1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/mm.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 refcount_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kvzalloc(table_size, GFP_KERNEL); 222 if (!table) 223 return -ENOMEM; 224 225 spin_lock_init(&table->cache_lock); 226 INIT_LIST_HEAD(&table->stripe_cache); 227 228 h = table->table; 229 230 for (i = 0; i < num_entries; i++) { 231 cur = h + i; 232 INIT_LIST_HEAD(&cur->hash_list); 233 spin_lock_init(&cur->lock); 234 init_waitqueue_head(&cur->wait); 235 } 236 237 x = cmpxchg(&info->stripe_hash_table, NULL, table); 238 if (x) 239 kvfree(x); 240 return 0; 241 } 242 243 /* 244 * caching an rbio means to copy anything from the 245 * bio_pages array into the stripe_pages array. We 246 * use the page uptodate bit in the stripe cache array 247 * to indicate if it has valid data 248 * 249 * once the caching is done, we set the cache ready 250 * bit. 251 */ 252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 253 { 254 int i; 255 char *s; 256 char *d; 257 int ret; 258 259 ret = alloc_rbio_pages(rbio); 260 if (ret) 261 return; 262 263 for (i = 0; i < rbio->nr_pages; i++) { 264 if (!rbio->bio_pages[i]) 265 continue; 266 267 s = kmap(rbio->bio_pages[i]); 268 d = kmap(rbio->stripe_pages[i]); 269 270 memcpy(d, s, PAGE_SIZE); 271 272 kunmap(rbio->bio_pages[i]); 273 kunmap(rbio->stripe_pages[i]); 274 SetPageUptodate(rbio->stripe_pages[i]); 275 } 276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 277 } 278 279 /* 280 * we hash on the first logical address of the stripe 281 */ 282 static int rbio_bucket(struct btrfs_raid_bio *rbio) 283 { 284 u64 num = rbio->bbio->raid_map[0]; 285 286 /* 287 * we shift down quite a bit. We're using byte 288 * addressing, and most of the lower bits are zeros. 289 * This tends to upset hash_64, and it consistently 290 * returns just one or two different values. 291 * 292 * shifting off the lower bits fixes things. 293 */ 294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 295 } 296 297 /* 298 * stealing an rbio means taking all the uptodate pages from the stripe 299 * array in the source rbio and putting them into the destination rbio 300 */ 301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 302 { 303 int i; 304 struct page *s; 305 struct page *d; 306 307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 308 return; 309 310 for (i = 0; i < dest->nr_pages; i++) { 311 s = src->stripe_pages[i]; 312 if (!s || !PageUptodate(s)) { 313 continue; 314 } 315 316 d = dest->stripe_pages[i]; 317 if (d) 318 __free_page(d); 319 320 dest->stripe_pages[i] = s; 321 src->stripe_pages[i] = NULL; 322 } 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 dest->generic_bio_cnt += victim->generic_bio_cnt; 338 bio_list_init(&victim->bio_list); 339 } 340 341 /* 342 * used to prune items that are in the cache. The caller 343 * must hold the hash table lock. 344 */ 345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 346 { 347 int bucket = rbio_bucket(rbio); 348 struct btrfs_stripe_hash_table *table; 349 struct btrfs_stripe_hash *h; 350 int freeit = 0; 351 352 /* 353 * check the bit again under the hash table lock. 354 */ 355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 356 return; 357 358 table = rbio->fs_info->stripe_hash_table; 359 h = table->table + bucket; 360 361 /* hold the lock for the bucket because we may be 362 * removing it from the hash table 363 */ 364 spin_lock(&h->lock); 365 366 /* 367 * hold the lock for the bio list because we need 368 * to make sure the bio list is empty 369 */ 370 spin_lock(&rbio->bio_list_lock); 371 372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 373 list_del_init(&rbio->stripe_cache); 374 table->cache_size -= 1; 375 freeit = 1; 376 377 /* if the bio list isn't empty, this rbio is 378 * still involved in an IO. We take it out 379 * of the cache list, and drop the ref that 380 * was held for the list. 381 * 382 * If the bio_list was empty, we also remove 383 * the rbio from the hash_table, and drop 384 * the corresponding ref 385 */ 386 if (bio_list_empty(&rbio->bio_list)) { 387 if (!list_empty(&rbio->hash_list)) { 388 list_del_init(&rbio->hash_list); 389 refcount_dec(&rbio->refs); 390 BUG_ON(!list_empty(&rbio->plug_list)); 391 } 392 } 393 } 394 395 spin_unlock(&rbio->bio_list_lock); 396 spin_unlock(&h->lock); 397 398 if (freeit) 399 __free_raid_bio(rbio); 400 } 401 402 /* 403 * prune a given rbio from the cache 404 */ 405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 406 { 407 struct btrfs_stripe_hash_table *table; 408 unsigned long flags; 409 410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 411 return; 412 413 table = rbio->fs_info->stripe_hash_table; 414 415 spin_lock_irqsave(&table->cache_lock, flags); 416 __remove_rbio_from_cache(rbio); 417 spin_unlock_irqrestore(&table->cache_lock, flags); 418 } 419 420 /* 421 * remove everything in the cache 422 */ 423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 424 { 425 struct btrfs_stripe_hash_table *table; 426 unsigned long flags; 427 struct btrfs_raid_bio *rbio; 428 429 table = info->stripe_hash_table; 430 431 spin_lock_irqsave(&table->cache_lock, flags); 432 while (!list_empty(&table->stripe_cache)) { 433 rbio = list_entry(table->stripe_cache.next, 434 struct btrfs_raid_bio, 435 stripe_cache); 436 __remove_rbio_from_cache(rbio); 437 } 438 spin_unlock_irqrestore(&table->cache_lock, flags); 439 } 440 441 /* 442 * remove all cached entries and free the hash table 443 * used by unmount 444 */ 445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 446 { 447 if (!info->stripe_hash_table) 448 return; 449 btrfs_clear_rbio_cache(info); 450 kvfree(info->stripe_hash_table); 451 info->stripe_hash_table = NULL; 452 } 453 454 /* 455 * insert an rbio into the stripe cache. It 456 * must have already been prepared by calling 457 * cache_rbio_pages 458 * 459 * If this rbio was already cached, it gets 460 * moved to the front of the lru. 461 * 462 * If the size of the rbio cache is too big, we 463 * prune an item. 464 */ 465 static void cache_rbio(struct btrfs_raid_bio *rbio) 466 { 467 struct btrfs_stripe_hash_table *table; 468 unsigned long flags; 469 470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 471 return; 472 473 table = rbio->fs_info->stripe_hash_table; 474 475 spin_lock_irqsave(&table->cache_lock, flags); 476 spin_lock(&rbio->bio_list_lock); 477 478 /* bump our ref if we were not in the list before */ 479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 480 refcount_inc(&rbio->refs); 481 482 if (!list_empty(&rbio->stripe_cache)){ 483 list_move(&rbio->stripe_cache, &table->stripe_cache); 484 } else { 485 list_add(&rbio->stripe_cache, &table->stripe_cache); 486 table->cache_size += 1; 487 } 488 489 spin_unlock(&rbio->bio_list_lock); 490 491 if (table->cache_size > RBIO_CACHE_SIZE) { 492 struct btrfs_raid_bio *found; 493 494 found = list_entry(table->stripe_cache.prev, 495 struct btrfs_raid_bio, 496 stripe_cache); 497 498 if (found != rbio) 499 __remove_rbio_from_cache(found); 500 } 501 502 spin_unlock_irqrestore(&table->cache_lock, flags); 503 } 504 505 /* 506 * helper function to run the xor_blocks api. It is only 507 * able to do MAX_XOR_BLOCKS at a time, so we need to 508 * loop through. 509 */ 510 static void run_xor(void **pages, int src_cnt, ssize_t len) 511 { 512 int src_off = 0; 513 int xor_src_cnt = 0; 514 void *dest = pages[src_cnt]; 515 516 while(src_cnt > 0) { 517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 518 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 519 520 src_cnt -= xor_src_cnt; 521 src_off += xor_src_cnt; 522 } 523 } 524 525 /* 526 * returns true if the bio list inside this rbio 527 * covers an entire stripe (no rmw required). 528 * Must be called with the bio list lock held, or 529 * at a time when you know it is impossible to add 530 * new bios into the list 531 */ 532 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 533 { 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 if (size != rbio->nr_data * rbio->stripe_len) 538 ret = 0; 539 540 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 541 return ret; 542 } 543 544 static int rbio_is_full(struct btrfs_raid_bio *rbio) 545 { 546 unsigned long flags; 547 int ret; 548 549 spin_lock_irqsave(&rbio->bio_list_lock, flags); 550 ret = __rbio_is_full(rbio); 551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 552 return ret; 553 } 554 555 /* 556 * returns 1 if it is safe to merge two rbios together. 