1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "volumes.h" 19 #include "raid56.h" 20 #include "async-thread.h" 21 22 /* set when additional merges to this rbio are not allowed */ 23 #define RBIO_RMW_LOCKED_BIT 1 24 25 /* 26 * set when this rbio is sitting in the hash, but it is just a cache 27 * of past RMW 28 */ 29 #define RBIO_CACHE_BIT 2 30 31 /* 32 * set when it is safe to trust the stripe_pages for caching 33 */ 34 #define RBIO_CACHE_READY_BIT 3 35 36 #define RBIO_CACHE_SIZE 1024 37 38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 39 40 /* Used by the raid56 code to lock stripes for read/modify/write */ 41 struct btrfs_stripe_hash { 42 struct list_head hash_list; 43 spinlock_t lock; 44 }; 45 46 /* Used by the raid56 code to lock stripes for read/modify/write */ 47 struct btrfs_stripe_hash_table { 48 struct list_head stripe_cache; 49 spinlock_t cache_lock; 50 int cache_size; 51 struct btrfs_stripe_hash table[]; 52 }; 53 54 enum btrfs_rbio_ops { 55 BTRFS_RBIO_WRITE, 56 BTRFS_RBIO_READ_REBUILD, 57 BTRFS_RBIO_PARITY_SCRUB, 58 BTRFS_RBIO_REBUILD_MISSING, 59 }; 60 61 struct btrfs_raid_bio { 62 struct btrfs_fs_info *fs_info; 63 struct btrfs_bio *bbio; 64 65 /* while we're doing rmw on a stripe 66 * we put it into a hash table so we can 67 * lock the stripe and merge more rbios 68 * into it. 69 */ 70 struct list_head hash_list; 71 72 /* 73 * LRU list for the stripe cache 74 */ 75 struct list_head stripe_cache; 76 77 /* 78 * for scheduling work in the helper threads 79 */ 80 struct btrfs_work work; 81 82 /* 83 * bio list and bio_list_lock are used 84 * to add more bios into the stripe 85 * in hopes of avoiding the full rmw 86 */ 87 struct bio_list bio_list; 88 spinlock_t bio_list_lock; 89 90 /* also protected by the bio_list_lock, the 91 * plug list is used by the plugging code 92 * to collect partial bios while plugged. The 93 * stripe locking code also uses it to hand off 94 * the stripe lock to the next pending IO 95 */ 96 struct list_head plug_list; 97 98 /* 99 * flags that tell us if it is safe to 100 * merge with this bio 101 */ 102 unsigned long flags; 103 104 /* size of each individual stripe on disk */ 105 int stripe_len; 106 107 /* number of data stripes (no p/q) */ 108 int nr_data; 109 110 int real_stripes; 111 112 int stripe_npages; 113 /* 114 * set if we're doing a parity rebuild 115 * for a read from higher up, which is handled 116 * differently from a parity rebuild as part of 117 * rmw 118 */ 119 enum btrfs_rbio_ops operation; 120 121 /* first bad stripe */ 122 int faila; 123 124 /* second bad stripe (for raid6 use) */ 125 int failb; 126 127 int scrubp; 128 /* 129 * number of pages needed to represent the full 130 * stripe 131 */ 132 int nr_pages; 133 134 /* 135 * size of all the bios in the bio_list. This 136 * helps us decide if the rbio maps to a full 137 * stripe or not 138 */ 139 int bio_list_bytes; 140 141 int generic_bio_cnt; 142 143 refcount_t refs; 144 145 atomic_t stripes_pending; 146 147 atomic_t error; 148 /* 149 * these are two arrays of pointers. We allocate the 150 * rbio big enough to hold them both and setup their 151 * locations when the rbio is allocated 152 */ 153 154 /* pointers to pages that we allocated for 155 * reading/writing stripes directly from the disk (including P/Q) 156 */ 157 struct page **stripe_pages; 158 159 /* 160 * pointers to the pages in the bio_list. Stored 161 * here for faster lookup 162 */ 163 struct page **bio_pages; 164 165 /* 166 * bitmap to record which horizontal stripe has data 167 */ 168 unsigned long *dbitmap; 169 170 /* allocated with real_stripes-many pointers for finish_*() calls */ 171 void **finish_pointers; 172 173 /* allocated with stripe_npages-many bits for finish_*() calls */ 174 unsigned long *finish_pbitmap; 175 }; 176 177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 179 static void rmw_work(struct btrfs_work *work); 180 static void read_rebuild_work(struct btrfs_work *work); 181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 183 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 184 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 186 187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 188 int need_check); 189 static void scrub_parity_work(struct btrfs_work *work); 190 191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) 192 { 193 btrfs_init_work(&rbio->work, work_func, NULL, NULL); 194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 195 } 196 197 /* 198 * the stripe hash table is used for locking, and to collect 199 * bios in hopes of making a full stripe 200 */ 201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 202 { 203 struct btrfs_stripe_hash_table *table; 204 struct btrfs_stripe_hash_table *x; 205 struct btrfs_stripe_hash *cur; 206 struct btrfs_stripe_hash *h; 207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 208 int i; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 221 if (!table) 222 return -ENOMEM; 223 224 spin_lock_init(&table->cache_lock); 225 INIT_LIST_HEAD(&table->stripe_cache); 226 227 h = table->table; 228 229 for (i = 0; i < num_entries; i++) { 230 cur = h + i; 231 INIT_LIST_HEAD(&cur->hash_list); 232 spin_lock_init(&cur->lock); 233 } 234 235 x = cmpxchg(&info->stripe_hash_table, NULL, table); 236 kvfree(x); 237 return 0; 238 } 239 240 /* 241 * caching an rbio means to copy anything from the 242 * bio_pages array into the stripe_pages array. We 243 * use the page uptodate bit in the stripe cache array 244 * to indicate if it has valid data 245 * 246 * once the caching is done, we set the cache ready 247 * bit. 248 */ 249 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 250 { 251 int i; 252 int ret; 253 254 ret = alloc_rbio_pages(rbio); 255 if (ret) 256 return; 257 258 for (i = 0; i < rbio->nr_pages; i++) { 259 if (!rbio->bio_pages[i]) 260 continue; 261 262 copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]); 263 SetPageUptodate(rbio->stripe_pages[i]); 264 } 265 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 266 } 267 268 /* 269 * we hash on the first logical address of the stripe 270 */ 271 static int rbio_bucket(struct btrfs_raid_bio *rbio) 272 { 273 u64 num = rbio->bbio->raid_map[0]; 274 275 /* 276 * we shift down quite a bit. We're using byte 277 * addressing, and most of the lower bits are zeros. 278 * This tends to upset hash_64, and it consistently 279 * returns just one or two different values. 280 * 281 * shifting off the lower bits fixes things. 282 */ 283 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 284 } 285 286 /* 287 * stealing an rbio means taking all the uptodate pages from the stripe 288 * array in the source rbio and putting them into the destination rbio 289 */ 290 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 291 { 292 int i; 293 struct page *s; 294 struct page *d; 295 296 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 297 return; 298 299 for (i = 0; i < dest->nr_pages; i++) { 300 s = src->stripe_pages[i]; 301 if (!s || !PageUptodate(s)) { 302 continue; 303 } 304 305 d = dest->stripe_pages[i]; 306 if (d) 307 __free_page(d); 308 309 dest->stripe_pages[i] = s; 310 src->stripe_pages[i] = NULL; 311 } 312 } 313 314 /* 315 * merging means we take the bio_list from the victim and 316 * splice it into the destination. The victim should 317 * be discarded afterwards. 318 * 319 * must be called with dest->rbio_list_lock held 320 */ 321 static void merge_rbio(struct btrfs_raid_bio *dest, 322 struct btrfs_raid_bio *victim) 323 { 324 bio_list_merge(&dest->bio_list, &victim->bio_list); 325 dest->bio_list_bytes += victim->bio_list_bytes; 326 dest->generic_bio_cnt += victim->generic_bio_cnt; 327 bio_list_init(&victim->bio_list); 328 } 329 330 /* 331 * used to prune items that are in the cache. The caller 332 * must hold the hash table lock. 333 */ 334 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 335 { 336 int bucket = rbio_bucket(rbio); 337 struct btrfs_stripe_hash_table *table; 338 struct btrfs_stripe_hash *h; 339 int freeit = 0; 340 341 /* 342 * check the bit again under the hash table lock. 343 */ 344 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 345 return; 346 347 table = rbio->fs_info->stripe_hash_table; 348 h = table->table + bucket; 349 350 /* hold the lock for the bucket because we may be 351 * removing it from the hash table 352 */ 353 spin_lock(&h->lock); 354 355 /* 356 * hold the lock for the bio list because we need 357 * to make sure the bio list is empty 358 */ 359 spin_lock(&rbio->bio_list_lock); 360 361 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 362 list_del_init(&rbio->stripe_cache); 363 table->cache_size -= 1; 364 freeit = 1; 365 366 /* if the bio list isn't empty, this rbio is 367 * still involved in an IO. We take it out 368 * of the cache list, and drop the ref that 369 * was held for the list. 370 * 371 * If the bio_list was empty, we also remove 372 * the rbio from the hash_table, and drop 373 * the corresponding ref 374 */ 375 if (bio_list_empty(&rbio->bio_list)) { 376 if (!list_empty(&rbio->hash_list)) { 377 list_del_init(&rbio->hash_list); 378 refcount_dec(&rbio->refs); 379 BUG_ON(!list_empty(&rbio->plug_list)); 380 } 381 } 382 } 383 384 spin_unlock(&rbio->bio_list_lock); 385 spin_unlock(&h->lock); 386 387 if (freeit) 388 __free_raid_bio(rbio); 389 } 390 391 /* 392 * prune a given