
929 				       GFP_NOFS);
930 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
931 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
932 
933 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
934 	    !rbio->finish_pointers || !rbio->error_bitmap) {
935 		free_raid_bio_pointers(rbio);
936 		kfree(rbio);
937 		return ERR_PTR(-ENOMEM);
938 	}
939 
940 	bio_list_init(&rbio->bio_list);
941 	init_waitqueue_head(&rbio->io_wait);
942 	INIT_LIST_HEAD(&rbio->plug_list);
943 	spin_lock_init(&rbio->bio_list_lock);
944 	INIT_LIST_HEAD(&rbio->stripe_cache);
945 	INIT_LIST_HEAD(&rbio->hash_list);
946 	btrfs_get_bioc(bioc);
947 	rbio->bioc = bioc;
948 	rbio->nr_pages = num_pages;
949 	rbio->nr_sectors = num_sectors;
950 	rbio->real_stripes = real_stripes;
951 	rbio->stripe_npages = stripe_npages;
952 	rbio->stripe_nsectors = stripe_nsectors;
953 	refcount_set(&rbio->refs, 1);
954 	atomic_set(&rbio->stripes_pending, 0);
955 
956 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
957 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
958 
959 	return rbio;
960 }
961 
962 /* allocate pages for all the stripes in the bio, including parity */
963 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
964 {
965 	int ret;
966 
967 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
968 	if (ret < 0)
969 		return ret;
970 	/* Mapping all sectors */
971 	index_stripe_sectors(rbio);
972 	return 0;
973 }
974 
975 /* only allocate pages for p/q stripes */
976 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
977 {
978 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
979 	int ret;
980 
981 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
982 				     rbio->stripe_pages + data_pages);
983 	if (ret < 0)
984 		return ret;
985 
986 	index_stripe_sectors(rbio);
987 	return 0;
988 }
989 
990 /*
991  * Return the total number of errors found in the vertical stripe of @sector_nr.
992  *
993  * @faila and @failb will also be updated to the first and second stripe
994  * number of the errors.
995  */
996 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
997 				     int *faila, int *failb)
998 {
999 	int stripe_nr;
1000 	int found_errors = 0;
1001 
1002 	if (faila || failb) {
1003 		/*
1004 		 * Both @faila and @failb should be valid pointers if any of
1005 		 * them is specified.
1006 		 */
1007 		ASSERT(faila && failb);
1008 		*faila = -1;
1009 		*failb = -1;
1010 	}
1011 
1012 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1013 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1014 
1015 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1016 			found_errors++;
1017 			if (faila) {
1018 				/* Update faila and failb. */
1019 				if (*faila < 0)
1020 					*faila = stripe_nr;
1021 				else if (*failb < 0)
1022 					*failb = stripe_nr;
1023 			}
1024 		}
1025 	}
1026 	return found_errors;
1027 }
1028 
1029 /*
1030  * Add a single sector @sector into our list of bios for IO.
1031  *
1032  * Return 0 if everything went well.
1033  * Return <0 for error.
1034  */
1035 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1036 			      struct bio_list *bio_list,
1037 			      struct sector_ptr *sector,
1038 			      unsigned int stripe_nr,
1039 			      unsigned int sector_nr,
1040 			      enum req_op op)
1041 {
1042 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1043 	struct bio *last = bio_list->tail;
1044 	int ret;
1045 	struct bio *bio;
1046 	struct btrfs_io_stripe *stripe;
1047 	u64 disk_start;
1048 
1049 	/*
1050 	 * Note: here stripe_nr has taken device replace into consideration,
1051 	 * thus it can be larger than rbio->real_stripe.
1052 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1053 	 */
1054 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1055 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1056 	ASSERT(sector->page);
1057 
1058 	stripe = &rbio->bioc->stripes[stripe_nr];
1059 	disk_start = stripe->physical + sector_nr * sectorsize;
1060 
1061 	/* if the device is missing, just fail this stripe */
1062 	if (!stripe->dev->bdev) {
1063 		int found_errors;
1064 
1065 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1066 			rbio->error_bitmap);
1067 
1068 		/* Check if we have reached tolerance early. */
1069 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1070 							 NULL, NULL);
1071 		if (found_errors > rbio->bioc->max_errors)
1072 			return -EIO;
1073 		return 0;
1074 	}
1075 
1076 	/* see if we can add this page onto our existing bio */
1077 	if (last) {
1078 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1079 		last_end += last->bi_iter.bi_size;
1080 
1081 		/*
1082 		 * we can't merge these if they are from different
1083 		 * devices or if they are not contiguous
1084 		 */
1085 		if (last_end == disk_start && !last->bi_status &&
1086 		    last->bi_bdev == stripe->dev->bdev) {
1087 			ret = bio_add_page(last, sector->page, sectorsize,
1088 					   sector->pgoff);
1089 			if (ret == sectorsize)
1090 				return 0;
1091 		}
1092 	}
1093 
1094 	/* put a new bio on the list */
1095 	bio = bio_alloc(stripe->dev->bdev,
1096 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1097 			op, GFP_NOFS);
1098 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1099 	bio->bi_private = rbio;
1100 
1101 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1102 	bio_list_add(bio_list, bio);
1103 	return 0;
1104 }
1105 
1106 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1107 {
1108 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1109 	struct bio_vec bvec;
1110 	struct bvec_iter iter;
1111 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1112 		     rbio->bioc->full_stripe_logical;
1113 
1114 	bio_for_each_segment(bvec, bio, iter) {
1115 		u32 bvec_offset;
1116 
1117 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1118 		     bvec_offset += sectorsize, offset += sectorsize) {
1119 			int index = offset / sectorsize;
1120 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1121 
1122 			sector->page = bvec.bv_page;
1123 			sector->pgoff = bvec.bv_offset + bvec_offset;
1124 			ASSERT(sector->pgoff < PAGE_SIZE);
1125 		}
1126 	}
1127 }
1128 
1129 /*
1130  * helper function to walk our bio list and populate the bio_pages array with
1131  * the result.  This seems expensive, but it is faster than constantly
1132  * searching through the bio list as we setup the IO in finish_rmw or stripe
1133  * reconstruction.
