xref: /openbmc/linux/fs/btrfs/raid56.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "misc.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 
23 /* set when additional merges to this rbio are not allowed */
24 #define RBIO_RMW_LOCKED_BIT	1
25 
26 /*
27  * set when this rbio is sitting in the hash, but it is just a cache
28  * of past RMW
29  */
30 #define RBIO_CACHE_BIT		2
31 
32 /*
33  * set when it is safe to trust the stripe_pages for caching
34  */
35 #define RBIO_CACHE_READY_BIT	3
36 
37 #define RBIO_CACHE_SIZE 1024
38 
39 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
40 
41 /* Used by the raid56 code to lock stripes for read/modify/write */
42 struct btrfs_stripe_hash {
43 	struct list_head hash_list;
44 	spinlock_t lock;
45 };
46 
47 /* Used by the raid56 code to lock stripes for read/modify/write */
48 struct btrfs_stripe_hash_table {
49 	struct list_head stripe_cache;
50 	spinlock_t cache_lock;
51 	int cache_size;
52 	struct btrfs_stripe_hash table[];
53 };
54 
55 enum btrfs_rbio_ops {
56 	BTRFS_RBIO_WRITE,
57 	BTRFS_RBIO_READ_REBUILD,
58 	BTRFS_RBIO_PARITY_SCRUB,
59 	BTRFS_RBIO_REBUILD_MISSING,
60 };
61 
62 struct btrfs_raid_bio {
63 	struct btrfs_fs_info *fs_info;
64 	struct btrfs_bio *bbio;
65 
66 	/* while we're doing rmw on a stripe
67 	 * we put it into a hash table so we can
68 	 * lock the stripe and merge more rbios
69 	 * into it.
70 	 */
71 	struct list_head hash_list;
72 
73 	/*
74 	 * LRU list for the stripe cache
75 	 */
76 	struct list_head stripe_cache;
77 
78 	/*
79 	 * for scheduling work in the helper threads
80 	 */
81 	struct btrfs_work work;
82 
83 	/*
84 	 * bio list and bio_list_lock are used
85 	 * to add more bios into the stripe
86 	 * in hopes of avoiding the full rmw
87 	 */
88 	struct bio_list bio_list;
89 	spinlock_t bio_list_lock;
90 
91 	/* also protected by the bio_list_lock, the
92 	 * plug list is used by the plugging code
93 	 * to collect partial bios while plugged.  The
94 	 * stripe locking code also uses it to hand off
95 	 * the stripe lock to the next pending IO
96 	 */
97 	struct list_head plug_list;
98 
99 	/*
100 	 * flags that tell us if it is safe to
101 	 * merge with this bio
102 	 */
103 	unsigned long flags;
104 
105 	/* size of each individual stripe on disk */
106 	int stripe_len;
107 
108 	/* number of data stripes (no p/q) */
109 	int nr_data;
110 
111 	int real_stripes;
112 
113 	int stripe_npages;
114 	/*
115 	 * set if we're doing a parity rebuild
116 	 * for a read from higher up, which is handled
117 	 * differently from a parity rebuild as part of
118 	 * rmw
119 	 */
120 	enum btrfs_rbio_ops operation;
121 
122 	/* first bad stripe */
123 	int faila;
124 
125 	/* second bad stripe (for raid6 use) */
126 	int failb;
127 
128 	int scrubp;
129 	/*
130 	 * number of pages needed to represent the full
131 	 * stripe
132 	 */
133 	int nr_pages;
134 
135 	/*
136 	 * size of all the bios in the bio_list.  This
137 	 * helps us decide if the rbio maps to a full
138 	 * stripe or not
139 	 */
140 	int bio_list_bytes;
141 
142 	int generic_bio_cnt;
143 
144 	refcount_t refs;
145 
146 	atomic_t stripes_pending;
147 
148 	atomic_t error;
149 	/*
150 	 * these are two arrays of pointers.  We allocate the
151 	 * rbio big enough to hold them both and setup their
152 	 * locations when the rbio is allocated
153 	 */
154 
155 	/* pointers to pages that we allocated for
156 	 * reading/writing stripes directly from the disk (including P/Q)
157 	 */
158 	struct page **stripe_pages;
159 
160 	/*
161 	 * pointers to the pages in the bio_list.  Stored
162 	 * here for faster lookup
163 	 */
164 	struct page **bio_pages;
165 
166 	/*
167 	 * bitmap to record which horizontal stripe has data
168 	 */
169 	unsigned long *dbitmap;
170 
171 	/* allocated with real_stripes-many pointers for finish_*() calls */
172 	void **finish_pointers;
173 
174 	/* allocated with stripe_npages-many bits for finish_*() calls */
175 	unsigned long *finish_pbitmap;
176 };
177 
178 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
179 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
180 static void rmw_work(struct btrfs_work *work);
181 static void read_rebuild_work(struct btrfs_work *work);
182 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
183 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
184 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
185 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
186 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
187 
188 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
189 					 int need_check);
190 static void scrub_parity_work(struct btrfs_work *work);
191 
192 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
193 {
194 	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
195 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
196 }
197 
198 /*
199  * the stripe hash table is used for locking, and to collect
200  * bios in hopes of making a full stripe
201  */
202 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
203 {
204 	struct btrfs_stripe_hash_table *table;
205 	struct btrfs_stripe_hash_table *x;
206 	struct btrfs_stripe_hash *cur;
207 	struct btrfs_stripe_hash *h;
208 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
209 	int i;
210 
211 	if (info->stripe_hash_table)
212 		return 0;
213 
214 	/*
215 	 * The table is large, starting with order 4 and can go as high as
216 	 * order 7 in case lock debugging is turned on.
217 	 *
218 	 * Try harder to allocate and fallback to vmalloc to lower the chance
219 	 * of a failing mount.
220 	 */
221 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
222 	if (!table)
223 		return -ENOMEM;
224 
225 	spin_lock_init(&table->cache_lock);
226 	INIT_LIST_HEAD(&table->stripe_cache);
227 
228 	h = table->table;
229 
230 	for (i = 0; i < num_entries; i++) {
231 		cur = h + i;
232 		INIT_LIST_HEAD(&cur->hash_list);
233 		spin_lock_init(&cur->lock);
234 	}
235 
236 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
237 	kvfree(x);
238 	return 0;
239 }
240 
241 /*
242  * caching an rbio means to copy anything from the
243  * bio_pages array into the stripe_pages array.  We
244  * use the page uptodate bit in the stripe cache array
245  * to indicate if it has valid data
246  *
247  * once the caching is done, we set the cache ready
248  * bit.
249  */
250 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
251 {
252 	int i;
253 	int ret;
254 
255 	ret = alloc_rbio_pages(rbio);
256 	if (ret)
257 		return;
258 
259 	for (i = 0; i < rbio->nr_pages; i++) {
260 		if (!rbio->bio_pages[i])
261 			continue;
262 
263 		copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]);
264 		SetPageUptodate(rbio->stripe_pages[i]);
265 	}
266 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
267 }
268 
269 /*
270  * we hash on the first logical address of the stripe
271  */
272 static int rbio_bucket(struct btrfs_raid_bio *rbio)
273 {
274 	u64 num = rbio->bbio->raid_map[0];
275 
276 	/*
277 	 * we shift down quite a bit.  We're using byte
278 	 * addressing, and most of the lower bits are zeros.
279 	 * This tends to upset hash_64, and it consistently
280 	 * returns just one or two different values.
281 	 *
282 	 * shifting off the lower bits fixes things.
283 	 */
284 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
285 }
286 
287 /*
288  * stealing an rbio means taking all the uptodate pages from the stripe
289  * array in the source rbio and putting them into the destination rbio
290  */
291 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
292 {
293 	int i;
294 	struct page *s;
295 	struct page *d;
296 
297 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
298 		return;
299 
300 	for (i = 0; i < dest->nr_pages; i++) {
301 		s = src->stripe_pages[i];
302 		if (!s || !PageUptodate(s)) {
303 			continue;
304 		}
305 
306 		d = dest->stripe_pages[i];
307 		if (d)
308 			__free_page(d);
309 
310 		dest->stripe_pages[i] = s;
311 		src->stripe_pages[i] = NULL;
312 	}
313 }
314 
315 /*
316  * merging means we take the bio_list from the victim and
317  * splice it into the destination.  The victim should
318  * be discarded afterwards.
319  *
320  * must be called with dest->rbio_list_lock held
321  */
322 static void merge_rbio(struct btrfs_raid_bio *dest,
323 		       struct btrfs_raid_bio *victim)
324 {
325 	bio_list_merge(&dest->bio_list, &victim->bio_list);
326 	dest->bio_list_bytes += victim->bio_list_bytes;
327 	dest->generic_bio_cnt += victim->generic_bio_cnt;
328 	bio_list_init(&victim->bio_list);
329 }
330 
331 /*
332  * used to prune items that are in the cache.  The caller
333  * must hold the hash table lock.
334  */
335 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
336 {
337 	int bucket = rbio_bucket(rbio);
338 	struct btrfs_stripe_hash_table *table;
339 	struct btrfs_stripe_hash *h;
340 	int freeit = 0;
341 
342 	/*
343 	 * check the bit again under the hash table lock.
344 	 */
345 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
346 		return;
347 
348 	table = rbio->fs_info->stripe_hash_table;
349 	h = table->table + bucket;
350 
351 	/* hold the lock for the bucket because we may be
352 	 * removing it from the hash table
353 	 */
354 	spin_lock(&h->lock);
355 
356 	/*
357 	 * hold the lock for the bio list because we need
358 	 * to make sure the bio list is empty
359 	 */
360 	spin_lock(&rbio->bio_list_lock);
361 
362 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
363 		list_del_init(&rbio->stripe_cache);
364 		table->cache_size -= 1;
365 		freeit = 1;
366 
367 		/* if the bio list isn't empty, this rbio is
368 		 * still involved in an IO.  We take it out
369 		 * of the cache list, and drop the ref that
370 		 * was held for the list.
