1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "misc.h" 18 #include "ctree.h" 19 #include "disk-io.h" 20 #include "volumes.h" 21 #include "raid56.h" 22 #include "async-thread.h" 23 #include "file-item.h" 24 #include "btrfs_inode.h" 25 26 /* set when additional merges to this rbio are not allowed */ 27 #define RBIO_RMW_LOCKED_BIT 1 28 29 /* 30 * set when this rbio is sitting in the hash, but it is just a cache 31 * of past RMW 32 */ 33 #define RBIO_CACHE_BIT 2 34 35 /* 36 * set when it is safe to trust the stripe_pages for caching 37 */ 38 #define RBIO_CACHE_READY_BIT 3 39 40 #define RBIO_CACHE_SIZE 1024 41 42 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 43 44 /* Used by the raid56 code to lock stripes for read/modify/write */ 45 struct btrfs_stripe_hash { 46 struct list_head hash_list; 47 spinlock_t lock; 48 }; 49 50 /* Used by the raid56 code to lock stripes for read/modify/write */ 51 struct btrfs_stripe_hash_table { 52 struct list_head stripe_cache; 53 spinlock_t cache_lock; 54 int cache_size; 55 struct btrfs_stripe_hash table[]; 56 }; 57 58 /* 59 * A bvec like structure to present a sector inside a page. 60 * 61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 62 */ 63 struct sector_ptr { 64 struct page *page; 65 unsigned int pgoff:24; 66 unsigned int uptodate:8; 67 }; 68 69 static void rmw_rbio_work(struct work_struct *work); 70 static void rmw_rbio_work_locked(struct work_struct *work); 71 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 73 74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check); 75 static void scrub_rbio_work_locked(struct work_struct *work); 76 77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 78 { 79 bitmap_free(rbio->error_bitmap); 80 kfree(rbio->stripe_pages); 81 kfree(rbio->bio_sectors); 82 kfree(rbio->stripe_sectors); 83 kfree(rbio->finish_pointers); 84 } 85 86 static void free_raid_bio(struct btrfs_raid_bio *rbio) 87 { 88 int i; 89 90 if (!refcount_dec_and_test(&rbio->refs)) 91 return; 92 93 WARN_ON(!list_empty(&rbio->stripe_cache)); 94 WARN_ON(!list_empty(&rbio->hash_list)); 95 WARN_ON(!bio_list_empty(&rbio->bio_list)); 96 97 for (i = 0; i < rbio->nr_pages; i++) { 98 if (rbio->stripe_pages[i]) { 99 __free_page(rbio->stripe_pages[i]); 100 rbio->stripe_pages[i] = NULL; 101 } 102 } 103 104 btrfs_put_bioc(rbio->bioc); 105 free_raid_bio_pointers(rbio); 106 kfree(rbio); 107 } 108 109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 110 { 111 INIT_WORK(&rbio->work, work_func); 112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 113 } 114 115 /* 116 * the stripe hash table is used for locking, and to collect 117 * bios in hopes of making a full stripe 118 */ 119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 120 { 121 struct btrfs_stripe_hash_table *table; 122 struct btrfs_stripe_hash_table *x; 123 struct btrfs_stripe_hash *cur; 124 struct btrfs_stripe_hash *h; 125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 126 int i; 127 128 if (info->stripe_hash_table) 129 return 0; 130 131 /* 132 * The table is large, starting with order 4 and can go as high as 133 * order 7 in case lock debugging is turned on. 134 * 135 * Try harder to allocate and fallback to vmalloc to lower the chance 136 * of a failing mount. 137 */ 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 139 if (!table) 140 return -ENOMEM; 141 142 spin_lock_init(&table->cache_lock); 143 INIT_LIST_HEAD(&table->stripe_cache); 144 145 h = table->table; 146 147 for (i = 0; i < num_entries; i++) { 148 cur = h + i; 149 INIT_LIST_HEAD(&cur->hash_list); 150 spin_lock_init(&cur->lock); 151 } 152 153 x = cmpxchg(&info->stripe_hash_table, NULL, table); 154 kvfree(x); 155 return 0; 156 } 157 158 /* 159 * caching an rbio means to copy anything from the 160 * bio_sectors array into the stripe_pages array. We 161 * use the page uptodate bit in the stripe cache array 162 * to indicate if it has valid data 163 * 164 * once the caching is done, we set the cache ready 165 * bit. 166 */ 167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 168 { 169 int i; 170 int ret; 171 172 ret = alloc_rbio_pages(rbio); 173 if (ret) 174 return; 175 176 for (i = 0; i < rbio->nr_sectors; i++) { 177 /* Some range not covered by bio (partial write), skip it */ 178 if (!rbio->bio_sectors[i].page) { 179 /* 180 * Even if the sector is not covered by bio, if it is 181 * a data sector it should still be uptodate as it is 182 * read from disk. 183 */ 184 if (i < rbio->nr_data * rbio->stripe_nsectors) 185 ASSERT(rbio->stripe_sectors[i].uptodate); 186 continue; 187 } 188 189 ASSERT(rbio->stripe_sectors[i].page); 190 memcpy_page(rbio->stripe_sectors[i].page, 191 rbio->stripe_sectors[i].pgoff, 192 rbio->bio_sectors[i].page, 193 rbio->bio_sectors[i].pgoff, 194 rbio->bioc->fs_info->sectorsize); 195 rbio->stripe_sectors[i].uptodate = 1; 196 } 197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 198 } 199 200 /* 201 * we hash on the first logical address of the stripe 202 */ 203 static int rbio_bucket(struct btrfs_raid_bio *rbio) 204 { 205 u64 num = rbio->bioc->raid_map[0]; 206 207 /* 208 * we shift down quite a bit. We're using byte 209 * addressing, and most of the lower bits are zeros. 210 * This tends to upset hash_64, and it consistently 211 * returns just one or two different values. 212 * 213 * shifting off the lower bits fixes things. 214 */ 215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 216 } 217 218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 219 unsigned int page_nr) 220 { 221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 222 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 223 int i; 224 225 ASSERT(page_nr < rbio->nr_pages); 226 227 for (i = sectors_per_page * page_nr; 228 i < sectors_per_page * page_nr + sectors_per_page; 229 i++) { 230 if (!rbio->stripe_sectors[i].uptodate) 231 return false; 232 } 233 return true; 234 } 235 236 /* 237 * Update the stripe_sectors[] array to use correct page and pgoff 238 * 239 * Should be called every time any page pointer in stripes_pages[] got modified. 240 */ 241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 242 { 243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 244 u32 offset; 245 int i; 246 247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 248 int page_index = offset >> PAGE_SHIFT; 249 250 ASSERT(page_index < rbio->nr_pages); 251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 253 } 254 } 255 256 static void steal_rbio_page(struct btrfs_raid_bio *src, 257 struct btrfs_raid_bio *dest, int page_nr) 258 { 259 const u32 sectorsize = src->bioc->fs_info->sectorsize; 260 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 261 int i; 262 263 if (dest->stripe_pages[page_nr]) 264 __free_page(dest->stripe_pages[page_nr]); 265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 266 src->stripe_pages[page_nr] = NULL; 267 268 /* Also update the sector->uptodate bits. */ 269 for (i = sectors_per_page * page_nr; 270 i < sectors_per_page * page_nr + sectors_per_page; i++) 271 dest->stripe_sectors[i].uptodate = true; 272 } 273 274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 275 { 276 const int sector_nr = (page_nr << PAGE_SHIFT) >> 277 rbio->bioc->fs_info->sectorsize_bits; 278 279 /* 280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 281 * we won't have a page which is half data half parity. 282 * 283 * Thus if the first sector of the page belongs to data stripes, then 284 * the full page belongs to data stripes. 285 */ 286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 287 } 288 289 /* 290 * Stealing an rbio means taking all the uptodate pages from the stripe array 291 * in the source rbio and putting them into the destination rbio. 292 * 293 * This will also update the involved stripe_sectors[] which are referring to 294 * the old pages. 295 */ 296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 297 { 298 int i; 299 300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 301 return; 302 303 for (i = 0; i < dest->nr_pages; i++) { 304 struct page *p = src->stripe_pages[i]; 305 306 /* 307 * We don't need to steal P/Q pages as they will always be 308 * regenerated for RMW or full write anyway. 309 */ 310 if (!is_data_stripe_page(src, i)) 311 continue; 312 313 /* 314 * If @src already has RBIO_CACHE_READY_BIT, it should have 315 * all data stripe pages present and uptodate. 316 */ 317 ASSERT(p); 318 ASSERT(full_page_sectors_uptodate(src, i)); 319 steal_rbio_page(src, dest, i); 320 } 321 index_stripe_sectors(dest); 322 index_stripe_sectors(src); 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 /* Also inherit the bitmaps from @victim. */ 338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 339 dest->stripe_nsectors); 340 bio_list_init(&victim->bio_list); 341 } 342 343 /* 344 * used to prune items that are in the cache. The caller 345 * must hold the hash table lock. 346 */ 347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 348 { 349 int bucket = rbio_bucket(rbio); 350 struct btrfs_stripe_hash_table *table; 351 struct btrfs_stripe_hash *h; 352 int freeit = 0; 353 354 /* 355 * check the bit again under the hash table lock. 356 */ 357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 358 return; 359 360 table = rbio->bioc->fs_info->stripe_hash_table; 361 h = table->table + bucket; 362 363 /* hold the lock for the bucket because we may be 364 * removing it from the hash table 365 */ 366 spin_lock(&h->lock); 367 368 /* 369 * hold the lock for the bio list because we need 370 * to make sure the bio list is empty 371 */ 372 spin_lock(&rbio->bio_list_lock); 373 374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 375 list_del_init(&rbio->stripe_cache); 376 table->cache_size -= 1; 377 freeit = 1; 378 379 /* if the bio list isn't empty, this rbio is 380 * still involved in an IO. We take it out 381 * of the cache list, and drop the ref that 382 * was held for the list. 383 * 384 * If the bio_list was empty, we also remove 385 * the rbio from the hash_table, and drop 386 * the corresponding ref 387 */ 388 if (bio_list_empty(&rbio->bio_list)) { 389 if (!list_empty(&rbio->hash_list)) { 390 list_del_init(&rbio->hash_list); 391 refcount_dec(&rbio->refs); 392 BUG_ON(!list_empty(&rbio->plug_list)); 393 } 394 } 395 } 396 397 spin_unlock(&rbio->bio_list_lock); 398 spin_unlock(&h->lock); 399 400 if (freeit) 