1134  *
1135  * This must be called before you trust the answers from page_in_rbio
1136  */
1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138 {
1139 	struct bio *bio;
1140 
1141 	spin_lock(&rbio->bio_list_lock);
1142 	bio_list_for_each(bio, &rbio->bio_list)
1143 		index_one_bio(rbio, bio);
1144 
1145 	spin_unlock(&rbio->bio_list_lock);
1146 }
1147 
1148 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1149 			       struct raid56_bio_trace_info *trace_info)
1150 {
1151 	const struct btrfs_io_context *bioc = rbio->bioc;
1152 	int i;
1153 
1154 	ASSERT(bioc);
1155 
1156 	/* We rely on bio->bi_bdev to find the stripe number. */
1157 	if (!bio->bi_bdev)
1158 		goto not_found;
1159 
1160 	for (i = 0; i < bioc->num_stripes; i++) {
1161 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1162 			continue;
1163 		trace_info->stripe_nr = i;
1164 		trace_info->devid = bioc->stripes[i].dev->devid;
1165 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1166 				     bioc->stripes[i].physical;
1167 		return;
1168 	}
1169 
1170 not_found:
1171 	trace_info->devid = -1;
1172 	trace_info->offset = -1;
1173 	trace_info->stripe_nr = -1;
1174 }
1175 
1176 static inline void bio_list_put(struct bio_list *bio_list)
1177 {
1178 	struct bio *bio;
1179 
1180 	while ((bio = bio_list_pop(bio_list)))
1181 		bio_put(bio);
1182 }
1183 
1184 /* Generate PQ for one vertical stripe. */
1185 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1186 {
1187 	void **pointers = rbio->finish_pointers;
1188 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1189 	struct sector_ptr *sector;
1190 	int stripe;
1191 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1192 
1193 	/* First collect one sector from each data stripe */
1194 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1195 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1196 		pointers[stripe] = kmap_local_page(sector->page) +
1197 				   sector->pgoff;
1198 	}
1199 
1200 	/* Then add the parity stripe */
1201 	sector = rbio_pstripe_sector(rbio, sectornr);
1202 	sector->uptodate = 1;
1203 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1204 
1205 	if (has_qstripe) {
1206 		/*
1207 		 * RAID6, add the qstripe and call the library function
1208 		 * to fill in our p/q
1209 		 */
1210 		sector = rbio_qstripe_sector(rbio, sectornr);
1211 		sector->uptodate = 1;
1212 		pointers[stripe++] = kmap_local_page(sector->page) +
1213 				     sector->pgoff;
1214 
1215 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1216 					pointers);
1217 	} else {
1218 		/* raid5 */
1219 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1220 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1221 	}
1222 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1223 		kunmap_local(pointers[stripe]);
1224 }
1225 
1226 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1227 				   struct bio_list *bio_list)
1228 {
1229 	/* The total sector number inside the full stripe. */
1230 	int total_sector_nr;
1231 	int sectornr;
1232 	int stripe;
1233 	int ret;
1234 
1235 	ASSERT(bio_list_size(bio_list) == 0);
1236 
1237 	/* We should have at least one data sector. */
1238 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1239 
1240 	/*
1241 	 * Reset errors, as we may have errors inherited from from degraded
1242 	 * write.
1243 	 */
1244 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1245 
1246 	/*
1247 	 * Start assembly.  Make bios for everything from the higher layers (the
1248 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1249 	 */
1250 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1251 	     total_sector_nr++) {
1252 		struct sector_ptr *sector;
1253 
1254 		stripe = total_sector_nr / rbio->stripe_nsectors;
1255 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1256 
1257 		/* This vertical stripe has no data, skip it. */
1258 		if (!test_bit(sectornr, &rbio->dbitmap))
1259 			continue;
1260 
1261 		if (stripe < rbio->nr_data) {
1262 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1263 			if (!sector)
1264 				continue;
1265 		} else {
1266 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1267 		}
1268 
1269 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1270 					 sectornr, REQ_OP_WRITE);
1271 		if (ret)
1272 			goto error;
1273 	}
1274 
1275 	if (likely(!rbio->bioc->replace_nr_stripes))
1276 		return 0;
1277 
1278 	/*
1279 	 * Make a copy for the replace target device.
1280 	 *
1281 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1282 	 */
1283 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1284 
1285 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1286 	     total_sector_nr++) {
1287 		struct sector_ptr *sector;
1288 
1289 		stripe = total_sector_nr / rbio->stripe_nsectors;
1290 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1291 
1292 		/*
1293 		 * For RAID56, there is only one device that can be replaced,
1294 		 * and replace_stripe_src[0] indicates the stripe number we
1295 		 * need to copy from.
1296 		 */
1297 		if (stripe != rbio->bioc->replace_stripe_src) {
1298 			/*
1299 			 * We can skip the whole stripe completely, note
1300 			 * total_sector_nr will be increased by one anyway.
1301 			 */
1302 			ASSERT(sectornr == 0);
1303 			total_sector_nr += rbio->stripe_nsectors - 1;
1304 			continue;
1305 		}
1306 
1307 		/* This vertical stripe has no data, skip it. */
1308 		if (!test_bit(sectornr, &rbio->dbitmap))
1309 			continue;
1310 
1311 		if (stripe < rbio->nr_data) {
1312 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1313 			if (!sector)
1314 				continue;
1315 		} else {
1316 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1317 		}
1318 
1319 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1320 					 rbio->real_stripes,
1321 					 sectornr, REQ_OP_WRITE);
1322 		if (ret)
1323 			goto error;
1324 	}
1325 
1326 	return 0;
1327 error:
1328 	bio_list_put(bio_list);
1329 	return -EIO;
1330 }
1331 
1332 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1333 {
1334 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1335 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1336 		     rbio->bioc->full_stripe_logical;
1337 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1338 
1339 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1340 
1341 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1342 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1343 
1344 	/*
1345 	 * Special handling for raid56_alloc_missing_rbio() used by
1346 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1347 	 * pass an empty bio here.  Thus we have to find out the missing device
1348 	 * and mark the stripe error instead.
1349 	 */
1350 	if (bio->bi_iter.bi_size == 0) {
1351 		bool found_missing = false;
1352 		int stripe_nr;
1353 
1354 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1355 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1356 				found_missing = true;
1357 				bitmap_set(rbio->error_bitmap,
1358 					   stripe_nr * rbio->stripe_nsectors,
1359 					   rbio->stripe_nsectors);
1360 			}
1361 		}
1362 		ASSERT(found_missing);
1363 	}
1364 }
1365 
1366 /*
1367  * For subpage case, we can no longer set page Up-to-date directly for
1368  * stripe_pages[], thus we need to locate the sector.