557 * The merging is safe if the two rbios correspond to 558 * the same stripe and if they are both going in the same 559 * direction (read vs write), and if neither one is 560 * locked for final IO 561 * 562 * The caller is responsible for locking such that 563 * rmw_locked is safe to test 564 */ 565 static int rbio_can_merge(struct btrfs_raid_bio *last, 566 struct btrfs_raid_bio *cur) 567 { 568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 570 return 0; 571 572 /* 573 * we can't merge with cached rbios, since the 574 * idea is that when we merge the destination 575 * rbio is going to run our IO for us. We can 576 * steal from cached rbios though, other functions 577 * handle that. 578 */ 579 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 580 test_bit(RBIO_CACHE_BIT, &cur->flags)) 581 return 0; 582 583 if (last->bbio->raid_map[0] != 584 cur->bbio->raid_map[0]) 585 return 0; 586 587 /* we can't merge with different operations */ 588 if (last->operation != cur->operation) 589 return 0; 590 /* 591 * We've need read the full stripe from the drive. 592 * check and repair the parity and write the new results. 593 * 594 * We're not allowed to add any new bios to the 595 * bio list here, anyone else that wants to 596 * change this stripe needs to do their own rmw. 597 */ 598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 599 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 600 return 0; 601 602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 603 cur->operation == BTRFS_RBIO_REBUILD_MISSING) 604 return 0; 605 606 return 1; 607 } 608 609 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 610 int index) 611 { 612 return stripe * rbio->stripe_npages + index; 613 } 614 615 /* 616 * these are just the pages from the rbio array, not from anything 617 * the FS sent down to us 618 */ 619 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 620 int index) 621 { 622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 623 } 624 625 /* 626 * helper to index into the pstripe 627 */ 628 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 629 { 630 return rbio_stripe_page(rbio, rbio->nr_data, index); 631 } 632 633 /* 634 * helper to index into the qstripe, returns null 635 * if there is no qstripe 636 */ 637 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 638 { 639 if (rbio->nr_data + 1 == rbio->real_stripes) 640 return NULL; 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 642 } 643 644 /* 645 * The first stripe in the table for a logical address 646 * has the lock. rbios are added in one of three ways: 647 * 648 * 1) Nobody has the stripe locked yet. The rbio is given 649 * the lock and 0 is returned. The caller must start the IO 650 * themselves. 651 * 652 * 2) Someone has the stripe locked, but we're able to merge 653 * with the lock owner. The rbio is freed and the IO will 654 * start automatically along with the existing rbio. 1 is returned. 655 * 656 * 3) Someone has the stripe locked, but we're not able to merge. 657 * The rbio is added to the lock owner's plug list, or merged into 658 * an rbio already on the plug list. When the lock owner unlocks, 659 * the next rbio on the list is run and the IO is started automatically. 660 * 1 is returned 661 * 662 * If we return 0, the caller still owns the rbio and must continue with 663 * IO submission. If we return 1, the caller must assume the rbio has 664 * already been freed. 665 */ 666 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 667 { 668 int bucket = rbio_bucket(rbio); 669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 670 struct btrfs_raid_bio *cur; 671 struct btrfs_raid_bio *pending; 672 unsigned long flags; 673 DEFINE_WAIT(wait); 674 struct btrfs_raid_bio *freeit = NULL; 675 struct btrfs_raid_bio *cache_drop = NULL; 676 int ret = 0; 677 678 spin_lock_irqsave(&h->lock, flags); 679 list_for_each_entry(cur, &h->hash_list, hash_list) { 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 681 spin_lock(&cur->bio_list_lock); 682 683 /* can we steal this cached rbio's pages? */ 684 if (bio_list_empty(&cur->bio_list) && 685 list_empty(&cur->plug_list) && 686 test_bit(RBIO_CACHE_BIT, &cur->flags) && 687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 688 list_del_init(&cur->hash_list); 689 refcount_dec(&cur->refs); 690 691 steal_rbio(cur, rbio); 692 cache_drop = cur; 693 spin_unlock(&cur->bio_list_lock); 694 695 goto lockit; 696 } 697 698 /* can we merge into the lock owner? */ 699 if (rbio_can_merge(cur, rbio)) { 700 merge_rbio(cur, rbio); 701 spin_unlock(&cur->bio_list_lock); 702 freeit = rbio; 703 ret = 1; 704 goto out; 705 } 706 707 708 /* 709 * we couldn't merge with the running 710 * rbio, see if we can merge with the 711 * pending ones. We don't have to 712 * check for rmw_locked because there 713 * is no way they are inside finish_rmw 714 * right now 715 */ 716 list_for_each_entry(pending, &cur->plug_list, 717 plug_list) { 718 if (rbio_can_merge(pending, rbio)) { 719 merge_rbio(pending, rbio); 720 spin_unlock(&cur->bio_list_lock); 721 freeit = rbio; 722 ret = 1; 723 goto out; 724 } 725 } 726 727 /* no merging, put us on the tail of the plug list, 728 * our rbio will be started with the currently 729 * running rbio unlocks 730 */ 731 list_add_tail(&rbio->plug_list, &cur->plug_list); 732 spin_unlock(&cur->bio_list_lock); 733 ret = 1; 734 goto out; 735 } 736 } 737 lockit: 738 refcount_inc(&rbio->refs); 739 list_add(&rbio->hash_list, &h->hash_list); 740 out: 741 spin_unlock_irqrestore(&h->lock, flags); 742 if (cache_drop) 743 remove_rbio_from_cache(cache_drop); 744 if (freeit) 745 __free_raid_bio(freeit); 746 return ret; 747 } 748 749 /* 750 * called as rmw or parity rebuild is completed. If the plug list has more 751 * rbios waiting for this stripe, the next one on the list will be started 752 */ 753 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 754 { 755 int bucket; 756 struct btrfs_stripe_hash *h; 757 unsigned long flags; 758 int keep_cache = 0; 759 760 bucket = rbio_bucket(rbio); 761 h = rbio->fs_info->stripe_hash_table->table + bucket; 762 763 if (list_empty(&rbio->plug_list)) 764 cache_rbio(rbio); 765 766 spin_lock_irqsave(&h->lock, flags); 767 spin_lock(&rbio->bio_list_lock); 768 769 if (!list_empty(&rbio->hash_list)) { 770 /* 771 * if we're still cached and there is no other IO 772 * to perform, just leave this rbio here for others 773 * to steal from later 774 */ 775 if (list_empty(&rbio->plug_list) && 776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 777 keep_cache = 1; 778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 779 BUG_ON(!bio_list_empty(&rbio->bio_list)); 780 goto done; 781 } 782 783 list_del_init(&rbio->hash_list); 784 refcount_dec(&rbio->refs); 785 786 /* 787 * we use the plug list to hold all the rbios 788 * waiting for the chance to lock this stripe. 789 * hand the lock over to one of them. 790 */ 791 if (!list_empty(&rbio->plug_list)) { 792 struct btrfs_raid_bio *next; 793 struct list_head *head = rbio->plug_list.next; 794 795 next = list_entry(head, struct btrfs_raid_bio, 796 plug_list); 797 798 list_del_init(&rbio->plug_list); 799 800 list_add(&next->hash_list, &h->hash_list); 801 refcount_inc(&next->refs); 802 spin_unlock(&rbio->bio_list_lock); 803 spin_unlock_irqrestore(&h->lock, flags); 804 805 if (next->operation == BTRFS_RBIO_READ_REBUILD) 806 async_read_rebuild(next); 807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 808 steal_rbio(rbio, next); 809 async_read_rebuild(next); 810 } else if (next->operation == BTRFS_RBIO_WRITE) { 811 steal_rbio(rbio, next); 812 async_rmw_stripe(next); 813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 814 steal_rbio(rbio, next); 815 async_scrub_parity(next); 816 } 817 818 goto done_nolock; 819 /* 820 * The barrier for this waitqueue_active is not needed, 821 * we're protected by h->lock and can't miss a wakeup. 