1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "volumes.h" 19 #include "raid56.h" 20 #include "async-thread.h" 21 22 /* set when additional merges to this rbio are not allowed */ 23 #define RBIO_RMW_LOCKED_BIT 1 24 25 /* 26 * set when this rbio is sitting in the hash, but it is just a cache 27 * of past RMW 28 */ 29 #define RBIO_CACHE_BIT 2 30 31 /* 32 * set when it is safe to trust the stripe_pages for caching 33 */ 34 #define RBIO_CACHE_READY_BIT 3 35 36 #define RBIO_CACHE_SIZE 1024 37 38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 39 40 /* Used by the raid56 code to lock stripes for read/modify/write */ 41 struct btrfs_stripe_hash { 42 struct list_head hash_list; 43 spinlock_t lock; 44 }; 45 46 /* Used by the raid56 code to lock stripes for read/modify/write */ 47 struct btrfs_stripe_hash_table { 48 struct list_head stripe_cache; 49 spinlock_t cache_lock; 50 int cache_size; 51 struct btrfs_stripe_hash table[]; 52 }; 53 54 enum btrfs_rbio_ops { 55 BTRFS_RBIO_WRITE, 56 BTRFS_RBIO_READ_REBUILD, 57 BTRFS_RBIO_PARITY_SCRUB, 58 BTRFS_RBIO_REBUILD_MISSING, 59 }; 60 61 struct btrfs_raid_bio { 62 struct btrfs_fs_info *fs_info; 63 struct btrfs_bio *bbio; 64 65 /* while we're doing rmw on a stripe 66 * we put it into a hash table so we can 67 * lock the stripe and merge more rbios 68 * into it. 69 */ 70 struct list_head hash_list; 71 72 /* 73 * LRU list for the stripe cache 74 */ 75 struct list_head stripe_cache; 76 77 /* 78 * for scheduling work in the helper threads 79 */ 80 struct btrfs_work work; 81 82 /* 83 * bio list and bio_list_lock are used 84 * to add more bios into the stripe 85 * in hopes of avoiding the full rmw 86 */ 87 struct bio_list bio_list; 88 spinlock_t bio_list_lock; 89 90 /* also protected by the bio_list_lock, the 91 * plug list is used by the plugging code 92 * to collect partial bios while plugged. The 93 * stripe locking code also uses it to hand off 94 * the stripe lock to the next pending IO 95 */ 96 struct list_head plug_list; 97 98 /* 99 * flags that tell us if it is safe to 100 * merge with this bio 101 */ 102 unsigned long flags; 103 104 /* size of each individual stripe on disk */ 105 int stripe_len; 106 107 /* number of data stripes (no p/q) */ 108 int nr_data; 109 110 int real_stripes; 111 112 int stripe_npages; 113 /* 114 * set if we're doing a parity rebuild 115 * for a read from higher up, which is handled 116 * differently from a parity rebuild as part of 117 * rmw 118 */ 119 enum btrfs_rbio_ops operation; 120 121 /* first bad stripe */ 122 int faila; 123 124 /* second bad stripe (for raid6 use) */ 125 int failb; 126 127 int scrubp; 128 /* 129 * number of pages needed to represent the full 130 * stripe 131 */ 132 int nr_pages; 133 134 /* 135 * size of all the bios in the bio_list. This 136 * helps us decide if the rbio maps to a full 137 * stripe or not 138 */ 139 int bio_list_bytes; 140 141 int generic_bio_cnt; 142 143 refcount_t refs; 144 145 atomic_t stripes_pending; 146 147 atomic_t error; 148 /* 149 * these are two arrays of pointers. We allocate the 150 * rbio big enough to hold them both and setup their 151 * locations when the rbio is allocated 152 */ 153 154 /* pointers to pages that we allocated for 155 * reading/writing stripes directly from the disk (including P/Q) 156 */ 157 struct page **stripe_pages; 158 159 /* 160 * pointers to the pages in the bio_list. Stored 161 * here for faster lookup 162 */ 163 struct page **bio_pages; 164 165 /* 166 * bitmap to record which horizontal stripe has data 167 */ 168 unsigned long *dbitmap; 169 170 /* allocated with real_stripes-many pointers for finish_*() calls */ 171 void **finish_pointers; 172 173 /* allocated with stripe_npages-many bits for finish_*() calls */ 174 unsigned long *finish_pbitmap; 175 }; 176 177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 179 static void rmw_work(struct btrfs_work *work); 180 static void read_rebuild_work(struct btrfs_work *work); 181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 183 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 184 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 186 187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 188 int need_check); 189 static void scrub_parity_work(struct btrfs_work *work); 190 191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) 192 { 193 btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL); 194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 195 } 196 197 /* 198 * the stripe hash table is used for locking, and to collect 199 * bios in hopes of making a full stripe 200 */ 201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 202 { 203 struct btrfs_stripe_hash_table *table; 204 struct btrfs_stripe_hash_table *x; 205 struct btrfs_stripe_hash *cur; 206 struct btrfs_stripe_hash *h; 207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 208 int i; 209 int table_size; 210 211 if (info->stripe_hash_table) 212 return 0; 213 214 /* 215 * The table is large, starting with order 4 and can go as high as 216 * order 7 in case lock debugging is turned on. 217 * 218 * Try harder to allocate and fallback to vmalloc to lower the chance 219 * of a failing mount. 220 */ 221 table_size = sizeof(*table) + sizeof(*h) * num_entries; 222 table = kvzalloc(table_size, GFP_KERNEL); 223 if (!table) 224 return -ENOMEM; 225 226 spin_lock_init(&table->cache_lock); 227 INIT_LIST_HEAD(&table->stripe_cache); 228 229 h = table->table; 230 231 for (i = 0; i < num_entries; i++) { 232 cur = h + i; 233 INIT_LIST_HEAD(&cur->hash_list); 234 spin_lock_init(&cur->lock); 235 } 236 237 x = cmpxchg(&info->stripe_hash_table, NULL, table); 238 if (x) 239 kvfree(x); 240 return 0; 241 } 242 243 /* 244 * caching an rbio means to copy anything from the 245 * bio_pages array into the stripe_pages array. We 246 * use the page uptodate bit in the stripe cache array 247 * to indicate if it has valid data 248 * 249 * once the caching is done, we set the cache ready 250 * bit. 251 */ 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 253 { 254 int i; 255 char *s; 256 char *d; 257 int ret; 258 259 ret = alloc_rbio_pages(rbio); 260 if (ret) 261 return; 262 263 for (i = 0; i < rbio->nr_pages; i++) { 264 if (!rbio->bio_pages[i]) 265 continue; 266 267 s = kmap(rbio->bio_pages[i]); 268 d = kmap(rbio->stripe_pages[i]); 269 270 copy_page(d, s); 271 272 kunmap(rbio->bio_pages[i]); 273 kunmap(rbio->stripe_pages[i]); 274 SetPageUptodate(rbio->stripe_pages[i]); 275 } 276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 277 } 278 279 /* 280 * we hash on the first logical address of the stripe 281 */ 282 static int rbio_bucket(struct btrfs_raid_bio *rbio) 283 { 284 u64 num = rbio->bbio->raid_map[0]; 285 286 /* 287 * we shift down quite a bit. We're using byte 288 * addressing, and most of the lower bits are zeros. 289 * This tends to upset hash_64, and it consistently 290 * returns just one or two different values. 291 * 292 * shifting off the lower bits fixes things. 293 */ 294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 295 } 296 297 /* 298 * stealing an rbio means taking all the uptodate pages from the stripe 299 * array in the source rbio and putting them into the destination rbio 300 */ 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 302 { 303 int i; 304 struct page *s; 305 struct page *d; 306 307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 308 return; 309 310 for (i = 0; i < dest->nr_pages; i++) { 311 s = src->stripe_pages[i]; 312 if (!s || !PageUptodate(s)) { 313 continue; 314 } 315 316 d = dest->stripe_pages[i]; 317 if (d) 318 __free_page(d); 319 320 dest->stripe_pages[i] = s; 321 src->stripe_pages[i] = NULL; 322 } 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 dest->generic_bio_cnt += victim->generic_bio_cnt; 338 bio_list_init(&victim->bio_list); 339 } 340 341 /* 342 * used to prune items that are in the cache. The caller 343 * must hold the hash table lock. 344 */ 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 346 { 347 int bucket = rbio_bucket(rbio); 348 struct btrfs_stripe_hash_table *table; 349 struct btrfs_stripe_hash *h; 350 int freeit = 0; 351 352 /* 353 * check the bit again under the hash table lock. 354 */ 355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 356 return; 357 358 table = rbio->fs_info->stripe_hash_table; 359 h = table->table + bucket; 360 361 /* hold the lock for the bucket because we may be 362 * removing it from the hash table 363 */ 364 spin_lock(&h->lock); 365 366 /* 367 * hold the lock for the bio list because we need 368 * to make sure the bio list is empty 369 */ 370 spin_lock(&rbio->bio_list_lock); 371 372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 373 list_del_init(&rbio->stripe_cache); 374 table->cache_size -= 1; 375 freeit = 1; 376 377 /* if the bio list isn't empty, this rbio is 378 * still involved in an IO. We take it out 379 * of the cache list, and drop the ref that 380 * was held for the list. 381 * 382 * If the bio_list was empty, we also remove 383 * the rbio from the hash_table, and drop 384 * the corresponding ref 385 */ 386 if (bio_list_empty(&rbio->bio_list)) { 387 if (!list_empty(&rbio->hash_list)) { 388 list_del_init(&rbio->hash_list); 389 refcount_dec(&rbio->refs); 390 BUG_ON(!list_empty(&rbio->plug_list)); 391 } 392 } 393 } 394 395 spin_unlock(&rbio->bio_list_lock); 396 spin_unlock(&h->lock); 397 398 if (freeit) 399 __free_raid_bio(rbio); 