1369  */
1370 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1371 					     struct page *page,
1372 					     unsigned int pgoff)
1373 {
1374 	int i;
1375 
1376 	for (i = 0; i < rbio->nr_sectors; i++) {
1377 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1378 
1379 		if (sector->page == page && sector->pgoff == pgoff)
1380 			return sector;
1381 	}
1382 	return NULL;
1383 }
1384 
1385 /*
1386  * this sets each page in the bio uptodate.  It should only be used on private
1387  * rbio pages, nothing that comes in from the higher layers
1388  */
1389 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1390 {
1391 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1392 	struct bio_vec *bvec;
1393 	struct bvec_iter_all iter_all;
1394 
1395 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1396 
1397 	bio_for_each_segment_all(bvec, bio, iter_all) {
1398 		struct sector_ptr *sector;
1399 		int pgoff;
1400 
1401 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1402 		     pgoff += sectorsize) {
1403 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1404 			ASSERT(sector);
1405 			if (sector)
1406 				sector->uptodate = 1;
1407 		}
1408 	}
1409 }
1410 
1411 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1412 {
1413 	struct bio_vec *bv = bio_first_bvec_all(bio);
1414 	int i;
1415 
1416 	for (i = 0; i < rbio->nr_sectors; i++) {
1417 		struct sector_ptr *sector;
1418 
1419 		sector = &rbio->stripe_sectors[i];
1420 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1421 			break;
1422 		sector = &rbio->bio_sectors[i];
1423 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1424 			break;
1425 	}
1426 	ASSERT(i < rbio->nr_sectors);
1427 	return i;
1428 }
1429 
1430 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1431 {
1432 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1433 	u32 bio_size = 0;
1434 	struct bio_vec *bvec;
1435 	int i;
1436 
1437 	bio_for_each_bvec_all(bvec, bio, i)
1438 		bio_size += bvec->bv_len;
1439 
1440 	/*
1441 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1442 	 * call bitmap_set() without protection.
1443 	 *
1444 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1445 	 */
1446 	for (i = total_sector_nr; i < total_sector_nr +
1447 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1448 		set_bit(i, rbio->error_bitmap);
1449 }
1450 
1451 /* Verify the data sectors at read time. */
1452 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1453 				    struct bio *bio)
1454 {
1455 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1456 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1457 	struct bio_vec *bvec;
1458 	struct bvec_iter_all iter_all;
1459 
1460 	/* No data csum for the whole stripe, no need to verify. */
1461 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1462 		return;
1463 
1464 	/* P/Q stripes, they have no data csum to verify against. */
1465 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1466 		return;
1467 
1468 	bio_for_each_segment_all(bvec, bio, iter_all) {
1469 		int bv_offset;
1470 
1471 		for (bv_offset = bvec->bv_offset;
1472 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1473 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1474 			u8 csum_buf[BTRFS_CSUM_SIZE];
1475 			u8 *expected_csum = rbio->csum_buf +
1476 					    total_sector_nr * fs_info->csum_size;
1477 			int ret;
1478 
1479 			/* No csum for this sector, skip to the next sector. */
1480 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1481 				continue;
1482 
1483 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1484 				bv_offset, csum_buf, expected_csum);
1485 			if (ret < 0)
1486 				set_bit(total_sector_nr, rbio->error_bitmap);
1487 		}
1488 	}
1489 }
1490 
1491 static void raid_wait_read_end_io(struct bio *bio)
1492 {
1493 	struct btrfs_raid_bio *rbio = bio->bi_private;
1494 
1495 	if (bio->bi_status) {
1496 		rbio_update_error_bitmap(rbio, bio);
1497 	} else {
1498 		set_bio_pages_uptodate(rbio, bio);
1499 		verify_bio_data_sectors(rbio, bio);
1500 	}
1501 
1502 	bio_put(bio);
1503 	if (atomic_dec_and_test(&rbio->stripes_pending))
1504 		wake_up(&rbio->io_wait);
1505 }
1506 
1507 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1508 			     struct bio_list *bio_list)
1509 {
1510 	struct bio *bio;
1511 
1512 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1513 	while ((bio = bio_list_pop(bio_list))) {
1514 		bio->bi_end_io = raid_wait_read_end_io;
1515 
1516 		if (trace_raid56_read_enabled()) {
1517 			struct raid56_bio_trace_info trace_info = { 0 };
1518 
1519 			bio_get_trace_info(rbio, bio, &trace_info);
1520 			trace_raid56_read(rbio, bio, &trace_info);
1521 		}
1522 		submit_bio(bio);
1523 	}
1524 
1525 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1526 }
1527 
1528 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1529 {
1530 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1531 	int ret;
1532 
1533 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	index_stripe_sectors(rbio);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * We use plugging call backs to collect full stripes.
1543  * Any time we get a partial stripe write while plugged
1544  * we collect it into a list.  When the unplug comes down,
1545  * we sort the list by logical block number and merge
1546  * everything we can into the same rbios
1547  */
1548 struct btrfs_plug_cb {
1549 	struct blk_plug_cb cb;
1550 	struct btrfs_fs_info *info;
1551 	struct list_head rbio_list;
1552 	struct work_struct work;
1553 };
1554 
1555 /*
1556  * rbios on the plug list are sorted for easier merging.
1557  */
1558 static int plug_cmp(void *priv, const struct list_head *a,
1559 		    const struct list_head *b)
1560 {
1561 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1562 						       plug_list);
1563 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1564 						       plug_list);
1565 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1566 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1567 
1568 	if (a_sector < b_sector)
1569 		return -1;
1570 	if (a_sector > b_sector)
1571 		return 1;
1572 	return 0;
1573 }
1574 
1575 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1576 {
1577 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1578 	struct btrfs_raid_bio *cur;
1579 	struct btrfs_raid_bio *last = NULL;
1580 
1581 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1582 
1583 	while (!list_empty(&plug->rbio_list)) {
1584 		cur = list_entry(plug->rbio_list.next,
1585 				 struct btrfs_raid_bio, plug_list);
1586 		list_del_init(&cur->plug_list);
1587 
1588 		if (rbio_is_full(cur)) {
1589 			/* We have a full stripe, queue it down. */
1590 			start_async_work(cur, rmw_rbio_work);
1591 			continue;
1592 		}
1593 		if (last) {
1594 			if (rbio_can_merge(last, cur)) {
1595 				merge_rbio(last, cur);
1596 				free_raid_bio(cur);
1597 				continue;
1598 			}
1599 			start_async_work(last, rmw_rbio_work);
1600 		}
1601 		last = cur;
1602 	}
1603 	if (last)
1604 		start_async_work(last, rmw_rbio_work);
1605 	kfree(plug);
1606 }
1607 
1608 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1609 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1610 {
1611 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1612 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1613 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1614 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1615 	const u32 sectorsize = fs_info->sectorsize;
1616 	u64 cur_logical;
1617 
1618 	ASSERT(orig_logical >= full_stripe_start &&
1619 	       orig_logical + orig_len <= full_stripe_start +
1620 	       rbio->nr_data * BTRFS_STRIPE_LEN);
1621 
1622 	bio_list_add(&rbio->bio_list, orig_bio);
1623 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1624 
1625 	/* Update the dbitmap. */
1626 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1627 	     cur_logical += sectorsize) {
1628 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1629 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1630 
1631 		set_bit(bit, &rbio->dbitmap);
1632 	}
1633 }
1634 
1635 /*
1636  * our main entry point for writes from the rest of the FS.