401 free_raid_bio(rbio); 402 } 403 404 /* 405 * prune a given rbio from the cache 406 */ 407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 408 { 409 struct btrfs_stripe_hash_table *table; 410 unsigned long flags; 411 412 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 413 return; 414 415 table = rbio->bioc->fs_info->stripe_hash_table; 416 417 spin_lock_irqsave(&table->cache_lock, flags); 418 __remove_rbio_from_cache(rbio); 419 spin_unlock_irqrestore(&table->cache_lock, flags); 420 } 421 422 /* 423 * remove everything in the cache 424 */ 425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 426 { 427 struct btrfs_stripe_hash_table *table; 428 unsigned long flags; 429 struct btrfs_raid_bio *rbio; 430 431 table = info->stripe_hash_table; 432 433 spin_lock_irqsave(&table->cache_lock, flags); 434 while (!list_empty(&table->stripe_cache)) { 435 rbio = list_entry(table->stripe_cache.next, 436 struct btrfs_raid_bio, 437 stripe_cache); 438 __remove_rbio_from_cache(rbio); 439 } 440 spin_unlock_irqrestore(&table->cache_lock, flags); 441 } 442 443 /* 444 * remove all cached entries and free the hash table 445 * used by unmount 446 */ 447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 448 { 449 if (!info->stripe_hash_table) 450 return; 451 btrfs_clear_rbio_cache(info); 452 kvfree(info->stripe_hash_table); 453 info->stripe_hash_table = NULL; 454 } 455 456 /* 457 * insert an rbio into the stripe cache. It 458 * must have already been prepared by calling 459 * cache_rbio_pages 460 * 461 * If this rbio was already cached, it gets 462 * moved to the front of the lru. 463 * 464 * If the size of the rbio cache is too big, we 465 * prune an item. 466 */ 467 static void cache_rbio(struct btrfs_raid_bio *rbio) 468 { 469 struct btrfs_stripe_hash_table *table; 470 unsigned long flags; 471 472 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 473 return; 474 475 table = rbio->bioc->fs_info->stripe_hash_table; 476 477 spin_lock_irqsave(&table->cache_lock, flags); 478 spin_lock(&rbio->bio_list_lock); 479 480 /* bump our ref if we were not in the list before */ 481 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 482 refcount_inc(&rbio->refs); 483 484 if (!list_empty(&rbio->stripe_cache)){ 485 list_move(&rbio->stripe_cache, &table->stripe_cache); 486 } else { 487 list_add(&rbio->stripe_cache, &table->stripe_cache); 488 table->cache_size += 1; 489 } 490 491 spin_unlock(&rbio->bio_list_lock); 492 493 if (table->cache_size > RBIO_CACHE_SIZE) { 494 struct btrfs_raid_bio *found; 495 496 found = list_entry(table->stripe_cache.prev, 497 struct btrfs_raid_bio, 498 stripe_cache); 499 500 if (found != rbio) 501 __remove_rbio_from_cache(found); 502 } 503 504 spin_unlock_irqrestore(&table->cache_lock, flags); 505 } 506 507 /* 508 * helper function to run the xor_blocks api. It is only 509 * able to do MAX_XOR_BLOCKS at a time, so we need to 510 * loop through. 511 */ 512 static void run_xor(void **pages, int src_cnt, ssize_t len) 513 { 514 int src_off = 0; 515 int xor_src_cnt = 0; 516 void *dest = pages[src_cnt]; 517 518 while(src_cnt > 0) { 519 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 520 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 521 522 src_cnt -= xor_src_cnt; 523 src_off += xor_src_cnt; 524 } 525 } 526 527 /* 528 * Returns true if the bio list inside this rbio covers an entire stripe (no 529 * rmw required). 530 */ 531 static int rbio_is_full(struct btrfs_raid_bio *rbio) 532 { 533 unsigned long flags; 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 spin_lock_irqsave(&rbio->bio_list_lock, flags); 538 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 539 ret = 0; 540 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 541 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 542 543 return ret; 544 } 545 546 /* 547 * returns 1 if it is safe to merge two rbios together. 548 * The merging is safe if the two rbios correspond to 549 * the same stripe and if they are both going in the same 550 * direction (read vs write), and if neither one is 551 * locked for final IO 552 * 553 * The caller is responsible for locking such that 554 * rmw_locked is safe to test 555 */ 556 static int rbio_can_merge(struct btrfs_raid_bio *last, 557 struct btrfs_raid_bio *cur) 558 { 559 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 560 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 561 return 0; 562 563 /* 564 * we can't merge with cached rbios, since the 565 * idea is that when we merge the destination 566 * rbio is going to run our IO for us. We can 567 * steal from cached rbios though, other functions 568 * handle that. 569 */ 570 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 571 test_bit(RBIO_CACHE_BIT, &cur->flags)) 572 return 0; 573 574 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0]) 575 return 0; 576 577 /* we can't merge with different operations */ 578 if (last->operation != cur->operation) 579 return 0; 580 /* 581 * We've need read the full stripe from the drive. 582 * check and repair the parity and write the new results. 583 * 584 * We're not allowed to add any new bios to the 585 * bio list here, anyone else that wants to 586 * change this stripe needs to do their own rmw. 587 */ 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 589 return 0; 590 591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 592 last->operation == BTRFS_RBIO_READ_REBUILD) 593 return 0; 594 595 return 1; 596 } 597 598 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 599 unsigned int stripe_nr, 600 unsigned int sector_nr) 601 { 602 ASSERT(stripe_nr < rbio->real_stripes); 603 ASSERT(sector_nr < rbio->stripe_nsectors); 604 605 return stripe_nr * rbio->stripe_nsectors + sector_nr; 606 } 607 608 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 609 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 610 unsigned int stripe_nr, 611 unsigned int sector_nr) 612 { 613 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 614 sector_nr)]; 615 } 616 617 /* Grab a sector inside P stripe */ 618 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 619 unsigned int sector_nr) 620 { 621 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 622 } 623 624 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 625 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 626 unsigned int sector_nr) 627 { 628 if (rbio->nr_data + 1 == rbio->real_stripes) 629 return NULL; 630 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 631 } 632 633 /* 634 * The first stripe in the table for a logical address 635 * has the lock. rbios are added in one of three ways: 636 * 637 * 1) Nobody has the stripe locked yet. The rbio is given 638 * the lock and 0 is returned. The caller must start the IO 639 * themselves. 640 * 641 * 2) Someone has the stripe locked, but we're able to merge 642 * with the lock owner. The rbio is freed and the IO will 643 * start automatically along with the existing rbio. 1 is returned. 644 * 645 * 3) Someone has the stripe locked, but we're not able to merge. 646 * The rbio is added to the lock owner's plug list, or merged into 647 * an rbio already on the plug list. When the lock owner unlocks, 648 * the next rbio on the list is run and the IO is started automatically. 649 * 1 is returned 650 * 651 * If we return 0, the caller still owns the rbio and must continue with 652 * IO submission. If we return 1, the caller must assume the rbio has 653 * already been freed. 654 */ 655 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 656 { 657 struct btrfs_stripe_hash *h; 658 struct btrfs_raid_bio *cur; 659 struct btrfs_raid_bio *pending; 660 unsigned long flags; 661 struct btrfs_raid_bio *freeit = NULL; 662 struct btrfs_raid_bio *cache_drop = NULL; 663 int ret = 0; 664 665 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 666 667 spin_lock_irqsave(&h->lock, flags); 668 list_for_each_entry(cur, &h->hash_list, hash_list) { 669 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0]) 670 continue; 671 672 spin_lock(&cur->bio_list_lock); 673 674 /* Can we steal this cached rbio's pages? */ 675 if (bio_list_empty(&cur->bio_list) && 676 list_empty(&cur->plug_list) && 677 test_bit(RBIO_CACHE_BIT, &cur->flags) && 678 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 679 list_del_init(&cur->hash_list); 680 refcount_dec(&cur->refs); 681 682 steal_rbio(cur, rbio); 683 cache_drop = cur; 684 spin_unlock(&cur->bio_list_lock); 685 686 goto lockit; 687 } 688 689 /* Can we merge into the lock owner? */ 690 if (rbio_can_merge(cur, rbio)) { 691 merge_rbio(cur, rbio); 692 spin_unlock(&cur->bio_list_lock); 693 freeit = rbio; 694 ret = 1; 695 goto out; 696 } 697 698 699 /* 700 * We couldn't merge with the running rbio, see if we can merge 701 * with the pending ones. We don't have to check for rmw_locked 702 * because there is no way they are inside finish_rmw right now 703 */ 704 list_for_each_entry(pending, &cur->plug_list, plug_list) { 705 if (rbio_can_merge(pending, rbio)) { 706 merge_rbio(pending, rbio); 707 spin_unlock(&cur->bio_list_lock); 708 freeit = rbio; 709 ret = 1; 710 goto out; 711 } 712 } 713 714 /* 715 * No merging, put us on the tail of the plug list, our rbio 716 * will be started with the currently running rbio unlocks 717 */ 718 list_add_tail(&rbio->plug_list, &cur->plug_list); 719 spin_unlock(&cur->bio_list_lock); 720 ret = 1; 721 goto out; 722 } 723 lockit: 724 refcount_inc(&rbio->refs); 725 list_add(&rbio->hash_list, &h->hash_list); 726 out: 727 spin_unlock_irqrestore(&h->lock, flags); 728 if (cache_drop) 729 remove_rbio_from_cache(cache_drop); 730 if (freeit) 731 free_raid_bio(freeit); 732 return ret; 733 } 734 735 static void recover_rbio_work_locked(struct work_struct *work); 736 737 /* 738 * called as rmw or parity rebuild is completed. If the plug list has more 739 * rbios waiting for this stripe, the next one on the list will be started 740 */ 741 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 742 { 743 int bucket; 744 struct btrfs_stripe_hash *h; 745 unsigned long flags; 746 int keep_cache = 0; 747 748 bucket = rbio_bucket(rbio); 749 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 750 751 if (list_empty(&rbio->plug_list)) 752 cache_rbio(rbio); 753 754 spin_lock_irqsave(&h->lock, flags); 755 spin_lock(&rbio->bio_list_lock); 756 757 if (!list_empty(&rbio->hash_list)) { 758 /* 759 * if we're still cached and there is no other IO 760 * to perform, just leave this rbio here for others 761 * to steal from later 762 */ 763 if (list_empty(&rbio->plug_list) && 764 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 765 keep_cache = 1; 766 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 767 BUG_ON(!bio_list_empty(&rbio->bio_list)); 768 goto done; 769 } 770 771 list_del_init(&rbio->hash_list); 772 refcount_dec(&rbio->refs); 773 774 /* 775 * we use the plug list to hold all the rbios 776 * waiting for the chance to lock this stripe. 