822 */ 823 } else if (waitqueue_active(&h->wait)) { 824 spin_unlock(&rbio->bio_list_lock); 825 spin_unlock_irqrestore(&h->lock, flags); 826 wake_up(&h->wait); 827 goto done_nolock; 828 } 829 } 830 done: 831 spin_unlock(&rbio->bio_list_lock); 832 spin_unlock_irqrestore(&h->lock, flags); 833 834 done_nolock: 835 if (!keep_cache) 836 remove_rbio_from_cache(rbio); 837 } 838 839 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 840 { 841 int i; 842 843 if (!refcount_dec_and_test(&rbio->refs)) 844 return; 845 846 WARN_ON(!list_empty(&rbio->stripe_cache)); 847 WARN_ON(!list_empty(&rbio->hash_list)); 848 WARN_ON(!bio_list_empty(&rbio->bio_list)); 849 850 for (i = 0; i < rbio->nr_pages; i++) { 851 if (rbio->stripe_pages[i]) { 852 __free_page(rbio->stripe_pages[i]); 853 rbio->stripe_pages[i] = NULL; 854 } 855 } 856 857 btrfs_put_bbio(rbio->bbio); 858 kfree(rbio); 859 } 860 861 static void free_raid_bio(struct btrfs_raid_bio *rbio) 862 { 863 unlock_stripe(rbio); 864 __free_raid_bio(rbio); 865 } 866 867 /* 868 * this frees the rbio and runs through all the bios in the 869 * bio_list and calls end_io on them 870 */ 871 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 872 { 873 struct bio *cur = bio_list_get(&rbio->bio_list); 874 struct bio *next; 875 876 if (rbio->generic_bio_cnt) 877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 878 879 free_raid_bio(rbio); 880 881 while (cur) { 882 next = cur->bi_next; 883 cur->bi_next = NULL; 884 cur->bi_status = err; 885 bio_endio(cur); 886 cur = next; 887 } 888 } 889 890 /* 891 * end io function used by finish_rmw. When we finally 892 * get here, we've written a full stripe 893 */ 894 static void raid_write_end_io(struct bio *bio) 895 { 896 struct btrfs_raid_bio *rbio = bio->bi_private; 897 blk_status_t err = bio->bi_status; 898 int max_errors; 899 900 if (err) 901 fail_bio_stripe(rbio, bio); 902 903 bio_put(bio); 904 905 if (!atomic_dec_and_test(&rbio->stripes_pending)) 906 return; 907 908 err = BLK_STS_OK; 909 910 /* OK, we have read all the stripes we need to. */ 911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 912 0 : rbio->bbio->max_errors; 913 if (atomic_read(&rbio->error) > max_errors) 914 err = BLK_STS_IOERR; 915 916 rbio_orig_end_io(rbio, err); 917 } 918 919 /* 920 * the read/modify/write code wants to use the original bio for 921 * any pages it included, and then use the rbio for everything 922 * else. This function decides if a given index (stripe number) 923 * and page number in that stripe fall inside the original bio 924 * or the rbio. 925 * 926 * if you set bio_list_only, you'll get a NULL back for any ranges 927 * that are outside the bio_list 928 * 929 * This doesn't take any refs on anything, you get a bare page pointer 930 * and the caller must bump refs as required. 931 * 932 * You must call index_rbio_pages once before you can trust 933 * the answers from this function. 934 */ 935 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 936 int index, int pagenr, int bio_list_only) 937 { 938 int chunk_page; 939 struct page *p = NULL; 940 941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 942 943 spin_lock_irq(&rbio->bio_list_lock); 944 p = rbio->bio_pages[chunk_page]; 945 spin_unlock_irq(&rbio->bio_list_lock); 946 947 if (p || bio_list_only) 948 return p; 949 950 return rbio->stripe_pages[chunk_page]; 951 } 952 953 /* 954 * number of pages we need for the entire stripe across all the 955 * drives 956 */ 957 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 958 { 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 960 } 961 962 /* 963 * allocation and initial setup for the btrfs_raid_bio. Not 964 * this does not allocate any pages for rbio->pages. 965 */ 966 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 967 struct btrfs_bio *bbio, 968 u64 stripe_len) 969 { 970 struct btrfs_raid_bio *rbio; 971 int nr_data = 0; 972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 973 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 975 void *p; 976 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 979 sizeof(long), GFP_NOFS); 980 if (!rbio) 981 return ERR_PTR(-ENOMEM); 982 983 bio_list_init(&rbio->bio_list); 984 INIT_LIST_HEAD(&rbio->plug_list); 985 spin_lock_init(&rbio->bio_list_lock); 986 INIT_LIST_HEAD(&rbio->stripe_cache); 987 INIT_LIST_HEAD(&rbio->hash_list); 988 rbio->bbio = bbio; 989 rbio->fs_info = fs_info; 990 rbio->stripe_len = stripe_len; 991 rbio->nr_pages = num_pages; 992 rbio->real_stripes = real_stripes; 993 rbio->stripe_npages = stripe_npages; 994 rbio->faila = -1; 995 rbio->failb = -1; 996 refcount_set(&rbio->refs, 1); 997 atomic_set(&rbio->error, 0); 998 atomic_set(&rbio->stripes_pending, 0); 999 1000 /* 1001 * the stripe_pages and bio_pages array point to the extra 1002 * memory we allocated past the end of the rbio 1003 */ 1004 p = rbio + 1; 1005 rbio->stripe_pages = p; 1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1008 1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1010 nr_data = real_stripes - 1; 1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1012 nr_data = real_stripes - 2; 1013 else 1014 BUG(); 1015 1016 rbio->nr_data = nr_data; 1017 return rbio; 1018 } 1019 1020 /* allocate pages for all the stripes in the bio, including parity */ 1021 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1022 { 1023 int i; 1024 struct page *page; 1025 1026 for (i = 0; i < rbio->nr_pages; i++) { 1027 if (rbio->stripe_pages[i]) 1028 continue; 1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1030 if (!page) 1031 return -ENOMEM; 1032 rbio->stripe_pages[i] = page; 1033 } 1034 return 0; 1035 } 1036 1037 /* only allocate pages for p/q stripes */ 1038 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1039 { 1040 int i; 1041 struct page *page; 1042 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1044 1045 for (; i < rbio->nr_pages; i++) { 1046 if (rbio->stripe_pages[i]) 1047 continue; 1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1049 if (!page) 1050 return -ENOMEM; 1051 rbio->stripe_pages[i] = page; 1052 } 1053 return 0; 1054 } 1055 1056 /* 1057 * add a single page from a specific stripe into our list of bios for IO 1058 * this will try to merge into existing bios if possible, and returns 1059 * zero if all went well. 1060 */ 1061 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1062 struct bio_list *bio_list, 1063 struct page *page, 1064 int stripe_nr, 1065 unsigned long page_index, 1066 unsigned long bio_max_len) 1067 { 1068 struct bio *last = bio_list->tail; 1069 u64 last_end = 0; 1070 int ret; 1071 struct bio *bio; 1072 struct btrfs_bio_stripe *stripe; 1073 u64 disk_start; 1074 1075 stripe = &rbio->bbio->stripes[stripe_nr]; 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1077 1078 /* if the device is missing, just fail this stripe */ 1079 if (!stripe->dev->bdev) 1080 return fail_rbio_index(rbio, stripe_nr); 1081 1082 /* see if we can add this page onto our existing bio */ 1083 if (last) { 1084 last_end = (u64)last->bi_iter.bi_sector << 9; 1085 last_end += last->bi_iter.bi_size; 1086 1087 /* 1088 * we can't merge these if they are from different 1089 * devices or if they are not contiguous 1090 */ 1091 if (last_end == disk_start && stripe->dev->bdev && 1092 !last->bi_status && 1093 last->bi_disk == stripe->dev->bdev->bd_disk && 1094 last->bi_partno == stripe->dev->bdev->bd_partno) { 1095 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1096 if (ret == PAGE_SIZE) 1097 return 0; 1098 } 1099 } 1100 1101 /* put a new bio on the list */ 1102 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1103 bio->bi_iter.bi_size = 0; 1104 bio_set_dev(bio, stripe->dev->bdev); 1105 bio->bi_iter.bi_sector = disk_start >> 9; 1106 1107 bio_add_page(bio, page, PAGE_SIZE, 0); 1108 bio_list_add(bio_list, bio); 1109 return 0; 1110 } 1111 1112 /* 1113 * while we're doing the read/modify/write cycle, we could 1114 * have errors in reading pages off the disk. This checks 1115 * for errors and if we're not able to read the page it'll 1116 * trigger parity reconstruction. The rmw will be finished 1117 * after we've reconstructed the failed stripes 1118 */ 1119 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1120 { 1121 if (rbio->faila >= 0 || rbio->failb >= 0) { 1122 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1123 __raid56_parity_recover(rbio); 1124 } else { 1125 finish_rmw(rbio); 1126 } 1127 } 1128 1129 /* 1130 * helper function to walk our bio list and populate the bio_pages array with 1131 * the result. This seems expensive, but it is faster than constantly 1132 * searching through the bio list as we setup the IO in finish_rmw or stripe 1133 * reconstruction. 1134 * 1135 * This must be called before you trust the answers from page_in_rbio 1136 */ 1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1138 { 1139 struct bio *bio; 1140 u64 start; 1141 unsigned long stripe_offset; 1142 unsigned long page_index; 1143 1144 spin_lock_irq(&rbio->bio_list_lock); 1145 bio_list_for_each(bio, &rbio->bio_list) { 1146 struct bio_vec bvec; 1147 struct bvec_iter iter; 1148 int i = 0; 1149 1150 start = (u64)bio->bi_iter.bi_sector << 9; 1151 stripe_offset = start - rbio->bbio->raid_map[0]; 1152 page_index = stripe_offset >> PAGE_SHIFT; 1153 1154 if (bio_flagged(bio, BIO_CLONED)) 1155 bio->bi_iter = btrfs_io_bio(bio)->iter; 1156 1157 bio_for_each_segment(bvec, bio, iter) { 1158 rbio->bio_pages[page_index + i] = bvec.bv_page; 1159 i++; 1160 } 1161 } 1162 spin_unlock_irq(&rbio->bio_list_lock); 1163 } 1164 1165 /* 1166 * this is called from one of two situations. We either 1167 * have a full stripe from the higher layers, or we've read all 1168 * the missing bits off disk. 1169 * 1170 * This will calculate the parity and then send down any 1171 * changed blocks. 