371 		 *
372 		 * If the bio_list was empty, we also remove
373 		 * the rbio from the hash_table, and drop
374 		 * the corresponding ref
375 		 */
376 		if (bio_list_empty(&rbio->bio_list)) {
377 			if (!list_empty(&rbio->hash_list)) {
378 				list_del_init(&rbio->hash_list);
379 				refcount_dec(&rbio->refs);
380 				BUG_ON(!list_empty(&rbio->plug_list));
381 			}
382 		}
383 	}
384 
385 	spin_unlock(&rbio->bio_list_lock);
386 	spin_unlock(&h->lock);
387 
388 	if (freeit)
389 		__free_raid_bio(rbio);
390 }
391 
392 /*
393  * prune a given rbio from the cache
394  */
395 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
396 {
397 	struct btrfs_stripe_hash_table *table;
398 	unsigned long flags;
399 
400 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
401 		return;
402 
403 	table = rbio->fs_info->stripe_hash_table;
404 
405 	spin_lock_irqsave(&table->cache_lock, flags);
406 	__remove_rbio_from_cache(rbio);
407 	spin_unlock_irqrestore(&table->cache_lock, flags);
408 }
409 
410 /*
411  * remove everything in the cache
412  */
413 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
414 {
415 	struct btrfs_stripe_hash_table *table;
416 	unsigned long flags;
417 	struct btrfs_raid_bio *rbio;
418 
419 	table = info->stripe_hash_table;
420 
421 	spin_lock_irqsave(&table->cache_lock, flags);
422 	while (!list_empty(&table->stripe_cache)) {
423 		rbio = list_entry(table->stripe_cache.next,
424 				  struct btrfs_raid_bio,
425 				  stripe_cache);
426 		__remove_rbio_from_cache(rbio);
427 	}
428 	spin_unlock_irqrestore(&table->cache_lock, flags);
429 }
430 
431 /*
432  * remove all cached entries and free the hash table
433  * used by unmount
434  */
435 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
436 {
437 	if (!info->stripe_hash_table)
438 		return;
439 	btrfs_clear_rbio_cache(info);
440 	kvfree(info->stripe_hash_table);
441 	info->stripe_hash_table = NULL;
442 }
443 
444 /*
445  * insert an rbio into the stripe cache.  It
446  * must have already been prepared by calling
447  * cache_rbio_pages
448  *
449  * If this rbio was already cached, it gets
450  * moved to the front of the lru.
451  *
452  * If the size of the rbio cache is too big, we
453  * prune an item.
454  */
455 static void cache_rbio(struct btrfs_raid_bio *rbio)
456 {
457 	struct btrfs_stripe_hash_table *table;
458 	unsigned long flags;
459 
460 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
461 		return;
462 
463 	table = rbio->fs_info->stripe_hash_table;
464 
465 	spin_lock_irqsave(&table->cache_lock, flags);
466 	spin_lock(&rbio->bio_list_lock);
467 
468 	/* bump our ref if we were not in the list before */
469 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
470 		refcount_inc(&rbio->refs);
471 
472 	if (!list_empty(&rbio->stripe_cache)){
473 		list_move(&rbio->stripe_cache, &table->stripe_cache);
474 	} else {
475 		list_add(&rbio->stripe_cache, &table->stripe_cache);
476 		table->cache_size += 1;
477 	}
478 
479 	spin_unlock(&rbio->bio_list_lock);
480 
481 	if (table->cache_size > RBIO_CACHE_SIZE) {
482 		struct btrfs_raid_bio *found;
483 
484 		found = list_entry(table->stripe_cache.prev,
485 				  struct btrfs_raid_bio,
486 				  stripe_cache);
487 
488 		if (found != rbio)
489 			__remove_rbio_from_cache(found);
490 	}
491 
492 	spin_unlock_irqrestore(&table->cache_lock, flags);
493 }
494 
495 /*
496  * helper function to run the xor_blocks api.  It is only
497  * able to do MAX_XOR_BLOCKS at a time, so we need to
498  * loop through.
499  */
500 static void run_xor(void **pages, int src_cnt, ssize_t len)
501 {
502 	int src_off = 0;
503 	int xor_src_cnt = 0;
504 	void *dest = pages[src_cnt];
505 
506 	while(src_cnt > 0) {
507 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
508 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
509 
510 		src_cnt -= xor_src_cnt;
511 		src_off += xor_src_cnt;
512 	}
513 }
514 
515 /*
516  * Returns true if the bio list inside this rbio covers an entire stripe (no
517  * rmw required).
518  */
519 static int rbio_is_full(struct btrfs_raid_bio *rbio)
520 {
521 	unsigned long flags;
522 	unsigned long size = rbio->bio_list_bytes;
523 	int ret = 1;
524 
525 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
526 	if (size != rbio->nr_data * rbio->stripe_len)
527 		ret = 0;
528 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
529 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
530 
531 	return ret;
532 }
533 
534 /*
535  * returns 1 if it is safe to merge two rbios together.
536  * The merging is safe if the two rbios correspond to
537  * the same stripe and if they are both going in the same
538  * direction (read vs write), and if neither one is
539  * locked for final IO
540  *
541  * The caller is responsible for locking such that
542  * rmw_locked is safe to test
543  */
544 static int rbio_can_merge(struct btrfs_raid_bio *last,
545 			  struct btrfs_raid_bio *cur)
546 {
547 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
548 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
549 		return 0;
550 
551 	/*
552 	 * we can't merge with cached rbios, since the
553 	 * idea is that when we merge the destination
554 	 * rbio is going to run our IO for us.  We can
555 	 * steal from cached rbios though, other functions
556 	 * handle that.
557 	 */
558 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
559 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
560 		return 0;
561 
562 	if (last->bbio->raid_map[0] !=
563 	    cur->bbio->raid_map[0])
564 		return 0;
565 
566 	/* we can't merge with different operations */
567 	if (last->operation != cur->operation)
568 		return 0;
569 	/*
570 	 * We've need read the full stripe from the drive.
571 	 * check and repair the parity and write the new results.
572 	 *
573 	 * We're not allowed to add any new bios to the
574 	 * bio list here, anyone else that wants to
575 	 * change this stripe needs to do their own rmw.
576 	 */
577 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
578 		return 0;
579 
580 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
581 		return 0;
582 
583 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
584 		int fa = last->faila;
585 		int fb = last->failb;
586 		int cur_fa = cur->faila;
587 		int cur_fb = cur->failb;
588 
589 		if (last->faila >= last->failb) {
590 			fa = last->failb;
591 			fb = last->faila;
592 		}
593 
594 		if (cur->faila >= cur->failb) {
595 			cur_fa = cur->failb;
596 			cur_fb = cur->faila;
597 		}
598 
599 		if (fa != cur_fa || fb != cur_fb)
600 			return 0;
601 	}
602 	return 1;
603 }
604 
605 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
606 				  int index)
607 {
608 	return stripe * rbio->stripe_npages + index;
609 }
610 
611 /*
612  * these are just the pages from the rbio array, not from anything
613  * the FS sent down to us
614  */
615 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
616 				     int index)
617 {
618 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
619 }
620 
621 /*
622  * helper to index into the pstripe
623  */
624 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
625 {
626 	return rbio_stripe_page(rbio, rbio->nr_data, index);
627 }
628 
629 /*
630  * helper to index into the qstripe, returns null
631  * if there is no qstripe
632  */
633 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
634 {
635 	if (rbio->nr_data + 1 == rbio->real_stripes)
636 		return NULL;
637 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
638 }
639 
640 /*
641  * The first stripe in the table for a logical address
642  * has the lock.  rbios are added in one of three ways:
643  *
644  * 1) Nobody has the stripe locked yet.  The rbio is given
645  * the lock and 0 is returned.  The caller must start the IO
646  * themselves.
647  *
648  * 2) Someone has the stripe locked, but we're able to merge
649  * with the lock owner.  The rbio is freed and the IO will
650  * start automatically along with the existing rbio.  1 is returned.
651  *
652  * 3) Someone has the stripe locked, but we're not able to merge.
653  * The rbio is added to the lock owner's plug list, or merged into
654  * an rbio already on the plug list.  When the lock owner unlocks,
655  * the next rbio on the list is run and the IO is started automatically.
656  * 1 is returned
657  *
658  * If we return 0, the caller still owns the rbio and must continue with
659  * IO submission.  If we return 1, the caller must assume the rbio has
660  * already been freed.
661  */
662 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
663 {
664 	struct btrfs_stripe_hash *h;
665 	struct btrfs_raid_bio *cur;
666 	struct btrfs_raid_bio *pending;
667 	unsigned long flags;
668 	struct btrfs_raid_bio *freeit = NULL;
669 	struct btrfs_raid_bio *cache_drop = NULL;
670 	int ret = 0;
671 
672 	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
673 
674 	spin_lock_irqsave(&h->lock, flags);
675 	list_for_each_entry(cur, &h->hash_list, hash_list) {
676 		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
677 			continue;
678 
679 		spin_lock(&cur->bio_list_lock);
680 
681 		/* Can we steal this cached rbio's pages? */
682 		if (bio_list_empty(&cur->bio_list) &&
683 		    list_empty(&cur->plug_list) &&
684 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
685 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
686 			list_del_init(&cur->hash_list);
687 			refcount_dec(&cur->refs);
688 
689 			steal_rbio(cur, rbio);
690 			cache_drop = cur;
691 			spin_unlock(&cur->bio_list_lock);
692 
693 			goto lockit;
694 		}
695 
696 		/* Can we merge into the lock owner? */
697 		if (rbio_can_merge(cur, rbio)) {
698 			merge_rbio(cur, rbio);
699 			spin_unlock(&cur->bio_list_lock);
700 			freeit = rbio;
701 			ret = 1;
702 			goto out;
703 		}
704 
705 
706 		/*
707 		 * We couldn't merge with the running rbio, see if we can merge
708 		 * with the pending ones.  We don't have to check for rmw_locked
709 		 * because there is no way they are inside finish_rmw right now
710 		 */
711 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
712 			if (rbio_can_merge(pending, rbio)) {
713 				merge_rbio(pending, rbio);
714 				spin_unlock(&cur->bio_list_lock);
715 				freeit = rbio;
716 				ret = 1;
717 				goto out;
718 			}
719 		}
720 
721 		/*
722 		 * No merging, put us on the tail of the plug list, our rbio
723 		 * will be started with the currently running rbio unlocks
724 		 */
725 		list_add_tail(&rbio->plug_list, &cur->plug_list);
726 		spin_unlock(&cur->bio_list_lock);
727 		ret = 1;
728 		goto out;
729 	}
730 lockit:
731 	refcount_inc(&rbio->refs);
732 	list_add(&rbio->hash_list, &h->hash_list);
733 out:
734 	spin_unlock_irqrestore(&h->lock, flags);
735 	if (cache_drop)
736 		remove_rbio_from_cache(cache_drop);
737 	if (freeit)
738 		__free_raid_bio(freeit);
739 	return ret;
740 }
741 
742 /*
743  * called as rmw or parity rebuild is completed.  If the plug list has more
744  * rbios waiting for this stripe, the next one on the list will be started
745  */
746 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
747 {
748 	int bucket;
749 	struct btrfs_stripe_hash *h;
750 	unsigned long flags;
751 	int keep_cache = 0;
752 
753 	bucket = rbio_bucket(rbio);
754 	h = rbio->fs_info->stripe_hash_table->table + bucket;
755 
756 	if (list_empty(&rbio->plug_list))
757 		cache_rbio(rbio);
758 
759 	spin_lock_irqsave(&h->lock, flags);
760 	spin_lock(&rbio->bio_list_lock);
761 
762 	if (!list_empty(&rbio->hash_list)) {
763 		/*
764 		 * if we're still cached and there is no other IO
765 		 * to perform, just leave this rbio here for others
766 		 * to steal from later
767 		 */
768 		if (list_empty(&rbio->plug_list) &&
769 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
770 			keep_cache = 1;
771 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
772 			BUG_ON(!bio_list_empty(&rbio->bio_list));
773 			goto done;
774 		}
775 
776 		list_del_init(&rbio->hash_list);
777 		refcount_dec(&rbio->refs);
778 
779 		/*
780 		 * we use the plug list to hold all the rbios
781 		 * waiting for the chance to lock this stripe.