777 * hand the lock over to one of them. 778 */ 779 if (!list_empty(&rbio->plug_list)) { 780 struct btrfs_raid_bio *next; 781 struct list_head *head = rbio->plug_list.next; 782 783 next = list_entry(head, struct btrfs_raid_bio, 784 plug_list); 785 786 list_del_init(&rbio->plug_list); 787 788 list_add(&next->hash_list, &h->hash_list); 789 refcount_inc(&next->refs); 790 spin_unlock(&rbio->bio_list_lock); 791 spin_unlock_irqrestore(&h->lock, flags); 792 793 if (next->operation == BTRFS_RBIO_READ_REBUILD) 794 start_async_work(next, recover_rbio_work_locked); 795 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 796 steal_rbio(rbio, next); 797 start_async_work(next, recover_rbio_work_locked); 798 } else if (next->operation == BTRFS_RBIO_WRITE) { 799 steal_rbio(rbio, next); 800 start_async_work(next, rmw_rbio_work_locked); 801 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 802 steal_rbio(rbio, next); 803 start_async_work(next, scrub_rbio_work_locked); 804 } 805 806 goto done_nolock; 807 } 808 } 809 done: 810 spin_unlock(&rbio->bio_list_lock); 811 spin_unlock_irqrestore(&h->lock, flags); 812 813 done_nolock: 814 if (!keep_cache) 815 remove_rbio_from_cache(rbio); 816 } 817 818 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 819 { 820 struct bio *next; 821 822 while (cur) { 823 next = cur->bi_next; 824 cur->bi_next = NULL; 825 cur->bi_status = err; 826 bio_endio(cur); 827 cur = next; 828 } 829 } 830 831 /* 832 * this frees the rbio and runs through all the bios in the 833 * bio_list and calls end_io on them 834 */ 835 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 836 { 837 struct bio *cur = bio_list_get(&rbio->bio_list); 838 struct bio *extra; 839 840 kfree(rbio->csum_buf); 841 bitmap_free(rbio->csum_bitmap); 842 rbio->csum_buf = NULL; 843 rbio->csum_bitmap = NULL; 844 845 /* 846 * Clear the data bitmap, as the rbio may be cached for later usage. 847 * do this before before unlock_stripe() so there will be no new bio 848 * for this bio. 849 */ 850 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 851 852 /* 853 * At this moment, rbio->bio_list is empty, however since rbio does not 854 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 855 * hash list, rbio may be merged with others so that rbio->bio_list 856 * becomes non-empty. 857 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 858 * more and we can call bio_endio() on all queued bios. 859 */ 860 unlock_stripe(rbio); 861 extra = bio_list_get(&rbio->bio_list); 862 free_raid_bio(rbio); 863 864 rbio_endio_bio_list(cur, err); 865 if (extra) 866 rbio_endio_bio_list(extra, err); 867 } 868 869 /* 870 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 871 * 872 * @rbio: The raid bio 873 * @stripe_nr: Stripe number, valid range [0, real_stripe) 874 * @sector_nr: Sector number inside the stripe, 875 * valid range [0, stripe_nsectors) 876 * @bio_list_only: Whether to use sectors inside the bio list only. 877 * 878 * The read/modify/write code wants to reuse the original bio page as much 879 * as possible, and only use stripe_sectors as fallback. 880 */ 881 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 882 int stripe_nr, int sector_nr, 883 bool bio_list_only) 884 { 885 struct sector_ptr *sector; 886 int index; 887 888 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); 889 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 890 891 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 892 ASSERT(index >= 0 && index < rbio->nr_sectors); 893 894 spin_lock_irq(&rbio->bio_list_lock); 895 sector = &rbio->bio_sectors[index]; 896 if (sector->page || bio_list_only) { 897 /* Don't return sector without a valid page pointer */ 898 if (!sector->page) 899 sector = NULL; 900 spin_unlock_irq(&rbio->bio_list_lock); 901 return sector; 902 } 903 spin_unlock_irq(&rbio->bio_list_lock); 904 905 return &rbio->stripe_sectors[index]; 906 } 907 908 /* 909 * allocation and initial setup for the btrfs_raid_bio. Not 910 * this does not allocate any pages for rbio->pages. 911 */ 912 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 913 struct btrfs_io_context *bioc) 914 { 915 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs; 916 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 917 const unsigned int num_pages = stripe_npages * real_stripes; 918 const unsigned int stripe_nsectors = 919 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 920 const unsigned int num_sectors = stripe_nsectors * real_stripes; 921 struct btrfs_raid_bio *rbio; 922 923 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 924 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 925 /* 926 * Our current stripe len should be fixed to 64k thus stripe_nsectors 927 * (at most 16) should be no larger than BITS_PER_LONG. 928 */ 929 ASSERT(stripe_nsectors <= BITS_PER_LONG); 930 931 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 932 if (!rbio) 933 return ERR_PTR(-ENOMEM); 934 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 935 GFP_NOFS); 936 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 937 GFP_NOFS); 938 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 939 GFP_NOFS); 940 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 941 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 942 943 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 944 !rbio->finish_pointers || !rbio->error_bitmap) { 945 free_raid_bio_pointers(rbio); 946 kfree(rbio); 947 return ERR_PTR(-ENOMEM); 948 } 949 950 bio_list_init(&rbio->bio_list); 951 init_waitqueue_head(&rbio->io_wait); 952 INIT_LIST_HEAD(&rbio->plug_list); 953 spin_lock_init(&rbio->bio_list_lock); 954 INIT_LIST_HEAD(&rbio->stripe_cache); 955 INIT_LIST_HEAD(&rbio->hash_list); 956 btrfs_get_bioc(bioc); 957 rbio->bioc = bioc; 958 rbio->nr_pages = num_pages; 959 rbio->nr_sectors = num_sectors; 960 rbio->real_stripes = real_stripes; 961 rbio->stripe_npages = stripe_npages; 962 rbio->stripe_nsectors = stripe_nsectors; 963 refcount_set(&rbio->refs, 1); 964 atomic_set(&rbio->stripes_pending, 0); 965 966 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 967 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 968 969 return rbio; 970 } 971 972 /* allocate pages for all the stripes in the bio, including parity */ 973 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 974 { 975 int ret; 976 977 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); 978 if (ret < 0) 979 return ret; 980 /* Mapping all sectors */ 981 index_stripe_sectors(rbio); 982 return 0; 983 } 984 985 /* only allocate pages for p/q stripes */ 986 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 987 { 988 const int data_pages = rbio->nr_data * rbio->stripe_npages; 989 int ret; 990 991 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 992 rbio->stripe_pages + data_pages); 993 if (ret < 0) 994 return ret; 995 996 index_stripe_sectors(rbio); 997 return 0; 998 } 999 1000 /* 1001 * Return the total numer of errors found in the vertical stripe of @sector_nr. 1002 * 1003 * @faila and @failb will also be updated to the first and second stripe 1004 * number of the errors. 1005 */ 1006 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1007 int *faila, int *failb) 1008 { 1009 int stripe_nr; 1010 int found_errors = 0; 1011 1012 if (faila || failb) { 1013 /* 1014 * Both @faila and @failb should be valid pointers if any of 1015 * them is specified. 1016 */ 1017 ASSERT(faila && failb); 1018 *faila = -1; 1019 *failb = -1; 1020 } 1021 1022 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1023 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1024 1025 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1026 found_errors++; 1027 if (faila) { 1028 /* Update faila and failb. */ 1029 if (*faila < 0) 1030 *faila = stripe_nr; 1031 else if (*failb < 0) 1032 *failb = stripe_nr; 1033 } 1034 } 1035 } 1036 return found_errors; 1037 } 1038 1039 /* 1040 * Add a single sector @sector into our list of bios for IO. 1041 * 1042 * Return 0 if everything went well. 1043 * Return <0 for error. 1044 */ 1045 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1046 struct bio_list *bio_list, 1047 struct sector_ptr *sector, 1048 unsigned int stripe_nr, 1049 unsigned int sector_nr, 1050 enum req_op op) 1051 { 1052 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1053 struct bio *last = bio_list->tail; 1054 int ret; 1055 struct bio *bio; 1056 struct btrfs_io_stripe *stripe; 1057 u64 disk_start; 1058 1059 /* 1060 * Note: here stripe_nr has taken device replace into consideration, 1061 * thus it can be larger than rbio->real_stripe. 