rbio from the cache 393 */ 394 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 395 { 396 struct btrfs_stripe_hash_table *table; 397 unsigned long flags; 398 399 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 400 return; 401 402 table = rbio->fs_info->stripe_hash_table; 403 404 spin_lock_irqsave(&table->cache_lock, flags); 405 __remove_rbio_from_cache(rbio); 406 spin_unlock_irqrestore(&table->cache_lock, flags); 407 } 408 409 /* 410 * remove everything in the cache 411 */ 412 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 413 { 414 struct btrfs_stripe_hash_table *table; 415 unsigned long flags; 416 struct btrfs_raid_bio *rbio; 417 418 table = info->stripe_hash_table; 419 420 spin_lock_irqsave(&table->cache_lock, flags); 421 while (!list_empty(&table->stripe_cache)) { 422 rbio = list_entry(table->stripe_cache.next, 423 struct btrfs_raid_bio, 424 stripe_cache); 425 __remove_rbio_from_cache(rbio); 426 } 427 spin_unlock_irqrestore(&table->cache_lock, flags); 428 } 429 430 /* 431 * remove all cached entries and free the hash table 432 * used by unmount 433 */ 434 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 435 { 436 if (!info->stripe_hash_table) 437 return; 438 btrfs_clear_rbio_cache(info); 439 kvfree(info->stripe_hash_table); 440 info->stripe_hash_table = NULL; 441 } 442 443 /* 444 * insert an rbio into the stripe cache. It 445 * must have already been prepared by calling 446 * cache_rbio_pages 447 * 448 * If this rbio was already cached, it gets 449 * moved to the front of the lru. 450 * 451 * If the size of the rbio cache is too big, we 452 * prune an item. 453 */ 454 static void cache_rbio(struct btrfs_raid_bio *rbio) 455 { 456 struct btrfs_stripe_hash_table *table; 457 unsigned long flags; 458 459 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 460 return; 461 462 table = rbio->fs_info->stripe_hash_table; 463 464 spin_lock_irqsave(&table->cache_lock, flags); 465 spin_lock(&rbio->bio_list_lock); 466 467 /* bump our ref if we were not in the list before */ 468 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 469 refcount_inc(&rbio->refs); 470 471 if (!list_empty(&rbio->stripe_cache)){ 472 list_move(&rbio->stripe_cache, &table->stripe_cache); 473 } else { 474 list_add(&rbio->stripe_cache, &table->stripe_cache); 475 table->cache_size += 1; 476 } 477 478 spin_unlock(&rbio->bio_list_lock); 479 480 if (table->cache_size > RBIO_CACHE_SIZE) { 481 struct btrfs_raid_bio *found; 482 483 found = list_entry(table->stripe_cache.prev, 484 struct btrfs_raid_bio, 485 stripe_cache); 486 487 if (found != rbio) 488 __remove_rbio_from_cache(found); 489 } 490 491 spin_unlock_irqrestore(&table->cache_lock, flags); 492 } 493 494 /* 495 * helper function to run the xor_blocks api. It is only 496 * able to do MAX_XOR_BLOCKS at a time, so we need to 497 * loop through. 498 */ 499 static void run_xor(void **pages, int src_cnt, ssize_t len) 500 { 501 int src_off = 0; 502 int xor_src_cnt = 0; 503 void *dest = pages[src_cnt]; 504 505 while(src_cnt > 0) { 506 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 507 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 508 509 src_cnt -= xor_src_cnt; 510 src_off += xor_src_cnt; 511 } 512 } 513 514 /* 515 * Returns true if the bio list inside this rbio covers an entire stripe (no 516 * rmw required). 517 */ 518 static int rbio_is_full(struct btrfs_raid_bio *rbio) 519 { 520 unsigned long flags; 521 unsigned long size = rbio->bio_list_bytes; 522 int ret = 1; 523 524 spin_lock_irqsave(&rbio->bio_list_lock, flags); 525 if (size != rbio->nr_data * rbio->stripe_len) 526 ret = 0; 527 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 528 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 529 530 return ret; 531 } 532 533 /* 534 * returns 1 if it is safe to merge two rbios together. 535 * The merging is safe if the two rbios correspond to 536 * the same stripe and if they are both going in the same 537 * direction (read vs write), and if neither one is 538 * locked for final IO 539 * 540 * The caller is responsible for locking such that 541 * rmw_locked is safe to test 542 */ 543 static int rbio_can_merge(struct btrfs_raid_bio *last, 544 struct btrfs_raid_bio *cur) 545 { 546 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 547 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 548 return 0; 549 550 /* 551 * we can't merge with cached rbios, since the 552 * idea is that when we merge the destination 553 * rbio is going to run our IO for us. We can 554 * steal from cached rbios though, other functions 555 * handle that. 556 */ 557 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 558 test_bit(RBIO_CACHE_BIT, &cur->flags)) 559 return 0; 560 561 if (last->bbio->raid_map[0] != 562 cur->bbio->raid_map[0]) 563 return 0; 564 565 /* we can't merge with different operations */ 566 if (last->operation != cur->operation) 567 return 0; 568 /* 569 * We've need read the full stripe from the drive. 570 * check and repair the parity and write the new results. 571 * 572 * We're not allowed to add any new bios to the 573 * bio list here, anyone else that wants to 574 * change this stripe needs to do their own rmw. 575 */ 576 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 577 return 0; 578 579 if (last->operation == BTRFS_RBIO_REBUILD_MISSING) 580 return 0; 581 582 if (last->operation == BTRFS_RBIO_READ_REBUILD) { 583 int fa = last->faila; 584 int fb = last->failb; 585 int cur_fa = cur->faila; 586 int cur_fb = cur->failb; 587 588 if (last->faila >= last->failb) { 589 fa = last->failb; 590 fb = last->faila; 591 } 592 593 if (cur->faila >= cur->failb) { 594 cur_fa = cur->failb; 595 cur_fb = cur->faila; 596 } 597 598 if (fa != cur_fa || fb != cur_fb) 599 return 0; 600 } 601 return 1; 602 } 603 604 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 605 int index) 606 { 607 return stripe * rbio->stripe_npages + index; 608 } 609 610 /* 611 * these are just the pages from the rbio array, not from anything 612 * the FS sent down to us 613 */ 614 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 615 int index) 616 { 617 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 618 } 619 620 /* 621 * helper to index into the pstripe 622 */ 623 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 624 { 625 return rbio_stripe_page(rbio, rbio->nr_data, index); 626 } 627 628 /* 629 * helper to index into the qstripe, returns null 630 * if there is no qstripe 631 */ 632 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 633 { 634 if (rbio->nr_data + 1 == rbio->real_stripes) 635 return NULL; 636 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 637 } 638 639 /* 640 * The first stripe in the table for a logical address 641 * has the lock. rbios are added in one of three ways: 642 * 643 * 1) Nobody has the stripe locked yet. The rbio is given 644 * the lock and 0 is returned. The caller must start the IO 645 * themselves. 646 * 647 * 2) Someone has the stripe locked, but we're able to merge 648 * with the lock owner. The rbio is freed and the IO will 649 * start automatically along with the existing rbio. 1 is returned. 650 * 651 * 3) Someone has the stripe locked, but we're not able to merge. 652 * The rbio is added to the lock owner's plug list, or merged into 653 * an rbio already on the plug list. When the lock owner unlocks, 654 * the next rbio on the list is run and the IO is started automatically. 655 * 1 is returned 656 * 657 * If we return 0, the caller still owns the rbio and must continue with 658 * IO submission. If we return 1, the caller must assume the rbio has 659 * already been freed. 660 */ 661 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 662 { 663 struct btrfs_stripe_hash *h; 664 struct btrfs_raid_bio *cur; 665 struct btrfs_raid_bio *pending; 666 unsigned long flags; 667 struct btrfs_raid_bio *freeit = NULL; 668 struct btrfs_raid_bio *cache_drop = NULL; 669 int ret = 0; 670 671 h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 672 673 spin_lock_irqsave(&h->lock, flags); 674 list_for_each_entry(cur, &h->hash_list, hash_list) { 675 if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0]) 676 continue; 677 678 spin_lock(&cur->bio_list_lock); 679 680 /* Can we steal this cached rbio's pages? */ 681 if (bio_list_empty(&cur->bio_list) && 682 list_empty(&cur->plug_list) && 683 test_bit(RBIO_CACHE_BIT, &cur->flags) && 684 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 685 list_del_init(&cur->hash_list); 686 refcount_dec(&cur->refs); 687 688 steal_rbio(cur, rbio); 689 cache_drop = cur; 690 spin_unlock(&cur->bio_list_lock); 691 692 goto lockit; 693 } 694 695 /* Can we merge into the lock owner? */ 696 if (rbio_can_merge(cur, rbio)) { 697 merge_rbio(cur, rbio); 698 spin_unlock(&cur->bio_list_lock); 699 freeit = rbio; 700 ret = 1; 701 goto out; 702 } 703 704 705 /* 706 * We couldn't merge with the running rbio, see if we can merge 707 * with the pending ones. We don't have to check for rmw_locked 708 * because there is no way they are inside finish_rmw right now 709 */ 710 list_for_each_entry(pending, &cur->plug_list, plug_list) { 711 if (rbio_can_merge(pending, rbio)) { 712 merge_rbio(pending, rbio); 713 spin_unlock(&cur->bio_list_lock); 714 freeit = rbio; 715 ret = 1; 716 goto out; 717 } 718 } 719 720 /* 721 * No merging, put us on the tail of the plug