400 } 401 402 /* 403 * prune a given rbio from the cache 404 */ 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 406 { 407 struct btrfs_stripe_hash_table *table; 408 unsigned long flags; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->fs_info->stripe_hash_table; 414 415 spin_lock_irqsave(&table->cache_lock, flags); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock_irqrestore(&table->cache_lock, flags); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 unsigned long flags; 427 struct btrfs_raid_bio *rbio; 428 429 table = info->stripe_hash_table; 430 431 spin_lock_irqsave(&table->cache_lock, flags); 432 while (!list_empty(&table->stripe_cache)) { 433 rbio = list_entry(table->stripe_cache.next, 434 struct btrfs_raid_bio, 435 stripe_cache); 436 __remove_rbio_from_cache(rbio); 437 } 438 spin_unlock_irqrestore(&table->cache_lock, flags); 439 } 440 441 /* 442 * remove all cached entries and free the hash table 443 * used by unmount 444 */ 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 446 { 447 if (!info->stripe_hash_table) 448 return; 449 btrfs_clear_rbio_cache(info); 450 kvfree(info->stripe_hash_table); 451 info->stripe_hash_table = NULL; 452 } 453 454 /* 455 * insert an rbio into the stripe cache. It 456 * must have already been prepared by calling 457 * cache_rbio_pages 458 * 459 * If this rbio was already cached, it gets 460 * moved to the front of the lru. 461 * 462 * If the size of the rbio cache is too big, we 463 * prune an item. 464 */ 465 static void cache_rbio(struct btrfs_raid_bio *rbio) 466 { 467 struct btrfs_stripe_hash_table *table; 468 unsigned long flags; 469 470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 471 return; 472 473 table = rbio->fs_info->stripe_hash_table; 474 475 spin_lock_irqsave(&table->cache_lock, flags); 476 spin_lock(&rbio->bio_list_lock); 477 478 /* bump our ref if we were not in the list before */ 479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 480 refcount_inc(&rbio->refs); 481 482 if (!list_empty(&rbio->stripe_cache)){ 483 list_move(&rbio->stripe_cache, &table->stripe_cache); 484 } else { 485 list_add(&rbio->stripe_cache, &table->stripe_cache); 486 table->cache_size += 1; 487 } 488 489 spin_unlock(&rbio->bio_list_lock); 490 491 if (table->cache_size > RBIO_CACHE_SIZE) { 492 struct btrfs_raid_bio *found; 493 494 found = list_entry(table->stripe_cache.prev, 495 struct btrfs_raid_bio, 496 stripe_cache); 497 498 if (found != rbio) 499 __remove_rbio_from_cache(found); 500 } 501 502 spin_unlock_irqrestore(&table->cache_lock, flags); 503 } 504 505 /* 506 * helper function to run the xor_blocks api. It is only 507 * able to do MAX_XOR_BLOCKS at a time, so we need to 508 * loop through. 509 */ 510 static void run_xor(void **pages, int src_cnt, ssize_t len) 511 { 512 int src_off = 0; 513 int xor_src_cnt = 0; 514 void *dest = pages[src_cnt]; 515 516 while(src_cnt > 0) { 517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 518 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 519 520 src_cnt -= xor_src_cnt; 521 src_off += xor_src_cnt; 522 } 523 } 524 525 /* 526 * Returns true if the bio list inside this rbio covers an entire stripe (no 527 * rmw required). 528 */ 529 static int rbio_is_full(struct btrfs_raid_bio *rbio) 530 { 531 unsigned long flags; 532 unsigned long size = rbio->bio_list_bytes; 533 int ret = 1; 534 535 spin_lock_irqsave(&rbio->bio_list_lock, flags); 536 if (size != rbio->nr_data * rbio->stripe_len) 537 ret = 0; 538 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 539 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 540 541 return ret; 542 } 543 544 /* 545 * returns 1 if it is safe to merge two rbios together. 546 * The merging is safe if the two rbios correspond to 547 * the same stripe and if they are both going in the same 548 * direction (read vs write), and if neither one is 549 * locked for final IO 550 * 551 * The caller is responsible for locking such that 552 * rmw_locked is safe to test 553 */ 554 static int rbio_can_merge(struct btrfs_raid_bio *last, 555 struct btrfs_raid_bio *cur) 556 { 557 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 558 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 559 return 0; 560 561 /* 562 * we can't merge with cached rbios, since the 563 * idea is that when we merge the destination 564 * rbio is going to run our IO for us. We can 565 * steal from cached rbios though, other functions 566 * handle that. 567 */ 568 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 569 test_bit(RBIO_CACHE_BIT, &cur->flags)) 570 return 0; 571 572 if (last->bbio->raid_map[0] != 573 cur->bbio->raid_map[0]) 574 return 0; 575 576 /* we can't merge with different operations */ 577 if (last->operation != cur->operation) 578 return 0; 579 /* 580 * We've need read the full stripe from the drive. 581 * check and repair the parity and write the new results. 582 * 583 * We're not allowed to add any new bios to the 584 * bio list here, anyone else that wants to 585 * change this stripe needs to do their own rmw. 586 */ 587 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 588 return 0; 589 590 if (last->operation == BTRFS_RBIO_REBUILD_MISSING) 591 return 0; 592 593 if (last->operation == BTRFS_RBIO_READ_REBUILD) { 594 int fa = last->faila; 595 int fb = last->failb; 596 int cur_fa = cur->faila; 597 int cur_fb = cur->failb; 598 599 if (last->faila >= last->failb) { 600 fa = last->failb; 601 fb = last->faila; 602 } 603 604 if (cur->faila >= cur->failb) { 605 cur_fa = cur->failb; 606 cur_fb = cur->faila; 607 } 608 609 if (fa != cur_fa || fb != cur_fb) 610 return 0; 611 } 612 return 1; 613 } 614 615 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 616 int index) 617 { 618 return stripe * rbio->stripe_npages + index; 619 } 620 621 /* 622 * these are just the pages from the rbio array, not from anything 623 * the FS sent down to us 624 */ 625 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 626 int index) 627 { 628 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 629 } 630 631 /* 632 * helper to index into the pstripe 633 */ 634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 635 { 636 return rbio_stripe_page(rbio, rbio->nr_data, index); 637 } 638 639 /* 640 * helper to index into the qstripe, returns null 641 * if there is no qstripe 642 */ 643 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 644 { 645 if (rbio->nr_data + 1 == rbio->real_stripes) 646 return NULL; 647 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 648 } 649 650 /* 651 * The first stripe in the table for a logical address 652 * has the lock. rbios are added in one of three ways: 653 * 654 * 1) Nobody has the stripe locked yet. The rbio is given 655 * the lock and 0 is returned. The caller must start the IO 656 * themselves. 657 * 658 * 2) Someone has the stripe locked, but we're able to merge 659 * with the lock owner. The rbio is freed and the IO will 660 * start automatically along with the existing rbio. 1 is returned. 661 * 662 * 3) Someone has the stripe locked, but we're not able to merge. 663 * The rbio is added to the lock owner's plug list, or merged into 664 * an rbio already on the plug list. When the lock owner unlocks, 665 * the next rbio on the list is run and the IO is started automatically. 666 * 1 is returned 667 * 668 * If we return 0, the caller still owns the rbio and must continue with 669 * IO submission. If we return 1, the caller must assume the rbio has 670 * already been freed. 671 */ 672 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 673 { 674 int bucket = rbio_bucket(rbio); 675 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 676 struct btrfs_raid_bio *cur; 677 struct btrfs_raid_bio *pending; 678 unsigned long flags; 679 struct btrfs_raid_bio *freeit = NULL; 680 struct btrfs_raid_bio *cache_drop = NULL; 681 int ret = 0; 682 683 spin_lock_irqsave(&h->lock, flags); 684 list_for_each_entry(cur, &h->hash_list, hash_list) { 685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 686 spin_lock(&cur->bio_list_lock); 687 688 /* can we steal this cached rbio's pages? */ 689 if (bio_list_empty(&cur->bio_list) && 690 list_empty(&cur->plug_list) && 691 test_bit(RBIO_CACHE_BIT, &cur->flags) && 692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 693 list_del_init(&cur->hash_list); 694 refcount_dec(&cur->refs); 695 696 steal_rbio(cur, rbio); 697 cache_drop = cur; 698 spin_unlock(&cur->bio_list_lock); 699 700 goto lockit; 701 } 702 703 /* can we merge into the lock owner? */ 704 if (rbio_can_merge(cur, rbio)) { 705 merge_rbio(cur, rbio); 706 spin_unlock(&cur->bio_list_lock); 707 freeit = rbio; 708 ret = 1; 709 goto out; 710 } 711 712 713 /* 714 * we couldn't merge with the running 715 * rbio, see if we can merge with the 716 * pending ones. We don't have to 717 * check for rmw_locked because there 718 * is no way they are inside finish_rmw 719 * right now 720 */ 721 list_for_each_entry(pending, &cur->plug_list, 722 plug_list) { 723 if (rbio_can_merge(pending, rbio)) { 724 merge_rbio(pending, rbio); 725 spin_unlock(&cur->bio_list_lock); 726 freeit = rbio; 727 ret = 1; 728 goto out; 729 } 730 } 731 732 /* no merging, put us on the tail of the plug list, 733 * our rbio will be started with the currently 734 * running rbio unlocks 735 */ 736 list_add_tail(&rbio->plug_list, &cur->plug_list); 737 spin_unlock(&cur->bio_list_lock); 738 ret = 1; 739 goto out; 740 } 741 } 742 lockit: 