1172 */ 1173 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1174 { 1175 struct btrfs_bio *bbio = rbio->bbio; 1176 void *pointers[rbio->real_stripes]; 1177 int nr_data = rbio->nr_data; 1178 int stripe; 1179 int pagenr; 1180 int p_stripe = -1; 1181 int q_stripe = -1; 1182 struct bio_list bio_list; 1183 struct bio *bio; 1184 int ret; 1185 1186 bio_list_init(&bio_list); 1187 1188 if (rbio->real_stripes - rbio->nr_data == 1) { 1189 p_stripe = rbio->real_stripes - 1; 1190 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1191 p_stripe = rbio->real_stripes - 2; 1192 q_stripe = rbio->real_stripes - 1; 1193 } else { 1194 BUG(); 1195 } 1196 1197 /* at this point we either have a full stripe, 1198 * or we've read the full stripe from the drive. 1199 * recalculate the parity and write the new results. 1200 * 1201 * We're not allowed to add any new bios to the 1202 * bio list here, anyone else that wants to 1203 * change this stripe needs to do their own rmw. 1204 */ 1205 spin_lock_irq(&rbio->bio_list_lock); 1206 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1207 spin_unlock_irq(&rbio->bio_list_lock); 1208 1209 atomic_set(&rbio->error, 0); 1210 1211 /* 1212 * now that we've set rmw_locked, run through the 1213 * bio list one last time and map the page pointers 1214 * 1215 * We don't cache full rbios because we're assuming 1216 * the higher layers are unlikely to use this area of 1217 * the disk again soon. If they do use it again, 1218 * hopefully they will send another full bio. 1219 */ 1220 index_rbio_pages(rbio); 1221 if (!rbio_is_full(rbio)) 1222 cache_rbio_pages(rbio); 1223 else 1224 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1225 1226 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1227 struct page *p; 1228 /* first collect one page from each data stripe */ 1229 for (stripe = 0; stripe < nr_data; stripe++) { 1230 p = page_in_rbio(rbio, stripe, pagenr, 0); 1231 pointers[stripe] = kmap(p); 1232 } 1233 1234 /* then add the parity stripe */ 1235 p = rbio_pstripe_page(rbio, pagenr); 1236 SetPageUptodate(p); 1237 pointers[stripe++] = kmap(p); 1238 1239 if (q_stripe != -1) { 1240 1241 /* 1242 * raid6, add the qstripe and call the 1243 * library function to fill in our p/q 1244 */ 1245 p = rbio_qstripe_page(rbio, pagenr); 1246 SetPageUptodate(p); 1247 pointers[stripe++] = kmap(p); 1248 1249 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1250 pointers); 1251 } else { 1252 /* raid5 */ 1253 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1254 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1255 } 1256 1257 1258 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1259 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1260 } 1261 1262 /* 1263 * time to start writing. Make bios for everything from the 1264 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1265 * everything else. 1266 */ 1267 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1268 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1269 struct page *page; 1270 if (stripe < rbio->nr_data) { 1271 page = page_in_rbio(rbio, stripe, pagenr, 1); 1272 if (!page) 1273 continue; 1274 } else { 1275 page = rbio_stripe_page(rbio, stripe, pagenr); 1276 } 1277 1278 ret = rbio_add_io_page(rbio, &bio_list, 1279 page, stripe, pagenr, rbio->stripe_len); 1280 if (ret) 1281 goto cleanup; 1282 } 1283 } 1284 1285 if (likely(!bbio->num_tgtdevs)) 1286 goto write_data; 1287 1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1289 if (!bbio->tgtdev_map[stripe]) 1290 continue; 1291 1292 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1293 struct page *page; 1294 if (stripe < rbio->nr_data) { 1295 page = page_in_rbio(rbio, stripe, pagenr, 1); 1296 if (!page) 1297 continue; 1298 } else { 1299 page = rbio_stripe_page(rbio, stripe, pagenr); 1300 } 1301 1302 ret = rbio_add_io_page(rbio, &bio_list, page, 1303 rbio->bbio->tgtdev_map[stripe], 1304 pagenr, rbio->stripe_len); 1305 if (ret) 1306 goto cleanup; 1307 } 1308 } 1309 1310 write_data: 1311 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1312 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1313 1314 while (1) { 1315 bio = bio_list_pop(&bio_list); 1316 if (!bio) 1317 break; 1318 1319 bio->bi_private = rbio; 1320 bio->bi_end_io = raid_write_end_io; 1321 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1322 1323 submit_bio(bio); 1324 } 1325 return; 1326 1327 cleanup: 1328 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1329 1330 while ((bio = bio_list_pop(&bio_list))) 1331 bio_put(bio); 1332 } 1333 1334 /* 1335 * helper to find the stripe number for a given bio. Used to figure out which 1336 * stripe has failed. This expects the bio to correspond to a physical disk, 1337 * so it looks up based on physical sector numbers. 1338 */ 1339 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1340 struct bio *bio) 1341 { 1342 u64 physical = bio->bi_iter.bi_sector; 1343 u64 stripe_start; 1344 int i; 1345 struct btrfs_bio_stripe *stripe; 1346 1347 physical <<= 9; 1348 1349 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1350 stripe = &rbio->bbio->stripes[i]; 1351 stripe_start = stripe->physical; 1352 if (physical >= stripe_start && 1353 physical < stripe_start + rbio->stripe_len && 1354 bio->bi_disk == stripe->dev->bdev->bd_disk && 1355 bio->bi_partno == stripe->dev->bdev->bd_partno) { 1356 return i; 1357 } 1358 } 1359 return -1; 1360 } 1361 1362 /* 1363 * helper to find the stripe number for a given 1364 * bio (before mapping). Used to figure out which stripe has 1365 * failed. This looks up based on logical block numbers. 1366 */ 1367 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1368 struct bio *bio) 1369 { 1370 u64 logical = bio->bi_iter.bi_sector; 1371 u64 stripe_start; 1372 int i; 1373 1374 logical <<= 9; 1375 1376 for (i = 0; i < rbio->nr_data; i++) { 1377 stripe_start = rbio->bbio->raid_map[i]; 1378 if (logical >= stripe_start && 1379 logical < stripe_start + rbio->stripe_len) { 1380 return i; 1381 } 1382 } 1383 return -1; 1384 } 1385 1386 /* 1387 * returns -EIO if we had too many failures 1388 */ 1389 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1390 { 1391 unsigned long flags; 1392 int ret = 0; 1393 1394 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1395 1396 /* we already know this stripe is bad, move on */ 1397 if (rbio->faila == failed || rbio->failb == failed) 1398 goto out; 1399 1400 if (rbio->faila == -1) { 1401 /* first failure on this rbio */ 1402 rbio->faila = failed; 1403 atomic_inc(&rbio->error); 1404 } else if (rbio->failb == -1) { 1405 /* second failure on this rbio */ 1406 rbio->failb = failed; 1407 atomic_inc(&rbio->error); 1408 } else { 1409 ret = -EIO; 1410 } 1411 out: 1412 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1413 1414 return ret; 1415 } 1416 1417 /* 1418 * helper to fail a stripe based on a physical disk 1419 * bio. 1420 */ 1421 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1422 struct bio *bio) 1423 { 1424 int failed = find_bio_stripe(rbio, bio); 1425 1426 if (failed < 0) 1427 return -EIO; 1428 1429 return fail_rbio_index(rbio, failed); 1430 } 1431 1432 /* 1433 * this sets each page in the bio uptodate. It should only be used on private 1434 * rbio pages, nothing that comes in from the higher layers 1435 */ 1436 static void set_bio_pages_uptodate(struct bio *bio) 1437 { 1438 struct bio_vec bvec; 1439 struct bvec_iter iter; 1440 1441 if (bio_flagged(bio, BIO_CLONED)) 1442 bio->bi_iter = btrfs_io_bio(bio)->iter; 1443 1444 bio_for_each_segment(bvec, bio, iter) 1445 SetPageUptodate(bvec.bv_page); 1446 } 1447 1448 /* 1449 * end io for the read phase of the rmw cycle. All the bios here are physical 1450 * stripe bios we've read from the disk so we can recalculate the parity of the 1451 * stripe. 