1637  */
1638 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1639 {
1640 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1641 	struct btrfs_raid_bio *rbio;
1642 	struct btrfs_plug_cb *plug = NULL;
1643 	struct blk_plug_cb *cb;
1644 
1645 	rbio = alloc_rbio(fs_info, bioc);
1646 	if (IS_ERR(rbio)) {
1647 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1648 		bio_endio(bio);
1649 		return;
1650 	}
1651 	rbio->operation = BTRFS_RBIO_WRITE;
1652 	rbio_add_bio(rbio, bio);
1653 
1654 	/*
1655 	 * Don't plug on full rbios, just get them out the door
1656 	 * as quickly as we can
1657 	 */
1658 	if (!rbio_is_full(rbio)) {
1659 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1660 		if (cb) {
1661 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1662 			if (!plug->info) {
1663 				plug->info = fs_info;
1664 				INIT_LIST_HEAD(&plug->rbio_list);
1665 			}
1666 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1667 			return;
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Either we don't have any existing plug, or we're doing a full stripe,
1673 	 * queue the rmw work now.
1674 	 */
1675 	start_async_work(rbio, rmw_rbio_work);
1676 }
1677 
1678 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1679 			     int stripe_nr, int sector_nr)
1680 {
1681 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1682 	struct sector_ptr *sector;
1683 	u8 csum_buf[BTRFS_CSUM_SIZE];
1684 	u8 *csum_expected;
1685 	int ret;
1686 
1687 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1688 		return 0;
1689 
1690 	/* No way to verify P/Q as they are not covered by data csum. */
1691 	if (stripe_nr >= rbio->nr_data)
1692 		return 0;
1693 	/*
1694 	 * If we're rebuilding a read, we have to use pages from the
1695 	 * bio list if possible.
1696 	 */
1697 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1698 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1699 	} else {
1700 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1701 	}
1702 
1703 	ASSERT(sector->page);
1704 
1705 	csum_expected = rbio->csum_buf +
1706 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1707 			fs_info->csum_size;
1708 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1709 				      csum_buf, csum_expected);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Recover a vertical stripe specified by @sector_nr.
1715  * @*pointers are the pre-allocated pointers by the caller, so we don't
1716  * need to allocate/free the pointers again and again.
1717  */
1718 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1719 			    void **pointers, void **unmap_array)
1720 {
1721 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1722 	struct sector_ptr *sector;
1723 	const u32 sectorsize = fs_info->sectorsize;
1724 	int found_errors;
1725 	int faila;
1726 	int failb;
1727 	int stripe_nr;
1728 	int ret = 0;
1729 
1730 	/*
1731 	 * Now we just use bitmap to mark the horizontal stripes in
1732 	 * which we have data when doing parity scrub.
1733 	 */
1734 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1735 	    !test_bit(sector_nr, &rbio->dbitmap))
1736 		return 0;
1737 
1738 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1739 						 &failb);
1740 	/*
1741 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1742 	 * which only part of a stripe failed csum check.
1743 	 */
1744 	if (!found_errors)
1745 		return 0;
1746 
1747 	if (found_errors > rbio->bioc->max_errors)
1748 		return -EIO;
1749 
1750 	/*
1751 	 * Setup our array of pointers with sectors from each stripe
1752 	 *
1753 	 * NOTE: store a duplicate array of pointers to preserve the
1754 	 * pointer order.
1755 	 */
1756 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1757 		/*
1758 		 * If we're rebuilding a read, we have to use pages from the
1759 		 * bio list if possible.
1760 		 */
1761 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1762 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1763 		} else {
1764 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1765 		}
1766 		ASSERT(sector->page);
1767 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1768 				   sector->pgoff;
1769 		unmap_array[stripe_nr] = pointers[stripe_nr];
1770 	}
1771 
1772 	/* All raid6 handling here */
1773 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1774 		/* Single failure, rebuild from parity raid5 style */
1775 		if (failb < 0) {
1776 			if (faila == rbio->nr_data)
1777 				/*
1778 				 * Just the P stripe has failed, without
1779 				 * a bad data or Q stripe.
1780 				 * We have nothing to do, just skip the
1781 				 * recovery for this stripe.
1782 				 */
1783 				goto cleanup;
1784 			/*
1785 			 * a single failure in raid6 is rebuilt
1786 			 * in the pstripe code below
1787 			 */
1788 			goto pstripe;
1789 		}
1790 
1791 		/*
1792 		 * If the q stripe is failed, do a pstripe reconstruction from
1793 		 * the xors.
1794 		 * If both the q stripe and the P stripe are failed, we're
1795 		 * here due to a crc mismatch and we can't give them the
1796 		 * data they want.
1797 		 */
1798 		if (failb == rbio->real_stripes - 1) {
1799 			if (faila == rbio->real_stripes - 2)
1800 				/*
1801 				 * Only P and Q are corrupted.
1802 				 * We only care about data stripes recovery,
1803 				 * can skip this vertical stripe.
1804 				 */
1805 				goto cleanup;
1806 			/*
1807 			 * Otherwise we have one bad data stripe and
1808 			 * a good P stripe.  raid5!
1809 			 */
1810 			goto pstripe;
1811 		}
1812 
1813 		if (failb == rbio->real_stripes - 2) {
1814 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1815 					  faila, pointers);
1816 		} else {
1817 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1818 					  faila, failb, pointers);
1819 		}
1820 	} else {
1821 		void *p;
1822 
1823 		/* Rebuild from P stripe here (raid5 or raid6). */
1824 		ASSERT(failb == -1);
1825 pstripe:
1826 		/* Copy parity block into failed block to start with */
1827 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1828 
1829 		/* Rearrange the pointer array */
1830 		p = pointers[faila];
1831 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1832 		     stripe_nr++)
1833 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1834 		pointers[rbio->nr_data - 1] = p;
1835 
1836 		/* Xor in the rest */
1837 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1838 
1839 	}
1840 
1841 	/*
1842 	 * No matter if this is a RMW or recovery, we should have all
1843 	 * failed sectors repaired in the vertical stripe, thus they are now
1844 	 * uptodate.
1845 	 * Especially if we determine to cache the rbio, we need to
1846 	 * have at least all data sectors uptodate.
1847 	 *
1848 	 * If possible, also check if the repaired sector matches its data
1849 	 * checksum.