743 refcount_inc(&rbio->refs); 744 list_add(&rbio->hash_list, &h->hash_list); 745 out: 746 spin_unlock_irqrestore(&h->lock, flags); 747 if (cache_drop) 748 remove_rbio_from_cache(cache_drop); 749 if (freeit) 750 __free_raid_bio(freeit); 751 return ret; 752 } 753 754 /* 755 * called as rmw or parity rebuild is completed. If the plug list has more 756 * rbios waiting for this stripe, the next one on the list will be started 757 */ 758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 759 { 760 int bucket; 761 struct btrfs_stripe_hash *h; 762 unsigned long flags; 763 int keep_cache = 0; 764 765 bucket = rbio_bucket(rbio); 766 h = rbio->fs_info->stripe_hash_table->table + bucket; 767 768 if (list_empty(&rbio->plug_list)) 769 cache_rbio(rbio); 770 771 spin_lock_irqsave(&h->lock, flags); 772 spin_lock(&rbio->bio_list_lock); 773 774 if (!list_empty(&rbio->hash_list)) { 775 /* 776 * if we're still cached and there is no other IO 777 * to perform, just leave this rbio here for others 778 * to steal from later 779 */ 780 if (list_empty(&rbio->plug_list) && 781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 782 keep_cache = 1; 783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 784 BUG_ON(!bio_list_empty(&rbio->bio_list)); 785 goto done; 786 } 787 788 list_del_init(&rbio->hash_list); 789 refcount_dec(&rbio->refs); 790 791 /* 792 * we use the plug list to hold all the rbios 793 * waiting for the chance to lock this stripe. 794 * hand the lock over to one of them. 795 */ 796 if (!list_empty(&rbio->plug_list)) { 797 struct btrfs_raid_bio *next; 798 struct list_head *head = rbio->plug_list.next; 799 800 next = list_entry(head, struct btrfs_raid_bio, 801 plug_list); 802 803 list_del_init(&rbio->plug_list); 804 805 list_add(&next->hash_list, &h->hash_list); 806 refcount_inc(&next->refs); 807 spin_unlock(&rbio->bio_list_lock); 808 spin_unlock_irqrestore(&h->lock, flags); 809 810 if (next->operation == BTRFS_RBIO_READ_REBUILD) 811 start_async_work(next, read_rebuild_work); 812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 813 steal_rbio(rbio, next); 814 start_async_work(next, read_rebuild_work); 815 } else if (next->operation == BTRFS_RBIO_WRITE) { 816 steal_rbio(rbio, next); 817 start_async_work(next, rmw_work); 818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 819 steal_rbio(rbio, next); 820 start_async_work(next, scrub_parity_work); 821 } 822 823 goto done_nolock; 824 } 825 } 826 done: 827 spin_unlock(&rbio->bio_list_lock); 828 spin_unlock_irqrestore(&h->lock, flags); 829 830 done_nolock: 831 if (!keep_cache) 832 remove_rbio_from_cache(rbio); 833 } 834 835 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 836 { 837 int i; 838 839 if (!refcount_dec_and_test(&rbio->refs)) 840 return; 841 842 WARN_ON(!list_empty(&rbio->stripe_cache)); 843 WARN_ON(!list_empty(&rbio->hash_list)); 844 WARN_ON(!bio_list_empty(&rbio->bio_list)); 845 846 for (i = 0; i < rbio->nr_pages; i++) { 847 if (rbio->stripe_pages[i]) { 848 __free_page(rbio->stripe_pages[i]); 849 rbio->stripe_pages[i] = NULL; 850 } 851 } 852 853 btrfs_put_bbio(rbio->bbio); 854 kfree(rbio); 855 } 856 857 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 858 { 859 struct bio *next; 860 861 while (cur) { 862 next = cur->bi_next; 863 cur->bi_next = NULL; 864 cur->bi_status = err; 865 bio_endio(cur); 866 cur = next; 867 } 868 } 869 870 /* 871 * this frees the rbio and runs through all the bios in the 872 * bio_list and calls end_io on them 873 */ 874 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 875 { 876 struct bio *cur = bio_list_get(&rbio->bio_list); 877 struct bio *extra; 878 879 if (rbio->generic_bio_cnt) 880 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 881 882 /* 883 * At this moment, rbio->bio_list is empty, however since rbio does not 884 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 885 * hash list, rbio may be merged with others so that rbio->bio_list 886 * becomes non-empty. 887 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 888 * more and we can call bio_endio() on all queued bios. 889 */ 890 unlock_stripe(rbio); 891 extra = bio_list_get(&rbio->bio_list); 892 __free_raid_bio(rbio); 893 894 rbio_endio_bio_list(cur, err); 895 if (extra) 896 rbio_endio_bio_list(extra, err); 897 } 898 899 /* 900 * end io function used by finish_rmw. When we finally 901 * get here, we've written a full stripe 902 */ 903 static void raid_write_end_io(struct bio *bio) 904 { 905 struct btrfs_raid_bio *rbio = bio->bi_private; 906 blk_status_t err = bio->bi_status; 907 int max_errors; 908 909 if (err) 910 fail_bio_stripe(rbio, bio); 911 912 bio_put(bio); 913 914 if (!atomic_dec_and_test(&rbio->stripes_pending)) 915 return; 916 917 err = BLK_STS_OK; 918 919 /* OK, we have read all the stripes we need to. */ 920 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 921 0 : rbio->bbio->max_errors; 922 if (atomic_read(&rbio->error) > max_errors) 923 err = BLK_STS_IOERR; 924 925 rbio_orig_end_io(rbio, err); 926 } 927 928 /* 929 * the read/modify/write code wants to use the original bio for 930 * any pages it included, and then use the rbio for everything 931 * else. This function decides if a given index (stripe number) 932 * and page number in that stripe fall inside the original bio 933 * or the rbio. 934 * 935 * if you set bio_list_only, you'll get a NULL back for any ranges 936 * that are outside the bio_list 937 * 938 * This doesn't take any refs on anything, you get a bare page pointer 939 * and the caller must bump refs as required. 940 * 941 * You must call index_rbio_pages once before you can trust 942 * the answers from this function. 943 */ 944 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 945 int index, int pagenr, int bio_list_only) 946 { 947 int chunk_page; 948 struct page *p = NULL; 949 950 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 951 952 spin_lock_irq(&rbio->bio_list_lock); 953 p = rbio->bio_pages[chunk_page]; 954 spin_unlock_irq(&rbio->bio_list_lock); 955 956 if (p || bio_list_only) 957 return p; 958 959 return rbio->stripe_pages[chunk_page]; 960 } 961 962 /* 963 * number of pages we need for the entire stripe across all the 964 * drives 965 */ 966 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 967 { 968 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 969 } 970 971 /* 972 * allocation and initial setup for the btrfs_raid_bio. Not 973 * this does not allocate any pages for rbio->pages. 974 */ 975 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 976 struct btrfs_bio *bbio, 977 u64 stripe_len) 978 { 979 struct btrfs_raid_bio *rbio; 980 int nr_data = 0; 981 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 982 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 983 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 984 void *p; 985 986 rbio = kzalloc(sizeof(*rbio) + 987 sizeof(*rbio->stripe_pages) * num_pages + 988 sizeof(*rbio->bio_pages) * num_pages + 989 sizeof(*rbio->finish_pointers) * real_stripes + 990 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + 991 sizeof(*rbio->finish_pbitmap) * 992 BITS_TO_LONGS(stripe_npages), 993 GFP_NOFS); 994 if (!rbio) 995 return ERR_PTR(-ENOMEM); 996 997 bio_list_init(&rbio->bio_list); 998 INIT_LIST_HEAD(&rbio->plug_list); 999 spin_lock_init(&rbio->bio_list_lock); 1000 INIT_LIST_HEAD(&rbio->stripe_cache); 1001 INIT_LIST_HEAD(&rbio->hash_list); 1002 rbio->bbio = bbio; 1003 rbio->fs_info = fs_info; 1004 rbio->stripe_len = stripe_len; 1005 rbio->nr_pages = num_pages; 1006 rbio->real_stripes = real_stripes; 1007 rbio->stripe_npages = stripe_npages; 1008 rbio->faila = -1; 1009 rbio->failb = -1; 1010 refcount_set(&rbio->refs, 1); 1011 atomic_set(&rbio->error, 0); 1012 atomic_set(&rbio->stripes_pending, 0); 1013 1014 /* 1015 * the stripe_pages, bio_pages, etc arrays point to the extra 1016 * memory we allocated past the end of the rbio 1017 */ 1018 p = rbio + 1; 1019 #define CONSUME_ALLOC(ptr, count) do { \ 1020 ptr = p; \ 1021 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ 1022 } while (0) 1023 CONSUME_ALLOC(rbio->stripe_pages, num_pages); 1024 CONSUME_ALLOC(rbio->bio_pages, num_pages); 1025 CONSUME_ALLOC(rbio->finish_pointers, real_stripes); 1026 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); 1027 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); 1028 #undef CONSUME_ALLOC 1029 1030 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1031 nr_data = real_stripes - 1; 1032 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1033 nr_data = real_stripes - 2; 1034 else 1035 BUG(); 1036 1037 rbio->nr_data = nr_data; 1038 return rbio; 1039 } 1040 1041 /* allocate pages for all the stripes in the bio, including parity */ 1042 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1043 { 1044 int i; 1045 struct page *page; 1046 1047 for (i = 0; i < rbio->nr_pages; i++) { 1048 if (rbio->stripe_pages[i]) 1049 continue; 1050 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1051 if (!page) 1052 return -ENOMEM; 1053 rbio->stripe_pages[i] = page; 1054 } 1055 return 0; 1056 } 1057 1058 /* only allocate pages for p/q stripes */ 1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1060 { 1061 int i; 1062 struct page *page; 1063 1064 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1065 1066 for (; i < rbio->nr_pages; i++) { 1067 if (rbio->stripe_pages[i]) 1068 continue; 1069 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1070 