782 		 * hand the lock over to one of them.
783 		 */
784 		if (!list_empty(&rbio->plug_list)) {
785 			struct btrfs_raid_bio *next;
786 			struct list_head *head = rbio->plug_list.next;
787 
788 			next = list_entry(head, struct btrfs_raid_bio,
789 					  plug_list);
790 
791 			list_del_init(&rbio->plug_list);
792 
793 			list_add(&next->hash_list, &h->hash_list);
794 			refcount_inc(&next->refs);
795 			spin_unlock(&rbio->bio_list_lock);
796 			spin_unlock_irqrestore(&h->lock, flags);
797 
798 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
799 				start_async_work(next, read_rebuild_work);
800 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
801 				steal_rbio(rbio, next);
802 				start_async_work(next, read_rebuild_work);
803 			} else if (next->operation == BTRFS_RBIO_WRITE) {
804 				steal_rbio(rbio, next);
805 				start_async_work(next, rmw_work);
806 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
807 				steal_rbio(rbio, next);
808 				start_async_work(next, scrub_parity_work);
809 			}
810 
811 			goto done_nolock;
812 		}
813 	}
814 done:
815 	spin_unlock(&rbio->bio_list_lock);
816 	spin_unlock_irqrestore(&h->lock, flags);
817 
818 done_nolock:
819 	if (!keep_cache)
820 		remove_rbio_from_cache(rbio);
821 }
822 
823 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
824 {
825 	int i;
826 
827 	if (!refcount_dec_and_test(&rbio->refs))
828 		return;
829 
830 	WARN_ON(!list_empty(&rbio->stripe_cache));
831 	WARN_ON(!list_empty(&rbio->hash_list));
832 	WARN_ON(!bio_list_empty(&rbio->bio_list));
833 
834 	for (i = 0; i < rbio->nr_pages; i++) {
835 		if (rbio->stripe_pages[i]) {
836 			__free_page(rbio->stripe_pages[i]);
837 			rbio->stripe_pages[i] = NULL;
838 		}
839 	}
840 
841 	btrfs_put_bbio(rbio->bbio);
842 	kfree(rbio);
843 }
844 
845 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
846 {
847 	struct bio *next;
848 
849 	while (cur) {
850 		next = cur->bi_next;
851 		cur->bi_next = NULL;
852 		cur->bi_status = err;
853 		bio_endio(cur);
854 		cur = next;
855 	}
856 }
857 
858 /*
859  * this frees the rbio and runs through all the bios in the
860  * bio_list and calls end_io on them
861  */
862 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
863 {
864 	struct bio *cur = bio_list_get(&rbio->bio_list);
865 	struct bio *extra;
866 
867 	if (rbio->generic_bio_cnt)
868 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
869 
870 	/*
871 	 * At this moment, rbio->bio_list is empty, however since rbio does not
872 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
873 	 * hash list, rbio may be merged with others so that rbio->bio_list
874 	 * becomes non-empty.
875 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
876 	 * more and we can call bio_endio() on all queued bios.
877 	 */
878 	unlock_stripe(rbio);
879 	extra = bio_list_get(&rbio->bio_list);
880 	__free_raid_bio(rbio);
881 
882 	rbio_endio_bio_list(cur, err);
883 	if (extra)
884 		rbio_endio_bio_list(extra, err);
885 }
886 
887 /*
888  * end io function used by finish_rmw.  When we finally
889  * get here, we've written a full stripe
890  */
891 static void raid_write_end_io(struct bio *bio)
892 {
893 	struct btrfs_raid_bio *rbio = bio->bi_private;
894 	blk_status_t err = bio->bi_status;
895 	int max_errors;
896 
897 	if (err)
898 		fail_bio_stripe(rbio, bio);
899 
900 	bio_put(bio);
901 
902 	if (!atomic_dec_and_test(&rbio->stripes_pending))
903 		return;
904 
905 	err = BLK_STS_OK;
906 
907 	/* OK, we have read all the stripes we need to. */
908 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
909 		     0 : rbio->bbio->max_errors;
910 	if (atomic_read(&rbio->error) > max_errors)
911 		err = BLK_STS_IOERR;
912 
913 	rbio_orig_end_io(rbio, err);
914 }
915 
916 /*
917  * the read/modify/write code wants to use the original bio for
918  * any pages it included, and then use the rbio for everything
919  * else.  This function decides if a given index (stripe number)
920  * and page number in that stripe fall inside the original bio
921  * or the rbio.
922  *
923  * if you set bio_list_only, you'll get a NULL back for any ranges
924  * that are outside the bio_list
925  *
926  * This doesn't take any refs on anything, you get a bare page pointer
927  * and the caller must bump refs as required.
928  *
929  * You must call index_rbio_pages once before you can trust
930  * the answers from this function.
931  */
932 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
933 				 int index, int pagenr, int bio_list_only)
934 {
935 	int chunk_page;
936 	struct page *p = NULL;
937 
938 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
939 
940 	spin_lock_irq(&rbio->bio_list_lock);
941 	p = rbio->bio_pages[chunk_page];
942 	spin_unlock_irq(&rbio->bio_list_lock);
943 
944 	if (p || bio_list_only)
945 		return p;
946 
947 	return rbio->stripe_pages[chunk_page];
948 }
949 
950 /*
951  * number of pages we need for the entire stripe across all the
952  * drives
953  */
954 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
955 {
956 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
957 }
958 
959 /*
960  * allocation and initial setup for the btrfs_raid_bio.  Not
961  * this does not allocate any pages for rbio->pages.
962  */
963 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
964 					 struct btrfs_bio *bbio,
965 					 u64 stripe_len)
966 {
967 	struct btrfs_raid_bio *rbio;
968 	int nr_data = 0;
969 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
970 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
971 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
972 	void *p;
973 
974 	rbio = kzalloc(sizeof(*rbio) +
975 		       sizeof(*rbio->stripe_pages) * num_pages +
976 		       sizeof(*rbio->bio_pages) * num_pages +
977 		       sizeof(*rbio->finish_pointers) * real_stripes +
978 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
979 		       sizeof(*rbio->finish_pbitmap) *
980 				BITS_TO_LONGS(stripe_npages),
981 		       GFP_NOFS);
982 	if (!rbio)
983 		return ERR_PTR(-ENOMEM);
984 
985 	bio_list_init(&rbio->bio_list);
986 	INIT_LIST_HEAD(&rbio->plug_list);
987 	spin_lock_init(&rbio->bio_list_lock);
988 	INIT_LIST_HEAD(&rbio->stripe_cache);
989 	INIT_LIST_HEAD(&rbio->hash_list);
990 	rbio->bbio = bbio;
991 	rbio->fs_info = fs_info;
992 	rbio->stripe_len = stripe_len;
993 	rbio->nr_pages = num_pages;
994 	rbio->real_stripes = real_stripes;
995 	rbio->stripe_npages = stripe_npages;
996 	rbio->faila = -1;
997 	rbio->failb = -1;
998 	refcount_set(&rbio->refs, 1);
999 	atomic_set(&rbio->error, 0);
1000 	atomic_set(&rbio->stripes_pending, 0);
1001 
1002 	/*
1003 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1004 	 * memory we allocated past the end of the rbio
1005 	 */
1006 	p = rbio + 1;
1007 #define CONSUME_ALLOC(ptr, count)	do {				\
1008 		ptr = p;						\
1009 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1010 	} while (0)
1011 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1012 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1013 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1014 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1015 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1016 #undef  CONSUME_ALLOC
1017 
1018 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1019 		nr_data = real_stripes - 1;
1020 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1021 		nr_data = real_stripes - 2;
1022 	else
1023 		BUG();
1024 
1025 	rbio->nr_data = nr_data;
1026 	return rbio;
1027 }
1028 
1029 /* allocate pages for all the stripes in the bio, including parity */
1030 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1031 {
1032 	int i;
1033 	struct page *page;
1034 
1035 	for (i = 0; i < rbio->nr_pages; i++) {
1036 		if (rbio->stripe_pages[i])
1037 			continue;
1038 		page = alloc_page(GFP_NOFS);
1039 		if (!page)
1040 			return -ENOMEM;
1041 		rbio->stripe_pages[i] = page;
1042 	}
1043 	return 0;
1044 }
1045 
1046 /* only allocate pages for p/q stripes */
1047 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1048 {
1049 	int i;
1050 	struct page *page;
1051 
1052 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1053 
1054 	for (; i < rbio->nr_pages; i++) {
1055 		if (rbio->stripe_pages[i])
1056 			continue;
1057 		page = alloc_page(GFP_NOFS);
1058 		if (!page)
1059 			return -ENOMEM;
1060 		rbio->stripe_pages[i] = page;
1061 	}
1062 	return 0;
1063 }
1064 
1065 /*
1066  * add a single page from a specific stripe into our list of bios for IO
1067  * this will try to merge into existing bios if possible, and returns
1068  * zero if all went well.