1062 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1063 */ 1064 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); 1065 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 1066 ASSERT(sector->page); 1067 1068 stripe = &rbio->bioc->stripes[stripe_nr]; 1069 disk_start = stripe->physical + sector_nr * sectorsize; 1070 1071 /* if the device is missing, just fail this stripe */ 1072 if (!stripe->dev->bdev) { 1073 int found_errors; 1074 1075 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1076 rbio->error_bitmap); 1077 1078 /* Check if we have reached tolerance early. */ 1079 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1080 NULL, NULL); 1081 if (found_errors > rbio->bioc->max_errors) 1082 return -EIO; 1083 return 0; 1084 } 1085 1086 /* see if we can add this page onto our existing bio */ 1087 if (last) { 1088 u64 last_end = last->bi_iter.bi_sector << 9; 1089 last_end += last->bi_iter.bi_size; 1090 1091 /* 1092 * we can't merge these if they are from different 1093 * devices or if they are not contiguous 1094 */ 1095 if (last_end == disk_start && !last->bi_status && 1096 last->bi_bdev == stripe->dev->bdev) { 1097 ret = bio_add_page(last, sector->page, sectorsize, 1098 sector->pgoff); 1099 if (ret == sectorsize) 1100 return 0; 1101 } 1102 } 1103 1104 /* put a new bio on the list */ 1105 bio = bio_alloc(stripe->dev->bdev, 1106 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1107 op, GFP_NOFS); 1108 bio->bi_iter.bi_sector = disk_start >> 9; 1109 bio->bi_private = rbio; 1110 1111 bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1112 bio_list_add(bio_list, bio); 1113 return 0; 1114 } 1115 1116 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1117 { 1118 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1119 struct bio_vec bvec; 1120 struct bvec_iter iter; 1121 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1122 rbio->bioc->raid_map[0]; 1123 1124 bio_for_each_segment(bvec, bio, iter) { 1125 u32 bvec_offset; 1126 1127 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1128 bvec_offset += sectorsize, offset += sectorsize) { 1129 int index = offset / sectorsize; 1130 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1131 1132 sector->page = bvec.bv_page; 1133 sector->pgoff = bvec.bv_offset + bvec_offset; 1134 ASSERT(sector->pgoff < PAGE_SIZE); 1135 } 1136 } 1137 } 1138 1139 /* 1140 * helper function to walk our bio list and populate the bio_pages array with 1141 * the result. This seems expensive, but it is faster than constantly 1142 * searching through the bio list as we setup the IO in finish_rmw or stripe 1143 * reconstruction. 1144 * 1145 * This must be called before you trust the answers from page_in_rbio 1146 */ 1147 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1148 { 1149 struct bio *bio; 1150 1151 spin_lock_irq(&rbio->bio_list_lock); 1152 bio_list_for_each(bio, &rbio->bio_list) 1153 index_one_bio(rbio, bio); 1154 1155 spin_unlock_irq(&rbio->bio_list_lock); 1156 } 1157 1158 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1159 struct raid56_bio_trace_info *trace_info) 1160 { 1161 const struct btrfs_io_context *bioc = rbio->bioc; 1162 int i; 1163 1164 ASSERT(bioc); 1165 1166 /* We rely on bio->bi_bdev to find the stripe number. */ 1167 if (!bio->bi_bdev) 1168 goto not_found; 1169 1170 for (i = 0; i < bioc->num_stripes; i++) { 1171 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1172 continue; 1173 trace_info->stripe_nr = i; 1174 trace_info->devid = bioc->stripes[i].dev->devid; 1175 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1176 bioc->stripes[i].physical; 1177 return; 1178 } 1179 1180 not_found: 1181 trace_info->devid = -1; 1182 trace_info->offset = -1; 1183 trace_info->stripe_nr = -1; 1184 } 1185 1186 /* Generate PQ for one veritical stripe. */ 1187 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1188 { 1189 void **pointers = rbio->finish_pointers; 1190 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1191 struct sector_ptr *sector; 1192 int stripe; 1193 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1194 1195 /* First collect one sector from each data stripe */ 1196 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1197 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1198 pointers[stripe] = kmap_local_page(sector->page) + 1199 sector->pgoff; 1200 } 1201 1202 /* Then add the parity stripe */ 1203 sector = rbio_pstripe_sector(rbio, sectornr); 1204 sector->uptodate = 1; 1205 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1206 1207 if (has_qstripe) { 1208 /* 1209 * RAID6, add the qstripe and call the library function 1210 * to fill in our p/q 1211 */ 1212 sector = rbio_qstripe_sector(rbio, sectornr); 1213 sector->uptodate = 1; 1214 pointers[stripe++] = kmap_local_page(sector->page) + 1215 sector->pgoff; 1216 1217 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1218 pointers); 1219 } else { 1220 /* raid5 */ 1221 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1222 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1223 } 1224 for (stripe = stripe - 1; stripe >= 0; stripe--) 1225 kunmap_local(pointers[stripe]); 1226 } 1227 1228 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1229 struct bio_list *bio_list) 1230 { 1231 struct bio *bio; 1232 /* The total sector number inside the full stripe. */ 1233 int total_sector_nr; 1234 int sectornr; 1235 int stripe; 1236 int ret; 1237 1238 ASSERT(bio_list_size(bio_list) == 0); 1239 1240 /* We should have at least one data sector. */ 1241 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1242 1243 /* 1244 * Reset errors, as we may have errors inherited from from degraded 1245 * write. 1246 */ 1247 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1248 1249 /* 1250 * Start assembly. Make bios for everything from the higher layers (the 1251 * bio_list in our rbio) and our P/Q. Ignore everything else. 1252 */ 1253 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1254 total_sector_nr++) { 1255 struct sector_ptr *sector; 1256 1257 stripe = total_sector_nr / rbio->stripe_nsectors; 1258 sectornr = total_sector_nr % rbio->stripe_nsectors; 1259 1260 /* This vertical stripe has no data, skip it. */ 1261 if (!test_bit(sectornr, &rbio->dbitmap)) 1262 continue; 1263 1264 if (stripe < rbio->nr_data) { 1265 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1266 if (!sector) 1267 continue; 1268 } else { 1269 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1270 } 1271 1272 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1273 sectornr, REQ_OP_WRITE); 1274 if (ret) 1275 goto error; 1276 } 1277 1278 if (likely(!rbio->bioc->num_tgtdevs)) 1279 return 0; 1280 1281 /* Make a copy for the replace target device. */ 1282 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1283 total_sector_nr++) { 1284 struct sector_ptr *sector; 1285 1286 stripe = total_sector_nr / rbio->stripe_nsectors; 1287 sectornr = total_sector_nr % rbio->stripe_nsectors; 1288 1289 if (!rbio->bioc->tgtdev_map[stripe]) { 1290 /* 1291 * We can skip the whole stripe completely, note 1292 * total_sector_nr will be increased by one anyway. 1293 */ 1294 ASSERT(sectornr == 0); 1295 total_sector_nr += rbio->stripe_nsectors - 1; 1296 continue; 1297 } 1298 1299 /* This vertical stripe has no data, skip it. */ 1300 if (!test_bit(sectornr, &rbio->dbitmap)) 1301 continue; 1302 1303 if (stripe < rbio->nr_data) { 1304 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1305 if (!sector) 1306 continue; 1307 } else { 1308 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1309 } 1310 1311 ret = rbio_add_io_sector(rbio, bio_list, sector, 1312 rbio->bioc->tgtdev_map[stripe], 1313 sectornr, REQ_OP_WRITE); 1314 if (ret) 1315 goto error; 1316 } 1317 1318 return 0; 1319 error: 1320 while ((bio = bio_list_pop(bio_list))) 1321 bio_put(bio); 1322 return -EIO; 1323 } 1324 1325 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1326 { 1327 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1328 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1329 rbio->bioc->raid_map[0]; 1330 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1331 1332 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1333 1334 bitmap_set(rbio->error_bitmap, total_nr_sector, 1335 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1336 1337 /* 1338 * Special handling for raid56_alloc_missing_rbio() used by 1339 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1340 * pass an empty bio here. Thus we have to find out the missing device 1341 * and mark the stripe error instead. 1342 */ 1343 if (bio->bi_iter.bi_size == 0) { 1344 bool found_missing = false; 1345 int stripe_nr; 1346 1347 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1348 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1349 found_missing = true; 1350 bitmap_set(rbio->error_bitmap, 1351 stripe_nr * rbio->stripe_nsectors, 1352 rbio->stripe_nsectors); 1353 } 1354 } 1355 ASSERT(found_missing); 1356 } 1357 } 1358 1359 /* 1360 * For subpage case, we can no longer set page Uptodate directly for 1361 * stripe_pages[], thus we need to locate the sector. 1362 */ 1363 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1364 struct page *page, 1365 unsigned int pgoff) 1366 { 1367 int i; 1368 1369 for (i = 0; i < rbio->nr_sectors; i++) { 1370 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1371 1372 if (sector->page == page && sector->pgoff == pgoff) 1373 return sector; 1374 } 1375 return NULL; 1376 } 1377 1378 /* 1379 * this sets each page in the bio uptodate. It should only be used on private 1380 * rbio pages, nothing that comes in from the higher layers 1381 */ 1382 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1383 { 1384 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1385 struct bio_vec *bvec; 1386 struct bvec_iter_all iter_all; 1387 1388 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1389 1390 bio_for_each_segment_all(bvec, bio, iter_all) { 1391 struct sector_ptr *sector; 1392 int pgoff; 1393 1394 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1395 pgoff += sectorsize) { 1396 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1397 ASSERT(sector); 1398 if (sector) 1399 sector->uptodate = 1; 1400 } 1401 } 1402 } 1403 1404 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1405 { 1406 struct bio_vec *bv = bio_first_bvec_all(bio); 1407 int i; 1408 1409 for (i = 0; i < rbio->nr_sectors; i++) { 1410 struct sector_ptr *sector; 1411 1412 sector = &rbio->stripe_sectors[i]; 1413 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1414 break; 1415 sector = &rbio->bio_sectors[i]; 1416 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1417 break; 1418 } 1419 ASSERT(i < rbio->nr_sectors); 1420 return i; 1421 } 1422 1423 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1424 { 1425 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1426 u32 bio_size = 0; 1427 struct bio_vec *bvec; 1428 struct bvec_iter_all iter_all; 1429 int i; 1430 1431 bio_for_each_segment_all(bvec, bio, iter_all) 1432 bio_size += bvec->bv_len; 1433 1434 /* 1435 * Since we can have multiple bios touching the error_bitmap, we cannot 1436 * call bitmap_set() without protection. 1437 * 1438 * Instead use set_bit() for each bit, as set_bit() itself is atomic. 