list, our rbio 722 * will be started with the currently running rbio unlocks 723 */ 724 list_add_tail(&rbio->plug_list, &cur->plug_list); 725 spin_unlock(&cur->bio_list_lock); 726 ret = 1; 727 goto out; 728 } 729 lockit: 730 refcount_inc(&rbio->refs); 731 list_add(&rbio->hash_list, &h->hash_list); 732 out: 733 spin_unlock_irqrestore(&h->lock, flags); 734 if (cache_drop) 735 remove_rbio_from_cache(cache_drop); 736 if (freeit) 737 __free_raid_bio(freeit); 738 return ret; 739 } 740 741 /* 742 * called as rmw or parity rebuild is completed. If the plug list has more 743 * rbios waiting for this stripe, the next one on the list will be started 744 */ 745 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 746 { 747 int bucket; 748 struct btrfs_stripe_hash *h; 749 unsigned long flags; 750 int keep_cache = 0; 751 752 bucket = rbio_bucket(rbio); 753 h = rbio->fs_info->stripe_hash_table->table + bucket; 754 755 if (list_empty(&rbio->plug_list)) 756 cache_rbio(rbio); 757 758 spin_lock_irqsave(&h->lock, flags); 759 spin_lock(&rbio->bio_list_lock); 760 761 if (!list_empty(&rbio->hash_list)) { 762 /* 763 * if we're still cached and there is no other IO 764 * to perform, just leave this rbio here for others 765 * to steal from later 766 */ 767 if (list_empty(&rbio->plug_list) && 768 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 769 keep_cache = 1; 770 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 771 BUG_ON(!bio_list_empty(&rbio->bio_list)); 772 goto done; 773 } 774 775 list_del_init(&rbio->hash_list); 776 refcount_dec(&rbio->refs); 777 778 /* 779 * we use the plug list to hold all the rbios 780 * waiting for the chance to lock this stripe. 781 * hand the lock over to one of them. 782 */ 783 if (!list_empty(&rbio->plug_list)) { 784 struct btrfs_raid_bio *next; 785 struct list_head *head = rbio->plug_list.next; 786 787 next = list_entry(head, struct btrfs_raid_bio, 788 plug_list); 789 790 list_del_init(&rbio->plug_list); 791 792 list_add(&next->hash_list, &h->hash_list); 793 refcount_inc(&next->refs); 794 spin_unlock(&rbio->bio_list_lock); 795 spin_unlock_irqrestore(&h->lock, flags); 796 797 if (next->operation == BTRFS_RBIO_READ_REBUILD) 798 start_async_work(next, read_rebuild_work); 799 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 800 steal_rbio(rbio, next); 801 start_async_work(next, read_rebuild_work); 802 } else if (next->operation == BTRFS_RBIO_WRITE) { 803 steal_rbio(rbio, next); 804 start_async_work(next, rmw_work); 805 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 806 steal_rbio(rbio, next); 807 start_async_work(next, scrub_parity_work); 808 } 809 810 goto done_nolock; 811 } 812 } 813 done: 814 spin_unlock(&rbio->bio_list_lock); 815 spin_unlock_irqrestore(&h->lock, flags); 816 817 done_nolock: 818 if (!keep_cache) 819 remove_rbio_from_cache(rbio); 820 } 821 822 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 823 { 824 int i; 825 826 if (!refcount_dec_and_test(&rbio->refs)) 827 return; 828 829 WARN_ON(!list_empty(&rbio->stripe_cache)); 830 WARN_ON(!list_empty(&rbio->hash_list)); 831 WARN_ON(!bio_list_empty(&rbio->bio_list)); 832 833 for (i = 0; i < rbio->nr_pages; i++) { 834 if (rbio->stripe_pages[i]) { 835 __free_page(rbio->stripe_pages[i]); 836 rbio->stripe_pages[i] = NULL; 837 } 838 } 839 840 btrfs_put_bbio(rbio->bbio); 841 kfree(rbio); 842 } 843 844 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 845 { 846 struct bio *next; 847 848 while (cur) { 849 next = cur->bi_next; 850 cur->bi_next = NULL; 851 cur->bi_status = err; 852 bio_endio(cur); 853 cur = next; 854 } 855 } 856 857 /* 858 * this frees the rbio and runs through all the bios in the 859 * bio_list and calls end_io on them 860 */ 861 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 862 { 863 struct bio *cur = bio_list_get(&rbio->bio_list); 864 struct bio *extra; 865 866 if (rbio->generic_bio_cnt) 867 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 868 869 /* 870 * At this moment, rbio->bio_list is empty, however since rbio does not 871 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 872 * hash list, rbio may be merged with others so that rbio->bio_list 873 * becomes non-empty. 874 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 875 * more and we can call bio_endio() on all queued bios. 876 */ 877 unlock_stripe(rbio); 878 extra = bio_list_get(&rbio->bio_list); 879 __free_raid_bio(rbio); 880 881 rbio_endio_bio_list(cur, err); 882 if (extra) 883 rbio_endio_bio_list(extra, err); 884 } 885 886 /* 887 * end io function used by finish_rmw. When we finally 888 * get here, we've written a full stripe 889 */ 890 static void raid_write_end_io(struct bio *bio) 891 { 892 struct btrfs_raid_bio *rbio = bio->bi_private; 893 blk_status_t err = bio->bi_status; 894 int max_errors; 895 896 if (err) 897 fail_bio_stripe(rbio, bio); 898 899 bio_put(bio); 900 901 if (!atomic_dec_and_test(&rbio->stripes_pending)) 902 return; 903 904 err = BLK_STS_OK; 905 906 /* OK, we have read all the stripes we need to. */ 907 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 908 0 : rbio->bbio->max_errors; 909 if (atomic_read(&rbio->error) > max_errors) 910 err = BLK_STS_IOERR; 911 912 rbio_orig_end_io(rbio, err); 913 } 914 915 /* 916 * the read/modify/write code wants to use the original bio for 917 * any pages it included, and then use the rbio for everything 918 * else. This function decides if a given index (stripe number) 919 * and page number in that stripe fall inside the original bio 920 * or the rbio. 921 * 922 * if you set bio_list_only, you'll get a NULL back for any ranges 923 * that are outside the bio_list 924 * 925 * This doesn't take any refs on anything, you get a bare page pointer 926 * and the caller must bump refs as required. 927 * 928 * You must call index_rbio_pages once before you can trust 929 * the answers from this function. 930 */ 931 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 932 int index, int pagenr, int bio_list_only) 933 { 934 int chunk_page; 935 struct page *p = NULL; 936 937 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 938 939 spin_lock_irq(&rbio->bio_list_lock); 940 p = rbio->bio_pages[chunk_page]; 941 spin_unlock_irq(&rbio->bio_list_lock); 942 943 if (p || bio_list_only) 944 return p; 945 946 return rbio->stripe_pages[chunk_page]; 947 } 948 949 /* 950 * number of pages we need for the entire stripe across all the 951 * drives 952 */ 953 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 954 { 955 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 956 } 957 958 /* 959 * allocation and initial setup for the btrfs_raid_bio. Not 960 * this does not allocate any pages for rbio->pages. 961 */ 962 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 963 struct btrfs_bio *bbio, 964 u64 stripe_len) 965 { 966 struct btrfs_raid_bio *rbio; 967 int nr_data = 0; 968 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 969 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 970 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 971 void *p; 972 973 rbio = kzalloc(sizeof(*rbio) + 974 sizeof(*rbio->stripe_pages) * num_pages + 975 sizeof(*rbio->bio_pages) * num_pages + 976 sizeof(*rbio->finish_pointers) * real_stripes + 977 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + 978 sizeof(*rbio->finish_pbitmap) * 979 BITS_TO_LONGS(stripe_npages), 980 GFP_NOFS); 981 if (!rbio) 982 return ERR_PTR(-ENOMEM); 983 984 bio_list_init(&rbio->bio_list); 985 INIT_LIST_HEAD(&rbio->plug_list); 986 spin_lock_init(&rbio->bio_list_lock); 987 INIT_LIST_HEAD(&rbio->stripe_cache); 988 INIT_LIST_HEAD(&rbio->hash_list); 989 rbio->bbio = bbio; 990 rbio->fs_info = fs_info; 991 rbio->stripe_len = stripe_len; 992 rbio->nr_pages = num_pages; 993 rbio->real_stripes = real_stripes; 994 rbio->stripe_npages = stripe_npages; 995 rbio->faila = -1; 996 rbio->failb = -1; 997 refcount_set(&rbio->refs, 1); 998 atomic_set(&rbio->error, 0); 999 atomic_set(&rbio->stripes_pending, 0); 1000 1001 /* 1002 * the stripe_pages, bio_pages, etc arrays point to the extra 1003 * memory we allocated past the end of the rbio 1004 */ 1005 p = rbio + 1; 1006 #define CONSUME_ALLOC(ptr, count) do { \ 1007 ptr = p; \ 1008 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \ 1009 } while (0) 1010 CONSUME_ALLOC(rbio->stripe_pages, num_pages); 1011 CONSUME_ALLOC(rbio->bio_pages, num_pages); 1012 CONSUME_ALLOC(rbio->finish_pointers, real_stripes); 1013 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); 1014 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); 1015 #undef CONSUME_ALLOC 1016 1017 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1018 nr_data = real_stripes - 1; 1019 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1020 nr_data = real_stripes - 2; 1021 else 1022 BUG(); 1023 1024 rbio->nr_data = nr_data; 1025 return rbio; 1026 } 1027 1028 /* allocate pages for all the stripes in the bio, including parity */ 1029 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1030 { 1031 int i; 1032 struct page *page; 1033 1034 for (i = 0; i < rbio->nr_pages; i++) { 1035 if (rbio->stripe_pages[i]) 1036 continue; 1037 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1038 if (!page) 1039 return -ENOMEM; 1040 rbio->stripe_pages[i] = page; 1041 } 1042 return 0; 1043 } 1044 1045 /* only allocate pages for p/q stripes */ 1046 