1069  */
1070 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1071 			    struct bio_list *bio_list,
1072 			    struct page *page,
1073 			    int stripe_nr,
1074 			    unsigned long page_index,
1075 			    unsigned long bio_max_len)
1076 {
1077 	struct bio *last = bio_list->tail;
1078 	int ret;
1079 	struct bio *bio;
1080 	struct btrfs_bio_stripe *stripe;
1081 	u64 disk_start;
1082 
1083 	stripe = &rbio->bbio->stripes[stripe_nr];
1084 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1085 
1086 	/* if the device is missing, just fail this stripe */
1087 	if (!stripe->dev->bdev)
1088 		return fail_rbio_index(rbio, stripe_nr);
1089 
1090 	/* see if we can add this page onto our existing bio */
1091 	if (last) {
1092 		u64 last_end = last->bi_iter.bi_sector << 9;
1093 		last_end += last->bi_iter.bi_size;
1094 
1095 		/*
1096 		 * we can't merge these if they are from different
1097 		 * devices or if they are not contiguous
1098 		 */
1099 		if (last_end == disk_start && !last->bi_status &&
1100 		    last->bi_bdev == stripe->dev->bdev) {
1101 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1102 			if (ret == PAGE_SIZE)
1103 				return 0;
1104 		}
1105 	}
1106 
1107 	/* put a new bio on the list */
1108 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1109 	btrfs_io_bio(bio)->device = stripe->dev;
1110 	bio->bi_iter.bi_size = 0;
1111 	bio_set_dev(bio, stripe->dev->bdev);
1112 	bio->bi_iter.bi_sector = disk_start >> 9;
1113 
1114 	bio_add_page(bio, page, PAGE_SIZE, 0);
1115 	bio_list_add(bio_list, bio);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * while we're doing the read/modify/write cycle, we could
1121  * have errors in reading pages off the disk.  This checks
1122  * for errors and if we're not able to read the page it'll
1123  * trigger parity reconstruction.  The rmw will be finished
1124  * after we've reconstructed the failed stripes
1125  */
1126 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127 {
1128 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 		__raid56_parity_recover(rbio);
1131 	} else {
1132 		finish_rmw(rbio);
1133 	}
1134 }
1135 
1136 /*
1137  * helper function to walk our bio list and populate the bio_pages array with
1138  * the result.  This seems expensive, but it is faster than constantly
1139  * searching through the bio list as we setup the IO in finish_rmw or stripe
1140  * reconstruction.
1141  *
1142  * This must be called before you trust the answers from page_in_rbio
1143  */
1144 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145 {
1146 	struct bio *bio;
1147 	u64 start;
1148 	unsigned long stripe_offset;
1149 	unsigned long page_index;
1150 
1151 	spin_lock_irq(&rbio->bio_list_lock);
1152 	bio_list_for_each(bio, &rbio->bio_list) {
1153 		struct bio_vec bvec;
1154 		struct bvec_iter iter;
1155 		int i = 0;
1156 
1157 		start = bio->bi_iter.bi_sector << 9;
1158 		stripe_offset = start - rbio->bbio->raid_map[0];
1159 		page_index = stripe_offset >> PAGE_SHIFT;
1160 
1161 		if (bio_flagged(bio, BIO_CLONED))
1162 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1163 
1164 		bio_for_each_segment(bvec, bio, iter) {
1165 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1166 			i++;
1167 		}
1168 	}
1169 	spin_unlock_irq(&rbio->bio_list_lock);
1170 }
1171 
1172 /*
1173  * this is called from one of two situations.  We either
1174  * have a full stripe from the higher layers, or we've read all
1175  * the missing bits off disk.
1176  *
1177  * This will calculate the parity and then send down any
1178  * changed blocks.
1179  */
1180 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1181 {
1182 	struct btrfs_bio *bbio = rbio->bbio;
1183 	void **pointers = rbio->finish_pointers;
1184 	int nr_data = rbio->nr_data;
1185 	int stripe;
1186 	int pagenr;
1187 	bool has_qstripe;
1188 	struct bio_list bio_list;
1189 	struct bio *bio;
1190 	int ret;
1191 
1192 	bio_list_init(&bio_list);
1193 
1194 	if (rbio->real_stripes - rbio->nr_data == 1)
1195 		has_qstripe = false;
1196 	else if (rbio->real_stripes - rbio->nr_data == 2)
1197 		has_qstripe = true;
1198 	else
1199 		BUG();
1200 
1201 	/* at this point we either have a full stripe,
1202 	 * or we've read the full stripe from the drive.
1203 	 * recalculate the parity and write the new results.
1204 	 *
1205 	 * We're not allowed to add any new bios to the
1206 	 * bio list here, anyone else that wants to
1207 	 * change this stripe needs to do their own rmw.
1208 	 */
1209 	spin_lock_irq(&rbio->bio_list_lock);
1210 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1211 	spin_unlock_irq(&rbio->bio_list_lock);
1212 
1213 	atomic_set(&rbio->error, 0);
1214 
1215 	/*
1216 	 * now that we've set rmw_locked, run through the
1217 	 * bio list one last time and map the page pointers
1218 	 *
1219 	 * We don't cache full rbios because we're assuming
1220 	 * the higher layers are unlikely to use this area of
1221 	 * the disk again soon.  If they do use it again,
1222 	 * hopefully they will send another full bio.
1223 	 */
1224 	index_rbio_pages(rbio);
1225 	if (!rbio_is_full(rbio))
1226 		cache_rbio_pages(rbio);
1227 	else
1228 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1229 
1230 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1231 		struct page *p;
1232 		/* first collect one page from each data stripe */
1233 		for (stripe = 0; stripe < nr_data; stripe++) {
1234 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1235 			pointers[stripe] = kmap_local_page(p);
1236 		}
1237 
1238 		/* then add the parity stripe */
1239 		p = rbio_pstripe_page(rbio, pagenr);
1240 		SetPageUptodate(p);
1241 		pointers[stripe++] = kmap_local_page(p);
1242 
1243 		if (has_qstripe) {
1244 
1245 			/*
1246 			 * raid6, add the qstripe and call the
1247 			 * library function to fill in our p/q
1248 			 */
1249 			p = rbio_qstripe_page(rbio, pagenr);
1250 			SetPageUptodate(p);
1251 			pointers[stripe++] = kmap_local_page(p);
1252 
1253 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1254 						pointers);
1255 		} else {
1256 			/* raid5 */
1257 			copy_page(pointers[nr_data], pointers[0]);
1258 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1259 		}
1260 		for (stripe = stripe - 1; stripe >= 0; stripe--)
1261 			kunmap_local(pointers[stripe]);
1262 	}
1263 
1264 	/*
1265 	 * time to start writing.  Make bios for everything from the
1266 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267 	 * everything else.
1268 	 */
1269 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271 			struct page *page;
1272 			if (stripe < rbio->nr_data) {
1273 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 				if (!page)
1275 					continue;
1276 			} else {
1277 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278 			}
1279 
1280 			ret = rbio_add_io_page(rbio, &bio_list,
1281 				       page, stripe, pagenr, rbio->stripe_len);
1282 			if (ret)
1283 				goto cleanup;
1284 		}
1285 	}
1286 
1287 	if (likely(!bbio->num_tgtdevs))
1288 		goto write_data;
1289 
1290 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291 		if (!bbio->tgtdev_map[stripe])
1292 			continue;
1293 
1294 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295 			struct page *page;
1296 			if (stripe < rbio->nr_data) {
1297 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 				if (!page)
1299 					continue;
1300 			} else {
1301 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302 			}
1303 
1304 			ret = rbio_add_io_page(rbio, &bio_list, page,
1305 					       rbio->bbio->tgtdev_map[stripe],
1306 					       pagenr, rbio->stripe_len);
1307 			if (ret)
1308 				goto cleanup;
1309 		}
1310 	}
1311 
1312 write_data:
1313 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315 
1316 	while ((bio = bio_list_pop(&bio_list))) {
1317 		bio->bi_private = rbio;
1318 		bio->bi_end_io = raid_write_end_io;
1319 		bio->bi_opf = REQ_OP_WRITE;
1320 
1321 		submit_bio(bio);
1322 	}
1323 	return;
1324 
1325 cleanup:
1326 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1327 
1328 	while ((bio = bio_list_pop(&bio_list)))
1329 		bio_put(bio);
1330 }
1331 
1332 /*
1333  * helper to find the stripe number for a given bio.  Used to figure out which
1334  * stripe has failed.  This expects the bio to correspond to a physical disk,
1335  * so it looks up based on physical sector numbers.
1336  */
1337 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 			   struct bio *bio)
1339 {
1340 	u64 physical = bio->bi_iter.bi_sector;
1341 	int i;
1342 	struct btrfs_bio_stripe *stripe;
1343 
1344 	physical <<= 9;
1345 
1346 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 		stripe = &rbio->bbio->stripes[i];
1348 		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1349 		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
1350 			return i;
1351 		}
1352 	}
1353 	return -1;
1354 }
1355 
1356 /*
1357  * helper to find the stripe number for a given
1358  * bio (before mapping).  Used to figure out which stripe has
1359  * failed.  This looks up based on logical block numbers.