if (!page) 1071 return -ENOMEM; 1072 rbio->stripe_pages[i] = page; 1073 } 1074 return 0; 1075 } 1076 1077 /* 1078 * add a single page from a specific stripe into our list of bios for IO 1079 * this will try to merge into existing bios if possible, and returns 1080 * zero if all went well. 1081 */ 1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1083 struct bio_list *bio_list, 1084 struct page *page, 1085 int stripe_nr, 1086 unsigned long page_index, 1087 unsigned long bio_max_len) 1088 { 1089 struct bio *last = bio_list->tail; 1090 u64 last_end = 0; 1091 int ret; 1092 struct bio *bio; 1093 struct btrfs_bio_stripe *stripe; 1094 u64 disk_start; 1095 1096 stripe = &rbio->bbio->stripes[stripe_nr]; 1097 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1098 1099 /* if the device is missing, just fail this stripe */ 1100 if (!stripe->dev->bdev) 1101 return fail_rbio_index(rbio, stripe_nr); 1102 1103 /* see if we can add this page onto our existing bio */ 1104 if (last) { 1105 last_end = (u64)last->bi_iter.bi_sector << 9; 1106 last_end += last->bi_iter.bi_size; 1107 1108 /* 1109 * we can't merge these if they are from different 1110 * devices or if they are not contiguous 1111 */ 1112 if (last_end == disk_start && stripe->dev->bdev && 1113 !last->bi_status && 1114 last->bi_disk == stripe->dev->bdev->bd_disk && 1115 last->bi_partno == stripe->dev->bdev->bd_partno) { 1116 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1117 if (ret == PAGE_SIZE) 1118 return 0; 1119 } 1120 } 1121 1122 /* put a new bio on the list */ 1123 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1124 bio->bi_iter.bi_size = 0; 1125 bio_set_dev(bio, stripe->dev->bdev); 1126 bio->bi_iter.bi_sector = disk_start >> 9; 1127 1128 bio_add_page(bio, page, PAGE_SIZE, 0); 1129 bio_list_add(bio_list, bio); 1130 return 0; 1131 } 1132 1133 /* 1134 * while we're doing the read/modify/write cycle, we could 1135 * have errors in reading pages off the disk. This checks 1136 * for errors and if we're not able to read the page it'll 1137 * trigger parity reconstruction. The rmw will be finished 1138 * after we've reconstructed the failed stripes 1139 */ 1140 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1141 { 1142 if (rbio->faila >= 0 || rbio->failb >= 0) { 1143 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1144 __raid56_parity_recover(rbio); 1145 } else { 1146 finish_rmw(rbio); 1147 } 1148 } 1149 1150 /* 1151 * helper function to walk our bio list and populate the bio_pages array with 1152 * the result. This seems expensive, but it is faster than constantly 1153 * searching through the bio list as we setup the IO in finish_rmw or stripe 1154 * reconstruction. 1155 * 1156 * This must be called before you trust the answers from page_in_rbio 1157 */ 1158 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1159 { 1160 struct bio *bio; 1161 u64 start; 1162 unsigned long stripe_offset; 1163 unsigned long page_index; 1164 1165 spin_lock_irq(&rbio->bio_list_lock); 1166 bio_list_for_each(bio, &rbio->bio_list) { 1167 struct bio_vec bvec; 1168 struct bvec_iter iter; 1169 int i = 0; 1170 1171 start = (u64)bio->bi_iter.bi_sector << 9; 1172 stripe_offset = start - rbio->bbio->raid_map[0]; 1173 page_index = stripe_offset >> PAGE_SHIFT; 1174 1175 if (bio_flagged(bio, BIO_CLONED)) 1176 bio->bi_iter = btrfs_io_bio(bio)->iter; 1177 1178 bio_for_each_segment(bvec, bio, iter) { 1179 rbio->bio_pages[page_index + i] = bvec.bv_page; 1180 i++; 1181 } 1182 } 1183 spin_unlock_irq(&rbio->bio_list_lock); 1184 } 1185 1186 /* 1187 * this is called from one of two situations. We either 1188 * have a full stripe from the higher layers, or we've read all 1189 * the missing bits off disk. 1190 * 1191 * This will calculate the parity and then send down any 1192 * changed blocks. 1193 */ 1194 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1195 { 1196 struct btrfs_bio *bbio = rbio->bbio; 1197 void **pointers = rbio->finish_pointers; 1198 int nr_data = rbio->nr_data; 1199 int stripe; 1200 int pagenr; 1201 int p_stripe = -1; 1202 int q_stripe = -1; 1203 struct bio_list bio_list; 1204 struct bio *bio; 1205 int ret; 1206 1207 bio_list_init(&bio_list); 1208 1209 if (rbio->real_stripes - rbio->nr_data == 1) { 1210 p_stripe = rbio->real_stripes - 1; 1211 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1212 p_stripe = rbio->real_stripes - 2; 1213 q_stripe = rbio->real_stripes - 1; 1214 } else { 1215 BUG(); 1216 } 1217 1218 /* at this point we either have a full stripe, 1219 * or we've read the full stripe from the drive. 1220 * recalculate the parity and write the new results. 1221 * 1222 * We're not allowed to add any new bios to the 1223 * bio list here, anyone else that wants to 1224 * change this stripe needs to do their own rmw. 1225 */ 1226 spin_lock_irq(&rbio->bio_list_lock); 1227 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1228 spin_unlock_irq(&rbio->bio_list_lock); 1229 1230 atomic_set(&rbio->error, 0); 1231 1232 /* 1233 * now that we've set rmw_locked, run through the 1234 * bio list one last time and map the page pointers 1235 * 1236 * We don't cache full rbios because we're assuming 1237 * the higher layers are unlikely to use this area of 1238 * the disk again soon. If they do use it again, 1239 * hopefully they will send another full bio. 1240 */ 1241 index_rbio_pages(rbio); 1242 if (!rbio_is_full(rbio)) 1243 cache_rbio_pages(rbio); 1244 else 1245 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1246 1247 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1248 struct page *p; 1249 /* first collect one page from each data stripe */ 1250 for (stripe = 0; stripe < nr_data; stripe++) { 1251 p = page_in_rbio(rbio, stripe, pagenr, 0); 1252 pointers[stripe] = kmap(p); 1253 } 1254 1255 /* then add the parity stripe */ 1256 p = rbio_pstripe_page(rbio, pagenr); 1257 SetPageUptodate(p); 1258 pointers[stripe++] = kmap(p); 1259 1260 if (q_stripe != -1) { 1261 1262 /* 1263 * raid6, add the qstripe and call the 1264 * library function to fill in our p/q 1265 */ 1266 p = rbio_qstripe_page(rbio, pagenr); 1267 SetPageUptodate(p); 1268 pointers[stripe++] = kmap(p); 1269 1270 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1271 pointers); 1272 } else { 1273 /* raid5 */ 1274 copy_page(pointers[nr_data], pointers[0]); 1275 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1276 } 1277 1278 1279 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1280 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1281 } 1282 1283 /* 1284 * time to start writing. Make bios for everything from the 1285 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1286 * everything else. 1287 */ 1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1289 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1290 struct page *page; 1291 if (stripe < rbio->nr_data) { 1292 page = page_in_rbio(rbio, stripe, pagenr, 1); 1293 if (!page) 1294 continue; 1295 } else { 1296 page = rbio_stripe_page(rbio, stripe, pagenr); 1297 } 1298 1299 ret = rbio_add_io_page(rbio, &bio_list, 1300 page, stripe, pagenr, rbio->stripe_len); 1301 if (ret) 1302 goto cleanup; 1303 } 1304 } 1305 1306 if (likely(!bbio->num_tgtdevs)) 1307 goto write_data; 1308 1309 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1310 if (!bbio->tgtdev_map[stripe]) 1311 continue; 1312 1313 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1314 struct page *page; 1315 if (stripe < rbio->nr_data) { 1316 page = page_in_rbio(rbio, stripe, pagenr, 1); 1317 if (!page) 1318 continue; 1319 } else { 1320 page = rbio_stripe_page(rbio, stripe, pagenr); 1321 } 1322 1323 ret = rbio_add_io_page(rbio, &bio_list, page, 1324 rbio->bbio->tgtdev_map[stripe], 1325 pagenr, rbio->stripe_len); 1326 if (ret) 1327 goto cleanup; 1328 } 1329 } 1330 1331 write_data: 1332 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1333 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1334 1335 while (1) { 1336 bio = bio_list_pop(&bio_list); 1337 if (!bio) 1338 break; 1339 1340 bio->bi_private = rbio; 1341 bio->bi_end_io = raid_write_end_io; 1342 bio->bi_opf = REQ_OP_WRITE; 1343 1344 submit_bio(bio); 1345 } 1346 return; 1347 1348 cleanup: 1349 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1350 1351 while ((bio = bio_list_pop(&bio_list))) 1352 bio_put(bio); 1353 } 1354 1355 /* 1356 * helper to find the stripe number for a given bio. Used to figure out which 1357 * stripe has failed. This expects the bio to correspond to a physical disk, 1358 * so it looks up based on physical sector numbers. 1359 */ 1360 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1361 struct bio *bio) 1362 { 1363 u64 physical = bio->bi_iter.bi_sector; 1364 u64 stripe_start; 1365 int i; 1366 struct btrfs_bio_stripe *stripe; 1367 1368 physical <<= 9; 1369 1370 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1371 stripe = &rbio->bbio->stripes[i]; 1372 stripe_start = stripe->physical; 1373 if (physical >= stripe_start && 1374 physical < stripe_start + rbio->stripe_len && 1375 stripe->dev->bdev && 1376 bio->bi_disk == stripe->dev->bdev->bd_disk && 1377 bio->bi_partno == stripe->dev->bdev->bd_partno) { 1378 return i; 1379 } 1380 } 1381 return -1; 1382 } 1383 1384 /* 1385 * helper to find the stripe number for a given 1386 * bio (before mapping). Used to figure out which stripe has 1387 * failed. This looks up based on logical block numbers. 