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1047 { 1048 int i; 1049 struct page *page; 1050 1051 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1052 1053 for (; i < rbio->nr_pages; i++) { 1054 if (rbio->stripe_pages[i]) 1055 continue; 1056 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1057 if (!page) 1058 return -ENOMEM; 1059 rbio->stripe_pages[i] = page; 1060 } 1061 return 0; 1062 } 1063 1064 /* 1065 * add a single page from a specific stripe into our list of bios for IO 1066 * this will try to merge into existing bios if possible, and returns 1067 * zero if all went well. 1068 */ 1069 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1070 struct bio_list *bio_list, 1071 struct page *page, 1072 int stripe_nr, 1073 unsigned long page_index, 1074 unsigned long bio_max_len) 1075 { 1076 struct bio *last = bio_list->tail; 1077 int ret; 1078 struct bio *bio; 1079 struct btrfs_bio_stripe *stripe; 1080 u64 disk_start; 1081 1082 stripe = &rbio->bbio->stripes[stripe_nr]; 1083 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1084 1085 /* if the device is missing, just fail this stripe */ 1086 if (!stripe->dev->bdev) 1087 return fail_rbio_index(rbio, stripe_nr); 1088 1089 /* see if we can add this page onto our existing bio */ 1090 if (last) { 1091 u64 last_end = last->bi_iter.bi_sector << 9; 1092 last_end += last->bi_iter.bi_size; 1093 1094 /* 1095 * we can't merge these if they are from different 1096 * devices or if they are not contiguous 1097 */ 1098 if (last_end == disk_start && !last->bi_status && 1099 last->bi_bdev == stripe->dev->bdev) { 1100 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1101 if (ret == PAGE_SIZE) 1102 return 0; 1103 } 1104 } 1105 1106 /* put a new bio on the list */ 1107 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1108 btrfs_io_bio(bio)->device = stripe->dev; 1109 bio->bi_iter.bi_size = 0; 1110 bio_set_dev(bio, stripe->dev->bdev); 1111 bio->bi_iter.bi_sector = disk_start >> 9; 1112 1113 bio_add_page(bio, page, PAGE_SIZE, 0); 1114 bio_list_add(bio_list, bio); 1115 return 0; 1116 } 1117 1118 /* 1119 * while we're doing the read/modify/write cycle, we could 1120 * have errors in reading pages off the disk. This checks 1121 * for errors and if we're not able to read the page it'll 1122 * trigger parity reconstruction. The rmw will be finished 1123 * after we've reconstructed the failed stripes 1124 */ 1125 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1126 { 1127 if (rbio->faila >= 0 || rbio->failb >= 0) { 1128 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1129 __raid56_parity_recover(rbio); 1130 } else { 1131 finish_rmw(rbio); 1132 } 1133 } 1134 1135 /* 1136 * helper function to walk our bio list and populate the bio_pages array with 1137 * the result. This seems expensive, but it is faster than constantly 1138 * searching through the bio list as we setup the IO in finish_rmw or stripe 1139 * reconstruction. 1140 * 1141 * This must be called before you trust the answers from page_in_rbio 1142 */ 1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1144 { 1145 struct bio *bio; 1146 u64 start; 1147 unsigned long stripe_offset; 1148 unsigned long page_index; 1149 1150 spin_lock_irq(&rbio->bio_list_lock); 1151 bio_list_for_each(bio, &rbio->bio_list) { 1152 struct bio_vec bvec; 1153 struct bvec_iter iter; 1154 int i = 0; 1155 1156 start = bio->bi_iter.bi_sector << 9; 1157 stripe_offset = start - rbio->bbio->raid_map[0]; 1158 page_index = stripe_offset >> PAGE_SHIFT; 1159 1160 if (bio_flagged(bio, BIO_CLONED)) 1161 bio->bi_iter = btrfs_io_bio(bio)->iter; 1162 1163 bio_for_each_segment(bvec, bio, iter) { 1164 rbio->bio_pages[page_index + i] = bvec.bv_page; 1165 i++; 1166 } 1167 } 1168 spin_unlock_irq(&rbio->bio_list_lock); 1169 } 1170 1171 /* 1172 * this is called from one of two situations. We either 1173 * have a full stripe from the higher layers, or we've read all 1174 * the missing bits off disk. 1175 * 1176 * This will calculate the parity and then send down any 1177 * changed blocks. 1178 */ 1179 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1180 { 1181 struct btrfs_bio *bbio = rbio->bbio; 1182 void **pointers = rbio->finish_pointers; 1183 int nr_data = rbio->nr_data; 1184 int stripe; 1185 int pagenr; 1186 bool has_qstripe; 1187 struct bio_list bio_list; 1188 struct bio *bio; 1189 int ret; 1190 1191 bio_list_init(&bio_list); 1192 1193 if (rbio->real_stripes - rbio->nr_data == 1) 1194 has_qstripe = false; 1195 else if (rbio->real_stripes - rbio->nr_data == 2) 1196 has_qstripe = true; 1197 else 1198 BUG(); 1199 1200 /* at this point we either have a full stripe, 1201 * or we've read the full stripe from the drive. 1202 * recalculate the parity and write the new results. 1203 * 1204 * We're not allowed to add any new bios to the 1205 * bio list here, anyone else that wants to 1206 * change this stripe needs to do their own rmw. 1207 */ 1208 spin_lock_irq(&rbio->bio_list_lock); 1209 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1210 spin_unlock_irq(&rbio->bio_list_lock); 1211 1212 atomic_set(&rbio->error, 0); 1213 1214 /* 1215 * now that we've set rmw_locked, run through the 1216 * bio list one last time and map the page pointers 1217 * 1218 * We don't cache full rbios because we're assuming 1219 * the higher layers are unlikely to use this area of 1220 * the disk again soon. If they do use it again, 1221 * hopefully they will send another full bio. 1222 */ 1223 index_rbio_pages(rbio); 1224 if (!rbio_is_full(rbio)) 1225 cache_rbio_pages(rbio); 1226 else 1227 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1228 1229 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1230 struct page *p; 1231 /* first collect one page from each data stripe */ 1232 for (stripe = 0; stripe < nr_data; stripe++) { 1233 p = page_in_rbio(rbio, stripe, pagenr, 0); 1234 pointers[stripe] = kmap(p); 1235 } 1236 1237 /* then add the parity stripe */ 1238 p = rbio_pstripe_page(rbio, pagenr); 1239 SetPageUptodate(p); 1240 pointers[stripe++] = kmap(p); 1241 1242 if (has_qstripe) { 1243 1244 /* 1245 * raid6, add the qstripe and call the 1246 * library function to fill in our p/q 1247 */ 1248 p = rbio_qstripe_page(rbio, pagenr); 1249 SetPageUptodate(p); 1250 pointers[stripe++] = kmap(p); 1251 1252 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1253 pointers); 1254 } else { 1255 /* raid5 */ 1256 copy_page(pointers[nr_data], pointers[0]); 1257 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1258 } 1259 1260 1261 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1262 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1263 } 1264 1265 /* 1266 * time to start writing. Make bios for everything from the 1267 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1268 * everything else. 1269 */ 1270 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1271 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1272 struct page *page; 1273 if (stripe < rbio->nr_data) { 1274 page = page_in_rbio(rbio, stripe, pagenr, 1); 1275 if (!page) 1276 continue; 1277 } else { 1278 page = rbio_stripe_page(rbio, stripe, pagenr); 1279 } 1280 1281 ret = rbio_add_io_page(rbio, &bio_list, 1282 page, stripe, pagenr, rbio->stripe_len); 1283 if (ret) 1284 goto cleanup; 1285 } 1286 } 1287 1288 if (likely(!bbio->num_tgtdevs)) 1289 goto write_data; 1290 1291 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1292 if (!bbio->tgtdev_map[stripe]) 1293 continue; 1294 1295 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1296 struct page *page; 1297 if (stripe < rbio->nr_data) { 1298 page = page_in_rbio(rbio, stripe, pagenr, 1); 1299 if (!page) 1300 continue; 1301 } else { 1302 page = rbio_stripe_page(rbio, stripe, pagenr); 1303 } 1304 1305 ret = rbio_add_io_page(rbio, &bio_list, page, 1306 rbio->bbio->tgtdev_map[stripe], 1307 pagenr, rbio->stripe_len); 1308 if (ret) 1309 goto cleanup; 1310 } 1311 } 1312 1313 write_data: 1314 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1315 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1316 1317 while ((bio = bio_list_pop(&bio_list))) { 1318 bio->bi_private = rbio; 1319 bio->bi_end_io = raid_write_end_io; 1320 bio->bi_opf = REQ_OP_WRITE; 1321 1322 submit_bio(bio); 1323 } 1324 return; 1325 1326 cleanup: 1327 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1328 1329 while ((bio = bio_list_pop(&bio_list))) 1330 bio_put(bio); 1331 } 1332 1333 /* 1334 * helper to find the stripe number for a given bio. Used to figure out which 1335 * stripe has failed. This expects the bio to correspond to a physical disk, 1336 * so it looks up based on physical sector numbers. 1337 */ 1338 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1339 struct bio *bio) 1340 { 1341 u64 physical = bio->bi_iter.bi_sector; 1342 int i; 1343 struct btrfs_bio_stripe *stripe; 1344 1345 physical <<= 9; 1346 1347 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1348 stripe = &rbio->bbio->stripes[i]; 1349 if (in_range(physical, stripe->physical, rbio->stripe_len) && 1350 stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) { 1351 return i; 1352 } 1353 } 1354 return -1; 1355 } 1356 1357 /* 1358 * helper to find the stripe number for a given 1359 * bio (before mapping). Used to figure out which stripe has 1360 * failed. This looks up based on logical block numbers. 