1360  */
1361 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362 				   struct bio *bio)
1363 {
1364 	u64 logical = bio->bi_iter.bi_sector << 9;
1365 	int i;
1366 
1367 	for (i = 0; i < rbio->nr_data; i++) {
1368 		u64 stripe_start = rbio->bbio->raid_map[i];
1369 
1370 		if (in_range(logical, stripe_start, rbio->stripe_len))
1371 			return i;
1372 	}
1373 	return -1;
1374 }
1375 
1376 /*
1377  * returns -EIO if we had too many failures
1378  */
1379 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1380 {
1381 	unsigned long flags;
1382 	int ret = 0;
1383 
1384 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1385 
1386 	/* we already know this stripe is bad, move on */
1387 	if (rbio->faila == failed || rbio->failb == failed)
1388 		goto out;
1389 
1390 	if (rbio->faila == -1) {
1391 		/* first failure on this rbio */
1392 		rbio->faila = failed;
1393 		atomic_inc(&rbio->error);
1394 	} else if (rbio->failb == -1) {
1395 		/* second failure on this rbio */
1396 		rbio->failb = failed;
1397 		atomic_inc(&rbio->error);
1398 	} else {
1399 		ret = -EIO;
1400 	}
1401 out:
1402 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1403 
1404 	return ret;
1405 }
1406 
1407 /*
1408  * helper to fail a stripe based on a physical disk
1409  * bio.
1410  */
1411 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1412 			   struct bio *bio)
1413 {
1414 	int failed = find_bio_stripe(rbio, bio);
1415 
1416 	if (failed < 0)
1417 		return -EIO;
1418 
1419 	return fail_rbio_index(rbio, failed);
1420 }
1421 
1422 /*
1423  * this sets each page in the bio uptodate.  It should only be used on private
1424  * rbio pages, nothing that comes in from the higher layers
1425  */
1426 static void set_bio_pages_uptodate(struct bio *bio)
1427 {
1428 	struct bio_vec *bvec;
1429 	struct bvec_iter_all iter_all;
1430 
1431 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1432 
1433 	bio_for_each_segment_all(bvec, bio, iter_all)
1434 		SetPageUptodate(bvec->bv_page);
1435 }
1436 
1437 /*
1438  * end io for the read phase of the rmw cycle.  All the bios here are physical
1439  * stripe bios we've read from the disk so we can recalculate the parity of the
1440  * stripe.
1441  *
1442  * This will usually kick off finish_rmw once all the bios are read in, but it
1443  * may trigger parity reconstruction if we had any errors along the way
1444  */
1445 static void raid_rmw_end_io(struct bio *bio)
1446 {
1447 	struct btrfs_raid_bio *rbio = bio->bi_private;
1448 
1449 	if (bio->bi_status)
1450 		fail_bio_stripe(rbio, bio);
1451 	else
1452 		set_bio_pages_uptodate(bio);
1453 
1454 	bio_put(bio);
1455 
1456 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1457 		return;
1458 
1459 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1460 		goto cleanup;
1461 
1462 	/*
1463 	 * this will normally call finish_rmw to start our write
1464 	 * but if there are any failed stripes we'll reconstruct
1465 	 * from parity first
1466 	 */
1467 	validate_rbio_for_rmw(rbio);
1468 	return;
1469 
1470 cleanup:
1471 
1472 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1473 }
1474 
1475 /*
1476  * the stripe must be locked by the caller.  It will
1477  * unlock after all the writes are done
1478  */
1479 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1480 {
1481 	int bios_to_read = 0;
1482 	struct bio_list bio_list;
1483 	int ret;
1484 	int pagenr;
1485 	int stripe;
1486 	struct bio *bio;
1487 
1488 	bio_list_init(&bio_list);
1489 
1490 	ret = alloc_rbio_pages(rbio);
1491 	if (ret)
1492 		goto cleanup;
1493 
1494 	index_rbio_pages(rbio);
1495 
1496 	atomic_set(&rbio->error, 0);
1497 	/*
1498 	 * build a list of bios to read all the missing parts of this
1499 	 * stripe
1500 	 */
1501 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1502 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1503 			struct page *page;
1504 			/*
1505 			 * we want to find all the pages missing from
1506 			 * the rbio and read them from the disk.  If
1507 			 * page_in_rbio finds a page in the bio list
1508 			 * we don't need to read it off the stripe.
1509 			 */
1510 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1511 			if (page)
1512 				continue;
1513 
1514 			page = rbio_stripe_page(rbio, stripe, pagenr);
1515 			/*
1516 			 * the bio cache may have handed us an uptodate
1517 			 * page.  If so, be happy and use it
1518 			 */
1519 			if (PageUptodate(page))
1520 				continue;
1521 
1522 			ret = rbio_add_io_page(rbio, &bio_list, page,
1523 				       stripe, pagenr, rbio->stripe_len);
1524 			if (ret)
1525 				goto cleanup;
1526 		}
1527 	}
1528 
1529 	bios_to_read = bio_list_size(&bio_list);
1530 	if (!bios_to_read) {
1531 		/*
1532 		 * this can happen if others have merged with
1533 		 * us, it means there is nothing left to read.
1534 		 * But if there are missing devices it may not be
1535 		 * safe to do the full stripe write yet.
1536 		 */
1537 		goto finish;
1538 	}
1539 
1540 	/*
1541 	 * the bbio may be freed once we submit the last bio.  Make sure
1542 	 * not to touch it after that
1543 	 */
1544 	atomic_set(&rbio->stripes_pending, bios_to_read);
1545 	while ((bio = bio_list_pop(&bio_list))) {
1546 		bio->bi_private = rbio;
1547 		bio->bi_end_io = raid_rmw_end_io;
1548 		bio->bi_opf = REQ_OP_READ;
1549 
1550 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1551 
1552 		submit_bio(bio);
1553 	}
1554 	/* the actual write will happen once the reads are done */
1555 	return 0;
1556 
1557 cleanup:
1558 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1559 
1560 	while ((bio = bio_list_pop(&bio_list)))
1561 		bio_put(bio);
1562 
1563 	return -EIO;
1564 
1565 finish:
1566 	validate_rbio_for_rmw(rbio);
1567 	return 0;
1568 }
1569 
1570 /*
1571  * if the upper layers pass in a full stripe, we thank them by only allocating
1572  * enough pages to hold the parity, and sending it all down quickly.
1573  */
1574 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1575 {
1576 	int ret;
1577 
1578 	ret = alloc_rbio_parity_pages(rbio);
1579 	if (ret) {
1580 		__free_raid_bio(rbio);
1581 		return ret;
1582 	}
1583 
1584 	ret = lock_stripe_add(rbio);
1585 	if (ret == 0)
1586 		finish_rmw(rbio);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * partial stripe writes get handed over to async helpers.
1592  * We're really hoping to merge a few more writes into this
1593  * rbio before calculating new parity
1594  */
1595 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1596 {
1597 	int ret;
1598 
1599 	ret = lock_stripe_add(rbio);
1600 	if (ret == 0)
1601 		start_async_work(rbio, rmw_work);
1602 	return 0;
1603 }
1604 
1605 /*
1606  * sometimes while we were reading from the drive to
1607  * recalculate parity, enough new bios come into create
1608  * a full stripe.  So we do a check here to see if we can
1609  * go directly to finish_rmw
1610  */
1611 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1612 {
1613 	/* head off into rmw land if we don't have a full stripe */
1614 	if (!rbio_is_full(rbio))
1615 		return partial_stripe_write(rbio);
1616 	return full_stripe_write(rbio);
1617 }
1618 
1619 /*
1620  * We use plugging call backs to collect full stripes.
1621  * Any time we get a partial stripe write while plugged
1622  * we collect it into a list.  When the unplug comes down,
1623  * we sort the list by logical block number and merge
1624  * everything we can into the same rbios
1625  */
1626 struct btrfs_plug_cb {
1627 	struct blk_plug_cb cb;
1628 	struct btrfs_fs_info *info;
1629 	struct list_head rbio_list;
1630 	struct btrfs_work work;
1631 };
1632 
1633 /*
1634  * rbios on the plug list are sorted for easier merging.
1635  */
1636 static int plug_cmp(void *priv, const struct list_head *a,
1637 		    const struct list_head *b)
1638 {
1639 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1640 						       plug_list);
1641 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1642 						       plug_list);
1643 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1644 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1645 
1646 	if (a_sector < b_sector)
1647 		return -1;
1648 	if (a_sector > b_sector)
1649 		return 1;
1650 	return 0;
1651 }
1652 
1653 static void run_plug(struct btrfs_plug_cb *plug)
1654 {
1655 	struct btrfs_raid_bio *cur;
1656 	struct btrfs_raid_bio *last = NULL;
1657 
1658 	/*
1659 	 * sort our plug list then try to merge
1660 	 * everything we can in hopes of creating full
1661 	 * stripes.
1662 	 */
1663 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1664 	while (!list_empty(&plug->rbio_list)) {
1665 		cur = list_entry(plug->rbio_list.next,
1666 				 struct btrfs_raid_bio, plug_list);
1667 		list_del_init(&cur->plug_list);
1668 
1669 		if (rbio_is_full(cur)) {
1670 			int ret;
1671 
1672 			/* we have a full stripe, send it down */
1673 			ret = full_stripe_write(cur);
1674 			BUG_ON(ret);
1675 			continue;
1676 		}
1677 		if (last) {
1678 			if (rbio_can_merge(last, cur)) {
1679 				merge_rbio(last, cur);
1680 				__free_raid_bio(cur);
1681 				continue;
1682 
1683 			}
1684 			__raid56_parity_write(last);
1685 		}
1686 		last = cur;
1687 	}
1688 	if (last) {
1689 		__raid56_parity_write(last);
1690 	}
1691 	kfree(plug);
1692 }
1693 
1694 /*
1695  * if the unplug comes from schedule, we have to push the
1696  * work off to a helper thread
1697  */
1698 static void unplug_work(struct btrfs_work *work)
1699 {
1700 	struct btrfs_plug_cb *plug;
1701 	plug = container_of(work, struct btrfs_plug_cb, work);
1702 	run_plug(plug);
1703 }
1704 
1705 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1706 {
1707 	struct btrfs_plug_cb *plug;
1708 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1709 
1710 	if (from_schedule) {
1711 		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1712 		btrfs_queue_work(plug->info->rmw_workers,
1713 				 &plug->work);
1714 		return;
1715 	}
1716 	run_plug(plug);
1717 }
1718 
1719 /*
1720  * our main entry point for writes from the rest of the FS.