1452 * 1453 * This will usually kick off finish_rmw once all the bios are read in, but it 1454 * may trigger parity reconstruction if we had any errors along the way 1455 */ 1456 static void raid_rmw_end_io(struct bio *bio) 1457 { 1458 struct btrfs_raid_bio *rbio = bio->bi_private; 1459 1460 if (bio->bi_status) 1461 fail_bio_stripe(rbio, bio); 1462 else 1463 set_bio_pages_uptodate(bio); 1464 1465 bio_put(bio); 1466 1467 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1468 return; 1469 1470 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1471 goto cleanup; 1472 1473 /* 1474 * this will normally call finish_rmw to start our write 1475 * but if there are any failed stripes we'll reconstruct 1476 * from parity first 1477 */ 1478 validate_rbio_for_rmw(rbio); 1479 return; 1480 1481 cleanup: 1482 1483 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1484 } 1485 1486 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1487 { 1488 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1489 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1490 } 1491 1492 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1493 { 1494 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1495 read_rebuild_work, NULL, NULL); 1496 1497 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1498 } 1499 1500 /* 1501 * the stripe must be locked by the caller. It will 1502 * unlock after all the writes are done 1503 */ 1504 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1505 { 1506 int bios_to_read = 0; 1507 struct bio_list bio_list; 1508 int ret; 1509 int pagenr; 1510 int stripe; 1511 struct bio *bio; 1512 1513 bio_list_init(&bio_list); 1514 1515 ret = alloc_rbio_pages(rbio); 1516 if (ret) 1517 goto cleanup; 1518 1519 index_rbio_pages(rbio); 1520 1521 atomic_set(&rbio->error, 0); 1522 /* 1523 * build a list of bios to read all the missing parts of this 1524 * stripe 1525 */ 1526 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1527 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1528 struct page *page; 1529 /* 1530 * we want to find all the pages missing from 1531 * the rbio and read them from the disk. If 1532 * page_in_rbio finds a page in the bio list 1533 * we don't need to read it off the stripe. 1534 */ 1535 page = page_in_rbio(rbio, stripe, pagenr, 1); 1536 if (page) 1537 continue; 1538 1539 page = rbio_stripe_page(rbio, stripe, pagenr); 1540 /* 1541 * the bio cache may have handed us an uptodate 1542 * page. If so, be happy and use it 1543 */ 1544 if (PageUptodate(page)) 1545 continue; 1546 1547 ret = rbio_add_io_page(rbio, &bio_list, page, 1548 stripe, pagenr, rbio->stripe_len); 1549 if (ret) 1550 goto cleanup; 1551 } 1552 } 1553 1554 bios_to_read = bio_list_size(&bio_list); 1555 if (!bios_to_read) { 1556 /* 1557 * this can happen if others have merged with 1558 * us, it means there is nothing left to read. 1559 * But if there are missing devices it may not be 1560 * safe to do the full stripe write yet. 1561 */ 1562 goto finish; 1563 } 1564 1565 /* 1566 * the bbio may be freed once we submit the last bio. Make sure 1567 * not to touch it after that 1568 */ 1569 atomic_set(&rbio->stripes_pending, bios_to_read); 1570 while (1) { 1571 bio = bio_list_pop(&bio_list); 1572 if (!bio) 1573 break; 1574 1575 bio->bi_private = rbio; 1576 bio->bi_end_io = raid_rmw_end_io; 1577 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1578 1579 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1580 1581 submit_bio(bio); 1582 } 1583 /* the actual write will happen once the reads are done */ 1584 return 0; 1585 1586 cleanup: 1587 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1588 1589 while ((bio = bio_list_pop(&bio_list))) 1590 bio_put(bio); 1591 1592 return -EIO; 1593 1594 finish: 1595 validate_rbio_for_rmw(rbio); 1596 return 0; 1597 } 1598 1599 /* 1600 * if the upper layers pass in a full stripe, we thank them by only allocating 1601 * enough pages to hold the parity, and sending it all down quickly. 1602 */ 1603 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1604 { 1605 int ret; 1606 1607 ret = alloc_rbio_parity_pages(rbio); 1608 if (ret) { 1609 __free_raid_bio(rbio); 1610 return ret; 1611 } 1612 1613 ret = lock_stripe_add(rbio); 1614 if (ret == 0) 1615 finish_rmw(rbio); 1616 return 0; 1617 } 1618 1619 /* 1620 * partial stripe writes get handed over to async helpers. 1621 * We're really hoping to merge a few more writes into this 1622 * rbio before calculating new parity 1623 */ 1624 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1625 { 1626 int ret; 1627 1628 ret = lock_stripe_add(rbio); 1629 if (ret == 0) 1630 async_rmw_stripe(rbio); 1631 return 0; 1632 } 1633 1634 /* 1635 * sometimes while we were reading from the drive to 1636 * recalculate parity, enough new bios come into create 1637 * a full stripe. So we do a check here to see if we can 1638 * go directly to finish_rmw 1639 */ 1640 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1641 { 1642 /* head off into rmw land if we don't have a full stripe */ 1643 if (!rbio_is_full(rbio)) 1644 return partial_stripe_write(rbio); 1645 return full_stripe_write(rbio); 1646 } 1647 1648 /* 1649 * We use plugging call backs to collect full stripes. 1650 * Any time we get a partial stripe write while plugged 1651 * we collect it into a list. When the unplug comes down, 1652 * we sort the list by logical block number and merge 1653 * everything we can into the same rbios 1654 */ 1655 struct btrfs_plug_cb { 1656 struct blk_plug_cb cb; 1657 struct btrfs_fs_info *info; 1658 struct list_head rbio_list; 1659 struct btrfs_work work; 1660 }; 1661 1662 /* 1663 * rbios on the plug list are sorted for easier merging. 1664 */ 1665 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1666 { 1667 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1668 plug_list); 1669 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1670 plug_list); 1671 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1672 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1673 1674 if (a_sector < b_sector) 1675 return -1; 1676 if (a_sector > b_sector) 1677 return 1; 1678 return 0; 1679 } 1680 1681 static void run_plug(struct btrfs_plug_cb *plug) 1682 { 1683 struct btrfs_raid_bio *cur; 1684 struct btrfs_raid_bio *last = NULL; 1685 1686 /* 1687 * sort our plug list then try to merge 1688 * everything we can in hopes of creating full 1689 * stripes. 1690 */ 1691 list_sort(NULL, &plug->rbio_list, plug_cmp); 1692 while (!list_empty(&plug->rbio_list)) { 1693 cur = list_entry(plug->rbio_list.next, 1694 struct btrfs_raid_bio, plug_list); 1695 list_del_init(&cur->plug_list); 1696 1697 if (rbio_is_full(cur)) { 1698 /* we have a full stripe, send it down */ 1699 full_stripe_write(cur); 1700 continue; 1701 } 1702 if (last) { 1703 if (rbio_can_merge(last, cur)) { 1704 merge_rbio(last, cur); 1705 __free_raid_bio(cur); 1706 continue; 1707 1708 } 1709 __raid56_parity_write(last); 1710 } 1711 last = cur; 1712 } 1713 if (last) { 1714 __raid56_parity_write(last); 1715 } 1716 kfree(plug); 1717 } 1718 1719 /* 1720 * if the unplug comes from schedule, we have to push the 1721 * work off to a helper thread 1722 */ 1723 static void unplug_work(struct btrfs_work *work) 1724 { 1725 struct btrfs_plug_cb *plug; 1726 plug = container_of(work, struct btrfs_plug_cb, work); 1727 run_plug(plug); 1728 } 1729 1730 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1731 { 1732 struct btrfs_plug_cb *plug; 1733 plug = container_of(cb, struct btrfs_plug_cb, cb); 1734 1735 if (from_schedule) { 1736 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1737 unplug_work, NULL, NULL); 1738 btrfs_queue_work(plug->info->rmw_workers, 1739 &plug->work); 1740 return; 1741 } 1742 run_plug(plug); 1743 } 1744 1745 /* 1746 * our main entry point for writes from the rest of the FS. 1747 */ 1748 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1749 struct btrfs_bio *bbio, u64 stripe_len) 1750 { 1751 struct btrfs_raid_bio *rbio; 1752 struct btrfs_plug_cb *plug = NULL; 1753 struct blk_plug_cb *cb; 1754 int ret; 1755 1756 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1757 if (IS_ERR(rbio)) { 1758 btrfs_put_bbio(bbio); 1759 return PTR_ERR(rbio); 1760 } 1761 bio_list_add(&rbio->bio_list, bio); 1762 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1763 rbio->operation = BTRFS_RBIO_WRITE; 1764 1765 btrfs_bio_counter_inc_noblocked(fs_info); 1766 rbio->generic_bio_cnt = 1; 1767 1768 /* 1769 * don't plug on full rbios, just get them out the door 1770 * as quickly as we can 1771 */ 1772 if (rbio_is_full(rbio)) { 1773 ret = full_stripe_write(rbio); 1774 if (ret) 1775 btrfs_bio_counter_dec(fs_info); 1776 return ret; 1777 } 1778 1779 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1780 if (cb) { 1781 plug = container_of(cb, struct btrfs_plug_cb, cb); 1782 if (!plug->info) { 1783 plug->info = fs_info; 1784 INIT_LIST_HEAD(&plug->rbio_list); 1785 } 1786 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1787 ret = 0; 1788 } else { 1789 ret = __raid56_parity_write(rbio); 1790 if (ret) 1791 btrfs_bio_counter_dec(fs_info); 1792 } 1793 return ret; 1794 } 1795 1796 /* 1797 * all parity reconstruction happens here. We've read in everything 1798 * we can find from the drives and this does the heavy lifting of 1799 * sorting the good from the bad. 1800 */ 1801 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1802 { 1803 int pagenr, stripe; 1804 void **pointers; 1805 int faila = -1, failb = -1; 1806 struct page *page; 1807 blk_status_t err; 1808 int i; 1809 1810 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1811 if (!pointers) { 1812 err = BLK_STS_RESOURCE; 1813 goto cleanup_io; 1814 } 1815 1816 faila = rbio->faila; 1817 failb = rbio->failb; 1818 1819 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1820 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1821 spin_lock_irq(&rbio->bio_list_lock); 1822 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1823 spin_unlock_irq(&rbio->bio_list_lock); 1824 } 1825 1826 index_rbio_pages(rbio); 1827 1828 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1829 /* 1830 * Now we just use bitmap to mark the horizontal stripes in 1831 * which we have data when doing parity scrub. 