1361 */ 1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1363 struct bio *bio) 1364 { 1365 u64 logical = bio->bi_iter.bi_sector << 9; 1366 int i; 1367 1368 for (i = 0; i < rbio->nr_data; i++) { 1369 u64 stripe_start = rbio->bbio->raid_map[i]; 1370 1371 if (in_range(logical, stripe_start, rbio->stripe_len)) 1372 return i; 1373 } 1374 return -1; 1375 } 1376 1377 /* 1378 * returns -EIO if we had too many failures 1379 */ 1380 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1381 { 1382 unsigned long flags; 1383 int ret = 0; 1384 1385 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1386 1387 /* we already know this stripe is bad, move on */ 1388 if (rbio->faila == failed || rbio->failb == failed) 1389 goto out; 1390 1391 if (rbio->faila == -1) { 1392 /* first failure on this rbio */ 1393 rbio->faila = failed; 1394 atomic_inc(&rbio->error); 1395 } else if (rbio->failb == -1) { 1396 /* second failure on this rbio */ 1397 rbio->failb = failed; 1398 atomic_inc(&rbio->error); 1399 } else { 1400 ret = -EIO; 1401 } 1402 out: 1403 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1404 1405 return ret; 1406 } 1407 1408 /* 1409 * helper to fail a stripe based on a physical disk 1410 * bio. 1411 */ 1412 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1413 struct bio *bio) 1414 { 1415 int failed = find_bio_stripe(rbio, bio); 1416 1417 if (failed < 0) 1418 return -EIO; 1419 1420 return fail_rbio_index(rbio, failed); 1421 } 1422 1423 /* 1424 * this sets each page in the bio uptodate. It should only be used on private 1425 * rbio pages, nothing that comes in from the higher layers 1426 */ 1427 static void set_bio_pages_uptodate(struct bio *bio) 1428 { 1429 struct bio_vec *bvec; 1430 struct bvec_iter_all iter_all; 1431 1432 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1433 1434 bio_for_each_segment_all(bvec, bio, iter_all) 1435 SetPageUptodate(bvec->bv_page); 1436 } 1437 1438 /* 1439 * end io for the read phase of the rmw cycle. All the bios here are physical 1440 * stripe bios we've read from the disk so we can recalculate the parity of the 1441 * stripe. 1442 * 1443 * This will usually kick off finish_rmw once all the bios are read in, but it 1444 * may trigger parity reconstruction if we had any errors along the way 1445 */ 1446 static void raid_rmw_end_io(struct bio *bio) 1447 { 1448 struct btrfs_raid_bio *rbio = bio->bi_private; 1449 1450 if (bio->bi_status) 1451 fail_bio_stripe(rbio, bio); 1452 else 1453 set_bio_pages_uptodate(bio); 1454 1455 bio_put(bio); 1456 1457 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1458 return; 1459 1460 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1461 goto cleanup; 1462 1463 /* 1464 * this will normally call finish_rmw to start our write 1465 * but if there are any failed stripes we'll reconstruct 1466 * from parity first 1467 */ 1468 validate_rbio_for_rmw(rbio); 1469 return; 1470 1471 cleanup: 1472 1473 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1474 } 1475 1476 /* 1477 * the stripe must be locked by the caller. It will 1478 * unlock after all the writes are done 1479 */ 1480 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1481 { 1482 int bios_to_read = 0; 1483 struct bio_list bio_list; 1484 int ret; 1485 int pagenr; 1486 int stripe; 1487 struct bio *bio; 1488 1489 bio_list_init(&bio_list); 1490 1491 ret = alloc_rbio_pages(rbio); 1492 if (ret) 1493 goto cleanup; 1494 1495 index_rbio_pages(rbio); 1496 1497 atomic_set(&rbio->error, 0); 1498 /* 1499 * build a list of bios to read all the missing parts of this 1500 * stripe 1501 */ 1502 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1503 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1504 struct page *page; 1505 /* 1506 * we want to find all the pages missing from 1507 * the rbio and read them from the disk. If 1508 * page_in_rbio finds a page in the bio list 1509 * we don't need to read it off the stripe. 1510 */ 1511 page = page_in_rbio(rbio, stripe, pagenr, 1); 1512 if (page) 1513 continue; 1514 1515 page = rbio_stripe_page(rbio, stripe, pagenr); 1516 /* 1517 * the bio cache may have handed us an uptodate 1518 * page. If so, be happy and use it 1519 */ 1520 if (PageUptodate(page)) 1521 continue; 1522 1523 ret = rbio_add_io_page(rbio, &bio_list, page, 1524 stripe, pagenr, rbio->stripe_len); 1525 if (ret) 1526 goto cleanup; 1527 } 1528 } 1529 1530 bios_to_read = bio_list_size(&bio_list); 1531 if (!bios_to_read) { 1532 /* 1533 * this can happen if others have merged with 1534 * us, it means there is nothing left to read. 1535 * But if there are missing devices it may not be 1536 * safe to do the full stripe write yet. 1537 */ 1538 goto finish; 1539 } 1540 1541 /* 1542 * the bbio may be freed once we submit the last bio. Make sure 1543 * not to touch it after that 1544 */ 1545 atomic_set(&rbio->stripes_pending, bios_to_read); 1546 while ((bio = bio_list_pop(&bio_list))) { 1547 bio->bi_private = rbio; 1548 bio->bi_end_io = raid_rmw_end_io; 1549 bio->bi_opf = REQ_OP_READ; 1550 1551 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1552 1553 submit_bio(bio); 1554 } 1555 /* the actual write will happen once the reads are done */ 1556 return 0; 1557 1558 cleanup: 1559 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1560 1561 while ((bio = bio_list_pop(&bio_list))) 1562 bio_put(bio); 1563 1564 return -EIO; 1565 1566 finish: 1567 validate_rbio_for_rmw(rbio); 1568 return 0; 1569 } 1570 1571 /* 1572 * if the upper layers pass in a full stripe, we thank them by only allocating 1573 * enough pages to hold the parity, and sending it all down quickly. 1574 */ 1575 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1576 { 1577 int ret; 1578 1579 ret = alloc_rbio_parity_pages(rbio); 1580 if (ret) { 1581 __free_raid_bio(rbio); 1582 return ret; 1583 } 1584 1585 ret = lock_stripe_add(rbio); 1586 if (ret == 0) 1587 finish_rmw(rbio); 1588 return 0; 1589 } 1590 1591 /* 1592 * partial stripe writes get handed over to async helpers. 1593 * We're really hoping to merge a few more writes into this 1594 * rbio before calculating new parity 1595 */ 1596 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1597 { 1598 int ret; 1599 1600 ret = lock_stripe_add(rbio); 1601 if (ret == 0) 1602 start_async_work(rbio, rmw_work); 1603 return 0; 1604 } 1605 1606 /* 1607 * sometimes while we were reading from the drive to 1608 * recalculate parity, enough new bios come into create 1609 * a full stripe. So we do a check here to see if we can 1610 * go directly to finish_rmw 1611 */ 1612 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1613 { 1614 /* head off into rmw land if we don't have a full stripe */ 1615 if (!rbio_is_full(rbio)) 1616 return partial_stripe_write(rbio); 1617 return full_stripe_write(rbio); 1618 } 1619 1620 /* 1621 * We use plugging call backs to collect full stripes. 1622 * Any time we get a partial stripe write while plugged 1623 * we collect it into a list. When the unplug comes down, 1624 * we sort the list by logical block number and merge 1625 * everything we can into the same rbios 1626 */ 1627 struct btrfs_plug_cb { 1628 struct blk_plug_cb cb; 1629 struct btrfs_fs_info *info; 1630 struct list_head rbio_list; 1631 struct btrfs_work work; 1632 }; 1633 1634 /* 1635 * rbios on the plug list are sorted for easier merging. 1636 */ 1637 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1638 { 1639 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1640 plug_list); 1641 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1642 plug_list); 1643 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1644 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1645 1646 if (a_sector < b_sector) 1647 return -1; 1648 if (a_sector > b_sector) 1649 return 1; 1650 return 0; 1651 } 1652 1653 static void run_plug(struct btrfs_plug_cb *plug) 1654 { 1655 struct btrfs_raid_bio *cur; 1656 struct btrfs_raid_bio *last = NULL; 1657 1658 /* 1659 * sort our plug list then try to merge 1660 * everything we can in hopes of creating full 1661 * stripes. 