1439 */ 1440 for (i = total_sector_nr; i < total_sector_nr + 1441 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) 1442 set_bit(i, rbio->error_bitmap); 1443 } 1444 1445 /* Verify the data sectors at read time. */ 1446 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1447 struct bio *bio) 1448 { 1449 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1450 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1451 struct bio_vec *bvec; 1452 struct bvec_iter_all iter_all; 1453 1454 /* No data csum for the whole stripe, no need to verify. */ 1455 if (!rbio->csum_bitmap || !rbio->csum_buf) 1456 return; 1457 1458 /* P/Q stripes, they have no data csum to verify against. */ 1459 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1460 return; 1461 1462 bio_for_each_segment_all(bvec, bio, iter_all) { 1463 int bv_offset; 1464 1465 for (bv_offset = bvec->bv_offset; 1466 bv_offset < bvec->bv_offset + bvec->bv_len; 1467 bv_offset += fs_info->sectorsize, total_sector_nr++) { 1468 u8 csum_buf[BTRFS_CSUM_SIZE]; 1469 u8 *expected_csum = rbio->csum_buf + 1470 total_sector_nr * fs_info->csum_size; 1471 int ret; 1472 1473 /* No csum for this sector, skip to the next sector. */ 1474 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1475 continue; 1476 1477 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, 1478 bv_offset, csum_buf, expected_csum); 1479 if (ret < 0) 1480 set_bit(total_sector_nr, rbio->error_bitmap); 1481 } 1482 } 1483 } 1484 1485 static void raid_wait_read_end_io(struct bio *bio) 1486 { 1487 struct btrfs_raid_bio *rbio = bio->bi_private; 1488 1489 if (bio->bi_status) { 1490 rbio_update_error_bitmap(rbio, bio); 1491 } else { 1492 set_bio_pages_uptodate(rbio, bio); 1493 verify_bio_data_sectors(rbio, bio); 1494 } 1495 1496 bio_put(bio); 1497 if (atomic_dec_and_test(&rbio->stripes_pending)) 1498 wake_up(&rbio->io_wait); 1499 } 1500 1501 static void submit_read_bios(struct btrfs_raid_bio *rbio, 1502 struct bio_list *bio_list) 1503 { 1504 struct bio *bio; 1505 1506 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1507 while ((bio = bio_list_pop(bio_list))) { 1508 bio->bi_end_io = raid_wait_read_end_io; 1509 1510 if (trace_raid56_scrub_read_recover_enabled()) { 1511 struct raid56_bio_trace_info trace_info = { 0 }; 1512 1513 bio_get_trace_info(rbio, bio, &trace_info); 1514 trace_raid56_scrub_read_recover(rbio, bio, &trace_info); 1515 } 1516 submit_bio(bio); 1517 } 1518 } 1519 1520 static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio, 1521 struct bio_list *bio_list) 1522 { 1523 struct bio *bio; 1524 int total_sector_nr; 1525 int ret = 0; 1526 1527 ASSERT(bio_list_size(bio_list) == 0); 1528 1529 /* 1530 * Build a list of bios to read all sectors (including data and P/Q). 1531 * 1532 * This behaviro is to compensate the later csum verification and 1533 * recovery. 1534 */ 1535 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1536 total_sector_nr++) { 1537 struct sector_ptr *sector; 1538 int stripe = total_sector_nr / rbio->stripe_nsectors; 1539 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1540 1541 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1542 ret = rbio_add_io_sector(rbio, bio_list, sector, 1543 stripe, sectornr, REQ_OP_READ); 1544 if (ret) 1545 goto cleanup; 1546 } 1547 return 0; 1548 1549 cleanup: 1550 while ((bio = bio_list_pop(bio_list))) 1551 bio_put(bio); 1552 return ret; 1553 } 1554 1555 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1556 { 1557 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1558 int ret; 1559 1560 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages); 1561 if (ret < 0) 1562 return ret; 1563 1564 index_stripe_sectors(rbio); 1565 return 0; 1566 } 1567 1568 /* 1569 * We use plugging call backs to collect full stripes. 1570 * Any time we get a partial stripe write while plugged 1571 * we collect it into a list. When the unplug comes down, 1572 * we sort the list by logical block number and merge 1573 * everything we can into the same rbios 1574 */ 1575 struct btrfs_plug_cb { 1576 struct blk_plug_cb cb; 1577 struct btrfs_fs_info *info; 1578 struct list_head rbio_list; 1579 struct work_struct work; 1580 }; 1581 1582 /* 1583 * rbios on the plug list are sorted for easier merging. 1584 */ 1585 static int plug_cmp(void *priv, const struct list_head *a, 1586 const struct list_head *b) 1587 { 1588 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1589 plug_list); 1590 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1591 plug_list); 1592 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1593 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1594 1595 if (a_sector < b_sector) 1596 return -1; 1597 if (a_sector > b_sector) 1598 return 1; 1599 return 0; 1600 } 1601 1602 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1603 { 1604 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1605 struct btrfs_raid_bio *cur; 1606 struct btrfs_raid_bio *last = NULL; 1607 1608 list_sort(NULL, &plug->rbio_list, plug_cmp); 1609 1610 while (!list_empty(&plug->rbio_list)) { 1611 cur = list_entry(plug->rbio_list.next, 1612 struct btrfs_raid_bio, plug_list); 1613 list_del_init(&cur->plug_list); 1614 1615 if (rbio_is_full(cur)) { 1616 /* We have a full stripe, queue it down. */ 1617 start_async_work(cur, rmw_rbio_work); 1618 continue; 1619 } 1620 if (last) { 1621 if (rbio_can_merge(last, cur)) { 1622 merge_rbio(last, cur); 1623 free_raid_bio(cur); 1624 continue; 1625 } 1626 start_async_work(last, rmw_rbio_work); 1627 } 1628 last = cur; 1629 } 1630 if (last) 1631 start_async_work(last, rmw_rbio_work); 1632 kfree(plug); 1633 } 1634 1635 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1636 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1637 { 1638 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1639 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1640 const u64 full_stripe_start = rbio->bioc->raid_map[0]; 1641 const u32 orig_len = orig_bio->bi_iter.bi_size; 1642 const u32 sectorsize = fs_info->sectorsize; 1643 u64 cur_logical; 1644 1645 ASSERT(orig_logical >= full_stripe_start && 1646 orig_logical + orig_len <= full_stripe_start + 1647 rbio->nr_data * BTRFS_STRIPE_LEN); 1648 1649 bio_list_add(&rbio->bio_list, orig_bio); 1650 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1651 1652 /* Update the dbitmap. */ 1653 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1654 cur_logical += sectorsize) { 1655 int bit = ((u32)(cur_logical - full_stripe_start) >> 1656 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1657 1658 set_bit(bit, &rbio->dbitmap); 1659 } 1660 } 1661 1662 /* 1663 * our main entry point for writes from the rest of the FS. 1664 */ 1665 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1666 { 1667 struct btrfs_fs_info *fs_info = bioc->fs_info; 1668 struct btrfs_raid_bio *rbio; 1669 struct btrfs_plug_cb *plug = NULL; 1670 struct blk_plug_cb *cb; 1671 int ret = 0; 1672 1673 rbio = alloc_rbio(fs_info, bioc); 1674 if (IS_ERR(rbio)) { 1675 ret = PTR_ERR(rbio); 1676 goto fail; 1677 } 1678 rbio->operation = BTRFS_RBIO_WRITE; 1679 rbio_add_bio(rbio, bio); 1680 1681 /* 1682 * Don't plug on full rbios, just get them out the door 1683 * as quickly as we can 1684 */ 1685 if (rbio_is_full(rbio)) 1686 goto queue_rbio; 1687 1688 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1689 if (cb) { 1690 plug = container_of(cb, struct btrfs_plug_cb, cb); 1691 if (!plug->info) { 1692 plug->info = fs_info; 1693 INIT_LIST_HEAD(&plug->rbio_list); 1694 } 1695 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1696 return; 1697 } 1698 queue_rbio: 1699 /* 1700 * Either we don't have any existing plug, or we're doing a full stripe, 1701 * can queue the rmw work now. 1702 */ 1703 start_async_work(rbio, rmw_rbio_work); 1704 1705 return; 1706 1707 fail: 1708 bio->bi_status = errno_to_blk_status(ret); 1709 bio_endio(bio); 1710 } 1711 1712 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1713 int stripe_nr, int sector_nr) 1714 { 1715 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1716 struct sector_ptr *sector; 1717 u8 csum_buf[BTRFS_CSUM_SIZE]; 1718 u8 *csum_expected; 1719 int ret; 1720 1721 if (!rbio->csum_bitmap || !rbio->csum_buf) 1722 return 0; 1723 1724 /* No way to verify P/Q as they are not covered by data csum. */ 1725 if (stripe_nr >= rbio->nr_data) 1726 return 0; 1727 /* 1728 * If we're rebuilding a read, we have to use pages from the 1729 * bio list if possible. 1730 */ 1731 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1732 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1733 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1734 } else { 1735 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1736 } 1737 1738 ASSERT(sector->page); 1739 1740 csum_expected = rbio->csum_buf + 1741 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1742 fs_info->csum_size; 1743 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, 1744 csum_buf, csum_expected); 1745 return ret; 1746 } 1747 1748 /* 1749 * Recover a vertical stripe specified by @sector_nr. 1750 * @*pointers are the pre-allocated pointers by the caller, so we don't 1751 * need to allocate/free the pointers again and again. 1752 */ 1753 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1754 void **pointers, void **unmap_array) 1755 { 1756 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1757 struct sector_ptr *sector; 1758 const u32 sectorsize = fs_info->sectorsize; 1759 int found_errors; 1760 int faila; 1761 int failb; 1762 int stripe_nr; 1763 int ret = 0; 1764 1765 /* 1766 * Now we just use bitmap to mark the horizontal stripes in 1767 * which we have data when doing parity scrub. 1768 */ 1769 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1770 !test_bit(sector_nr, &rbio->dbitmap)) 1771 return 0; 1772 1773 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1774 &failb); 1775 /* 1776 * No errors in the veritical stripe, skip it. Can happen for recovery 1777 * which only part of a stripe failed csum check. 1778 */ 1779 if (!found_errors) 1780 return 0; 1781 1782 if (found_errors > rbio->bioc->max_errors) 1783 return -EIO; 1784 1785 /* 1786 * Setup our array of pointers with sectors from each stripe 1787 * 1788 * NOTE: store a duplicate array of pointers to preserve the 1789 * pointer order. 1790 */ 1791 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1792 /* 1793 * If we're rebuilding a read, we have to use pages from the 1794 * bio list if possible. 