1832 */ 1833 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1834 !test_bit(pagenr, rbio->dbitmap)) 1835 continue; 1836 1837 /* setup our array of pointers with pages 1838 * from each stripe 1839 */ 1840 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1841 /* 1842 * if we're rebuilding a read, we have to use 1843 * pages from the bio list 1844 */ 1845 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1846 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1847 (stripe == faila || stripe == failb)) { 1848 page = page_in_rbio(rbio, stripe, pagenr, 0); 1849 } else { 1850 page = rbio_stripe_page(rbio, stripe, pagenr); 1851 } 1852 pointers[stripe] = kmap(page); 1853 } 1854 1855 /* all raid6 handling here */ 1856 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1857 /* 1858 * single failure, rebuild from parity raid5 1859 * style 1860 */ 1861 if (failb < 0) { 1862 if (faila == rbio->nr_data) { 1863 /* 1864 * Just the P stripe has failed, without 1865 * a bad data or Q stripe. 1866 * TODO, we should redo the xor here. 1867 */ 1868 err = BLK_STS_IOERR; 1869 goto cleanup; 1870 } 1871 /* 1872 * a single failure in raid6 is rebuilt 1873 * in the pstripe code below 1874 */ 1875 goto pstripe; 1876 } 1877 1878 /* make sure our ps and qs are in order */ 1879 if (faila > failb) { 1880 int tmp = failb; 1881 failb = faila; 1882 faila = tmp; 1883 } 1884 1885 /* if the q stripe is failed, do a pstripe reconstruction 1886 * from the xors. 1887 * If both the q stripe and the P stripe are failed, we're 1888 * here due to a crc mismatch and we can't give them the 1889 * data they want 1890 */ 1891 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1892 if (rbio->bbio->raid_map[faila] == 1893 RAID5_P_STRIPE) { 1894 err = BLK_STS_IOERR; 1895 goto cleanup; 1896 } 1897 /* 1898 * otherwise we have one bad data stripe and 1899 * a good P stripe. raid5! 1900 */ 1901 goto pstripe; 1902 } 1903 1904 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1905 raid6_datap_recov(rbio->real_stripes, 1906 PAGE_SIZE, faila, pointers); 1907 } else { 1908 raid6_2data_recov(rbio->real_stripes, 1909 PAGE_SIZE, faila, failb, 1910 pointers); 1911 } 1912 } else { 1913 void *p; 1914 1915 /* rebuild from P stripe here (raid5 or raid6) */ 1916 BUG_ON(failb != -1); 1917 pstripe: 1918 /* Copy parity block into failed block to start with */ 1919 memcpy(pointers[faila], 1920 pointers[rbio->nr_data], 1921 PAGE_SIZE); 1922 1923 /* rearrange the pointer array */ 1924 p = pointers[faila]; 1925 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1926 pointers[stripe] = pointers[stripe + 1]; 1927 pointers[rbio->nr_data - 1] = p; 1928 1929 /* xor in the rest */ 1930 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1931 } 1932 /* if we're doing this rebuild as part of an rmw, go through 1933 * and set all of our private rbio pages in the 1934 * failed stripes as uptodate. This way finish_rmw will 1935 * know they can be trusted. If this was a read reconstruction, 1936 * other endio functions will fiddle the uptodate bits 1937 */ 1938 if (rbio->operation == BTRFS_RBIO_WRITE) { 1939 for (i = 0; i < rbio->stripe_npages; i++) { 1940 if (faila != -1) { 1941 page = rbio_stripe_page(rbio, faila, i); 1942 SetPageUptodate(page); 1943 } 1944 if (failb != -1) { 1945 page = rbio_stripe_page(rbio, failb, i); 1946 SetPageUptodate(page); 1947 } 1948 } 1949 } 1950 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1951 /* 1952 * if we're rebuilding a read, we have to use 1953 * pages from the bio list 1954 */ 1955 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1956 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1957 (stripe == faila || stripe == failb)) { 1958 page = page_in_rbio(rbio, stripe, pagenr, 0); 1959 } else { 1960 page = rbio_stripe_page(rbio, stripe, pagenr); 1961 } 1962 kunmap(page); 1963 } 1964 } 1965 1966 err = BLK_STS_OK; 1967 cleanup: 1968 kfree(pointers); 1969 1970 cleanup_io: 1971 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1972 if (err == BLK_STS_OK) 1973 cache_rbio_pages(rbio); 1974 else 1975 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1976 1977 rbio_orig_end_io(rbio, err); 1978 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1979 rbio_orig_end_io(rbio, err); 1980 } else if (err == BLK_STS_OK) { 1981 rbio->faila = -1; 1982 rbio->failb = -1; 1983 1984 if (rbio->operation == BTRFS_RBIO_WRITE) 1985 finish_rmw(rbio); 1986 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 1987 finish_parity_scrub(rbio, 0); 1988 else 1989 BUG(); 1990 } else { 1991 rbio_orig_end_io(rbio, err); 1992 } 1993 } 1994 1995 /* 1996 * This is called only for stripes we've read from disk to 1997 * reconstruct the parity. 1998 */ 1999 static void raid_recover_end_io(struct bio *bio) 2000 { 2001 struct btrfs_raid_bio *rbio = bio->bi_private; 2002 2003 /* 2004 * we only read stripe pages off the disk, set them 2005 * up to date if there were no errors 2006 */ 2007 if (bio->bi_status) 2008 fail_bio_stripe(rbio, bio); 2009 else 2010 set_bio_pages_uptodate(bio); 2011 bio_put(bio); 2012 2013 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2014 return; 2015 2016 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2017 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2018 else 2019 __raid_recover_end_io(rbio); 2020 } 2021 2022 /* 2023 * reads everything we need off the disk to reconstruct 2024 * the parity. endio handlers trigger final reconstruction 2025 * when the IO is done. 2026 * 2027 * This is used both for reads from the higher layers and for 2028 * parity construction required to finish a rmw cycle. 2029 */ 2030 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2031 { 2032 int bios_to_read = 0; 2033 struct bio_list bio_list; 2034 int ret; 2035 int pagenr; 2036 int stripe; 2037 struct bio *bio; 2038 2039 bio_list_init(&bio_list); 2040 2041 ret = alloc_rbio_pages(rbio); 2042 if (ret) 2043 goto cleanup; 2044 2045 atomic_set(&rbio->error, 0); 2046 2047 /* 2048 * read everything that hasn't failed. Thanks to the 2049 * stripe cache, it is possible that some or all of these 2050 * pages are going to be uptodate. 2051 */ 2052 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2053 if (rbio->faila == stripe || rbio->failb == stripe) { 2054 atomic_inc(&rbio->error); 2055 continue; 2056 } 2057 2058 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2059 struct page *p; 2060 2061 /* 2062 * the rmw code may have already read this 2063 * page in 2064 */ 2065 p = rbio_stripe_page(rbio, stripe, pagenr); 2066 if (PageUptodate(p)) 2067 continue; 2068 2069 ret = rbio_add_io_page(rbio, &bio_list, 2070 rbio_stripe_page(rbio, stripe, pagenr), 2071 stripe, pagenr, rbio->stripe_len); 2072 if (ret < 0) 2073 goto cleanup; 2074 } 2075 } 2076 2077 bios_to_read = bio_list_size(&bio_list); 2078 if (!bios_to_read) { 2079 /* 2080 * we might have no bios to read just because the pages 2081 * were up to date, or we might have no bios to read because 2082 * the devices were gone. 2083 */ 2084 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2085 __raid_recover_end_io(rbio); 2086 goto out; 2087 } else { 2088 goto cleanup; 2089 } 2090 } 2091 2092 /* 2093 * the bbio may be freed once we submit the last bio. Make sure 2094 * not to touch it after that 2095 */ 2096 atomic_set(&rbio->stripes_pending, bios_to_read); 2097 while (1) { 2098 bio = bio_list_pop(&bio_list); 2099 if (!bio) 2100 break; 2101 2102 bio->bi_private = rbio; 2103 bio->bi_end_io = raid_recover_end_io; 2104 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2105 2106 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2107 2108 submit_bio(bio); 2109 } 2110 out: 2111 return 0; 2112 2113 cleanup: 2114 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2115 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2116 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2117 2118 while ((bio = bio_list_pop(&bio_list))) 2119 bio_put(bio); 2120 2121 return -EIO; 2122 } 2123 2124 /* 2125 * the main entry point for reads from the higher layers. This 2126 * is really only called when the normal read path had a failure, 2127 * so we assume the bio they send down corresponds to a failed part 2128 * of the drive. 