1662 */ 1663 list_sort(NULL, &plug->rbio_list, plug_cmp); 1664 while (!list_empty(&plug->rbio_list)) { 1665 cur = list_entry(plug->rbio_list.next, 1666 struct btrfs_raid_bio, plug_list); 1667 list_del_init(&cur->plug_list); 1668 1669 if (rbio_is_full(cur)) { 1670 int ret; 1671 1672 /* we have a full stripe, send it down */ 1673 ret = full_stripe_write(cur); 1674 BUG_ON(ret); 1675 continue; 1676 } 1677 if (last) { 1678 if (rbio_can_merge(last, cur)) { 1679 merge_rbio(last, cur); 1680 __free_raid_bio(cur); 1681 continue; 1682 1683 } 1684 __raid56_parity_write(last); 1685 } 1686 last = cur; 1687 } 1688 if (last) { 1689 __raid56_parity_write(last); 1690 } 1691 kfree(plug); 1692 } 1693 1694 /* 1695 * if the unplug comes from schedule, we have to push the 1696 * work off to a helper thread 1697 */ 1698 static void unplug_work(struct btrfs_work *work) 1699 { 1700 struct btrfs_plug_cb *plug; 1701 plug = container_of(work, struct btrfs_plug_cb, work); 1702 run_plug(plug); 1703 } 1704 1705 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1706 { 1707 struct btrfs_plug_cb *plug; 1708 plug = container_of(cb, struct btrfs_plug_cb, cb); 1709 1710 if (from_schedule) { 1711 btrfs_init_work(&plug->work, unplug_work, NULL, NULL); 1712 btrfs_queue_work(plug->info->rmw_workers, 1713 &plug->work); 1714 return; 1715 } 1716 run_plug(plug); 1717 } 1718 1719 /* 1720 * our main entry point for writes from the rest of the FS. 1721 */ 1722 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1723 struct btrfs_bio *bbio, u64 stripe_len) 1724 { 1725 struct btrfs_raid_bio *rbio; 1726 struct btrfs_plug_cb *plug = NULL; 1727 struct blk_plug_cb *cb; 1728 int ret; 1729 1730 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1731 if (IS_ERR(rbio)) { 1732 btrfs_put_bbio(bbio); 1733 return PTR_ERR(rbio); 1734 } 1735 bio_list_add(&rbio->bio_list, bio); 1736 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1737 rbio->operation = BTRFS_RBIO_WRITE; 1738 1739 btrfs_bio_counter_inc_noblocked(fs_info); 1740 rbio->generic_bio_cnt = 1; 1741 1742 /* 1743 * don't plug on full rbios, just get them out the door 1744 * as quickly as we can 1745 */ 1746 if (rbio_is_full(rbio)) { 1747 ret = full_stripe_write(rbio); 1748 if (ret) 1749 btrfs_bio_counter_dec(fs_info); 1750 return ret; 1751 } 1752 1753 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1754 if (cb) { 1755 plug = container_of(cb, struct btrfs_plug_cb, cb); 1756 if (!plug->info) { 1757 plug->info = fs_info; 1758 INIT_LIST_HEAD(&plug->rbio_list); 1759 } 1760 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1761 ret = 0; 1762 } else { 1763 ret = __raid56_parity_write(rbio); 1764 if (ret) 1765 btrfs_bio_counter_dec(fs_info); 1766 } 1767 return ret; 1768 } 1769 1770 /* 1771 * all parity reconstruction happens here. We've read in everything 1772 * we can find from the drives and this does the heavy lifting of 1773 * sorting the good from the bad. 1774 */ 1775 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1776 { 1777 int pagenr, stripe; 1778 void **pointers; 1779 int faila = -1, failb = -1; 1780 struct page *page; 1781 blk_status_t err; 1782 int i; 1783 1784 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1785 if (!pointers) { 1786 err = BLK_STS_RESOURCE; 1787 goto cleanup_io; 1788 } 1789 1790 faila = rbio->faila; 1791 failb = rbio->failb; 1792 1793 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1794 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1795 spin_lock_irq(&rbio->bio_list_lock); 1796 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1797 spin_unlock_irq(&rbio->bio_list_lock); 1798 } 1799 1800 index_rbio_pages(rbio); 1801 1802 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1803 /* 1804 * Now we just use bitmap to mark the horizontal stripes in 1805 * which we have data when doing parity scrub. 1806 */ 1807 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1808 !test_bit(pagenr, rbio->dbitmap)) 1809 continue; 1810 1811 /* setup our array of pointers with pages 1812 * from each stripe 1813 */ 1814 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1815 /* 1816 * if we're rebuilding a read, we have to use 1817 * pages from the bio list 1818 */ 1819 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1820 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1821 (stripe == faila || stripe == failb)) { 1822 page = page_in_rbio(rbio, stripe, pagenr, 0); 1823 } else { 1824 page = rbio_stripe_page(rbio, stripe, pagenr); 1825 } 1826 pointers[stripe] = kmap(page); 1827 } 1828 1829 /* all raid6 handling here */ 1830 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1831 /* 1832 * single failure, rebuild from parity raid5 1833 * style 1834 */ 1835 if (failb < 0) { 1836 if (faila == rbio->nr_data) { 1837 /* 1838 * Just the P stripe has failed, without 1839 * a bad data or Q stripe. 1840 * TODO, we should redo the xor here. 1841 */ 1842 err = BLK_STS_IOERR; 1843 goto cleanup; 1844 } 1845 /* 1846 * a single failure in raid6 is rebuilt 1847 * in the pstripe code below 1848 */ 1849 goto pstripe; 1850 } 1851 1852 /* make sure our ps and qs are in order */ 1853 if (faila > failb) 1854 swap(faila, failb); 1855 1856 /* if the q stripe is failed, do a pstripe reconstruction 1857 * from the xors. 1858 * If both the q stripe and the P stripe are failed, we're 1859 * here due to a crc mismatch and we can't give them the 1860 * data they want 1861 */ 1862 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1863 if (rbio->bbio->raid_map[faila] == 1864 RAID5_P_STRIPE) { 1865 err = BLK_STS_IOERR; 1866 goto cleanup; 1867 } 1868 /* 1869 * otherwise we have one bad data stripe and 1870 * a good P stripe. raid5! 1871 */ 1872 goto pstripe; 1873 } 1874 1875 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1876 raid6_datap_recov(rbio->real_stripes, 1877 PAGE_SIZE, faila, pointers); 1878 } else { 1879 raid6_2data_recov(rbio->real_stripes, 1880 PAGE_SIZE, faila, failb, 1881 pointers); 1882 } 1883 } else { 1884 void *p; 1885 1886 /* rebuild from P stripe here (raid5 or raid6) */ 1887 BUG_ON(failb != -1); 1888 pstripe: 1889 /* Copy parity block into failed block to start with */ 1890 copy_page(pointers[faila], pointers[rbio->nr_data]); 1891 1892 /* rearrange the pointer array */ 1893 p = pointers[faila]; 1894 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1895 pointers[stripe] = pointers[stripe + 1]; 1896 pointers[rbio->nr_data - 1] = p; 1897 1898 /* xor in the rest */ 1899 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1900 } 1901 /* if we're doing this rebuild as part of an rmw, go through 1902 * and set all of our private rbio pages in the 1903 * failed stripes as uptodate. This way finish_rmw will 1904 * know they can be trusted. If this was a read reconstruction, 1905 * other endio functions will fiddle the uptodate bits 1906 */ 1907 if (rbio->operation == BTRFS_RBIO_WRITE) { 1908 for (i = 0; i < rbio->stripe_npages; i++) { 1909 if (faila != -1) { 1910 page = rbio_stripe_page(rbio, faila, i); 1911 SetPageUptodate(page); 1912 } 1913 if (failb != -1) { 1914 page = rbio_stripe_page(rbio, failb, i); 1915 SetPageUptodate(page); 1916 } 1917 } 1918 } 1919 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1920 /* 1921 * if we're rebuilding a read, we have to use 1922 * pages from the bio list 1923 */ 1924 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1925 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1926 (stripe == faila || stripe == failb)) { 1927 page = page_in_rbio(rbio, stripe, pagenr, 0); 1928 } else { 1929 page = rbio_stripe_page(rbio, stripe, pagenr); 1930 } 1931 kunmap(page); 1932 } 1933 } 1934 1935 err = BLK_STS_OK; 1936 cleanup: 1937 kfree(pointers); 1938 1939 cleanup_io: 1940 /* 1941 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a 1942 * valid rbio which is consistent with ondisk content, thus such a 1943 * valid rbio can be cached to avoid further disk reads. 1944 */ 1945 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1946 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1947 /* 1948 * - In case of two failures, where rbio->failb != -1: 1949 * 1950 * Do not cache this rbio since the above read reconstruction 1951 * (raid6_datap_recov() or raid6_2data_recov()) may have 1952 * changed some content of stripes which are not identical to 1953 * on-disk content any more, otherwise, a later write/recover 1954 * may steal stripe_pages from this rbio and end up with 1955 * corruptions or rebuild failures. 1956 * 1957 * - In case of single failure, where rbio->failb == -1: 1958 * 1959 * Cache this rbio iff the above read reconstruction is 1960 * executed without problems. 1961 */ 1962 if (err == BLK_STS_OK && rbio->failb < 0) 1963 cache_rbio_pages(rbio); 1964 else 1965 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1966 1967 rbio_orig_end_io(rbio, err); 1968 } else if (err == BLK_STS_OK) { 1969 rbio->faila = -1; 1970 rbio->failb = -1; 1971 1972 if (rbio->operation == BTRFS_RBIO_WRITE) 1973 finish_rmw(rbio); 1974 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1975 finish_parity_scrub(rbio, 0); 1976 else 1977 BUG(); 1978 } else { 1979 rbio_orig_end_io(rbio, err); 1980 } 1981 } 1982 1983 /* 1984 * This is called only for stripes we've read from disk to 1985 * reconstruct the parity. 1986 */ 1987 static void raid_recover_end_io(struct bio *bio) 1988 { 1989 struct btrfs_raid_bio *rbio = bio->bi_private; 1990 1991 /* 1992 * we only read stripe pages off the disk, set them 1993 * up to date if there were no errors 1994 */ 1995 if (bio->bi_status) 1996 fail_bio_stripe(rbio, bio); 1997 else 1998 set_bio_pages_uptodate(bio); 1999 bio_put(bio); 2000 2001 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2002 return; 2003 2004 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2005 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2006 else 2007 __raid_recover_end_io(rbio); 2008 } 2009 2010 /* 2011 * reads everything we need off the disk to reconstruct 2012 * the parity. endio handlers trigger final reconstruction 2013 * when the IO is done. 2014 * 2015 * This is used both for reads from the higher layers and for 2016 * parity construction required to finish a rmw cycle. 2017 */ 2018 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2019 { 2020 int bios_to_read = 0; 2021 struct bio_list bio_list; 2022 int ret; 2023 int pagenr; 2024 int stripe; 2025 struct bio *bio; 2026 2027 bio_list_init(&bio_list); 2028 2029 ret = alloc_rbio_pages(rbio); 2030 if (ret) 2031 goto cleanup; 2032 2033 atomic_set(&rbio->error, 0); 2034 2035 /* 2036 * read everything that hasn't failed. Thanks to the 2037 * stripe cache, it is possible that some or all of these 2038 * pages are going to be uptodate. 