1850 	 */
1851 	if (faila >= 0) {
1852 		ret = verify_one_sector(rbio, faila, sector_nr);
1853 		if (ret < 0)
1854 			goto cleanup;
1855 
1856 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1857 		sector->uptodate = 1;
1858 	}
1859 	if (failb >= 0) {
1860 		ret = verify_one_sector(rbio, failb, sector_nr);
1861 		if (ret < 0)
1862 			goto cleanup;
1863 
1864 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1865 		sector->uptodate = 1;
1866 	}
1867 
1868 cleanup:
1869 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1870 		kunmap_local(unmap_array[stripe_nr]);
1871 	return ret;
1872 }
1873 
1874 static int recover_sectors(struct btrfs_raid_bio *rbio)
1875 {
1876 	void **pointers = NULL;
1877 	void **unmap_array = NULL;
1878 	int sectornr;
1879 	int ret = 0;
1880 
1881 	/*
1882 	 * @pointers array stores the pointer for each sector.
1883 	 *
1884 	 * @unmap_array stores copy of pointers that does not get reordered
1885 	 * during reconstruction so that kunmap_local works.
1886 	 */
1887 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1888 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1889 	if (!pointers || !unmap_array) {
1890 		ret = -ENOMEM;
1891 		goto out;
1892 	}
1893 
1894 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1895 		spin_lock(&rbio->bio_list_lock);
1896 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1897 		spin_unlock(&rbio->bio_list_lock);
1898 	}
1899 
1900 	index_rbio_pages(rbio);
1901 
1902 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1903 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1904 		if (ret < 0)
1905 			break;
1906 	}
1907 
1908 out:
1909 	kfree(pointers);
1910 	kfree(unmap_array);
1911 	return ret;
1912 }
1913 
1914 static void recover_rbio(struct btrfs_raid_bio *rbio)
1915 {
1916 	struct bio_list bio_list = BIO_EMPTY_LIST;
1917 	int total_sector_nr;
1918 	int ret = 0;
1919 
1920 	/*
1921 	 * Either we're doing recover for a read failure or degraded write,
1922 	 * caller should have set error bitmap correctly.
1923 	 */
1924 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1925 
1926 	/* For recovery, we need to read all sectors including P/Q. */
1927 	ret = alloc_rbio_pages(rbio);
1928 	if (ret < 0)
1929 		goto out;
1930 
1931 	index_rbio_pages(rbio);
1932 
1933 	/*
1934 	 * Read everything that hasn't failed. However this time we will
1935 	 * not trust any cached sector.
1936 	 * As we may read out some stale data but higher layer is not reading
1937 	 * that stale part.
1938 	 *
1939 	 * So here we always re-read everything in recovery path.
1940 	 */
1941 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1942 	     total_sector_nr++) {
1943 		int stripe = total_sector_nr / rbio->stripe_nsectors;
1944 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1945 		struct sector_ptr *sector;
1946 
1947 		/*
1948 		 * Skip the range which has error.  It can be a range which is
1949 		 * marked error (for csum mismatch), or it can be a missing
1950 		 * device.
1951 		 */
1952 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1953 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1954 			/*
1955 			 * Also set the error bit for missing device, which
1956 			 * may not yet have its error bit set.
1957 			 */
1958 			set_bit(total_sector_nr, rbio->error_bitmap);
1959 			continue;
1960 		}
1961 
1962 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1963 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1964 					 sectornr, REQ_OP_READ);
1965 		if (ret < 0) {
1966 			bio_list_put(&bio_list);
1967 			goto out;
1968 		}
1969 	}
1970 
1971 	submit_read_wait_bio_list(rbio, &bio_list);
1972 	ret = recover_sectors(rbio);
1973 out:
1974 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1975 }
1976 
1977 static void recover_rbio_work(struct work_struct *work)
1978 {
1979 	struct btrfs_raid_bio *rbio;
1980 
1981 	rbio = container_of(work, struct btrfs_raid_bio, work);
1982 	if (!lock_stripe_add(rbio))
1983 		recover_rbio(rbio);
1984 }
1985 
1986 static void recover_rbio_work_locked(struct work_struct *work)
1987 {
1988 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1989 }
1990 
1991 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1992 {
1993 	bool found = false;
1994 	int sector_nr;
1995 
1996 	/*
1997 	 * This is for RAID6 extra recovery tries, thus mirror number should
1998 	 * be large than 2.
1999 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2000 	 * RAID5 methods.
2001 	 */
2002 	ASSERT(mirror_num > 2);
2003 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2004 		int found_errors;
2005 		int faila;
2006 		int failb;
2007 
2008 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2009 							 &faila, &failb);
2010 		/* This vertical stripe doesn't have errors. */
2011 		if (!found_errors)
2012 			continue;
2013 
2014 		/*
2015 		 * If we found errors, there should be only one error marked
2016 		 * by previous set_rbio_range_error().
2017 		 */
2018 		ASSERT(found_errors == 1);
2019 		found = true;
2020 
2021 		/* Now select another stripe to mark as error. */
2022 		failb = rbio->real_stripes - (mirror_num - 1);
2023 		if (failb <= faila)
2024 			failb--;
2025 
2026 		/* Set the extra bit in error bitmap. */
2027 		if (failb >= 0)
2028 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2029 				rbio->error_bitmap);
2030 	}
2031 
2032 	/* We should found at least one vertical stripe with error.*/
2033 	ASSERT(found);
2034 }
2035 
2036 /*
2037  * the main entry point for reads from the higher layers.  This
2038  * is really only called when the normal read path had a failure,
2039  * so we assume the bio they send down corresponds to a failed part
2040  * of the drive.
2041  */
2042 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2043 			   int mirror_num)
2044 {
2045 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2046 	struct btrfs_raid_bio *rbio;
2047 
2048 	rbio = alloc_rbio(fs_info, bioc);
2049 	if (IS_ERR(rbio)) {
2050 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2051 		bio_endio(bio);
2052 		return;
2053 	}
2054 
2055 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2056 	rbio_add_bio(rbio, bio);
2057 
2058 	set_rbio_range_error(rbio, bio);
2059 
2060 	/*
2061 	 * Loop retry:
2062 	 * for 'mirror == 2', reconstruct from all other stripes.
2063 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2064 	 */
2065 	if (mirror_num > 2)
2066 		set_rbio_raid6_extra_error(rbio, mirror_num);
2067 
2068 	start_async_work(rbio, recover_rbio_work);
2069 }
2070 
2071 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2072 {
2073 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2074 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2075 						       rbio->bioc->full_stripe_logical);
2076 	const u64 start = rbio->bioc->full_stripe_logical;
2077 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2078 			fs_info->sectorsize_bits;
2079 	int ret;
2080 
2081 	/* The rbio should not have its csum buffer initialized. */
2082 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2083 
2084 	/*
2085 	 * Skip the csum search if:
2086 	 *
2087 	 * - The rbio doesn't belong to data block groups
2088 	 *   Then we are doing IO for tree blocks, no need to search csums.
2089 	 *
2090 	 * - The rbio belongs to mixed block groups
2091 	 *   This is to avoid deadlock, as we're already holding the full
2092 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2093 	 *   raid56 recovery, we will deadlock.