1388 */ 1389 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1390 struct bio *bio) 1391 { 1392 u64 logical = bio->bi_iter.bi_sector; 1393 u64 stripe_start; 1394 int i; 1395 1396 logical <<= 9; 1397 1398 for (i = 0; i < rbio->nr_data; i++) { 1399 stripe_start = rbio->bbio->raid_map[i]; 1400 if (logical >= stripe_start && 1401 logical < stripe_start + rbio->stripe_len) { 1402 return i; 1403 } 1404 } 1405 return -1; 1406 } 1407 1408 /* 1409 * returns -EIO if we had too many failures 1410 */ 1411 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1412 { 1413 unsigned long flags; 1414 int ret = 0; 1415 1416 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1417 1418 /* we already know this stripe is bad, move on */ 1419 if (rbio->faila == failed || rbio->failb == failed) 1420 goto out; 1421 1422 if (rbio->faila == -1) { 1423 /* first failure on this rbio */ 1424 rbio->faila = failed; 1425 atomic_inc(&rbio->error); 1426 } else if (rbio->failb == -1) { 1427 /* second failure on this rbio */ 1428 rbio->failb = failed; 1429 atomic_inc(&rbio->error); 1430 } else { 1431 ret = -EIO; 1432 } 1433 out: 1434 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * helper to fail a stripe based on a physical disk 1441 * bio. 1442 */ 1443 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1444 struct bio *bio) 1445 { 1446 int failed = find_bio_stripe(rbio, bio); 1447 1448 if (failed < 0) 1449 return -EIO; 1450 1451 return fail_rbio_index(rbio, failed); 1452 } 1453 1454 /* 1455 * this sets each page in the bio uptodate. It should only be used on private 1456 * rbio pages, nothing that comes in from the higher layers 1457 */ 1458 static void set_bio_pages_uptodate(struct bio *bio) 1459 { 1460 struct bio_vec *bvec; 1461 struct bvec_iter_all iter_all; 1462 1463 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1464 1465 bio_for_each_segment_all(bvec, bio, iter_all) 1466 SetPageUptodate(bvec->bv_page); 1467 } 1468 1469 /* 1470 * end io for the read phase of the rmw cycle. All the bios here are physical 1471 * stripe bios we've read from the disk so we can recalculate the parity of the 1472 * stripe. 1473 * 1474 * This will usually kick off finish_rmw once all the bios are read in, but it 1475 * may trigger parity reconstruction if we had any errors along the way 1476 */ 1477 static void raid_rmw_end_io(struct bio *bio) 1478 { 1479 struct btrfs_raid_bio *rbio = bio->bi_private; 1480 1481 if (bio->bi_status) 1482 fail_bio_stripe(rbio, bio); 1483 else 1484 set_bio_pages_uptodate(bio); 1485 1486 bio_put(bio); 1487 1488 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1489 return; 1490 1491 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1492 goto cleanup; 1493 1494 /* 1495 * this will normally call finish_rmw to start our write 1496 * but if there are any failed stripes we'll reconstruct 1497 * from parity first 1498 */ 1499 validate_rbio_for_rmw(rbio); 1500 return; 1501 1502 cleanup: 1503 1504 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1505 } 1506 1507 /* 1508 * the stripe must be locked by the caller. It will 1509 * unlock after all the writes are done 1510 */ 1511 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1512 { 1513 int bios_to_read = 0; 1514 struct bio_list bio_list; 1515 int ret; 1516 int pagenr; 1517 int stripe; 1518 struct bio *bio; 1519 1520 bio_list_init(&bio_list); 1521 1522 ret = alloc_rbio_pages(rbio); 1523 if (ret) 1524 goto cleanup; 1525 1526 index_rbio_pages(rbio); 1527 1528 atomic_set(&rbio->error, 0); 1529 /* 1530 * build a list of bios to read all the missing parts of this 1531 * stripe 1532 */ 1533 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1534 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1535 struct page *page; 1536 /* 1537 * we want to find all the pages missing from 1538 * the rbio and read them from the disk. If 1539 * page_in_rbio finds a page in the bio list 1540 * we don't need to read it off the stripe. 1541 */ 1542 page = page_in_rbio(rbio, stripe, pagenr, 1); 1543 if (page) 1544 continue; 1545 1546 page = rbio_stripe_page(rbio, stripe, pagenr); 1547 /* 1548 * the bio cache may have handed us an uptodate 1549 * page. If so, be happy and use it 1550 */ 1551 if (PageUptodate(page)) 1552 continue; 1553 1554 ret = rbio_add_io_page(rbio, &bio_list, page, 1555 stripe, pagenr, rbio->stripe_len); 1556 if (ret) 1557 goto cleanup; 1558 } 1559 } 1560 1561 bios_to_read = bio_list_size(&bio_list); 1562 if (!bios_to_read) { 1563 /* 1564 * this can happen if others have merged with 1565 * us, it means there is nothing left to read. 1566 * But if there are missing devices it may not be 1567 * safe to do the full stripe write yet. 1568 */ 1569 goto finish; 1570 } 1571 1572 /* 1573 * the bbio may be freed once we submit the last bio. Make sure 1574 * not to touch it after that 1575 */ 1576 atomic_set(&rbio->stripes_pending, bios_to_read); 1577 while (1) { 1578 bio = bio_list_pop(&bio_list); 1579 if (!bio) 1580 break; 1581 1582 bio->bi_private = rbio; 1583 bio->bi_end_io = raid_rmw_end_io; 1584 bio->bi_opf = REQ_OP_READ; 1585 1586 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1587 1588 submit_bio(bio); 1589 } 1590 /* the actual write will happen once the reads are done */ 1591 return 0; 1592 1593 cleanup: 1594 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1595 1596 while ((bio = bio_list_pop(&bio_list))) 1597 bio_put(bio); 1598 1599 return -EIO; 1600 1601 finish: 1602 validate_rbio_for_rmw(rbio); 1603 return 0; 1604 } 1605 1606 /* 1607 * if the upper layers pass in a full stripe, we thank them by only allocating 1608 * enough pages to hold the parity, and sending it all down quickly. 1609 */ 1610 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1611 { 1612 int ret; 1613 1614 ret = alloc_rbio_parity_pages(rbio); 1615 if (ret) { 1616 __free_raid_bio(rbio); 1617 return ret; 1618 } 1619 1620 ret = lock_stripe_add(rbio); 1621 if (ret == 0) 1622 finish_rmw(rbio); 1623 return 0; 1624 } 1625 1626 /* 1627 * partial stripe writes get handed over to async helpers. 1628 * We're really hoping to merge a few more writes into this 1629 * rbio before calculating new parity 1630 */ 1631 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1632 { 1633 int ret; 1634 1635 ret = lock_stripe_add(rbio); 1636 if (ret == 0) 1637 start_async_work(rbio, rmw_work); 1638 return 0; 1639 } 1640 1641 /* 1642 * sometimes while we were reading from the drive to 1643 * recalculate parity, enough new bios come into create 1644 * a full stripe. So we do a check here to see if we can 1645 * go directly to finish_rmw 1646 */ 1647 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1648 { 1649 /* head off into rmw land if we don't have a full stripe */ 1650 if (!rbio_is_full(rbio)) 1651 return partial_stripe_write(rbio); 1652 return full_stripe_write(rbio); 1653 } 1654 1655 /* 1656 * We use plugging call backs to collect full stripes. 1657 * Any time we get a partial stripe write while plugged 1658 * we collect it into a list. When the unplug comes down, 1659 * we sort the list by logical block number and merge 1660 * everything we can into the same rbios 1661 */ 1662 struct btrfs_plug_cb { 1663 struct blk_plug_cb cb; 1664 struct btrfs_fs_info *info; 1665 struct list_head rbio_list; 1666 struct btrfs_work work; 1667 }; 1668 1669 /* 1670 * rbios on the plug list are sorted for easier merging. 1671 */ 1672 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1673 { 1674 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1675 plug_list); 1676 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1677 plug_list); 1678 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1679 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1680 1681 if (a_sector < b_sector) 1682 return -1; 1683 if (a_sector > b_sector) 1684 return 1; 1685 return 0; 1686 } 1687 1688 static void run_plug(struct btrfs_plug_cb *plug) 1689 { 1690 struct btrfs_raid_bio *cur; 1691 struct btrfs_raid_bio *last = NULL; 1692 1693 /* 1694 * sort our plug list then try to merge 1695 * everything we can in hopes of creating full 1696 * stripes. 