2039 */ 2040 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2041 if (rbio->faila == stripe || rbio->failb == stripe) { 2042 atomic_inc(&rbio->error); 2043 continue; 2044 } 2045 2046 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2047 struct page *p; 2048 2049 /* 2050 * the rmw code may have already read this 2051 * page in 2052 */ 2053 p = rbio_stripe_page(rbio, stripe, pagenr); 2054 if (PageUptodate(p)) 2055 continue; 2056 2057 ret = rbio_add_io_page(rbio, &bio_list, 2058 rbio_stripe_page(rbio, stripe, pagenr), 2059 stripe, pagenr, rbio->stripe_len); 2060 if (ret < 0) 2061 goto cleanup; 2062 } 2063 } 2064 2065 bios_to_read = bio_list_size(&bio_list); 2066 if (!bios_to_read) { 2067 /* 2068 * we might have no bios to read just because the pages 2069 * were up to date, or we might have no bios to read because 2070 * the devices were gone. 2071 */ 2072 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2073 __raid_recover_end_io(rbio); 2074 return 0; 2075 } else { 2076 goto cleanup; 2077 } 2078 } 2079 2080 /* 2081 * the bbio may be freed once we submit the last bio. Make sure 2082 * not to touch it after that 2083 */ 2084 atomic_set(&rbio->stripes_pending, bios_to_read); 2085 while ((bio = bio_list_pop(&bio_list))) { 2086 bio->bi_private = rbio; 2087 bio->bi_end_io = raid_recover_end_io; 2088 bio->bi_opf = REQ_OP_READ; 2089 2090 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2091 2092 submit_bio(bio); 2093 } 2094 2095 return 0; 2096 2097 cleanup: 2098 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2099 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2100 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2101 2102 while ((bio = bio_list_pop(&bio_list))) 2103 bio_put(bio); 2104 2105 return -EIO; 2106 } 2107 2108 /* 2109 * the main entry point for reads from the higher layers. This 2110 * is really only called when the normal read path had a failure, 2111 * so we assume the bio they send down corresponds to a failed part 2112 * of the drive. 2113 */ 2114 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2115 struct btrfs_bio *bbio, u64 stripe_len, 2116 int mirror_num, int generic_io) 2117 { 2118 struct btrfs_raid_bio *rbio; 2119 int ret; 2120 2121 if (generic_io) { 2122 ASSERT(bbio->mirror_num == mirror_num); 2123 btrfs_io_bio(bio)->mirror_num = mirror_num; 2124 } 2125 2126 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2127 if (IS_ERR(rbio)) { 2128 if (generic_io) 2129 btrfs_put_bbio(bbio); 2130 return PTR_ERR(rbio); 2131 } 2132 2133 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2134 bio_list_add(&rbio->bio_list, bio); 2135 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2136 2137 rbio->faila = find_logical_bio_stripe(rbio, bio); 2138 if (rbio->faila == -1) { 2139 btrfs_warn(fs_info, 2140 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2141 __func__, bio->bi_iter.bi_sector << 9, 2142 (u64)bio->bi_iter.bi_size, bbio->map_type); 2143 if (generic_io) 2144 btrfs_put_bbio(bbio); 2145 kfree(rbio); 2146 return -EIO; 2147 } 2148 2149 if (generic_io) { 2150 btrfs_bio_counter_inc_noblocked(fs_info); 2151 rbio->generic_bio_cnt = 1; 2152 } else { 2153 btrfs_get_bbio(bbio); 2154 } 2155 2156 /* 2157 * Loop retry: 2158 * for 'mirror == 2', reconstruct from all other stripes. 2159 * for 'mirror_num > 2', select a stripe to fail on every retry. 2160 */ 2161 if (mirror_num > 2) { 2162 /* 2163 * 'mirror == 3' is to fail the p stripe and 2164 * reconstruct from the q stripe. 'mirror > 3' is to 2165 * fail a data stripe and reconstruct from p+q stripe. 2166 */ 2167 rbio->failb = rbio->real_stripes - (mirror_num - 1); 2168 ASSERT(rbio->failb > 0); 2169 if (rbio->failb <= rbio->faila) 2170 rbio->failb--; 2171 } 2172 2173 ret = lock_stripe_add(rbio); 2174 2175 /* 2176 * __raid56_parity_recover will end the bio with 2177 * any errors it hits. We don't want to return 2178 * its error value up the stack because our caller 2179 * will end up calling bio_endio with any nonzero 2180 * return 2181 */ 2182 if (ret == 0) 2183 __raid56_parity_recover(rbio); 2184 /* 2185 * our rbio has been added to the list of 2186 * rbios that will be handled after the 2187 * currently lock owner is done 2188 */ 2189 return 0; 2190 2191 } 2192 2193 static void rmw_work(struct btrfs_work *work) 2194 { 2195 struct btrfs_raid_bio *rbio; 2196 2197 rbio = container_of(work, struct btrfs_raid_bio, work); 2198 raid56_rmw_stripe(rbio); 2199 } 2200 2201 static void read_rebuild_work(struct btrfs_work *work) 2202 { 2203 struct btrfs_raid_bio *rbio; 2204 2205 rbio = container_of(work, struct btrfs_raid_bio, work); 2206 __raid56_parity_recover(rbio); 2207 } 2208 2209 /* 2210 * The following code is used to scrub/replace the parity stripe 2211 * 2212 * Caller must have already increased bio_counter for getting @bbio. 2213 * 2214 * Note: We need make sure all the pages that add into the scrub/replace 2215 * raid bio are correct and not be changed during the scrub/replace. That 2216 * is those pages just hold metadata or file data with checksum. 2217 */ 2218 2219 struct btrfs_raid_bio * 2220 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2221 struct btrfs_bio *bbio, u64 stripe_len, 2222 struct btrfs_device *scrub_dev, 2223 unsigned long *dbitmap, int stripe_nsectors) 2224 { 2225 struct btrfs_raid_bio *rbio; 2226 int i; 2227 2228 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2229 if (IS_ERR(rbio)) 2230 return NULL; 2231 bio_list_add(&rbio->bio_list, bio); 2232 /* 2233 * This is a special bio which is used to hold the completion handler 2234 * and make the scrub rbio is similar to the other types 2235 */ 2236 ASSERT(!bio->bi_iter.bi_size); 2237 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2238 2239 /* 2240 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted 2241 * to the end position, so this search can start from the first parity 2242 * stripe. 2243 */ 2244 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2245 if (bbio->stripes[i].dev == scrub_dev) { 2246 rbio->scrubp = i; 2247 break; 2248 } 2249 } 2250 ASSERT(i < rbio->real_stripes); 2251 2252 /* Now we just support the sectorsize equals to page size */ 2253 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2254 ASSERT(rbio->stripe_npages == stripe_nsectors); 2255 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2256 2257 /* 2258 * We have already increased bio_counter when getting bbio, record it 2259 * so we can free it at rbio_orig_end_io(). 2260 */ 2261 rbio->generic_bio_cnt = 1; 2262 2263 return rbio; 2264 } 2265 2266 /* Used for both parity scrub and missing. */ 2267 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2268 u64 logical) 2269 { 2270 int stripe_offset; 2271 int index; 2272 2273 ASSERT(logical >= rbio->bbio->raid_map[0]); 2274 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2275 rbio->stripe_len * rbio->nr_data); 2276 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2277 index = stripe_offset >> PAGE_SHIFT; 2278 rbio->bio_pages[index] = page; 2279 } 2280 2281 /* 2282 * We just scrub the parity that we have correct data on the same horizontal, 2283 * so we needn't allocate all pages for all the stripes. 2284 */ 2285 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2286 { 2287 int i; 2288 int bit; 2289 int index; 2290 struct page *page; 2291 2292 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2293 for (i = 0; i < rbio->real_stripes; i++) { 2294 index = i * rbio->stripe_npages + bit; 2295 if (rbio->stripe_pages[index]) 2296 continue; 2297 2298 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2299 if (!page) 2300 return -ENOMEM; 2301 rbio->stripe_pages[index] = page; 2302 } 2303 } 2304 return 0; 2305 } 2306 2307 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2308 int need_check) 2309 { 2310 struct btrfs_bio *bbio = rbio->bbio; 2311 void **pointers = rbio->finish_pointers; 2312 unsigned long *pbitmap = rbio->finish_pbitmap; 2313 int nr_data = rbio->nr_data; 2314 int stripe; 2315 int pagenr; 2316 bool has_qstripe; 2317 struct page *p_page = NULL; 2318 struct page *q_page = NULL; 2319 struct bio_list bio_list; 2320 struct bio *bio; 2321 int is_replace = 0; 2322 int ret; 2323 2324 bio_list_init(&bio_list); 2325 2326 if (rbio->real_stripes - rbio->nr_data == 1) 2327 has_qstripe = false; 2328 else if (rbio->real_stripes - rbio->nr_data == 2) 2329 has_qstripe = true; 2330 else 2331 BUG(); 2332 2333 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2334 is_replace = 1; 2335 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2336 } 2337 2338 /* 2339 * Because the higher layers(scrubber) are unlikely to 2340 * use this area of the disk again soon, so don't cache 2341 * it. 2342 */ 2343 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2344 2345 if (!need_check) 2346 goto writeback; 2347 2348 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2349 if (!p_page) 2350 goto cleanup; 2351 SetPageUptodate(p_page); 2352 2353 if (has_qstripe) { 2354 /* RAID6, allocate and map temp space for the Q stripe */ 2355 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2356 if (!q_page) { 2357 __free_page(p_page); 2358 goto cleanup; 2359 } 2360 SetPageUptodate(q_page); 2361 pointers[rbio->real_stripes - 1] = kmap(q_page); 2362 } 2363 2364 atomic_set(&rbio->error, 0); 2365 2366 /* Map the parity stripe just once */ 