1721  */
1722 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1723 			struct btrfs_bio *bbio, u64 stripe_len)
1724 {
1725 	struct btrfs_raid_bio *rbio;
1726 	struct btrfs_plug_cb *plug = NULL;
1727 	struct blk_plug_cb *cb;
1728 	int ret;
1729 
1730 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1731 	if (IS_ERR(rbio)) {
1732 		btrfs_put_bbio(bbio);
1733 		return PTR_ERR(rbio);
1734 	}
1735 	bio_list_add(&rbio->bio_list, bio);
1736 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1737 	rbio->operation = BTRFS_RBIO_WRITE;
1738 
1739 	btrfs_bio_counter_inc_noblocked(fs_info);
1740 	rbio->generic_bio_cnt = 1;
1741 
1742 	/*
1743 	 * don't plug on full rbios, just get them out the door
1744 	 * as quickly as we can
1745 	 */
1746 	if (rbio_is_full(rbio)) {
1747 		ret = full_stripe_write(rbio);
1748 		if (ret)
1749 			btrfs_bio_counter_dec(fs_info);
1750 		return ret;
1751 	}
1752 
1753 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1754 	if (cb) {
1755 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1756 		if (!plug->info) {
1757 			plug->info = fs_info;
1758 			INIT_LIST_HEAD(&plug->rbio_list);
1759 		}
1760 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1761 		ret = 0;
1762 	} else {
1763 		ret = __raid56_parity_write(rbio);
1764 		if (ret)
1765 			btrfs_bio_counter_dec(fs_info);
1766 	}
1767 	return ret;
1768 }
1769 
1770 /*
1771  * all parity reconstruction happens here.  We've read in everything
1772  * we can find from the drives and this does the heavy lifting of
1773  * sorting the good from the bad.
1774  */
1775 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1776 {
1777 	int pagenr, stripe;
1778 	void **pointers;
1779 	void **unmap_array;
1780 	int faila = -1, failb = -1;
1781 	struct page *page;
1782 	blk_status_t err;
1783 	int i;
1784 
1785 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1786 	if (!pointers) {
1787 		err = BLK_STS_RESOURCE;
1788 		goto cleanup_io;
1789 	}
1790 
1791 	/*
1792 	 * Store copy of pointers that does not get reordered during
1793 	 * reconstruction so that kunmap_local works.
1794 	 */
1795 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1796 	if (!unmap_array) {
1797 		err = BLK_STS_RESOURCE;
1798 		goto cleanup_pointers;
1799 	}
1800 
1801 	faila = rbio->faila;
1802 	failb = rbio->failb;
1803 
1804 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1805 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1806 		spin_lock_irq(&rbio->bio_list_lock);
1807 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1808 		spin_unlock_irq(&rbio->bio_list_lock);
1809 	}
1810 
1811 	index_rbio_pages(rbio);
1812 
1813 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1814 		/*
1815 		 * Now we just use bitmap to mark the horizontal stripes in
1816 		 * which we have data when doing parity scrub.
1817 		 */
1818 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1819 		    !test_bit(pagenr, rbio->dbitmap))
1820 			continue;
1821 
1822 		/*
1823 		 * Setup our array of pointers with pages from each stripe
1824 		 *
1825 		 * NOTE: store a duplicate array of pointers to preserve the
1826 		 * pointer order
1827 		 */
1828 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1829 			/*
1830 			 * if we're rebuilding a read, we have to use
1831 			 * pages from the bio list
1832 			 */
1833 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1835 			    (stripe == faila || stripe == failb)) {
1836 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1837 			} else {
1838 				page = rbio_stripe_page(rbio, stripe, pagenr);
1839 			}
1840 			pointers[stripe] = kmap_local_page(page);
1841 			unmap_array[stripe] = pointers[stripe];
1842 		}
1843 
1844 		/* all raid6 handling here */
1845 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1846 			/*
1847 			 * single failure, rebuild from parity raid5
1848 			 * style
1849 			 */
1850 			if (failb < 0) {
1851 				if (faila == rbio->nr_data) {
1852 					/*
1853 					 * Just the P stripe has failed, without
1854 					 * a bad data or Q stripe.
1855 					 * TODO, we should redo the xor here.
1856 					 */
1857 					err = BLK_STS_IOERR;
1858 					goto cleanup;
1859 				}
1860 				/*
1861 				 * a single failure in raid6 is rebuilt
1862 				 * in the pstripe code below
1863 				 */
1864 				goto pstripe;
1865 			}
1866 
1867 			/* make sure our ps and qs are in order */
1868 			if (faila > failb)
1869 				swap(faila, failb);
1870 
1871 			/* if the q stripe is failed, do a pstripe reconstruction
1872 			 * from the xors.
1873 			 * If both the q stripe and the P stripe are failed, we're
1874 			 * here due to a crc mismatch and we can't give them the
1875 			 * data they want
1876 			 */
1877 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1878 				if (rbio->bbio->raid_map[faila] ==
1879 				    RAID5_P_STRIPE) {
1880 					err = BLK_STS_IOERR;
1881 					goto cleanup;
1882 				}
1883 				/*
1884 				 * otherwise we have one bad data stripe and
1885 				 * a good P stripe.  raid5!
1886 				 */
1887 				goto pstripe;
1888 			}
1889 
1890 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1891 				raid6_datap_recov(rbio->real_stripes,
1892 						  PAGE_SIZE, faila, pointers);
1893 			} else {
1894 				raid6_2data_recov(rbio->real_stripes,
1895 						  PAGE_SIZE, faila, failb,
1896 						  pointers);
1897 			}
1898 		} else {
1899 			void *p;
1900 
1901 			/* rebuild from P stripe here (raid5 or raid6) */
1902 			BUG_ON(failb != -1);
1903 pstripe:
1904 			/* Copy parity block into failed block to start with */
1905 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1906 
1907 			/* rearrange the pointer array */
1908 			p = pointers[faila];
1909 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1910 				pointers[stripe] = pointers[stripe + 1];
1911 			pointers[rbio->nr_data - 1] = p;
1912 
1913 			/* xor in the rest */
1914 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1915 		}
1916 		/* if we're doing this rebuild as part of an rmw, go through
1917 		 * and set all of our private rbio pages in the
1918 		 * failed stripes as uptodate.  This way finish_rmw will
1919 		 * know they can be trusted.  If this was a read reconstruction,
1920 		 * other endio functions will fiddle the uptodate bits
1921 		 */
1922 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1923 			for (i = 0;  i < rbio->stripe_npages; i++) {
1924 				if (faila != -1) {
1925 					page = rbio_stripe_page(rbio, faila, i);
1926 					SetPageUptodate(page);
1927 				}
1928 				if (failb != -1) {
1929 					page = rbio_stripe_page(rbio, failb, i);
1930 					SetPageUptodate(page);
1931 				}
1932 			}
1933 		}
1934 		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
1935 			kunmap_local(unmap_array[stripe]);
1936 	}
1937 
1938 	err = BLK_STS_OK;
1939 cleanup:
1940 	kfree(unmap_array);
1941 cleanup_pointers:
1942 	kfree(pointers);
1943 
1944 cleanup_io:
1945 	/*
1946 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1947 	 * valid rbio which is consistent with ondisk content, thus such a
1948 	 * valid rbio can be cached to avoid further disk reads.
1949 	 */
1950 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1951 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1952 		/*
1953 		 * - In case of two failures, where rbio->failb != -1:
1954 		 *
1955 		 *   Do not cache this rbio since the above read reconstruction
1956 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1957 		 *   changed some content of stripes which are not identical to
1958 		 *   on-disk content any more, otherwise, a later write/recover
1959 		 *   may steal stripe_pages from this rbio and end up with
1960 		 *   corruptions or rebuild failures.
1961 		 *
1962 		 * - In case of single failure, where rbio->failb == -1:
1963 		 *
1964 		 *   Cache this rbio iff the above read reconstruction is
1965 		 *   executed without problems.
1966 		 */
1967 		if (err == BLK_STS_OK && rbio->failb < 0)
1968 			cache_rbio_pages(rbio);
1969 		else
1970 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1971 
1972 		rbio_orig_end_io(rbio, err);
1973 	} else if (err == BLK_STS_OK) {
1974 		rbio->faila = -1;
1975 		rbio->failb = -1;
1976 
1977 		if (rbio->operation == BTRFS_RBIO_WRITE)
1978 			finish_rmw(rbio);
1979 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1980 			finish_parity_scrub(rbio, 0);
1981 		else
1982 			BUG();
1983 	} else {
1984 		rbio_orig_end_io(rbio, err);
1985 	}
1986 }
1987 
1988 /*
1989  * This is called only for stripes we've read from disk to
1990  * reconstruct the parity.
1991  */
1992 static void raid_recover_end_io(struct bio *bio)
1993 {
1994 	struct btrfs_raid_bio *rbio = bio->bi_private;
1995 
1996 	/*
1997 	 * we only read stripe pages off the disk, set them
1998 	 * up to date if there were no errors
1999 	 */
2000 	if (bio->bi_status)
2001 		fail_bio_stripe(rbio, bio);
2002 	else
2003 		set_bio_pages_uptodate(bio);
2004 	bio_put(bio);
2005 
2006 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2007 		return;
2008 
2009 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2010 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2011 	else
2012 		__raid_recover_end_io(rbio);
2013 }
2014 
2015 /*
2016  * reads everything we need off the disk to reconstruct
2017  * the parity. endio handlers trigger final reconstruction
2018  * when the IO is done.
2019  *
2020  * This is used both for reads from the higher layers and for
2021  * parity construction required to finish a rmw cycle.
2022  */
2023 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2024 {
2025 	int bios_to_read = 0;
2026 	struct bio_list bio_list;
2027 	int ret;
2028 	int pagenr;
2029 	int stripe;
2030 	struct bio *bio;
2031 
2032 	bio_list_init(&bio_list);
2033 
2034 	ret = alloc_rbio_pages(rbio);
2035 	if (ret)
2036 		goto cleanup;
2037 
2038 	atomic_set(&rbio->error, 0);
2039 
2040 	/*
2041 	 * read everything that hasn't failed.  Thanks to the
2042 	 * stripe cache, it is possible that some or all of these
2043 	 * pages are going to be uptodate.