2094 	 */
2095 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2096 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2097 		return;
2098 
2099 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2100 				 fs_info->csum_size, GFP_NOFS);
2101 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2102 					  GFP_NOFS);
2103 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2104 		ret = -ENOMEM;
2105 		goto error;
2106 	}
2107 
2108 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2109 					rbio->csum_buf, rbio->csum_bitmap);
2110 	if (ret < 0)
2111 		goto error;
2112 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2113 		goto no_csum;
2114 	return;
2115 
2116 error:
2117 	/*
2118 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2119 	 * we can still continue.  But better to warn users that RMW is no
2120 	 * longer safe for this particular sub-stripe write.
2121 	 */
2122 	btrfs_warn_rl(fs_info,
2123 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2124 			rbio->bioc->full_stripe_logical, ret);
2125 no_csum:
2126 	kfree(rbio->csum_buf);
2127 	bitmap_free(rbio->csum_bitmap);
2128 	rbio->csum_buf = NULL;
2129 	rbio->csum_bitmap = NULL;
2130 }
2131 
2132 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2133 {
2134 	struct bio_list bio_list = BIO_EMPTY_LIST;
2135 	int total_sector_nr;
2136 	int ret = 0;
2137 
2138 	/*
2139 	 * Fill the data csums we need for data verification.  We need to fill
2140 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2141 	 * verify the data sectors.
2142 	 */
2143 	fill_data_csums(rbio);
2144 
2145 	/*
2146 	 * Build a list of bios to read all sectors (including data and P/Q).
2147 	 *
2148 	 * This behavior is to compensate the later csum verification and recovery.
2149 	 */
2150 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2151 	     total_sector_nr++) {
2152 		struct sector_ptr *sector;
2153 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2154 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2155 
2156 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2157 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2158 			       stripe, sectornr, REQ_OP_READ);
2159 		if (ret) {
2160 			bio_list_put(&bio_list);
2161 			return ret;
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * We may or may not have any corrupted sectors (including missing dev
2167 	 * and csum mismatch), just let recover_sectors() to handle them all.
2168 	 */
2169 	submit_read_wait_bio_list(rbio, &bio_list);
2170 	return recover_sectors(rbio);
2171 }
2172 
2173 static void raid_wait_write_end_io(struct bio *bio)
2174 {
2175 	struct btrfs_raid_bio *rbio = bio->bi_private;
2176 	blk_status_t err = bio->bi_status;
2177 
2178 	if (err)
2179 		rbio_update_error_bitmap(rbio, bio);
2180 	bio_put(bio);
2181 	if (atomic_dec_and_test(&rbio->stripes_pending))
2182 		wake_up(&rbio->io_wait);
2183 }
2184 
2185 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2186 			      struct bio_list *bio_list)
2187 {
2188 	struct bio *bio;
2189 
2190 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2191 	while ((bio = bio_list_pop(bio_list))) {
2192 		bio->bi_end_io = raid_wait_write_end_io;
2193 
2194 		if (trace_raid56_write_enabled()) {
2195 			struct raid56_bio_trace_info trace_info = { 0 };
2196 
2197 			bio_get_trace_info(rbio, bio, &trace_info);
2198 			trace_raid56_write(rbio, bio, &trace_info);
2199 		}
2200 		submit_bio(bio);
2201 	}
2202 }
2203 
2204 /*
2205  * To determine if we need to read any sector from the disk.
2206  * Should only be utilized in RMW path, to skip cached rbio.
2207  */
2208 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2209 {
2210 	int i;
2211 
2212 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2213 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2214 
2215 		/*
2216 		 * We have a sector which doesn't have page nor uptodate,
2217 		 * thus this rbio can not be cached one, as cached one must
2218 		 * have all its data sectors present and uptodate.
2219 		 */
2220 		if (!sector->page || !sector->uptodate)
2221 			return true;
2222 	}
2223 	return false;
2224 }
2225 
2226 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2227 {
2228 	struct bio_list bio_list;
2229 	int sectornr;
2230 	int ret = 0;
2231 
2232 	/*
2233 	 * Allocate the pages for parity first, as P/Q pages will always be
2234 	 * needed for both full-stripe and sub-stripe writes.
2235 	 */
2236 	ret = alloc_rbio_parity_pages(rbio);
2237 	if (ret < 0)
2238 		goto out;
2239 
2240 	/*
2241 	 * Either full stripe write, or we have every data sector already
2242 	 * cached, can go to write path immediately.
2243 	 */
2244 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2245 		/*
2246 		 * Now we're doing sub-stripe write, also need all data stripes
2247 		 * to do the full RMW.
2248 		 */
2249 		ret = alloc_rbio_data_pages(rbio);
2250 		if (ret < 0)
2251 			goto out;
2252 
2253 		index_rbio_pages(rbio);
2254 
2255 		ret = rmw_read_wait_recover(rbio);
2256 		if (ret < 0)
2257 			goto out;
2258 	}
2259 
2260 	/*
2261 	 * At this stage we're not allowed to add any new bios to the
2262 	 * bio list any more, anyone else that wants to change this stripe
2263 	 * needs to do their own rmw.
2264 	 */
2265 	spin_lock(&rbio->bio_list_lock);
2266 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2267 	spin_unlock(&rbio->bio_list_lock);
2268 
2269 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2270 
2271 	index_rbio_pages(rbio);
2272 
2273 	/*
2274 	 * We don't cache full rbios because we're assuming
2275 	 * the higher layers are unlikely to use this area of
2276 	 * the disk again soon.  If they do use it again,
2277 	 * hopefully they will send another full bio.
2278 	 */
2279 	if (!rbio_is_full(rbio))
2280 		cache_rbio_pages(rbio);
2281 	else
2282 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2283 
2284 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2285 		generate_pq_vertical(rbio, sectornr);
2286 
2287 	bio_list_init(&bio_list);
2288 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2289 	if (ret < 0)
2290 		goto out;
2291 
2292 	/* We should have at least one bio assembled. */
2293 	ASSERT(bio_list_size(&bio_list));
2294 	submit_write_bios(rbio, &bio_list);
2295 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2296 
2297 	/* We may have more errors than our tolerance during the read. */
2298 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2299 		int found_errors;
2300 
2301 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2302 		if (found_errors > rbio->bioc->max_errors) {
2303 			ret = -EIO;
2304 			break;
2305 		}
2306 	}
2307 out:
2308 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2309 }
2310 
2311 static void rmw_rbio_work(struct work_struct *work)
2312 {
2313 	struct btrfs_raid_bio *rbio;
2314 
2315 	rbio = container_of(work, struct btrfs_raid_bio, work);
2316 	if (lock_stripe_add(rbio) == 0)
2317 		rmw_rbio(rbio);
2318 }
2319 
2320 static void rmw_rbio_work_locked(struct work_struct *work)
2321 {
2322 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2323 }
2324 
2325 /*
2326  * The following code is used to scrub/replace the parity stripe
2327  *
2328  * Caller must have already increased bio_counter for getting @bioc.