2367 pointers[nr_data] = kmap(p_page); 2368 2369 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2370 struct page *p; 2371 void *parity; 2372 /* first collect one page from each data stripe */ 2373 for (stripe = 0; stripe < nr_data; stripe++) { 2374 p = page_in_rbio(rbio, stripe, pagenr, 0); 2375 pointers[stripe] = kmap(p); 2376 } 2377 2378 if (has_qstripe) { 2379 /* RAID6, call the library function to fill in our P/Q */ 2380 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2381 pointers); 2382 } else { 2383 /* raid5 */ 2384 copy_page(pointers[nr_data], pointers[0]); 2385 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2386 } 2387 2388 /* Check scrubbing parity and repair it */ 2389 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2390 parity = kmap(p); 2391 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2392 copy_page(parity, pointers[rbio->scrubp]); 2393 else 2394 /* Parity is right, needn't writeback */ 2395 bitmap_clear(rbio->dbitmap, pagenr, 1); 2396 kunmap(p); 2397 2398 for (stripe = 0; stripe < nr_data; stripe++) 2399 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2400 } 2401 2402 kunmap(p_page); 2403 __free_page(p_page); 2404 if (q_page) { 2405 kunmap(q_page); 2406 __free_page(q_page); 2407 } 2408 2409 writeback: 2410 /* 2411 * time to start writing. Make bios for everything from the 2412 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2413 * everything else. 2414 */ 2415 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2416 struct page *page; 2417 2418 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2419 ret = rbio_add_io_page(rbio, &bio_list, 2420 page, rbio->scrubp, pagenr, rbio->stripe_len); 2421 if (ret) 2422 goto cleanup; 2423 } 2424 2425 if (!is_replace) 2426 goto submit_write; 2427 2428 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2429 struct page *page; 2430 2431 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2432 ret = rbio_add_io_page(rbio, &bio_list, page, 2433 bbio->tgtdev_map[rbio->scrubp], 2434 pagenr, rbio->stripe_len); 2435 if (ret) 2436 goto cleanup; 2437 } 2438 2439 submit_write: 2440 nr_data = bio_list_size(&bio_list); 2441 if (!nr_data) { 2442 /* Every parity is right */ 2443 rbio_orig_end_io(rbio, BLK_STS_OK); 2444 return; 2445 } 2446 2447 atomic_set(&rbio->stripes_pending, nr_data); 2448 2449 while ((bio = bio_list_pop(&bio_list))) { 2450 bio->bi_private = rbio; 2451 bio->bi_end_io = raid_write_end_io; 2452 bio->bi_opf = REQ_OP_WRITE; 2453 2454 submit_bio(bio); 2455 } 2456 return; 2457 2458 cleanup: 2459 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2460 2461 while ((bio = bio_list_pop(&bio_list))) 2462 bio_put(bio); 2463 } 2464 2465 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2466 { 2467 if (stripe >= 0 && stripe < rbio->nr_data) 2468 return 1; 2469 return 0; 2470 } 2471 2472 /* 2473 * While we're doing the parity check and repair, we could have errors 2474 * in reading pages off the disk. This checks for errors and if we're 2475 * not able to read the page it'll trigger parity reconstruction. The 2476 * parity scrub will be finished after we've reconstructed the failed 2477 * stripes 2478 */ 2479 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2480 { 2481 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2482 goto cleanup; 2483 2484 if (rbio->faila >= 0 || rbio->failb >= 0) { 2485 int dfail = 0, failp = -1; 2486 2487 if (is_data_stripe(rbio, rbio->faila)) 2488 dfail++; 2489 else if (is_parity_stripe(rbio->faila)) 2490 failp = rbio->faila; 2491 2492 if (is_data_stripe(rbio, rbio->failb)) 2493 dfail++; 2494 else if (is_parity_stripe(rbio->failb)) 2495 failp = rbio->failb; 2496 2497 /* 2498 * Because we can not use a scrubbing parity to repair 2499 * the data, so the capability of the repair is declined. 2500 * (In the case of RAID5, we can not repair anything) 2501 */ 2502 if (dfail > rbio->bbio->max_errors - 1) 2503 goto cleanup; 2504 2505 /* 2506 * If all data is good, only parity is correctly, just 2507 * repair the parity. 2508 */ 2509 if (dfail == 0) { 2510 finish_parity_scrub(rbio, 0); 2511 return; 2512 } 2513 2514 /* 2515 * Here means we got one corrupted data stripe and one 2516 * corrupted parity on RAID6, if the corrupted parity 2517 * is scrubbing parity, luckily, use the other one to repair 2518 * the data, or we can not repair the data stripe. 2519 */ 2520 if (failp != rbio->scrubp) 2521 goto cleanup; 2522 2523 __raid_recover_end_io(rbio); 2524 } else { 2525 finish_parity_scrub(rbio, 1); 2526 } 2527 return; 2528 2529 cleanup: 2530 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2531 } 2532 2533 /* 2534 * end io for the read phase of the rmw cycle. All the bios here are physical 2535 * stripe bios we've read from the disk so we can recalculate the parity of the 2536 * stripe. 2537 * 2538 * This will usually kick off finish_rmw once all the bios are read in, but it 2539 * may trigger parity reconstruction if we had any errors along the way 2540 */ 2541 static void raid56_parity_scrub_end_io(struct bio *bio) 2542 { 2543 struct btrfs_raid_bio *rbio = bio->bi_private; 2544 2545 if (bio->bi_status) 2546 fail_bio_stripe(rbio, bio); 2547 else 2548 set_bio_pages_uptodate(bio); 2549 2550 bio_put(bio); 2551 2552 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2553 return; 2554 2555 /* 2556 * this will normally call finish_rmw to start our write 2557 * but if there are any failed stripes we'll reconstruct 2558 * from parity first 2559 */ 2560 validate_rbio_for_parity_scrub(rbio); 2561 } 2562 2563 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2564 { 2565 int bios_to_read = 0; 2566 struct bio_list bio_list; 2567 int ret; 2568 int pagenr; 2569 int stripe; 2570 struct bio *bio; 2571 2572 bio_list_init(&bio_list); 2573 2574 ret = alloc_rbio_essential_pages(rbio); 2575 if (ret) 2576 goto cleanup; 2577 2578 atomic_set(&rbio->error, 0); 2579 /* 2580 * build a list of bios to read all the missing parts of this 2581 * stripe 2582 */ 2583 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2584 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2585 struct page *page; 2586 /* 2587 * we want to find all the pages missing from 2588 * the rbio and read them from the disk. If 2589 * page_in_rbio finds a page in the bio list 2590 * we don't need to read it off the stripe. 2591 */ 2592 page = page_in_rbio(rbio, stripe, pagenr, 1); 2593 if (page) 2594 continue; 2595 2596 page = rbio_stripe_page(rbio, stripe, pagenr); 2597 /* 2598 * the bio cache may have handed us an uptodate 2599 * page. If so, be happy and use it 2600 */ 2601 if (PageUptodate(page)) 2602 continue; 2603 2604 ret = rbio_add_io_page(rbio, &bio_list, page, 2605 stripe, pagenr, rbio->stripe_len); 2606 if (ret) 2607 goto cleanup; 2608 } 2609 } 2610 2611 bios_to_read = bio_list_size(&bio_list); 2612 if (!bios_to_read) { 2613 /* 2614 * this can happen if others have merged with 2615 * us, it means there is nothing left to read. 2616 * But if there are missing devices it may not be 2617 * safe to do the full stripe write yet. 2618 */ 2619 goto finish; 2620 } 2621 2622 /* 2623 * the bbio may be freed once we submit the last bio. Make sure 2624 * not to touch it after that 2625 */ 2626 atomic_set(&rbio->stripes_pending, bios_to_read); 2627 while ((bio = bio_list_pop(&bio_list))) { 2628 bio->bi_private = rbio; 2629 bio->bi_end_io = raid56_parity_scrub_end_io; 2630 bio->bi_opf = REQ_OP_READ; 2631 2632 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2633 2634 submit_bio(bio); 2635 } 2636 /* the actual write will happen once the reads are done */ 2637 return; 2638 2639 cleanup: 2640 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2641 2642 while ((bio = bio_list_pop(&bio_list))) 2643 bio_put(bio); 2644 2645 return; 2646 2647 finish: 2648 validate_rbio_for_parity_scrub(rbio); 2649 } 2650 2651 static void scrub_parity_work(struct btrfs_work *work) 2652 { 2653 struct btrfs_raid_bio *rbio; 2654 2655 rbio = container_of(work, struct btrfs_raid_bio, work); 2656 raid56_parity_scrub_stripe(rbio); 2657 } 2658 2659 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2660 { 2661 if (!lock_stripe_add(rbio)) 2662 start_async_work(rbio, scrub_parity_work); 2663 } 2664 2665 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2666 2667 struct btrfs_raid_bio * 2668 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2669 struct btrfs_bio *bbio, u64 length) 2670 { 2671 struct btrfs_raid_bio *rbio; 2672 2673 rbio = alloc_rbio(fs_info, bbio, length); 2674 if (IS_ERR(rbio)) 2675 return NULL; 2676 2677 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2678 bio_list_add(&rbio->bio_list, bio); 2679 /* 2680 * This is a special bio which is used to hold the completion handler 2681 * and make the scrub rbio is similar to the other types 2682 */ 2683 ASSERT(!bio->bi_iter.bi_size); 2684 2685 rbio->faila = find_logical_bio_stripe(rbio, bio); 2686 if (rbio->faila == -1) { 2687 BUG(); 2688 kfree(rbio); 2689 return NULL; 2690 } 2691 2692 /* 2693 * When we get bbio, we have already increased bio_counter, record it 2694 * so we can free it at rbio_orig_end_io() 2695 */ 2696 rbio->generic_bio_cnt = 1; 2697 2698 return rbio; 2699 } 2700 2701 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2702 { 2703 if (!lock_stripe_add(rbio)) 2704 start_async_work(rbio, read_rebuild_work); 2705 } 2706