2044 	 */
2045 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2046 		if (rbio->faila == stripe || rbio->failb == stripe) {
2047 			atomic_inc(&rbio->error);
2048 			continue;
2049 		}
2050 
2051 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2052 			struct page *p;
2053 
2054 			/*
2055 			 * the rmw code may have already read this
2056 			 * page in
2057 			 */
2058 			p = rbio_stripe_page(rbio, stripe, pagenr);
2059 			if (PageUptodate(p))
2060 				continue;
2061 
2062 			ret = rbio_add_io_page(rbio, &bio_list,
2063 				       rbio_stripe_page(rbio, stripe, pagenr),
2064 				       stripe, pagenr, rbio->stripe_len);
2065 			if (ret < 0)
2066 				goto cleanup;
2067 		}
2068 	}
2069 
2070 	bios_to_read = bio_list_size(&bio_list);
2071 	if (!bios_to_read) {
2072 		/*
2073 		 * we might have no bios to read just because the pages
2074 		 * were up to date, or we might have no bios to read because
2075 		 * the devices were gone.
2076 		 */
2077 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2078 			__raid_recover_end_io(rbio);
2079 			return 0;
2080 		} else {
2081 			goto cleanup;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * the bbio may be freed once we submit the last bio.  Make sure
2087 	 * not to touch it after that
2088 	 */
2089 	atomic_set(&rbio->stripes_pending, bios_to_read);
2090 	while ((bio = bio_list_pop(&bio_list))) {
2091 		bio->bi_private = rbio;
2092 		bio->bi_end_io = raid_recover_end_io;
2093 		bio->bi_opf = REQ_OP_READ;
2094 
2095 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2096 
2097 		submit_bio(bio);
2098 	}
2099 
2100 	return 0;
2101 
2102 cleanup:
2103 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2104 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2105 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2106 
2107 	while ((bio = bio_list_pop(&bio_list)))
2108 		bio_put(bio);
2109 
2110 	return -EIO;
2111 }
2112 
2113 /*
2114  * the main entry point for reads from the higher layers.  This
2115  * is really only called when the normal read path had a failure,
2116  * so we assume the bio they send down corresponds to a failed part
2117  * of the drive.
2118  */
2119 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2120 			  struct btrfs_bio *bbio, u64 stripe_len,
2121 			  int mirror_num, int generic_io)
2122 {
2123 	struct btrfs_raid_bio *rbio;
2124 	int ret;
2125 
2126 	if (generic_io) {
2127 		ASSERT(bbio->mirror_num == mirror_num);
2128 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2129 	}
2130 
2131 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2132 	if (IS_ERR(rbio)) {
2133 		if (generic_io)
2134 			btrfs_put_bbio(bbio);
2135 		return PTR_ERR(rbio);
2136 	}
2137 
2138 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2139 	bio_list_add(&rbio->bio_list, bio);
2140 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2141 
2142 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2143 	if (rbio->faila == -1) {
2144 		btrfs_warn(fs_info,
2145 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146 			   __func__, bio->bi_iter.bi_sector << 9,
2147 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2148 		if (generic_io)
2149 			btrfs_put_bbio(bbio);
2150 		kfree(rbio);
2151 		return -EIO;
2152 	}
2153 
2154 	if (generic_io) {
2155 		btrfs_bio_counter_inc_noblocked(fs_info);
2156 		rbio->generic_bio_cnt = 1;
2157 	} else {
2158 		btrfs_get_bbio(bbio);
2159 	}
2160 
2161 	/*
2162 	 * Loop retry:
2163 	 * for 'mirror == 2', reconstruct from all other stripes.
2164 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2165 	 */
2166 	if (mirror_num > 2) {
2167 		/*
2168 		 * 'mirror == 3' is to fail the p stripe and
2169 		 * reconstruct from the q stripe.  'mirror > 3' is to
2170 		 * fail a data stripe and reconstruct from p+q stripe.
2171 		 */
2172 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2173 		ASSERT(rbio->failb > 0);
2174 		if (rbio->failb <= rbio->faila)
2175 			rbio->failb--;
2176 	}
2177 
2178 	ret = lock_stripe_add(rbio);
2179 
2180 	/*
2181 	 * __raid56_parity_recover will end the bio with
2182 	 * any errors it hits.  We don't want to return
2183 	 * its error value up the stack because our caller
2184 	 * will end up calling bio_endio with any nonzero
2185 	 * return
2186 	 */
2187 	if (ret == 0)
2188 		__raid56_parity_recover(rbio);
2189 	/*
2190 	 * our rbio has been added to the list of
2191 	 * rbios that will be handled after the
2192 	 * currently lock owner is done
2193 	 */
2194 	return 0;
2195 
2196 }
2197 
2198 static void rmw_work(struct btrfs_work *work)
2199 {
2200 	struct btrfs_raid_bio *rbio;
2201 
2202 	rbio = container_of(work, struct btrfs_raid_bio, work);
2203 	raid56_rmw_stripe(rbio);
2204 }
2205 
2206 static void read_rebuild_work(struct btrfs_work *work)
2207 {
2208 	struct btrfs_raid_bio *rbio;
2209 
2210 	rbio = container_of(work, struct btrfs_raid_bio, work);
2211 	__raid56_parity_recover(rbio);
2212 }
2213 
2214 /*
2215  * The following code is used to scrub/replace the parity stripe
2216  *
2217  * Caller must have already increased bio_counter for getting @bbio.
2218  *
2219  * Note: We need make sure all the pages that add into the scrub/replace
2220  * raid bio are correct and not be changed during the scrub/replace. That
2221  * is those pages just hold metadata or file data with checksum.
2222  */
2223 
2224 struct btrfs_raid_bio *
2225 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2226 			       struct btrfs_bio *bbio, u64 stripe_len,
2227 			       struct btrfs_device *scrub_dev,
2228 			       unsigned long *dbitmap, int stripe_nsectors)
2229 {
2230 	struct btrfs_raid_bio *rbio;
2231 	int i;
2232 
2233 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2234 	if (IS_ERR(rbio))
2235 		return NULL;
2236 	bio_list_add(&rbio->bio_list, bio);
2237 	/*
2238 	 * This is a special bio which is used to hold the completion handler
2239 	 * and make the scrub rbio is similar to the other types
2240 	 */
2241 	ASSERT(!bio->bi_iter.bi_size);
2242 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2243 
2244 	/*
2245 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2246 	 * to the end position, so this search can start from the first parity
2247 	 * stripe.
2248 	 */
2249 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2250 		if (bbio->stripes[i].dev == scrub_dev) {
2251 			rbio->scrubp = i;
2252 			break;
2253 		}
2254 	}
2255 	ASSERT(i < rbio->real_stripes);
2256 
2257 	/* Now we just support the sectorsize equals to page size */
2258 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2259 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2260 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2261 
2262 	/*
2263 	 * We have already increased bio_counter when getting bbio, record it
2264 	 * so we can free it at rbio_orig_end_io().
2265 	 */
2266 	rbio->generic_bio_cnt = 1;
2267 
2268 	return rbio;
2269 }
2270 
2271 /* Used for both parity scrub and missing. */
2272 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2273 			    u64 logical)
2274 {
2275 	int stripe_offset;
2276 	int index;
2277 
2278 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2279 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2280 				rbio->stripe_len * rbio->nr_data);
2281 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2282 	index = stripe_offset >> PAGE_SHIFT;
2283 	rbio->bio_pages[index] = page;
2284 }
2285 
2286 /*
2287  * We just scrub the parity that we have correct data on the same horizontal,
2288  * so we needn't allocate all pages for all the stripes.
2289  */
2290 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2291 {
2292 	int i;
2293 	int bit;
2294 	int index;
2295 	struct page *page;
2296 
2297 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2298 		for (i = 0; i < rbio->real_stripes; i++) {
2299 			index = i * rbio->stripe_npages + bit;
2300 			if (rbio->stripe_pages[index])
2301 				continue;
2302 
2303 			page = alloc_page(GFP_NOFS);
2304 			if (!page)
2305 				return -ENOMEM;
2306 			rbio->stripe_pages[index] = page;
2307 		}
2308 	}
2309 	return 0;
2310 }
2311 
2312 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2313 					 int need_check)
2314 {
2315 	struct btrfs_bio *bbio = rbio->bbio;
2316 	void **pointers = rbio->finish_pointers;
2317 	unsigned long *pbitmap = rbio->finish_pbitmap;
2318 	int nr_data = rbio->nr_data;
2319 	int stripe;
2320 	int pagenr;
2321 	bool has_qstripe;
2322 	struct page *p_page = NULL;
2323 	struct page *q_page = NULL;
2324 	struct bio_list bio_list;
2325 	struct bio *bio;
2326 	int is_replace = 0;
2327 	int ret;
2328 
2329 	bio_list_init(&bio_list);
2330 
2331 	if (rbio->real_stripes - rbio->nr_data == 1)
2332 		has_qstripe = false;
2333 	else if (rbio->real_stripes - rbio->nr_data == 2)
2334 		has_qstripe = true;
2335 	else
2336 		BUG();
2337 
2338 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2339 		is_replace = 1;
2340 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2341 	}
2342 
2343 	/*
2344 	 * Because the higher layers(scrubber) are unlikely to
2345 	 * use this area of the disk again soon, so don't cache
2346 	 * it.