2329  *
2330  * Note: We need make sure all the pages that add into the scrub/replace
2331  * raid bio are correct and not be changed during the scrub/replace. That
2332  * is those pages just hold metadata or file data with checksum.
2333  */
2334 
2335 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2336 				struct btrfs_io_context *bioc,
2337 				struct btrfs_device *scrub_dev,
2338 				unsigned long *dbitmap, int stripe_nsectors)
2339 {
2340 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2341 	struct btrfs_raid_bio *rbio;
2342 	int i;
2343 
2344 	rbio = alloc_rbio(fs_info, bioc);
2345 	if (IS_ERR(rbio))
2346 		return NULL;
2347 	bio_list_add(&rbio->bio_list, bio);
2348 	/*
2349 	 * This is a special bio which is used to hold the completion handler
2350 	 * and make the scrub rbio is similar to the other types
2351 	 */
2352 	ASSERT(!bio->bi_iter.bi_size);
2353 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2354 
2355 	/*
2356 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2357 	 * to the end position, so this search can start from the first parity
2358 	 * stripe.
2359 	 */
2360 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2361 		if (bioc->stripes[i].dev == scrub_dev) {
2362 			rbio->scrubp = i;
2363 			break;
2364 		}
2365 	}
2366 	ASSERT(i < rbio->real_stripes);
2367 
2368 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2369 	return rbio;
2370 }
2371 
2372 /*
2373  * We just scrub the parity that we have correct data on the same horizontal,
2374  * so we needn't allocate all pages for all the stripes.
2375  */
2376 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2377 {
2378 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2379 	int total_sector_nr;
2380 
2381 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2382 	     total_sector_nr++) {
2383 		struct page *page;
2384 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2385 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2386 
2387 		if (!test_bit(sectornr, &rbio->dbitmap))
2388 			continue;
2389 		if (rbio->stripe_pages[index])
2390 			continue;
2391 		page = alloc_page(GFP_NOFS);
2392 		if (!page)
2393 			return -ENOMEM;
2394 		rbio->stripe_pages[index] = page;
2395 	}
2396 	index_stripe_sectors(rbio);
2397 	return 0;
2398 }
2399 
2400 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2401 {
2402 	struct btrfs_io_context *bioc = rbio->bioc;
2403 	const u32 sectorsize = bioc->fs_info->sectorsize;
2404 	void **pointers = rbio->finish_pointers;
2405 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2406 	int nr_data = rbio->nr_data;
2407 	int stripe;
2408 	int sectornr;
2409 	bool has_qstripe;
2410 	struct sector_ptr p_sector = { 0 };
2411 	struct sector_ptr q_sector = { 0 };
2412 	struct bio_list bio_list;
2413 	int is_replace = 0;
2414 	int ret;
2415 
2416 	bio_list_init(&bio_list);
2417 
2418 	if (rbio->real_stripes - rbio->nr_data == 1)
2419 		has_qstripe = false;
2420 	else if (rbio->real_stripes - rbio->nr_data == 2)
2421 		has_qstripe = true;
2422 	else
2423 		BUG();
2424 
2425 	/*
2426 	 * Replace is running and our P/Q stripe is being replaced, then we
2427 	 * need to duplicate the final write to replace target.
2428 	 */
2429 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2430 		is_replace = 1;
2431 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2432 	}
2433 
2434 	/*
2435 	 * Because the higher layers(scrubber) are unlikely to
2436 	 * use this area of the disk again soon, so don't cache
2437 	 * it.
2438 	 */
2439 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2440 
2441 	p_sector.page = alloc_page(GFP_NOFS);
2442 	if (!p_sector.page)
2443 		return -ENOMEM;
2444 	p_sector.pgoff = 0;
2445 	p_sector.uptodate = 1;
2446 
2447 	if (has_qstripe) {
2448 		/* RAID6, allocate and map temp space for the Q stripe */
2449 		q_sector.page = alloc_page(GFP_NOFS);
2450 		if (!q_sector.page) {
2451 			__free_page(p_sector.page);
2452 			p_sector.page = NULL;
2453 			return -ENOMEM;
2454 		}
2455 		q_sector.pgoff = 0;
2456 		q_sector.uptodate = 1;
2457 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2458 	}
2459 
2460 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2461 
2462 	/* Map the parity stripe just once */
2463 	pointers[nr_data] = kmap_local_page(p_sector.page);
2464 
2465 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2466 		struct sector_ptr *sector;
2467 		void *parity;
2468 
2469 		/* first collect one page from each data stripe */
2470 		for (stripe = 0; stripe < nr_data; stripe++) {
2471 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2472 			pointers[stripe] = kmap_local_page(sector->page) +
2473 					   sector->pgoff;
2474 		}
2475 
2476 		if (has_qstripe) {
2477 			/* RAID6, call the library function to fill in our P/Q */
2478 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2479 						pointers);
2480 		} else {
2481 			/* raid5 */
2482 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2483 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2484 		}
2485 
2486 		/* Check scrubbing parity and repair it */
2487 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2488 		parity = kmap_local_page(sector->page) + sector->pgoff;
2489 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2490 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2491 		else
2492 			/* Parity is right, needn't writeback */
2493 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2494 		kunmap_local(parity);
2495 
2496 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2497 			kunmap_local(pointers[stripe]);
2498 	}
2499 
2500 	kunmap_local(pointers[nr_data]);
2501 	__free_page(p_sector.page);
2502 	p_sector.page = NULL;
2503 	if (q_sector.page) {
2504 		kunmap_local(pointers[rbio->real_stripes - 1]);
2505 		__free_page(q_sector.page);
2506 		q_sector.page = NULL;
2507 	}
2508 
2509 	/*
2510 	 * time to start writing.  Make bios for everything from the
2511 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2512 	 * everything else.
2513 	 */
2514 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2515 		struct sector_ptr *sector;
2516 
2517 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2518 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2519 					 sectornr, REQ_OP_WRITE);
2520 		if (ret)
2521 			goto cleanup;
2522 	}
2523 
2524 	if (!is_replace)
2525 		goto submit_write;
2526 
2527 	/*
2528 	 * Replace is running and our parity stripe needs to be duplicated to
2529 	 * the target device.  Check we have a valid source stripe number.