1697 */ 1698 list_sort(NULL, &plug->rbio_list, plug_cmp); 1699 while (!list_empty(&plug->rbio_list)) { 1700 cur = list_entry(plug->rbio_list.next, 1701 struct btrfs_raid_bio, plug_list); 1702 list_del_init(&cur->plug_list); 1703 1704 if (rbio_is_full(cur)) { 1705 int ret; 1706 1707 /* we have a full stripe, send it down */ 1708 ret = full_stripe_write(cur); 1709 BUG_ON(ret); 1710 continue; 1711 } 1712 if (last) { 1713 if (rbio_can_merge(last, cur)) { 1714 merge_rbio(last, cur); 1715 __free_raid_bio(cur); 1716 continue; 1717 1718 } 1719 __raid56_parity_write(last); 1720 } 1721 last = cur; 1722 } 1723 if (last) { 1724 __raid56_parity_write(last); 1725 } 1726 kfree(plug); 1727 } 1728 1729 /* 1730 * if the unplug comes from schedule, we have to push the 1731 * work off to a helper thread 1732 */ 1733 static void unplug_work(struct btrfs_work *work) 1734 { 1735 struct btrfs_plug_cb *plug; 1736 plug = container_of(work, struct btrfs_plug_cb, work); 1737 run_plug(plug); 1738 } 1739 1740 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1741 { 1742 struct btrfs_plug_cb *plug; 1743 plug = container_of(cb, struct btrfs_plug_cb, cb); 1744 1745 if (from_schedule) { 1746 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1747 unplug_work, NULL, NULL); 1748 btrfs_queue_work(plug->info->rmw_workers, 1749 &plug->work); 1750 return; 1751 } 1752 run_plug(plug); 1753 } 1754 1755 /* 1756 * our main entry point for writes from the rest of the FS. 1757 */ 1758 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1759 struct btrfs_bio *bbio, u64 stripe_len) 1760 { 1761 struct btrfs_raid_bio *rbio; 1762 struct btrfs_plug_cb *plug = NULL; 1763 struct blk_plug_cb *cb; 1764 int ret; 1765 1766 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1767 if (IS_ERR(rbio)) { 1768 btrfs_put_bbio(bbio); 1769 return PTR_ERR(rbio); 1770 } 1771 bio_list_add(&rbio->bio_list, bio); 1772 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1773 rbio->operation = BTRFS_RBIO_WRITE; 1774 1775 btrfs_bio_counter_inc_noblocked(fs_info); 1776 rbio->generic_bio_cnt = 1; 1777 1778 /* 1779 * don't plug on full rbios, just get them out the door 1780 * as quickly as we can 1781 */ 1782 if (rbio_is_full(rbio)) { 1783 ret = full_stripe_write(rbio); 1784 if (ret) 1785 btrfs_bio_counter_dec(fs_info); 1786 return ret; 1787 } 1788 1789 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1790 if (cb) { 1791 plug = container_of(cb, struct btrfs_plug_cb, cb); 1792 if (!plug->info) { 1793 plug->info = fs_info; 1794 INIT_LIST_HEAD(&plug->rbio_list); 1795 } 1796 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1797 ret = 0; 1798 } else { 1799 ret = __raid56_parity_write(rbio); 1800 if (ret) 1801 btrfs_bio_counter_dec(fs_info); 1802 } 1803 return ret; 1804 } 1805 1806 /* 1807 * all parity reconstruction happens here. We've read in everything 1808 * we can find from the drives and this does the heavy lifting of 1809 * sorting the good from the bad. 1810 */ 1811 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1812 { 1813 int pagenr, stripe; 1814 void **pointers; 1815 int faila = -1, failb = -1; 1816 struct page *page; 1817 blk_status_t err; 1818 int i; 1819 1820 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1821 if (!pointers) { 1822 err = BLK_STS_RESOURCE; 1823 goto cleanup_io; 1824 } 1825 1826 faila = rbio->faila; 1827 failb = rbio->failb; 1828 1829 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1830 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1831 spin_lock_irq(&rbio->bio_list_lock); 1832 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1833 spin_unlock_irq(&rbio->bio_list_lock); 1834 } 1835 1836 index_rbio_pages(rbio); 1837 1838 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1839 /* 1840 * Now we just use bitmap to mark the horizontal stripes in 1841 * which we have data when doing parity scrub. 1842 */ 1843 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1844 !test_bit(pagenr, rbio->dbitmap)) 1845 continue; 1846 1847 /* setup our array of pointers with pages 1848 * from each stripe 1849 */ 1850 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1851 /* 1852 * if we're rebuilding a read, we have to use 1853 * pages from the bio list 1854 */ 1855 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1856 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1857 (stripe == faila || stripe == failb)) { 1858 page = page_in_rbio(rbio, stripe, pagenr, 0); 1859 } else { 1860 page = rbio_stripe_page(rbio, stripe, pagenr); 1861 } 1862 pointers[stripe] = kmap(page); 1863 } 1864 1865 /* all raid6 handling here */ 1866 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1867 /* 1868 * single failure, rebuild from parity raid5 1869 * style 1870 */ 1871 if (failb < 0) { 1872 if (faila == rbio->nr_data) { 1873 /* 1874 * Just the P stripe has failed, without 1875 * a bad data or Q stripe. 1876 * TODO, we should redo the xor here. 1877 */ 1878 err = BLK_STS_IOERR; 1879 goto cleanup; 1880 } 1881 /* 1882 * a single failure in raid6 is rebuilt 1883 * in the pstripe code below 1884 */ 1885 goto pstripe; 1886 } 1887 1888 /* make sure our ps and qs are in order */ 1889 if (faila > failb) { 1890 int tmp = failb; 1891 failb = faila; 1892 faila = tmp; 1893 } 1894 1895 /* if the q stripe is failed, do a pstripe reconstruction 1896 * from the xors. 1897 * If both the q stripe and the P stripe are failed, we're 1898 * here due to a crc mismatch and we can't give them the 1899 * data they want 1900 */ 1901 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1902 if (rbio->bbio->raid_map[faila] == 1903 RAID5_P_STRIPE) { 1904 err = BLK_STS_IOERR; 1905 goto cleanup; 1906 } 1907 /* 1908 * otherwise we have one bad data stripe and 1909 * a good P stripe. raid5! 1910 */ 1911 goto pstripe; 1912 } 1913 1914 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1915 raid6_datap_recov(rbio->real_stripes, 1916 PAGE_SIZE, faila, pointers); 1917 } else { 1918 raid6_2data_recov(rbio->real_stripes, 1919 PAGE_SIZE, faila, failb, 1920 pointers); 1921 } 1922 } else { 1923 void *p; 1924 1925 /* rebuild from P stripe here (raid5 or raid6) */ 1926 BUG_ON(failb != -1); 1927 pstripe: 1928 /* Copy parity block into failed block to start with */ 1929 copy_page(pointers[faila], pointers[rbio->nr_data]); 1930 1931 /* rearrange the pointer array */ 1932 p = pointers[faila]; 1933 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1934 pointers[stripe] = pointers[stripe + 1]; 1935 pointers[rbio->nr_data - 1] = p; 1936 1937 /* xor in the rest */ 1938 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1939 } 1940 /* if we're doing this rebuild as part of an rmw, go through 1941 * and set all of our private rbio pages in the 1942 * failed stripes as uptodate. This way finish_rmw will 1943 * know they can be trusted. If this was a read reconstruction, 1944 * other endio functions will fiddle the uptodate bits 1945 */ 1946 if (rbio->operation == BTRFS_RBIO_WRITE) { 1947 for (i = 0; i < rbio->stripe_npages; i++) { 1948 if (faila != -1) { 1949 page = rbio_stripe_page(rbio, faila, i); 1950 SetPageUptodate(page); 1951 } 1952 if (failb != -1) { 1953 page = rbio_stripe_page(rbio, failb, i); 1954 SetPageUptodate(page); 1955 } 1956 } 1957 } 1958 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1959 /* 1960 * if we're rebuilding a read, we have to use 1961 * pages from the bio list 1962 */ 1963 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1964 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1965 (stripe == faila || stripe == failb)) { 1966 page = page_in_rbio(rbio, stripe, pagenr, 0); 1967 } else { 1968 page = rbio_stripe_page(rbio, stripe, pagenr); 1969 } 1970 kunmap(page); 1971 } 1972 } 1973 1974 err = BLK_STS_OK; 1975 cleanup: 1976 kfree(pointers); 1977 1978 cleanup_io: 1979 /* 1980 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a 1981 * valid rbio which is consistent with ondisk content, thus such a 1982 * valid rbio can be cached to avoid further disk reads. 1983 */ 1984 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1985 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1986 /* 1987 * - In case of two failures, where rbio->failb != -1: 1988 * 1989 * Do not cache this rbio since the above read reconstruction 1990 * (raid6_datap_recov() or raid6_2data_recov()) may have 1991 * changed some content of stripes which are not identical to 1992 * on-disk content any more, otherwise, a later write/recover 1993 * may steal stripe_pages from this rbio and end up with 1994 * corruptions or rebuild failures. 1995 * 1996 * - In case of single failure, where rbio->failb == -1: 1997 * 1998 * Cache this rbio iff the above read reconstruction is 1999 * executed without problems. 2000 */ 2001 if (err == BLK_STS_OK && rbio->failb < 0) 2002 cache_rbio_pages(rbio); 2003 else 2004 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2005 2006 rbio_orig_end_io(rbio, err); 2007 } else if (err == BLK_STS_OK) { 2008 rbio->faila = -1; 2009 rbio->failb = -1; 2010 2011 if (rbio->operation == BTRFS_RBIO_WRITE) 2012 finish_rmw(rbio); 2013 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 2014 finish_parity_scrub(rbio, 0); 2015 else 2016 BUG(); 2017 } else { 2018 rbio_orig_end_io(rbio, err); 2019 } 2020 } 2021 2022 /* 2023 * This is called only for stripes we've read from disk to 2024 * reconstruct the parity. 2025 */ 2026 static void raid_recover_end_io(struct bio *bio) 2027 { 2028 struct btrfs_raid_bio *rbio = bio->bi_private; 2029 2030 /* 2031 * we only read stripe pages off the disk, set them 2032 * up to date if there were no errors 2033 */ 2034 if (bio->bi_status) 2035 fail_bio_stripe(rbio, bio); 2036 else 2037 set_bio_pages_uptodate(bio); 2038 bio_put(bio); 2039 2040 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2041 return; 2042 2043 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2044 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2045 else 2046 __raid_recover_end_io(rbio); 2047 } 2048 2049 /* 2050 * reads everything we need off the disk to reconstruct 2051 * the parity. endio handlers trigger final reconstruction 2052 * when the IO is done. 2053 * 2054 * This is used both for reads from the higher layers and for 2055 * parity construction required to finish a rmw cycle. 2056 */ 2057 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2058 { 2059 int bios_to_read = 0; 2060 struct bio_list bio_list; 2061 int ret; 2062 int pagenr; 2063 int stripe; 2064 struct bio *bio; 2065 2066 bio_list_init(&bio_list); 2067 2068 ret = alloc_rbio_pages(rbio); 2069 if (ret) 2070 goto cleanup; 2071 2072 atomic_set(&rbio->error, 0); 2073 2074 /* 2075 * read everything that hasn't failed. Thanks to the 2076 * stripe cache, it is possible that some or all of these 2077 * pages are going to be uptodate. 