1795 */ 1796 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1797 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1798 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1799 } else { 1800 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1801 } 1802 ASSERT(sector->page); 1803 pointers[stripe_nr] = kmap_local_page(sector->page) + 1804 sector->pgoff; 1805 unmap_array[stripe_nr] = pointers[stripe_nr]; 1806 } 1807 1808 /* All raid6 handling here */ 1809 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1810 /* Single failure, rebuild from parity raid5 style */ 1811 if (failb < 0) { 1812 if (faila == rbio->nr_data) 1813 /* 1814 * Just the P stripe has failed, without 1815 * a bad data or Q stripe. 1816 * We have nothing to do, just skip the 1817 * recovery for this stripe. 1818 */ 1819 goto cleanup; 1820 /* 1821 * a single failure in raid6 is rebuilt 1822 * in the pstripe code below 1823 */ 1824 goto pstripe; 1825 } 1826 1827 /* 1828 * If the q stripe is failed, do a pstripe reconstruction from 1829 * the xors. 1830 * If both the q stripe and the P stripe are failed, we're 1831 * here due to a crc mismatch and we can't give them the 1832 * data they want. 1833 */ 1834 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) { 1835 if (rbio->bioc->raid_map[faila] == 1836 RAID5_P_STRIPE) 1837 /* 1838 * Only P and Q are corrupted. 1839 * We only care about data stripes recovery, 1840 * can skip this vertical stripe. 1841 */ 1842 goto cleanup; 1843 /* 1844 * Otherwise we have one bad data stripe and 1845 * a good P stripe. raid5! 1846 */ 1847 goto pstripe; 1848 } 1849 1850 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) { 1851 raid6_datap_recov(rbio->real_stripes, sectorsize, 1852 faila, pointers); 1853 } else { 1854 raid6_2data_recov(rbio->real_stripes, sectorsize, 1855 faila, failb, pointers); 1856 } 1857 } else { 1858 void *p; 1859 1860 /* Rebuild from P stripe here (raid5 or raid6). */ 1861 ASSERT(failb == -1); 1862 pstripe: 1863 /* Copy parity block into failed block to start with */ 1864 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1865 1866 /* Rearrange the pointer array */ 1867 p = pointers[faila]; 1868 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1869 stripe_nr++) 1870 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1871 pointers[rbio->nr_data - 1] = p; 1872 1873 /* Xor in the rest */ 1874 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1875 1876 } 1877 1878 /* 1879 * No matter if this is a RMW or recovery, we should have all 1880 * failed sectors repaired in the vertical stripe, thus they are now 1881 * uptodate. 1882 * Especially if we determine to cache the rbio, we need to 1883 * have at least all data sectors uptodate. 1884 * 1885 * If possible, also check if the repaired sector matches its data 1886 * checksum. 1887 */ 1888 if (faila >= 0) { 1889 ret = verify_one_sector(rbio, faila, sector_nr); 1890 if (ret < 0) 1891 goto cleanup; 1892 1893 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1894 sector->uptodate = 1; 1895 } 1896 if (failb >= 0) { 1897 ret = verify_one_sector(rbio, failb, sector_nr); 1898 if (ret < 0) 1899 goto cleanup; 1900 1901 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1902 sector->uptodate = 1; 1903 } 1904 1905 cleanup: 1906 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1907 kunmap_local(unmap_array[stripe_nr]); 1908 return ret; 1909 } 1910 1911 static int recover_sectors(struct btrfs_raid_bio *rbio) 1912 { 1913 void **pointers = NULL; 1914 void **unmap_array = NULL; 1915 int sectornr; 1916 int ret = 0; 1917 1918 /* 1919 * @pointers array stores the pointer for each sector. 1920 * 1921 * @unmap_array stores copy of pointers that does not get reordered 1922 * during reconstruction so that kunmap_local works. 1923 */ 1924 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1925 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1926 if (!pointers || !unmap_array) { 1927 ret = -ENOMEM; 1928 goto out; 1929 } 1930 1931 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1932 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1933 spin_lock_irq(&rbio->bio_list_lock); 1934 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1935 spin_unlock_irq(&rbio->bio_list_lock); 1936 } 1937 1938 index_rbio_pages(rbio); 1939 1940 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1941 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 1942 if (ret < 0) 1943 break; 1944 } 1945 1946 out: 1947 kfree(pointers); 1948 kfree(unmap_array); 1949 return ret; 1950 } 1951 1952 static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio, 1953 struct bio_list *bio_list) 1954 { 1955 struct bio *bio; 1956 int total_sector_nr; 1957 int ret = 0; 1958 1959 ASSERT(bio_list_size(bio_list) == 0); 1960 /* 1961 * Read everything that hasn't failed. However this time we will 1962 * not trust any cached sector. 1963 * As we may read out some stale data but higher layer is not reading 1964 * that stale part. 1965 * 1966 * So here we always re-read everything in recovery path. 1967 */ 1968 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1969 total_sector_nr++) { 1970 int stripe = total_sector_nr / rbio->stripe_nsectors; 1971 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1972 struct sector_ptr *sector; 1973 1974 /* 1975 * Skip the range which has error. It can be a range which is 1976 * marked error (for csum mismatch), or it can be a missing 1977 * device. 1978 */ 1979 if (!rbio->bioc->stripes[stripe].dev->bdev || 1980 test_bit(total_sector_nr, rbio->error_bitmap)) { 1981 /* 1982 * Also set the error bit for missing device, which 1983 * may not yet have its error bit set. 1984 */ 1985 set_bit(total_sector_nr, rbio->error_bitmap); 1986 continue; 1987 } 1988 1989 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1990 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1991 sectornr, REQ_OP_READ); 1992 if (ret < 0) 1993 goto error; 1994 } 1995 return 0; 1996 error: 1997 while ((bio = bio_list_pop(bio_list))) 1998 bio_put(bio); 1999 2000 return -EIO; 2001 } 2002 2003 static int recover_rbio(struct btrfs_raid_bio *rbio) 2004 { 2005 struct bio_list bio_list; 2006 struct bio *bio; 2007 int ret; 2008 2009 /* 2010 * Either we're doing recover for a read failure or degraded write, 2011 * caller should have set error bitmap correctly. 2012 */ 2013 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 2014 bio_list_init(&bio_list); 2015 2016 /* For recovery, we need to read all sectors including P/Q. */ 2017 ret = alloc_rbio_pages(rbio); 2018 if (ret < 0) 2019 goto out; 2020 2021 index_rbio_pages(rbio); 2022 2023 ret = recover_assemble_read_bios(rbio, &bio_list); 2024 if (ret < 0) 2025 goto out; 2026 2027 submit_read_bios(rbio, &bio_list); 2028 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2029 2030 ret = recover_sectors(rbio); 2031 2032 out: 2033 while ((bio = bio_list_pop(&bio_list))) 2034 bio_put(bio); 2035 2036 return ret; 2037 } 2038 2039 static void recover_rbio_work(struct work_struct *work) 2040 { 2041 struct btrfs_raid_bio *rbio; 2042 int ret; 2043 2044 rbio = container_of(work, struct btrfs_raid_bio, work); 2045 2046 ret = lock_stripe_add(rbio); 2047 if (ret == 0) { 2048 ret = recover_rbio(rbio); 2049 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2050 } 2051 } 2052 2053 static void recover_rbio_work_locked(struct work_struct *work) 2054 { 2055 struct btrfs_raid_bio *rbio; 2056 int ret; 2057 2058 rbio = container_of(work, struct btrfs_raid_bio, work); 2059 2060 ret = recover_rbio(rbio); 2061 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2062 } 2063 2064 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 2065 { 2066 bool found = false; 2067 int sector_nr; 2068 2069 /* 2070 * This is for RAID6 extra recovery tries, thus mirror number should 2071 * be large than 2. 2072 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2073 * RAID5 methods. 2074 */ 2075 ASSERT(mirror_num > 2); 2076 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2077 int found_errors; 2078 int faila; 2079 int failb; 2080 2081 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2082 &faila, &failb); 2083 /* This vertical stripe doesn't have errors. */ 2084 if (!found_errors) 2085 continue; 2086 2087 /* 2088 * If we found errors, there should be only one error marked 2089 * by previous set_rbio_range_error(). 2090 */ 2091 ASSERT(found_errors == 1); 2092 found = true; 2093 2094 /* Now select another stripe to mark as error. */ 2095 failb = rbio->real_stripes - (mirror_num - 1); 2096 if (failb <= faila) 2097 failb--; 2098 2099 /* Set the extra bit in error bitmap. */ 2100 if (failb >= 0) 2101 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2102 rbio->error_bitmap); 2103 } 2104 2105 /* We should found at least one vertical stripe with error.*/ 2106 ASSERT(found); 2107 } 2108 2109 /* 2110 * the main entry point for reads from the higher layers. This 2111 * is really only called when the normal read path had a failure, 2112 * so we assume the bio they send down corresponds to a failed part 2113 * of the drive. 2114 */ 2115 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2116 int mirror_num) 2117 { 2118 struct btrfs_fs_info *fs_info = bioc->fs_info; 2119 struct btrfs_raid_bio *rbio; 2120 2121 rbio = alloc_rbio(fs_info, bioc); 2122 if (IS_ERR(rbio)) { 2123 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2124 bio_endio(bio); 2125 return; 2126 } 2127 2128 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2129 rbio_add_bio(rbio, bio); 2130 2131 set_rbio_range_error(rbio, bio); 2132 2133 /* 2134 * Loop retry: 2135 * for 'mirror == 2', reconstruct from all other stripes. 2136 * for 'mirror_num > 2', select a stripe to fail on every retry. 2137 */ 2138 if (mirror_num > 2) 2139 set_rbio_raid6_extra_error(rbio, mirror_num); 2140 2141 start_async_work(rbio, recover_rbio_work); 2142 } 2143 2144 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2145 { 2146 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2147 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2148 rbio->bioc->raid_map[0]); 2149 const u64 start = rbio->bioc->raid_map[0]; 2150 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2151 fs_info->sectorsize_bits; 2152 int ret; 2153 2154 /* The rbio should not have its csum buffer initialized. */ 2155 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2156 2157 /* 2158 * Skip the csum search if: 2159 * 2160 * - The rbio doesn't belong to data block groups 2161 * Then we are doing IO for tree blocks, no need to search csums. 