2129 */ 2130 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2131 struct btrfs_bio *bbio, u64 stripe_len, 2132 int mirror_num, int generic_io) 2133 { 2134 struct btrfs_raid_bio *rbio; 2135 int ret; 2136 2137 if (generic_io) { 2138 ASSERT(bbio->mirror_num == mirror_num); 2139 btrfs_io_bio(bio)->mirror_num = mirror_num; 2140 } 2141 2142 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2143 if (IS_ERR(rbio)) { 2144 if (generic_io) 2145 btrfs_put_bbio(bbio); 2146 return PTR_ERR(rbio); 2147 } 2148 2149 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2150 bio_list_add(&rbio->bio_list, bio); 2151 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2152 2153 rbio->faila = find_logical_bio_stripe(rbio, bio); 2154 if (rbio->faila == -1) { 2155 btrfs_warn(fs_info, 2156 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2157 __func__, (u64)bio->bi_iter.bi_sector << 9, 2158 (u64)bio->bi_iter.bi_size, bbio->map_type); 2159 if (generic_io) 2160 btrfs_put_bbio(bbio); 2161 kfree(rbio); 2162 return -EIO; 2163 } 2164 2165 if (generic_io) { 2166 btrfs_bio_counter_inc_noblocked(fs_info); 2167 rbio->generic_bio_cnt = 1; 2168 } else { 2169 btrfs_get_bbio(bbio); 2170 } 2171 2172 /* 2173 * reconstruct from the q stripe if they are 2174 * asking for mirror 3 2175 */ 2176 if (mirror_num == 3) 2177 rbio->failb = rbio->real_stripes - 2; 2178 2179 ret = lock_stripe_add(rbio); 2180 2181 /* 2182 * __raid56_parity_recover will end the bio with 2183 * any errors it hits. We don't want to return 2184 * its error value up the stack because our caller 2185 * will end up calling bio_endio with any nonzero 2186 * return 2187 */ 2188 if (ret == 0) 2189 __raid56_parity_recover(rbio); 2190 /* 2191 * our rbio has been added to the list of 2192 * rbios that will be handled after the 2193 * currently lock owner is done 2194 */ 2195 return 0; 2196 2197 } 2198 2199 static void rmw_work(struct btrfs_work *work) 2200 { 2201 struct btrfs_raid_bio *rbio; 2202 2203 rbio = container_of(work, struct btrfs_raid_bio, work); 2204 raid56_rmw_stripe(rbio); 2205 } 2206 2207 static void read_rebuild_work(struct btrfs_work *work) 2208 { 2209 struct btrfs_raid_bio *rbio; 2210 2211 rbio = container_of(work, struct btrfs_raid_bio, work); 2212 __raid56_parity_recover(rbio); 2213 } 2214 2215 /* 2216 * The following code is used to scrub/replace the parity stripe 2217 * 2218 * Caller must have already increased bio_counter for getting @bbio. 2219 * 2220 * Note: We need make sure all the pages that add into the scrub/replace 2221 * raid bio are correct and not be changed during the scrub/replace. That 2222 * is those pages just hold metadata or file data with checksum. 2223 */ 2224 2225 struct btrfs_raid_bio * 2226 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2227 struct btrfs_bio *bbio, u64 stripe_len, 2228 struct btrfs_device *scrub_dev, 2229 unsigned long *dbitmap, int stripe_nsectors) 2230 { 2231 struct btrfs_raid_bio *rbio; 2232 int i; 2233 2234 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2235 if (IS_ERR(rbio)) 2236 return NULL; 2237 bio_list_add(&rbio->bio_list, bio); 2238 /* 2239 * This is a special bio which is used to hold the completion handler 2240 * and make the scrub rbio is similar to the other types 2241 */ 2242 ASSERT(!bio->bi_iter.bi_size); 2243 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2244 2245 /* 2246 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted 2247 * to the end position, so this search can start from the first parity 2248 * stripe. 2249 */ 2250 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2251 if (bbio->stripes[i].dev == scrub_dev) { 2252 rbio->scrubp = i; 2253 break; 2254 } 2255 } 2256 ASSERT(i < rbio->real_stripes); 2257 2258 /* Now we just support the sectorsize equals to page size */ 2259 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2260 ASSERT(rbio->stripe_npages == stripe_nsectors); 2261 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2262 2263 /* 2264 * We have already increased bio_counter when getting bbio, record it 2265 * so we can free it at rbio_orig_end_io(). 2266 */ 2267 rbio->generic_bio_cnt = 1; 2268 2269 return rbio; 2270 } 2271 2272 /* Used for both parity scrub and missing. */ 2273 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2274 u64 logical) 2275 { 2276 int stripe_offset; 2277 int index; 2278 2279 ASSERT(logical >= rbio->bbio->raid_map[0]); 2280 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2281 rbio->stripe_len * rbio->nr_data); 2282 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2283 index = stripe_offset >> PAGE_SHIFT; 2284 rbio->bio_pages[index] = page; 2285 } 2286 2287 /* 2288 * We just scrub the parity that we have correct data on the same horizontal, 2289 * so we needn't allocate all pages for all the stripes. 2290 */ 2291 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2292 { 2293 int i; 2294 int bit; 2295 int index; 2296 struct page *page; 2297 2298 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2299 for (i = 0; i < rbio->real_stripes; i++) { 2300 index = i * rbio->stripe_npages + bit; 2301 if (rbio->stripe_pages[index]) 2302 continue; 2303 2304 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2305 if (!page) 2306 return -ENOMEM; 2307 rbio->stripe_pages[index] = page; 2308 } 2309 } 2310 return 0; 2311 } 2312 2313 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2314 int need_check) 2315 { 2316 struct btrfs_bio *bbio = rbio->bbio; 2317 void *pointers[rbio->real_stripes]; 2318 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2319 int nr_data = rbio->nr_data; 2320 int stripe; 2321 int pagenr; 2322 int p_stripe = -1; 2323 int q_stripe = -1; 2324 struct page *p_page = NULL; 2325 struct page *q_page = NULL; 2326 struct bio_list bio_list; 2327 struct bio *bio; 2328 int is_replace = 0; 2329 int ret; 2330 2331 bio_list_init(&bio_list); 2332 2333 if (rbio->real_stripes - rbio->nr_data == 1) { 2334 p_stripe = rbio->real_stripes - 1; 2335 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2336 p_stripe = rbio->real_stripes - 2; 2337 q_stripe = rbio->real_stripes - 1; 2338 } else { 2339 BUG(); 2340 } 2341 2342 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2343 is_replace = 1; 2344 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2345 } 2346 2347 /* 2348 * Because the higher layers(scrubber) are unlikely to 2349 * use this area of the disk again soon, so don't cache 2350 * it. 2351 */ 2352 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2353 2354 if (!need_check) 2355 goto writeback; 2356 2357 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2358 if (!p_page) 2359 goto cleanup; 2360 SetPageUptodate(p_page); 2361 2362 if (q_stripe != -1) { 2363 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2364 if (!q_page) { 2365 __free_page(p_page); 2366 goto cleanup; 2367 } 2368 SetPageUptodate(q_page); 2369 } 2370 2371 atomic_set(&rbio->error, 0); 2372 2373 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2374 struct page *p; 2375 void *parity; 2376 /* first collect one page from each data stripe */ 2377 for (stripe = 0; stripe < nr_data; stripe++) { 2378 p = page_in_rbio(rbio, stripe, pagenr, 0); 2379 pointers[stripe] = kmap(p); 2380 } 2381 2382 /* then add the parity stripe */ 2383 pointers[stripe++] = kmap(p_page); 2384 2385 if (q_stripe != -1) { 2386 2387 /* 2388 * raid6, add the qstripe and call the 2389 * library function to fill in our p/q 2390 */ 2391 pointers[stripe++] = kmap(q_page); 2392 2393 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2394 pointers); 2395 } else { 2396 /* raid5 */ 2397 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2398 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2399 } 2400 2401 /* Check scrubbing parity and repair it */ 2402 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2403 parity = kmap(p); 2404 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2405 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2406 else 2407 /* Parity is right, needn't writeback */ 2408 bitmap_clear(rbio->dbitmap, pagenr, 1); 2409 kunmap(p); 2410 2411 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2412 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2413 } 2414 2415 __free_page(p_page); 2416 if (q_page) 2417 __free_page(q_page); 2418 2419 writeback: 2420 /* 2421 * time to start writing. Make bios for everything from the 2422 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2423 * everything else. 2424 */ 2425 