2078 */ 2079 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2080 if (rbio->faila == stripe || rbio->failb == stripe) { 2081 atomic_inc(&rbio->error); 2082 continue; 2083 } 2084 2085 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2086 struct page *p; 2087 2088 /* 2089 * the rmw code may have already read this 2090 * page in 2091 */ 2092 p = rbio_stripe_page(rbio, stripe, pagenr); 2093 if (PageUptodate(p)) 2094 continue; 2095 2096 ret = rbio_add_io_page(rbio, &bio_list, 2097 rbio_stripe_page(rbio, stripe, pagenr), 2098 stripe, pagenr, rbio->stripe_len); 2099 if (ret < 0) 2100 goto cleanup; 2101 } 2102 } 2103 2104 bios_to_read = bio_list_size(&bio_list); 2105 if (!bios_to_read) { 2106 /* 2107 * we might have no bios to read just because the pages 2108 * were up to date, or we might have no bios to read because 2109 * the devices were gone. 2110 */ 2111 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2112 __raid_recover_end_io(rbio); 2113 goto out; 2114 } else { 2115 goto cleanup; 2116 } 2117 } 2118 2119 /* 2120 * the bbio may be freed once we submit the last bio. Make sure 2121 * not to touch it after that 2122 */ 2123 atomic_set(&rbio->stripes_pending, bios_to_read); 2124 while (1) { 2125 bio = bio_list_pop(&bio_list); 2126 if (!bio) 2127 break; 2128 2129 bio->bi_private = rbio; 2130 bio->bi_end_io = raid_recover_end_io; 2131 bio->bi_opf = REQ_OP_READ; 2132 2133 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2134 2135 submit_bio(bio); 2136 } 2137 out: 2138 return 0; 2139 2140 cleanup: 2141 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2142 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2143 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2144 2145 while ((bio = bio_list_pop(&bio_list))) 2146 bio_put(bio); 2147 2148 return -EIO; 2149 } 2150 2151 /* 2152 * the main entry point for reads from the higher layers. This 2153 * is really only called when the normal read path had a failure, 2154 * so we assume the bio they send down corresponds to a failed part 2155 * of the drive. 2156 */ 2157 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2158 struct btrfs_bio *bbio, u64 stripe_len, 2159 int mirror_num, int generic_io) 2160 { 2161 struct btrfs_raid_bio *rbio; 2162 int ret; 2163 2164 if (generic_io) { 2165 ASSERT(bbio->mirror_num == mirror_num); 2166 btrfs_io_bio(bio)->mirror_num = mirror_num; 2167 } 2168 2169 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2170 if (IS_ERR(rbio)) { 2171 if (generic_io) 2172 btrfs_put_bbio(bbio); 2173 return PTR_ERR(rbio); 2174 } 2175 2176 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2177 bio_list_add(&rbio->bio_list, bio); 2178 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2179 2180 rbio->faila = find_logical_bio_stripe(rbio, bio); 2181 if (rbio->faila == -1) { 2182 btrfs_warn(fs_info, 2183 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2184 __func__, (u64)bio->bi_iter.bi_sector << 9, 2185 (u64)bio->bi_iter.bi_size, bbio->map_type); 2186 if (generic_io) 2187 btrfs_put_bbio(bbio); 2188 kfree(rbio); 2189 return -EIO; 2190 } 2191 2192 if (generic_io) { 2193 btrfs_bio_counter_inc_noblocked(fs_info); 2194 rbio->generic_bio_cnt = 1; 2195 } else { 2196 btrfs_get_bbio(bbio); 2197 } 2198 2199 /* 2200 * Loop retry: 2201 * for 'mirror == 2', reconstruct from all other stripes. 2202 * for 'mirror_num > 2', select a stripe to fail on every retry. 2203 */ 2204 if (mirror_num > 2) { 2205 /* 2206 * 'mirror == 3' is to fail the p stripe and 2207 * reconstruct from the q stripe. 'mirror > 3' is to 2208 * fail a data stripe and reconstruct from p+q stripe. 2209 */ 2210 rbio->failb = rbio->real_stripes - (mirror_num - 1); 2211 ASSERT(rbio->failb > 0); 2212 if (rbio->failb <= rbio->faila) 2213 rbio->failb--; 2214 } 2215 2216 ret = lock_stripe_add(rbio); 2217 2218 /* 2219 * __raid56_parity_recover will end the bio with 2220 * any errors it hits. We don't want to return 2221 * its error value up the stack because our caller 2222 * will end up calling bio_endio with any nonzero 2223 * return 2224 */ 2225 if (ret == 0) 2226 __raid56_parity_recover(rbio); 2227 /* 2228 * our rbio has been added to the list of 2229 * rbios that will be handled after the 2230 * currently lock owner is done 2231 */ 2232 return 0; 2233 2234 } 2235 2236 static void rmw_work(struct btrfs_work *work) 2237 { 2238 struct btrfs_raid_bio *rbio; 2239 2240 rbio = container_of(work, struct btrfs_raid_bio, work); 2241 raid56_rmw_stripe(rbio); 2242 } 2243 2244 static void read_rebuild_work(struct btrfs_work *work) 2245 { 2246 struct btrfs_raid_bio *rbio; 2247 2248 rbio = container_of(work, struct btrfs_raid_bio, work); 2249 __raid56_parity_recover(rbio); 2250 } 2251 2252 /* 2253 * The following code is used to scrub/replace the parity stripe 2254 * 2255 * Caller must have already increased bio_counter for getting @bbio. 2256 * 2257 * Note: We need make sure all the pages that add into the scrub/replace 2258 * raid bio are correct and not be changed during the scrub/replace. That 2259 * is those pages just hold metadata or file data with checksum. 2260 */ 2261 2262 struct btrfs_raid_bio * 2263 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2264 struct btrfs_bio *bbio, u64 stripe_len, 2265 struct btrfs_device *scrub_dev, 2266 unsigned long *dbitmap, int stripe_nsectors) 2267 { 2268 struct btrfs_raid_bio *rbio; 2269 int i; 2270 2271 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2272 if (IS_ERR(rbio)) 2273 return NULL; 2274 bio_list_add(&rbio->bio_list, bio); 2275 /* 2276 * This is a special bio which is used to hold the completion handler 2277 * and make the scrub rbio is similar to the other types 2278 */ 2279 ASSERT(!bio->bi_iter.bi_size); 2280 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2281 2282 /* 2283 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted 2284 * to the end position, so this search can start from the first parity 2285 * stripe. 2286 */ 2287 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2288 if (bbio->stripes[i].dev == scrub_dev) { 2289 rbio->scrubp = i; 2290 break; 2291 } 2292 } 2293 ASSERT(i < rbio->real_stripes); 2294 2295 /* Now we just support the sectorsize equals to page size */ 2296 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2297 ASSERT(rbio->stripe_npages == stripe_nsectors); 2298 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2299 2300 /* 2301 * We have already increased bio_counter when getting bbio, record it 2302 * so we can free it at rbio_orig_end_io(). 2303 */ 2304 rbio->generic_bio_cnt = 1; 2305 2306 return rbio; 2307 } 2308 2309 /* Used for both parity scrub and missing. */ 2310 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2311 u64 logical) 2312 { 2313 int stripe_offset; 2314 int index; 2315 2316 ASSERT(logical >= rbio->bbio->raid_map[0]); 2317 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2318 rbio->stripe_len * rbio->nr_data); 2319 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2320 index = stripe_offset >> PAGE_SHIFT; 2321 rbio->bio_pages[index] = page; 2322 } 2323 2324 /* 2325 * We just scrub the parity that we have correct data on the same horizontal, 2326 * so we needn't allocate all pages for all the stripes. 2327 */ 2328 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2329 { 2330 int i; 2331 int bit; 2332 int index; 2333 struct page *page; 2334 2335 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2336 for (i = 0; i < rbio->real_stripes; i++) { 2337 index = i * rbio->stripe_npages + bit; 2338 if (rbio->stripe_pages[index]) 2339 continue; 2340 2341 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2342 if (!page) 2343 return -ENOMEM; 2344 rbio->stripe_pages[index] = page; 2345 } 2346 } 2347 return 0; 2348 } 2349 2350 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2351 int need_check) 2352 { 2353 struct btrfs_bio *bbio = rbio->bbio; 2354 void **pointers = rbio->finish_pointers; 2355 unsigned long *pbitmap = rbio->finish_pbitmap; 2356 int nr_data = rbio->nr_data; 2357 int stripe; 2358 int pagenr; 2359 int p_stripe = -1; 2360 int q_stripe = -1; 2361 struct page *p_page = NULL; 2362 struct page *q_page = NULL; 2363 struct bio_list bio_list; 2364 struct bio *bio; 2365 int is_replace = 0; 2366 int ret; 2367 2368 bio_list_init(&bio_list); 2369 2370 if (rbio->real_stripes - rbio->nr_data == 1) { 2371 p_stripe = rbio->real_stripes - 1; 2372 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2373 p_stripe = rbio->real_stripes - 2; 2374 q_stripe = rbio->real_stripes - 1; 2375 } else { 2376 BUG(); 2377 } 2378 2379 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2380 is_replace = 1; 2381 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2382 } 2383 2384 /* 2385 * Because the higher layers(scrubber) are unlikely to 2386 * use this area of the disk again soon, so don't cache 2387 * it. 2388 */ 2389 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2390 2391 if (!need_check) 2392 goto writeback; 2393 2394 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2395 if (!p_page) 2396 goto cleanup; 2397 SetPageUptodate(p_page); 2398 2399 if (q_stripe != -1) { 2400 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2401 if (!q_page) { 2402 __free_page(p_page); 2403 goto cleanup; 2404 } 2405 SetPageUptodate(q_page); 2406 } 2407 2408 atomic_set(&rbio->error, 0); 2409 2410 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2411 struct page *p; 2412 void *parity; 