2347 	 */
2348 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2349 
2350 	if (!need_check)
2351 		goto writeback;
2352 
2353 	p_page = alloc_page(GFP_NOFS);
2354 	if (!p_page)
2355 		goto cleanup;
2356 	SetPageUptodate(p_page);
2357 
2358 	if (has_qstripe) {
2359 		/* RAID6, allocate and map temp space for the Q stripe */
2360 		q_page = alloc_page(GFP_NOFS);
2361 		if (!q_page) {
2362 			__free_page(p_page);
2363 			goto cleanup;
2364 		}
2365 		SetPageUptodate(q_page);
2366 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_page);
2367 	}
2368 
2369 	atomic_set(&rbio->error, 0);
2370 
2371 	/* Map the parity stripe just once */
2372 	pointers[nr_data] = kmap_local_page(p_page);
2373 
2374 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2375 		struct page *p;
2376 		void *parity;
2377 		/* first collect one page from each data stripe */
2378 		for (stripe = 0; stripe < nr_data; stripe++) {
2379 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2380 			pointers[stripe] = kmap_local_page(p);
2381 		}
2382 
2383 		if (has_qstripe) {
2384 			/* RAID6, call the library function to fill in our P/Q */
2385 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2386 						pointers);
2387 		} else {
2388 			/* raid5 */
2389 			copy_page(pointers[nr_data], pointers[0]);
2390 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2391 		}
2392 
2393 		/* Check scrubbing parity and repair it */
2394 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2395 		parity = kmap_local_page(p);
2396 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2397 			copy_page(parity, pointers[rbio->scrubp]);
2398 		else
2399 			/* Parity is right, needn't writeback */
2400 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2401 		kunmap_local(parity);
2402 
2403 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2404 			kunmap_local(pointers[stripe]);
2405 	}
2406 
2407 	kunmap_local(pointers[nr_data]);
2408 	__free_page(p_page);
2409 	if (q_page) {
2410 		kunmap_local(pointers[rbio->real_stripes - 1]);
2411 		__free_page(q_page);
2412 	}
2413 
2414 writeback:
2415 	/*
2416 	 * time to start writing.  Make bios for everything from the
2417 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2418 	 * everything else.
2419 	 */
2420 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2421 		struct page *page;
2422 
2423 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2424 		ret = rbio_add_io_page(rbio, &bio_list,
2425 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2426 		if (ret)
2427 			goto cleanup;
2428 	}
2429 
2430 	if (!is_replace)
2431 		goto submit_write;
2432 
2433 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2434 		struct page *page;
2435 
2436 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437 		ret = rbio_add_io_page(rbio, &bio_list, page,
2438 				       bbio->tgtdev_map[rbio->scrubp],
2439 				       pagenr, rbio->stripe_len);
2440 		if (ret)
2441 			goto cleanup;
2442 	}
2443 
2444 submit_write:
2445 	nr_data = bio_list_size(&bio_list);
2446 	if (!nr_data) {
2447 		/* Every parity is right */
2448 		rbio_orig_end_io(rbio, BLK_STS_OK);
2449 		return;
2450 	}
2451 
2452 	atomic_set(&rbio->stripes_pending, nr_data);
2453 
2454 	while ((bio = bio_list_pop(&bio_list))) {
2455 		bio->bi_private = rbio;
2456 		bio->bi_end_io = raid_write_end_io;
2457 		bio->bi_opf = REQ_OP_WRITE;
2458 
2459 		submit_bio(bio);
2460 	}
2461 	return;
2462 
2463 cleanup:
2464 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2465 
2466 	while ((bio = bio_list_pop(&bio_list)))
2467 		bio_put(bio);
2468 }
2469 
2470 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2471 {
2472 	if (stripe >= 0 && stripe < rbio->nr_data)
2473 		return 1;
2474 	return 0;
2475 }
2476 
2477 /*
2478  * While we're doing the parity check and repair, we could have errors
2479  * in reading pages off the disk.  This checks for errors and if we're
2480  * not able to read the page it'll trigger parity reconstruction.  The
2481  * parity scrub will be finished after we've reconstructed the failed
2482  * stripes
2483  */
2484 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2485 {
2486 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2487 		goto cleanup;
2488 
2489 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2490 		int dfail = 0, failp = -1;
2491 
2492 		if (is_data_stripe(rbio, rbio->faila))
2493 			dfail++;
2494 		else if (is_parity_stripe(rbio->faila))
2495 			failp = rbio->faila;
2496 
2497 		if (is_data_stripe(rbio, rbio->failb))
2498 			dfail++;
2499 		else if (is_parity_stripe(rbio->failb))
2500 			failp = rbio->failb;
2501 
2502 		/*
2503 		 * Because we can not use a scrubbing parity to repair
2504 		 * the data, so the capability of the repair is declined.
2505 		 * (In the case of RAID5, we can not repair anything)
2506 		 */
2507 		if (dfail > rbio->bbio->max_errors - 1)
2508 			goto cleanup;
2509 
2510 		/*
2511 		 * If all data is good, only parity is correctly, just
2512 		 * repair the parity.
2513 		 */
2514 		if (dfail == 0) {
2515 			finish_parity_scrub(rbio, 0);
2516 			return;
2517 		}
2518 
2519 		/*
2520 		 * Here means we got one corrupted data stripe and one
2521 		 * corrupted parity on RAID6, if the corrupted parity
2522 		 * is scrubbing parity, luckily, use the other one to repair
2523 		 * the data, or we can not repair the data stripe.
2524 		 */
2525 		if (failp != rbio->scrubp)
2526 			goto cleanup;
2527 
2528 		__raid_recover_end_io(rbio);
2529 	} else {
2530 		finish_parity_scrub(rbio, 1);
2531 	}
2532 	return;
2533 
2534 cleanup:
2535 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2536 }
2537 
2538 /*
2539  * end io for the read phase of the rmw cycle.  All the bios here are physical
2540  * stripe bios we've read from the disk so we can recalculate the parity of the
2541  * stripe.
2542  *
2543  * This will usually kick off finish_rmw once all the bios are read in, but it
2544  * may trigger parity reconstruction if we had any errors along the way
2545  */
2546 static void raid56_parity_scrub_end_io(struct bio *bio)
2547 {
2548 	struct btrfs_raid_bio *rbio = bio->bi_private;
2549 
2550 	if (bio->bi_status)
2551 		fail_bio_stripe(rbio, bio);
2552 	else
2553 		set_bio_pages_uptodate(bio);
2554 
2555 	bio_put(bio);
2556 
2557 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2558 		return;
2559 
2560 	/*
2561 	 * this will normally call finish_rmw to start our write
2562 	 * but if there are any failed stripes we'll reconstruct
2563 	 * from parity first
2564 	 */
2565 	validate_rbio_for_parity_scrub(rbio);
2566 }
2567 
2568 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2569 {
2570 	int bios_to_read = 0;
2571 	struct bio_list bio_list;
2572 	int ret;
2573 	int pagenr;
2574 	int stripe;
2575 	struct bio *bio;
2576 
2577 	bio_list_init(&bio_list);
2578 
2579 	ret = alloc_rbio_essential_pages(rbio);
2580 	if (ret)
2581 		goto cleanup;
2582 
2583 	atomic_set(&rbio->error, 0);
2584 	/*
2585 	 * build a list of bios to read all the missing parts of this
2586 	 * stripe
2587 	 */
2588 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2589 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2590 			struct page *page;
2591 			/*
2592 			 * we want to find all the pages missing from
2593 			 * the rbio and read them from the disk.  If
2594 			 * page_in_rbio finds a page in the bio list
2595 			 * we don't need to read it off the stripe.
2596 			 */
2597 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2598 			if (page)
2599 				continue;
2600 
2601 			page = rbio_stripe_page(rbio, stripe, pagenr);
2602 			/*
2603 			 * the bio cache may have handed us an uptodate
2604 			 * page.  If so, be happy and use it
2605 			 */
2606 			if (PageUptodate(page))
2607 				continue;
2608 
2609 			ret = rbio_add_io_page(rbio, &bio_list, page,
2610 				       stripe, pagenr, rbio->stripe_len);
2611 			if (ret)
2612 				goto cleanup;
2613 		}
2614 	}
2615 
2616 	bios_to_read = bio_list_size(&bio_list);
2617 	if (!bios_to_read) {
2618 		/*
2619 		 * this can happen if others have merged with
2620 		 * us, it means there is nothing left to read.
2621 		 * But if there are missing devices it may not be
2622 		 * safe to do the full stripe write yet.
2623 		 */
2624 		goto finish;
2625 	}
2626 
2627 	/*
2628 	 * the bbio may be freed once we submit the last bio.  Make sure
2629 	 * not to touch it after that
2630 	 */
2631 	atomic_set(&rbio->stripes_pending, bios_to_read);
2632 	while ((bio = bio_list_pop(&bio_list))) {
2633 		bio->bi_private = rbio;
2634 		bio->bi_end_io = raid56_parity_scrub_end_io;
2635 		bio->bi_opf = REQ_OP_READ;
2636 
2637 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2638 
2639 		submit_bio(bio);
2640 	}
2641 	/* the actual write will happen once the reads are done */
2642 	return;
2643 
2644 cleanup:
2645 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2646 
2647 	while ((bio = bio_list_pop(&bio_list)))
2648 		bio_put(bio);
2649 
2650 	return;
2651 
2652 finish:
2653 	validate_rbio_for_parity_scrub(rbio);
2654 }
2655 
2656 static void scrub_parity_work(struct btrfs_work *work)
2657 {
2658 	struct btrfs_raid_bio *rbio;
2659 
2660 	rbio = container_of(work, struct btrfs_raid_bio, work);
2661 	raid56_parity_scrub_stripe(rbio);
2662 }
2663 
2664 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2665 {
2666 	if (!lock_stripe_add(rbio))
2667 		start_async_work(rbio, scrub_parity_work);
2668 }
2669 
2670 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2671 
2672 struct btrfs_raid_bio *
2673 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2674 			  struct btrfs_bio *bbio, u64 length)
2675 {
2676 	struct btrfs_raid_bio *rbio;
2677 
2678 	rbio = alloc_rbio(fs_info, bbio, length);
2679 	if (IS_ERR(rbio))
2680 		return NULL;
2681 
2682 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2683 	bio_list_add(&rbio->bio_list, bio);
2684 	/*
2685 	 * This is a special bio which is used to hold the completion handler
2686 	 * and make the scrub rbio is similar to the other types
2687 	 */
2688 	ASSERT(!bio->bi_iter.bi_size);
2689 
2690 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2691 	if (rbio->faila == -1) {
2692 		BUG();
2693 		kfree(rbio);
2694 		return NULL;
2695 	}
2696 
2697 	/*
2698 	 * When we get bbio, we have already increased bio_counter, record it
2699 	 * so we can free it at rbio_orig_end_io()
2700 	 */
2701 	rbio->generic_bio_cnt = 1;
2702 
2703 	return rbio;
2704 }
2705 
2706 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2707 {
2708 	if (!lock_stripe_add(rbio))
2709 		start_async_work(rbio, read_rebuild_work);
2710 }
2711