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2426 struct page *page; 2427 2428 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2429 ret = rbio_add_io_page(rbio, &bio_list, 2430 page, rbio->scrubp, pagenr, rbio->stripe_len); 2431 if (ret) 2432 goto cleanup; 2433 } 2434 2435 if (!is_replace) 2436 goto submit_write; 2437 2438 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2439 struct page *page; 2440 2441 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2442 ret = rbio_add_io_page(rbio, &bio_list, page, 2443 bbio->tgtdev_map[rbio->scrubp], 2444 pagenr, rbio->stripe_len); 2445 if (ret) 2446 goto cleanup; 2447 } 2448 2449 submit_write: 2450 nr_data = bio_list_size(&bio_list); 2451 if (!nr_data) { 2452 /* Every parity is right */ 2453 rbio_orig_end_io(rbio, BLK_STS_OK); 2454 return; 2455 } 2456 2457 atomic_set(&rbio->stripes_pending, nr_data); 2458 2459 while (1) { 2460 bio = bio_list_pop(&bio_list); 2461 if (!bio) 2462 break; 2463 2464 bio->bi_private = rbio; 2465 bio->bi_end_io = raid_write_end_io; 2466 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2467 2468 submit_bio(bio); 2469 } 2470 return; 2471 2472 cleanup: 2473 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2474 2475 while ((bio = bio_list_pop(&bio_list))) 2476 bio_put(bio); 2477 } 2478 2479 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2480 { 2481 if (stripe >= 0 && stripe < rbio->nr_data) 2482 return 1; 2483 return 0; 2484 } 2485 2486 /* 2487 * While we're doing the parity check and repair, we could have errors 2488 * in reading pages off the disk. This checks for errors and if we're 2489 * not able to read the page it'll trigger parity reconstruction. The 2490 * parity scrub will be finished after we've reconstructed the failed 2491 * stripes 2492 */ 2493 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2494 { 2495 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2496 goto cleanup; 2497 2498 if (rbio->faila >= 0 || rbio->failb >= 0) { 2499 int dfail = 0, failp = -1; 2500 2501 if (is_data_stripe(rbio, rbio->faila)) 2502 dfail++; 2503 else if (is_parity_stripe(rbio->faila)) 2504 failp = rbio->faila; 2505 2506 if (is_data_stripe(rbio, rbio->failb)) 2507 dfail++; 2508 else if (is_parity_stripe(rbio->failb)) 2509 failp = rbio->failb; 2510 2511 /* 2512 * Because we can not use a scrubbing parity to repair 2513 * the data, so the capability of the repair is declined. 2514 * (In the case of RAID5, we can not repair anything) 2515 */ 2516 if (dfail > rbio->bbio->max_errors - 1) 2517 goto cleanup; 2518 2519 /* 2520 * If all data is good, only parity is correctly, just 2521 * repair the parity. 2522 */ 2523 if (dfail == 0) { 2524 finish_parity_scrub(rbio, 0); 2525 return; 2526 } 2527 2528 /* 2529 * Here means we got one corrupted data stripe and one 2530 * corrupted parity on RAID6, if the corrupted parity 2531 * is scrubbing parity, luckily, use the other one to repair 2532 * the data, or we can not repair the data stripe. 2533 */ 2534 if (failp != rbio->scrubp) 2535 goto cleanup; 2536 2537 __raid_recover_end_io(rbio); 2538 } else { 2539 finish_parity_scrub(rbio, 1); 2540 } 2541 return; 2542 2543 cleanup: 2544 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2545 } 2546 2547 /* 2548 * end io for the read phase of the rmw cycle. All the bios here are physical 2549 * stripe bios we've read from the disk so we can recalculate the parity of the 2550 * stripe. 2551 * 2552 * This will usually kick off finish_rmw once all the bios are read in, but it 2553 * may trigger parity reconstruction if we had any errors along the way 2554 */ 2555 static void raid56_parity_scrub_end_io(struct bio *bio) 2556 { 2557 struct btrfs_raid_bio *rbio = bio->bi_private; 2558 2559 if (bio->bi_status) 2560 fail_bio_stripe(rbio, bio); 2561 else 2562 set_bio_pages_uptodate(bio); 2563 2564 bio_put(bio); 2565 2566 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2567 return; 2568 2569 /* 2570 * this will normally call finish_rmw to start our write 2571 * but if there are any failed stripes we'll reconstruct 2572 * from parity first 2573 */ 2574 validate_rbio_for_parity_scrub(rbio); 2575 } 2576 2577 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2578 { 2579 int bios_to_read = 0; 2580 struct bio_list bio_list; 2581 int ret; 2582 int pagenr; 2583 int stripe; 2584 struct bio *bio; 2585 2586 bio_list_init(&bio_list); 2587 2588 ret = alloc_rbio_essential_pages(rbio); 2589 if (ret) 2590 goto cleanup; 2591 2592 atomic_set(&rbio->error, 0); 2593 /* 2594 * build a list of bios to read all the missing parts of this 2595 * stripe 2596 */ 2597 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2598 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2599 struct page *page; 2600 /* 2601 * we want to find all the pages missing from 2602 * the rbio and read them from the disk. If 2603 * page_in_rbio finds a page in the bio list 2604 * we don't need to read it off the stripe. 2605 */ 2606 page = page_in_rbio(rbio, stripe, pagenr, 1); 2607 if (page) 2608 continue; 2609 2610 page = rbio_stripe_page(rbio, stripe, pagenr); 2611 /* 2612 * the bio cache may have handed us an uptodate 2613 * page. If so, be happy and use it 2614 */ 2615 if (PageUptodate(page)) 2616 continue; 2617 2618 ret = rbio_add_io_page(rbio, &bio_list, page, 2619 stripe, pagenr, rbio->stripe_len); 2620 if (ret) 2621 goto cleanup; 2622 } 2623 } 2624 2625 bios_to_read = bio_list_size(&bio_list); 2626 if (!bios_to_read) { 2627 /* 2628 * this can happen if others have merged with 2629 * us, it means there is nothing left to read. 2630 * But if there are missing devices it may not be 2631 * safe to do the full stripe write yet. 2632 */ 2633 goto finish; 2634 } 2635 2636 /* 2637 * the bbio may be freed once we submit the last bio. Make sure 2638 * not to touch it after that 2639 */ 2640 atomic_set(&rbio->stripes_pending, bios_to_read); 2641 while (1) { 2642 bio = bio_list_pop(&bio_list); 2643 if (!bio) 2644 break; 2645 2646 bio->bi_private = rbio; 2647 bio->bi_end_io = raid56_parity_scrub_end_io; 2648 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2649 2650 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2651 2652 submit_bio(bio); 2653 } 2654 /* the actual write will happen once the reads are done */ 2655 return; 2656 2657 cleanup: 2658 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2659 2660 while ((bio = bio_list_pop(&bio_list))) 2661 bio_put(bio); 2662 2663 return; 2664 2665 finish: 2666 validate_rbio_for_parity_scrub(rbio); 2667 } 2668 2669 static void scrub_parity_work(struct btrfs_work *work) 2670 { 2671 struct btrfs_raid_bio *rbio; 2672 2673 rbio = container_of(work, struct btrfs_raid_bio, work); 2674 raid56_parity_scrub_stripe(rbio); 2675 } 2676 2677 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2678 { 2679 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2680 scrub_parity_work, NULL, NULL); 2681 2682 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2683 } 2684 2685 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2686 { 2687 if (!lock_stripe_add(rbio)) 2688 async_scrub_parity(rbio); 2689 } 2690 2691 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2692 2693 struct btrfs_raid_bio * 2694 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2695 struct btrfs_bio *bbio, u64 length) 2696 { 2697 struct btrfs_raid_bio *rbio; 2698 2699 rbio = alloc_rbio(fs_info, bbio, length); 2700 if (IS_ERR(rbio)) 2701 return NULL; 2702 2703 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2704 bio_list_add(&rbio->bio_list, bio); 2705 /* 2706 * This is a special bio which is used to hold the completion handler 2707 * and make the scrub rbio is similar to the other types 2708 */ 2709 ASSERT(!bio->bi_iter.bi_size); 2710 2711 rbio->faila = find_logical_bio_stripe(rbio, bio); 2712 if (rbio->faila == -1) { 2713 BUG(); 2714 kfree(rbio); 2715 return NULL; 2716 } 2717 2718 /* 2719 * When we get bbio, we have already increased bio_counter, record it 2720 * so we can free it at rbio_orig_end_io() 2721 */ 2722 rbio->generic_bio_cnt = 1; 2723 2724 return rbio; 2725 } 2726 2727 static void missing_raid56_work(struct btrfs_work *work) 2728 { 2729 struct btrfs_raid_bio *rbio; 2730 2731 rbio = container_of(work, struct btrfs_raid_bio, work); 2732 __raid56_parity_recover(rbio); 2733 } 2734 2735 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2736 { 2737 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2738 missing_raid56_work, NULL, NULL); 2739 2740 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2741 } 2742 2743 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2744 { 2745 if (!lock_stripe_add(rbio)) 2746 async_missing_raid56(rbio); 2747 } 2748