2413 /* first collect one page from each data stripe */ 2414 for (stripe = 0; stripe < nr_data; stripe++) { 2415 p = page_in_rbio(rbio, stripe, pagenr, 0); 2416 pointers[stripe] = kmap(p); 2417 } 2418 2419 /* then add the parity stripe */ 2420 pointers[stripe++] = kmap(p_page); 2421 2422 if (q_stripe != -1) { 2423 2424 /* 2425 * raid6, add the qstripe and call the 2426 * library function to fill in our p/q 2427 */ 2428 pointers[stripe++] = kmap(q_page); 2429 2430 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2431 pointers); 2432 } else { 2433 /* raid5 */ 2434 copy_page(pointers[nr_data], pointers[0]); 2435 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2436 } 2437 2438 /* Check scrubbing parity and repair it */ 2439 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2440 parity = kmap(p); 2441 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2442 copy_page(parity, pointers[rbio->scrubp]); 2443 else 2444 /* Parity is right, needn't writeback */ 2445 bitmap_clear(rbio->dbitmap, pagenr, 1); 2446 kunmap(p); 2447 2448 for (stripe = 0; stripe < nr_data; stripe++) 2449 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2450 kunmap(p_page); 2451 } 2452 2453 __free_page(p_page); 2454 if (q_page) 2455 __free_page(q_page); 2456 2457 writeback: 2458 /* 2459 * time to start writing. Make bios for everything from the 2460 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2461 * everything else. 2462 */ 2463 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2464 struct page *page; 2465 2466 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2467 ret = rbio_add_io_page(rbio, &bio_list, 2468 page, rbio->scrubp, pagenr, rbio->stripe_len); 2469 if (ret) 2470 goto cleanup; 2471 } 2472 2473 if (!is_replace) 2474 goto submit_write; 2475 2476 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2477 struct page *page; 2478 2479 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2480 ret = rbio_add_io_page(rbio, &bio_list, page, 2481 bbio->tgtdev_map[rbio->scrubp], 2482 pagenr, rbio->stripe_len); 2483 if (ret) 2484 goto cleanup; 2485 } 2486 2487 submit_write: 2488 nr_data = bio_list_size(&bio_list); 2489 if (!nr_data) { 2490 /* Every parity is right */ 2491 rbio_orig_end_io(rbio, BLK_STS_OK); 2492 return; 2493 } 2494 2495 atomic_set(&rbio->stripes_pending, nr_data); 2496 2497 while (1) { 2498 bio = bio_list_pop(&bio_list); 2499 if (!bio) 2500 break; 2501 2502 bio->bi_private = rbio; 2503 bio->bi_end_io = raid_write_end_io; 2504 bio->bi_opf = REQ_OP_WRITE; 2505 2506 submit_bio(bio); 2507 } 2508 return; 2509 2510 cleanup: 2511 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2512 2513 while ((bio = bio_list_pop(&bio_list))) 2514 bio_put(bio); 2515 } 2516 2517 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2518 { 2519 if (stripe >= 0 && stripe < rbio->nr_data) 2520 return 1; 2521 return 0; 2522 } 2523 2524 /* 2525 * While we're doing the parity check and repair, we could have errors 2526 * in reading pages off the disk. This checks for errors and if we're 2527 * not able to read the page it'll trigger parity reconstruction. The 2528 * parity scrub will be finished after we've reconstructed the failed 2529 * stripes 2530 */ 2531 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2532 { 2533 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2534 goto cleanup; 2535 2536 if (rbio->faila >= 0 || rbio->failb >= 0) { 2537 int dfail = 0, failp = -1; 2538 2539 if (is_data_stripe(rbio, rbio->faila)) 2540 dfail++; 2541 else if (is_parity_stripe(rbio->faila)) 2542 failp = rbio->faila; 2543 2544 if (is_data_stripe(rbio, rbio->failb)) 2545 dfail++; 2546 else if (is_parity_stripe(rbio->failb)) 2547 failp = rbio->failb; 2548 2549 /* 2550 * Because we can not use a scrubbing parity to repair 2551 * the data, so the capability of the repair is declined. 2552 * (In the case of RAID5, we can not repair anything) 2553 */ 2554 if (dfail > rbio->bbio->max_errors - 1) 2555 goto cleanup; 2556 2557 /* 2558 * If all data is good, only parity is correctly, just 2559 * repair the parity. 2560 */ 2561 if (dfail == 0) { 2562 finish_parity_scrub(rbio, 0); 2563 return; 2564 } 2565 2566 /* 2567 * Here means we got one corrupted data stripe and one 2568 * corrupted parity on RAID6, if the corrupted parity 2569 * is scrubbing parity, luckily, use the other one to repair 2570 * the data, or we can not repair the data stripe. 2571 */ 2572 if (failp != rbio->scrubp) 2573 goto cleanup; 2574 2575 __raid_recover_end_io(rbio); 2576 } else { 2577 finish_parity_scrub(rbio, 1); 2578 } 2579 return; 2580 2581 cleanup: 2582 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2583 } 2584 2585 /* 2586 * end io for the read phase of the rmw cycle. All the bios here are physical 2587 * stripe bios we've read from the disk so we can recalculate the parity of the 2588 * stripe. 2589 * 2590 * This will usually kick off finish_rmw once all the bios are read in, but it 2591 * may trigger parity reconstruction if we had any errors along the way 2592 */ 2593 static void raid56_parity_scrub_end_io(struct bio *bio) 2594 { 2595 struct btrfs_raid_bio *rbio = bio->bi_private; 2596 2597 if (bio->bi_status) 2598 fail_bio_stripe(rbio, bio); 2599 else 2600 set_bio_pages_uptodate(bio); 2601 2602 bio_put(bio); 2603 2604 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2605 return; 2606 2607 /* 2608 * this will normally call finish_rmw to start our write 2609 * but if there are any failed stripes we'll reconstruct 2610 * from parity first 2611 */ 2612 validate_rbio_for_parity_scrub(rbio); 2613 } 2614 2615 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2616 { 2617 int bios_to_read = 0; 2618 struct bio_list bio_list; 2619 int ret; 2620 int pagenr; 2621 int stripe; 2622 struct bio *bio; 2623 2624 bio_list_init(&bio_list); 2625 2626 ret = alloc_rbio_essential_pages(rbio); 2627 if (ret) 2628 goto cleanup; 2629 2630 atomic_set(&rbio->error, 0); 2631 /* 2632 * build a list of bios to read all the missing parts of this 2633 * stripe 2634 */ 2635 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2636 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2637 struct page *page; 2638 /* 2639 * we want to find all the pages missing from 2640 * the rbio and read them from the disk. If 2641 * page_in_rbio finds a page in the bio list 2642 * we don't need to read it off the stripe. 2643 */ 2644 page = page_in_rbio(rbio, stripe, pagenr, 1); 2645 if (page) 2646 continue; 2647 2648 page = rbio_stripe_page(rbio, stripe, pagenr); 2649 /* 2650 * the bio cache may have handed us an uptodate 2651 * page. If so, be happy and use it 2652 */ 2653 if (PageUptodate(page)) 2654 continue; 2655 2656 ret = rbio_add_io_page(rbio, &bio_list, page, 2657 stripe, pagenr, rbio->stripe_len); 2658 if (ret) 2659 goto cleanup; 2660 } 2661 } 2662 2663 bios_to_read = bio_list_size(&bio_list); 2664 if (!bios_to_read) { 2665 /* 2666 * this can happen if others have merged with 2667 * us, it means there is nothing left to read. 2668 * But if there are missing devices it may not be 2669 * safe to do the full stripe write yet. 2670 */ 2671 goto finish; 2672 } 2673 2674 /* 2675 * the bbio may be freed once we submit the last bio. Make sure 2676 * not to touch it after that 2677 */ 2678 atomic_set(&rbio->stripes_pending, bios_to_read); 2679 while (1) { 2680 bio = bio_list_pop(&bio_list); 2681 if (!bio) 2682 break; 2683 2684 bio->bi_private = rbio; 2685 bio->bi_end_io = raid56_parity_scrub_end_io; 2686 bio->bi_opf = REQ_OP_READ; 2687 2688 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2689 2690 submit_bio(bio); 2691 } 2692 /* the actual write will happen once the reads are done */ 2693 return; 2694 2695 cleanup: 2696 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2697 2698 while ((bio = bio_list_pop(&bio_list))) 2699 bio_put(bio); 2700 2701 return; 2702 2703 finish: 2704 validate_rbio_for_parity_scrub(rbio); 2705 } 2706 2707 static void scrub_parity_work(struct btrfs_work *work) 2708 { 2709 struct btrfs_raid_bio *rbio; 2710 2711 rbio = container_of(work, struct btrfs_raid_bio, work); 2712 raid56_parity_scrub_stripe(rbio); 2713 } 2714 2715 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2716 { 2717 if (!lock_stripe_add(rbio)) 2718 start_async_work(rbio, scrub_parity_work); 2719 } 2720 2721 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2722 2723 struct btrfs_raid_bio * 2724 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2725 struct btrfs_bio *bbio, u64 length) 2726 { 2727 struct btrfs_raid_bio *rbio; 2728 2729 rbio = alloc_rbio(fs_info, bbio, length); 2730 if (IS_ERR(rbio)) 2731 return NULL; 2732 2733 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2734 bio_list_add(&rbio->bio_list, bio); 2735 /* 2736 * This is a special bio which is used to hold the completion handler 2737 * and make the scrub rbio is similar to the other types 2738 */ 2739 ASSERT(!bio->bi_iter.bi_size); 2740 2741 rbio->faila = find_logical_bio_stripe(rbio, bio); 2742 if (rbio->faila == -1) { 2743 BUG(); 2744 kfree(rbio); 2745 return NULL; 2746 } 2747 2748 /* 2749 * When we get bbio, we have already increased bio_counter, record it 2750 * so we can free it at rbio_orig_end_io() 2751 */ 2752 rbio->generic_bio_cnt = 1; 2753 2754 return rbio; 2755 } 2756 2757 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2758 { 2759 if (!lock_stripe_add(rbio)) 2760 start_async_work(rbio, read_rebuild_work); 2761 } 2762