2162 * 2163 * - The rbio belongs to mixed block groups 2164 * This is to avoid deadlock, as we're already holding the full 2165 * stripe lock, if we trigger a metadata read, and it needs to do 2166 * raid56 recovery, we will deadlock. 2167 */ 2168 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2169 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2170 return; 2171 2172 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2173 fs_info->csum_size, GFP_NOFS); 2174 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2175 GFP_NOFS); 2176 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2177 ret = -ENOMEM; 2178 goto error; 2179 } 2180 2181 ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1, 2182 rbio->csum_buf, rbio->csum_bitmap); 2183 if (ret < 0) 2184 goto error; 2185 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2186 goto no_csum; 2187 return; 2188 2189 error: 2190 /* 2191 * We failed to allocate memory or grab the csum, but it's not fatal, 2192 * we can still continue. But better to warn users that RMW is no 2193 * longer safe for this particular sub-stripe write. 2194 */ 2195 btrfs_warn_rl(fs_info, 2196 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2197 rbio->bioc->raid_map[0], ret); 2198 no_csum: 2199 kfree(rbio->csum_buf); 2200 bitmap_free(rbio->csum_bitmap); 2201 rbio->csum_buf = NULL; 2202 rbio->csum_bitmap = NULL; 2203 } 2204 2205 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2206 { 2207 struct bio_list bio_list; 2208 struct bio *bio; 2209 int ret; 2210 2211 bio_list_init(&bio_list); 2212 2213 /* 2214 * Fill the data csums we need for data verification. We need to fill 2215 * the csum_bitmap/csum_buf first, as our endio function will try to 2216 * verify the data sectors. 2217 */ 2218 fill_data_csums(rbio); 2219 2220 ret = rmw_assemble_read_bios(rbio, &bio_list); 2221 if (ret < 0) 2222 goto out; 2223 2224 submit_read_bios(rbio, &bio_list); 2225 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2226 2227 /* 2228 * We may or may not have any corrupted sectors (including missing dev 2229 * and csum mismatch), just let recover_sectors() to handle them all. 2230 */ 2231 ret = recover_sectors(rbio); 2232 return ret; 2233 out: 2234 while ((bio = bio_list_pop(&bio_list))) 2235 bio_put(bio); 2236 2237 return ret; 2238 } 2239 2240 static void raid_wait_write_end_io(struct bio *bio) 2241 { 2242 struct btrfs_raid_bio *rbio = bio->bi_private; 2243 blk_status_t err = bio->bi_status; 2244 2245 if (err) 2246 rbio_update_error_bitmap(rbio, bio); 2247 bio_put(bio); 2248 if (atomic_dec_and_test(&rbio->stripes_pending)) 2249 wake_up(&rbio->io_wait); 2250 } 2251 2252 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2253 struct bio_list *bio_list) 2254 { 2255 struct bio *bio; 2256 2257 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2258 while ((bio = bio_list_pop(bio_list))) { 2259 bio->bi_end_io = raid_wait_write_end_io; 2260 2261 if (trace_raid56_write_stripe_enabled()) { 2262 struct raid56_bio_trace_info trace_info = { 0 }; 2263 2264 bio_get_trace_info(rbio, bio, &trace_info); 2265 trace_raid56_write_stripe(rbio, bio, &trace_info); 2266 } 2267 submit_bio(bio); 2268 } 2269 } 2270 2271 /* 2272 * To determine if we need to read any sector from the disk. 2273 * Should only be utilized in RMW path, to skip cached rbio. 2274 */ 2275 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2276 { 2277 int i; 2278 2279 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2280 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2281 2282 /* 2283 * We have a sector which doesn't have page nor uptodate, 2284 * thus this rbio can not be cached one, as cached one must 2285 * have all its data sectors present and uptodate. 2286 */ 2287 if (!sector->page || !sector->uptodate) 2288 return true; 2289 } 2290 return false; 2291 } 2292 2293 static int rmw_rbio(struct btrfs_raid_bio *rbio) 2294 { 2295 struct bio_list bio_list; 2296 int sectornr; 2297 int ret = 0; 2298 2299 /* 2300 * Allocate the pages for parity first, as P/Q pages will always be 2301 * needed for both full-stripe and sub-stripe writes. 2302 */ 2303 ret = alloc_rbio_parity_pages(rbio); 2304 if (ret < 0) 2305 return ret; 2306 2307 /* 2308 * Either full stripe write, or we have every data sector already 2309 * cached, can go to write path immediately. 2310 */ 2311 if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio)) 2312 goto write; 2313 2314 /* 2315 * Now we're doing sub-stripe write, also need all data stripes to do 2316 * the full RMW. 2317 */ 2318 ret = alloc_rbio_data_pages(rbio); 2319 if (ret < 0) 2320 return ret; 2321 2322 index_rbio_pages(rbio); 2323 2324 ret = rmw_read_wait_recover(rbio); 2325 if (ret < 0) 2326 return ret; 2327 2328 write: 2329 /* 2330 * At this stage we're not allowed to add any new bios to the 2331 * bio list any more, anyone else that wants to change this stripe 2332 * needs to do their own rmw. 2333 */ 2334 spin_lock_irq(&rbio->bio_list_lock); 2335 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2336 spin_unlock_irq(&rbio->bio_list_lock); 2337 2338 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2339 2340 index_rbio_pages(rbio); 2341 2342 /* 2343 * We don't cache full rbios because we're assuming 2344 * the higher layers are unlikely to use this area of 2345 * the disk again soon. If they do use it again, 2346 * hopefully they will send another full bio. 2347 */ 2348 if (!rbio_is_full(rbio)) 2349 cache_rbio_pages(rbio); 2350 else 2351 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2352 2353 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2354 generate_pq_vertical(rbio, sectornr); 2355 2356 bio_list_init(&bio_list); 2357 ret = rmw_assemble_write_bios(rbio, &bio_list); 2358 if (ret < 0) 2359 return ret; 2360 2361 /* We should have at least one bio assembled. */ 2362 ASSERT(bio_list_size(&bio_list)); 2363 submit_write_bios(rbio, &bio_list); 2364 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2365 2366 /* We may have more errors than our tolerance during the read. */ 2367 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2368 int found_errors; 2369 2370 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2371 if (found_errors > rbio->bioc->max_errors) { 2372 ret = -EIO; 2373 break; 2374 } 2375 } 2376 return ret; 2377 } 2378 2379 static void rmw_rbio_work(struct work_struct *work) 2380 { 2381 struct btrfs_raid_bio *rbio; 2382 int ret; 2383 2384 rbio = container_of(work, struct btrfs_raid_bio, work); 2385 2386 ret = lock_stripe_add(rbio); 2387 if (ret == 0) { 2388 ret = rmw_rbio(rbio); 2389 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2390 } 2391 } 2392 2393 static void rmw_rbio_work_locked(struct work_struct *work) 2394 { 2395 struct btrfs_raid_bio *rbio; 2396 int ret; 2397 2398 rbio = container_of(work, struct btrfs_raid_bio, work); 2399 2400 ret = rmw_rbio(rbio); 2401 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2402 } 2403 2404 /* 2405 * The following code is used to scrub/replace the parity stripe 2406 * 2407 * Caller must have already increased bio_counter for getting @bioc. 2408 * 2409 * Note: We need make sure all the pages that add into the scrub/replace 2410 * raid bio are correct and not be changed during the scrub/replace. That 2411 * is those pages just hold metadata or file data with checksum. 2412 */ 2413 2414 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2415 struct btrfs_io_context *bioc, 2416 struct btrfs_device *scrub_dev, 2417 unsigned long *dbitmap, int stripe_nsectors) 2418 { 2419 struct btrfs_fs_info *fs_info = bioc->fs_info; 2420 struct btrfs_raid_bio *rbio; 2421 int i; 2422 2423 rbio = alloc_rbio(fs_info, bioc); 2424 if (IS_ERR(rbio)) 2425 return NULL; 2426 bio_list_add(&rbio->bio_list, bio); 2427 /* 2428 * This is a special bio which is used to hold the completion handler 2429 * and make the scrub rbio is similar to the other types 2430 */ 2431 ASSERT(!bio->bi_iter.bi_size); 2432 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2433 2434 /* 2435 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2436 * to the end position, so this search can start from the first parity 2437 * stripe. 2438 */ 2439 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2440 if (bioc->stripes[i].dev == scrub_dev) { 2441 rbio->scrubp = i; 2442 break; 2443 } 2444 } 2445 ASSERT(i < rbio->real_stripes); 2446 2447 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2448 return rbio; 2449 } 2450 2451 /* Used for both parity scrub and missing. */ 2452 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2453 unsigned int pgoff, u64 logical) 2454 { 2455 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2456 int stripe_offset; 2457 int index; 2458 2459 ASSERT(logical >= rbio->bioc->raid_map[0]); 2460 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] + 2461 BTRFS_STRIPE_LEN * rbio->nr_data); 2462 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]); 2463 index = stripe_offset / sectorsize; 2464 rbio->bio_sectors[index].page = page; 2465 rbio->bio_sectors[index].pgoff = pgoff; 2466 } 2467 2468 /* 2469 * We just scrub the parity that we have correct data on the same horizontal, 2470 * so we needn't allocate all pages for all the stripes. 