2530 	 */
2531 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2532 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2533 		struct sector_ptr *sector;
2534 
2535 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2536 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2537 					 rbio->real_stripes,
2538 					 sectornr, REQ_OP_WRITE);
2539 		if (ret)
2540 			goto cleanup;
2541 	}
2542 
2543 submit_write:
2544 	submit_write_bios(rbio, &bio_list);
2545 	return 0;
2546 
2547 cleanup:
2548 	bio_list_put(&bio_list);
2549 	return ret;
2550 }
2551 
2552 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2553 {
2554 	if (stripe >= 0 && stripe < rbio->nr_data)
2555 		return 1;
2556 	return 0;
2557 }
2558 
2559 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2560 {
2561 	void **pointers = NULL;
2562 	void **unmap_array = NULL;
2563 	int sector_nr;
2564 	int ret = 0;
2565 
2566 	/*
2567 	 * @pointers array stores the pointer for each sector.
2568 	 *
2569 	 * @unmap_array stores copy of pointers that does not get reordered
2570 	 * during reconstruction so that kunmap_local works.
2571 	 */
2572 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2573 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2574 	if (!pointers || !unmap_array) {
2575 		ret = -ENOMEM;
2576 		goto out;
2577 	}
2578 
2579 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2580 		int dfail = 0, failp = -1;
2581 		int faila;
2582 		int failb;
2583 		int found_errors;
2584 
2585 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2586 							 &faila, &failb);
2587 		if (found_errors > rbio->bioc->max_errors) {
2588 			ret = -EIO;
2589 			goto out;
2590 		}
2591 		if (found_errors == 0)
2592 			continue;
2593 
2594 		/* We should have at least one error here. */
2595 		ASSERT(faila >= 0 || failb >= 0);
2596 
2597 		if (is_data_stripe(rbio, faila))
2598 			dfail++;
2599 		else if (is_parity_stripe(faila))
2600 			failp = faila;
2601 
2602 		if (is_data_stripe(rbio, failb))
2603 			dfail++;
2604 		else if (is_parity_stripe(failb))
2605 			failp = failb;
2606 		/*
2607 		 * Because we can not use a scrubbing parity to repair the
2608 		 * data, so the capability of the repair is declined.  (In the
2609 		 * case of RAID5, we can not repair anything.)
2610 		 */
2611 		if (dfail > rbio->bioc->max_errors - 1) {
2612 			ret = -EIO;
2613 			goto out;
2614 		}
2615 		/*
2616 		 * If all data is good, only parity is correctly, just repair
2617 		 * the parity, no need to recover data stripes.
2618 		 */
2619 		if (dfail == 0)
2620 			continue;
2621 
2622 		/*
2623 		 * Here means we got one corrupted data stripe and one
2624 		 * corrupted parity on RAID6, if the corrupted parity is
2625 		 * scrubbing parity, luckily, use the other one to repair the
2626 		 * data, or we can not repair the data stripe.
2627 		 */
2628 		if (failp != rbio->scrubp) {
2629 			ret = -EIO;
2630 			goto out;
2631 		}
2632 
2633 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2634 		if (ret < 0)
2635 			goto out;
2636 	}
2637 out:
2638 	kfree(pointers);
2639 	kfree(unmap_array);
2640 	return ret;
2641 }
2642 
2643 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2644 {
2645 	struct bio_list bio_list = BIO_EMPTY_LIST;
2646 	int total_sector_nr;
2647 	int ret = 0;
2648 
2649 	/* Build a list of bios to read all the missing parts. */
2650 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2651 	     total_sector_nr++) {
2652 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2653 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2654 		struct sector_ptr *sector;
2655 
2656 		/* No data in the vertical stripe, no need to read. */
2657 		if (!test_bit(sectornr, &rbio->dbitmap))
2658 			continue;
2659 
2660 		/*
2661 		 * We want to find all the sectors missing from the rbio and
2662 		 * read them from the disk. If sector_in_rbio() finds a sector
2663 		 * in the bio list we don't need to read it off the stripe.
2664 		 */
2665 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2666 		if (sector)
2667 			continue;
2668 
2669 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2670 		/*
2671 		 * The bio cache may have handed us an uptodate sector.  If so,
2672 		 * use it.
2673 		 */
2674 		if (sector->uptodate)
2675 			continue;
2676 
2677 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2678 					 sectornr, REQ_OP_READ);
2679 		if (ret) {
2680 			bio_list_put(&bio_list);
2681 			return ret;
2682 		}
2683 	}
2684 
2685 	submit_read_wait_bio_list(rbio, &bio_list);
2686 	return 0;
2687 }
2688 
2689 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2690 {
2691 	int sector_nr;
2692 	int ret;
2693 
2694 	ret = alloc_rbio_essential_pages(rbio);
2695 	if (ret)
2696 		goto out;
2697 
2698 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2699 
2700 	ret = scrub_assemble_read_bios(rbio);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	/* We may have some failures, recover the failed sectors first. */
2705 	ret = recover_scrub_rbio(rbio);
2706 	if (ret < 0)
2707 		goto out;
2708 
2709 	/*
2710 	 * We have every sector properly prepared. Can finish the scrub
2711 	 * and writeback the good content.
2712 	 */
2713 	ret = finish_parity_scrub(rbio);
2714 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2715 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2716 		int found_errors;
2717 
2718 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2719 		if (found_errors > rbio->bioc->max_errors) {
2720 			ret = -EIO;
2721 			break;
2722 		}
2723 	}
2724 out:
2725 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2726 }
2727 
2728 static void scrub_rbio_work_locked(struct work_struct *work)
2729 {
2730 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2731 }
2732 
2733 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2734 {
2735 	if (!lock_stripe_add(rbio))
2736 		start_async_work(rbio, scrub_rbio_work_locked);
2737 }
2738 
2739 /*
2740  * This is for scrub call sites where we already have correct data contents.
2741  * This allows us to avoid reading data stripes again.
2742  *
2743  * Unfortunately here we have to do page copy, other than reusing the pages.
2744  * This is due to the fact rbio has its own page management for its cache.
2745  */
2746 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2747 				    struct page **data_pages, u64 data_logical)
2748 {
2749 	const u64 offset_in_full_stripe = data_logical -
2750 					  rbio->bioc->full_stripe_logical;
2751 	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2752 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2753 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2754 	int ret;
2755 
2756 	/*
2757 	 * If we hit ENOMEM temporarily, but later at
2758 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2759 	 * the extra read, not a big deal.
2760 	 *
2761 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2762 	 * the bio would got proper error number set.
2763 	 */
2764 	ret = alloc_rbio_data_pages(rbio);
2765 	if (ret < 0)
2766 		return;
2767 
2768 	/* data_logical must be at stripe boundary and inside the full stripe. */
2769 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2770 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2771 
2772 	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2773 		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2774 		struct page *src = data_pages[page_nr];
2775 
2776 		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2777 		for (int sector_nr = sectors_per_page * page_index;
2778 		     sector_nr < sectors_per_page * (page_index + 1);
2779 		     sector_nr++)
2780 			rbio->stripe_sectors[sector_nr].uptodate = true;
2781 	}
2782 }
2783