2471 */ 2472 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2473 { 2474 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2475 int total_sector_nr; 2476 2477 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2478 total_sector_nr++) { 2479 struct page *page; 2480 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2481 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2482 2483 if (!test_bit(sectornr, &rbio->dbitmap)) 2484 continue; 2485 if (rbio->stripe_pages[index]) 2486 continue; 2487 page = alloc_page(GFP_NOFS); 2488 if (!page) 2489 return -ENOMEM; 2490 rbio->stripe_pages[index] = page; 2491 } 2492 index_stripe_sectors(rbio); 2493 return 0; 2494 } 2495 2496 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check) 2497 { 2498 struct btrfs_io_context *bioc = rbio->bioc; 2499 const u32 sectorsize = bioc->fs_info->sectorsize; 2500 void **pointers = rbio->finish_pointers; 2501 unsigned long *pbitmap = &rbio->finish_pbitmap; 2502 int nr_data = rbio->nr_data; 2503 int stripe; 2504 int sectornr; 2505 bool has_qstripe; 2506 struct sector_ptr p_sector = { 0 }; 2507 struct sector_ptr q_sector = { 0 }; 2508 struct bio_list bio_list; 2509 struct bio *bio; 2510 int is_replace = 0; 2511 int ret; 2512 2513 bio_list_init(&bio_list); 2514 2515 if (rbio->real_stripes - rbio->nr_data == 1) 2516 has_qstripe = false; 2517 else if (rbio->real_stripes - rbio->nr_data == 2) 2518 has_qstripe = true; 2519 else 2520 BUG(); 2521 2522 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) { 2523 is_replace = 1; 2524 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2525 } 2526 2527 /* 2528 * Because the higher layers(scrubber) are unlikely to 2529 * use this area of the disk again soon, so don't cache 2530 * it. 2531 */ 2532 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2533 2534 if (!need_check) 2535 goto writeback; 2536 2537 p_sector.page = alloc_page(GFP_NOFS); 2538 if (!p_sector.page) 2539 return -ENOMEM; 2540 p_sector.pgoff = 0; 2541 p_sector.uptodate = 1; 2542 2543 if (has_qstripe) { 2544 /* RAID6, allocate and map temp space for the Q stripe */ 2545 q_sector.page = alloc_page(GFP_NOFS); 2546 if (!q_sector.page) { 2547 __free_page(p_sector.page); 2548 p_sector.page = NULL; 2549 return -ENOMEM; 2550 } 2551 q_sector.pgoff = 0; 2552 q_sector.uptodate = 1; 2553 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2554 } 2555 2556 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2557 2558 /* Map the parity stripe just once */ 2559 pointers[nr_data] = kmap_local_page(p_sector.page); 2560 2561 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2562 struct sector_ptr *sector; 2563 void *parity; 2564 2565 /* first collect one page from each data stripe */ 2566 for (stripe = 0; stripe < nr_data; stripe++) { 2567 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2568 pointers[stripe] = kmap_local_page(sector->page) + 2569 sector->pgoff; 2570 } 2571 2572 if (has_qstripe) { 2573 /* RAID6, call the library function to fill in our P/Q */ 2574 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2575 pointers); 2576 } else { 2577 /* raid5 */ 2578 memcpy(pointers[nr_data], pointers[0], sectorsize); 2579 run_xor(pointers + 1, nr_data - 1, sectorsize); 2580 } 2581 2582 /* Check scrubbing parity and repair it */ 2583 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2584 parity = kmap_local_page(sector->page) + sector->pgoff; 2585 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2586 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2587 else 2588 /* Parity is right, needn't writeback */ 2589 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2590 kunmap_local(parity); 2591 2592 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2593 kunmap_local(pointers[stripe]); 2594 } 2595 2596 kunmap_local(pointers[nr_data]); 2597 __free_page(p_sector.page); 2598 p_sector.page = NULL; 2599 if (q_sector.page) { 2600 kunmap_local(pointers[rbio->real_stripes - 1]); 2601 __free_page(q_sector.page); 2602 q_sector.page = NULL; 2603 } 2604 2605 writeback: 2606 /* 2607 * time to start writing. Make bios for everything from the 2608 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2609 * everything else. 2610 */ 2611 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2612 struct sector_ptr *sector; 2613 2614 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2615 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2616 sectornr, REQ_OP_WRITE); 2617 if (ret) 2618 goto cleanup; 2619 } 2620 2621 if (!is_replace) 2622 goto submit_write; 2623 2624 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2625 struct sector_ptr *sector; 2626 2627 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2628 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2629 bioc->tgtdev_map[rbio->scrubp], 2630 sectornr, REQ_OP_WRITE); 2631 if (ret) 2632 goto cleanup; 2633 } 2634 2635 submit_write: 2636 submit_write_bios(rbio, &bio_list); 2637 return 0; 2638 2639 cleanup: 2640 while ((bio = bio_list_pop(&bio_list))) 2641 bio_put(bio); 2642 return ret; 2643 } 2644 2645 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2646 { 2647 if (stripe >= 0 && stripe < rbio->nr_data) 2648 return 1; 2649 return 0; 2650 } 2651 2652 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2653 { 2654 void **pointers = NULL; 2655 void **unmap_array = NULL; 2656 int sector_nr; 2657 int ret = 0; 2658 2659 /* 2660 * @pointers array stores the pointer for each sector. 2661 * 2662 * @unmap_array stores copy of pointers that does not get reordered 2663 * during reconstruction so that kunmap_local works. 2664 */ 2665 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2666 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2667 if (!pointers || !unmap_array) { 2668 ret = -ENOMEM; 2669 goto out; 2670 } 2671 2672 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2673 int dfail = 0, failp = -1; 2674 int faila; 2675 int failb; 2676 int found_errors; 2677 2678 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2679 &faila, &failb); 2680 if (found_errors > rbio->bioc->max_errors) { 2681 ret = -EIO; 2682 goto out; 2683 } 2684 if (found_errors == 0) 2685 continue; 2686 2687 /* We should have at least one error here. */ 2688 ASSERT(faila >= 0 || failb >= 0); 2689 2690 if (is_data_stripe(rbio, faila)) 2691 dfail++; 2692 else if (is_parity_stripe(faila)) 2693 failp = faila; 2694 2695 if (is_data_stripe(rbio, failb)) 2696 dfail++; 2697 else if (is_parity_stripe(failb)) 2698 failp = failb; 2699 /* 2700 * Because we can not use a scrubbing parity to repair the 2701 * data, so the capability of the repair is declined. (In the 2702 * case of RAID5, we can not repair anything.) 2703 */ 2704 if (dfail > rbio->bioc->max_errors - 1) { 2705 ret = -EIO; 2706 goto out; 2707 } 2708 /* 2709 * If all data is good, only parity is correctly, just repair 2710 * the parity, no need to recover data stripes. 2711 */ 2712 if (dfail == 0) 2713 continue; 2714 2715 /* 2716 * Here means we got one corrupted data stripe and one 2717 * corrupted parity on RAID6, if the corrupted parity is 2718 * scrubbing parity, luckily, use the other one to repair the 2719 * data, or we can not repair the data stripe. 2720 */ 2721 if (failp != rbio->scrubp) { 2722 ret = -EIO; 2723 goto out; 2724 } 2725 2726 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2727 if (ret < 0) 2728 goto out; 2729 } 2730 out: 2731 kfree(pointers); 2732 kfree(unmap_array); 2733 return ret; 2734 } 2735 2736 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio, 2737 struct bio_list *bio_list) 2738 { 2739 struct bio *bio; 2740 int total_sector_nr; 2741 int ret = 0; 2742 2743 ASSERT(bio_list_size(bio_list) == 0); 2744 2745 /* Build a list of bios to read all the missing parts. */ 2746 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2747 total_sector_nr++) { 2748 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2749 int stripe = total_sector_nr / rbio->stripe_nsectors; 2750 struct sector_ptr *sector; 2751 2752 /* No data in the vertical stripe, no need to read. */ 2753 if (!test_bit(sectornr, &rbio->dbitmap)) 2754 continue; 2755 2756 /* 2757 * We want to find all the sectors missing from the rbio and 2758 * read them from the disk. If sector_in_rbio() finds a sector 2759 * in the bio list we don't need to read it off the stripe. 2760 */ 2761 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2762 if (sector) 2763 continue; 2764 2765 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2766 /* 2767 * The bio cache may have handed us an uptodate sector. If so, 2768 * use it. 2769 */ 2770 if (sector->uptodate) 2771 continue; 2772 2773 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 2774 sectornr, REQ_OP_READ); 2775 if (ret) 2776 goto error; 2777 } 2778 return 0; 2779 error: 2780 while ((bio = bio_list_pop(bio_list))) 2781 bio_put(bio); 2782 return ret; 2783 } 2784 2785 static int scrub_rbio(struct btrfs_raid_bio *rbio) 2786 { 2787 bool need_check = false; 2788 struct bio_list bio_list; 2789 int sector_nr; 2790 int ret; 2791 struct bio *bio; 2792 2793 bio_list_init(&bio_list); 2794 2795 ret = alloc_rbio_essential_pages(rbio); 2796 if (ret) 2797 goto cleanup; 2798 2799 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2800 2801 ret = scrub_assemble_read_bios(rbio, &bio_list); 2802 if (ret < 0) 2803 goto cleanup; 2804 2805 submit_read_bios(rbio, &bio_list); 2806 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2807 2808 /* We may have some failures, recover the failed sectors first. */ 2809 ret = recover_scrub_rbio(rbio); 2810 if (ret < 0) 2811 goto cleanup; 2812 2813 /* 2814 * We have every sector properly prepared. Can finish the scrub 2815 * and writeback the good content. 2816 */ 2817 ret = finish_parity_scrub(rbio, need_check); 2818 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2819 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2820 int found_errors; 2821 2822 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2823 if (found_errors > rbio->bioc->max_errors) { 2824 ret = -EIO; 2825 break; 2826 } 2827 } 2828 return ret; 2829 2830 cleanup: 2831 while ((bio = bio_list_pop(&bio_list))) 2832 bio_put(bio); 2833 2834 return ret; 2835 } 2836 2837 static void scrub_rbio_work_locked(struct work_struct *work) 2838 { 2839 struct btrfs_raid_bio *rbio; 2840 int ret; 2841 2842 rbio = container_of(work, struct btrfs_raid_bio, work); 2843 ret = scrub_rbio(rbio); 2844 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2845 } 2846 2847 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2848 { 2849 if (!lock_stripe_add(rbio)) 2850 start_async_work(rbio, scrub_rbio_work_locked); 2851 } 2852 2853 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2854 2855 struct btrfs_raid_bio * 2856 raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc) 2857 { 2858 struct btrfs_fs_info *fs_info = bioc->fs_info; 2859 struct btrfs_raid_bio *rbio; 2860 2861 rbio = alloc_rbio(fs_info, bioc); 2862 if (IS_ERR(rbio)) 2863 return NULL; 2864 2865 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2866 bio_list_add(&rbio->bio_list, bio); 2867 /* 2868 * This is a special bio which is used to hold the completion handler 2869 * and make the scrub rbio is similar to the other types 2870 */ 2871 ASSERT(!bio->bi_iter.bi_size); 2872 2873 set_rbio_range_error(rbio, bio); 2874 2875 return rbio; 2876 } 2877 2878 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2879 { 2880 start_async_work(rbio, recover_rbio_work); 2881 } 2882