1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/vmalloc.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 /* 62 * bbio and raid_map is managed by the caller, so we shouldn't free 63 * them here. And besides that, all rbios with this flag should not 64 * be cached, because we need raid_map to check the rbios' stripe 65 * is the same or not, but it is very likely that the caller has 66 * free raid_map, so don't cache those rbios. 67 */ 68 #define RBIO_HOLD_BBIO_MAP_BIT 4 69 70 #define RBIO_CACHE_SIZE 1024 71 72 enum btrfs_rbio_ops { 73 BTRFS_RBIO_WRITE = 0, 74 BTRFS_RBIO_READ_REBUILD = 1, 75 BTRFS_RBIO_PARITY_SCRUB = 2, 76 }; 77 78 struct btrfs_raid_bio { 79 struct btrfs_fs_info *fs_info; 80 struct btrfs_bio *bbio; 81 82 /* 83 * logical block numbers for the start of each stripe 84 * The last one or two are p/q. These are sorted, 85 * so raid_map[0] is the start of our full stripe 86 */ 87 u64 *raid_map; 88 89 /* while we're doing rmw on a stripe 90 * we put it into a hash table so we can 91 * lock the stripe and merge more rbios 92 * into it. 93 */ 94 struct list_head hash_list; 95 96 /* 97 * LRU list for the stripe cache 98 */ 99 struct list_head stripe_cache; 100 101 /* 102 * for scheduling work in the helper threads 103 */ 104 struct btrfs_work work; 105 106 /* 107 * bio list and bio_list_lock are used 108 * to add more bios into the stripe 109 * in hopes of avoiding the full rmw 110 */ 111 struct bio_list bio_list; 112 spinlock_t bio_list_lock; 113 114 /* also protected by the bio_list_lock, the 115 * plug list is used by the plugging code 116 * to collect partial bios while plugged. The 117 * stripe locking code also uses it to hand off 118 * the stripe lock to the next pending IO 119 */ 120 struct list_head plug_list; 121 122 /* 123 * flags that tell us if it is safe to 124 * merge with this bio 125 */ 126 unsigned long flags; 127 128 /* size of each individual stripe on disk */ 129 int stripe_len; 130 131 /* number of data stripes (no p/q) */ 132 int nr_data; 133 134 int real_stripes; 135 136 int stripe_npages; 137 /* 138 * set if we're doing a parity rebuild 139 * for a read from higher up, which is handled 140 * differently from a parity rebuild as part of 141 * rmw 142 */ 143 enum btrfs_rbio_ops operation; 144 145 /* first bad stripe */ 146 int faila; 147 148 /* second bad stripe (for raid6 use) */ 149 int failb; 150 151 int scrubp; 152 /* 153 * number of pages needed to represent the full 154 * stripe 155 */ 156 int nr_pages; 157 158 /* 159 * size of all the bios in the bio_list. This 160 * helps us decide if the rbio maps to a full 161 * stripe or not 162 */ 163 int bio_list_bytes; 164 165 int generic_bio_cnt; 166 167 atomic_t refs; 168 169 atomic_t stripes_pending; 170 171 atomic_t error; 172 /* 173 * these are two arrays of pointers. We allocate the 174 * rbio big enough to hold them both and setup their 175 * locations when the rbio is allocated 176 */ 177 178 /* pointers to pages that we allocated for 179 * reading/writing stripes directly from the disk (including P/Q) 180 */ 181 struct page **stripe_pages; 182 183 /* 184 * pointers to the pages in the bio_list. Stored 185 * here for faster lookup 186 */ 187 struct page **bio_pages; 188 189 /* 190 * bitmap to record which horizontal stripe has data 191 */ 192 unsigned long *dbitmap; 193 }; 194 195 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 196 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 197 static void rmw_work(struct btrfs_work *work); 198 static void read_rebuild_work(struct btrfs_work *work); 199 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 200 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 201 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 202 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 203 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 204 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 205 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 206 207 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 208 int need_check); 209 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 210 211 /* 212 * the stripe hash table is used for locking, and to collect 213 * bios in hopes of making a full stripe 214 */ 215 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 216 { 217 struct btrfs_stripe_hash_table *table; 218 struct btrfs_stripe_hash_table *x; 219 struct btrfs_stripe_hash *cur; 220 struct btrfs_stripe_hash *h; 221 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 222 int i; 223 int table_size; 224 225 if (info->stripe_hash_table) 226 return 0; 227 228 /* 229 * The table is large, starting with order 4 and can go as high as 230 * order 7 in case lock debugging is turned on. 231 * 232 * Try harder to allocate and fallback to vmalloc to lower the chance 233 * of a failing mount. 234 */ 235 table_size = sizeof(*table) + sizeof(*h) * num_entries; 236 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 237 if (!table) { 238 table = vzalloc(table_size); 239 if (!table) 240 return -ENOMEM; 241 } 242 243 spin_lock_init(&table->cache_lock); 244 INIT_LIST_HEAD(&table->stripe_cache); 245 246 h = table->table; 247 248 for (i = 0; i < num_entries; i++) { 249 cur = h + i; 250 INIT_LIST_HEAD(&cur->hash_list); 251 spin_lock_init(&cur->lock); 252 init_waitqueue_head(&cur->wait); 253 } 254 255 x = cmpxchg(&info->stripe_hash_table, NULL, table); 256 if (x) { 257 if (is_vmalloc_addr(x)) 258 vfree(x); 259 else 260 kfree(x); 261 } 262 return 0; 263 } 264 265 /* 266 * caching an rbio means to copy anything from the 267 * bio_pages array into the stripe_pages array. We 268 * use the page uptodate bit in the stripe cache array 269 * to indicate if it has valid data 270 * 271 * once the caching is done, we set the cache ready 272 * bit. 273 */ 274 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 275 { 276 int i; 277 char *s; 278 char *d; 279 int ret; 280 281 ret = alloc_rbio_pages(rbio); 282 if (ret) 283 return; 284 285 for (i = 0; i < rbio->nr_pages; i++) { 286 if (!rbio->bio_pages[i]) 287 continue; 288 289 s = kmap(rbio->bio_pages[i]); 290 d = kmap(rbio->stripe_pages[i]); 291 292 memcpy(d, s, PAGE_CACHE_SIZE); 293 294 kunmap(rbio->bio_pages[i]); 295 kunmap(rbio->stripe_pages[i]); 296 SetPageUptodate(rbio->stripe_pages[i]); 297 } 298 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 299 } 300 301 /* 302 * we hash on the first logical address of the stripe 303 */ 304 static int rbio_bucket(struct btrfs_raid_bio *rbio) 305 { 306 u64 num = rbio->raid_map[0]; 307 308 /* 309 * we shift down quite a bit. We're using byte 310 * addressing, and most of the lower bits are zeros. 311 * This tends to upset hash_64, and it consistently 312 * returns just one or two different values. 313 * 314 * shifting off the lower bits fixes things. 315 */ 316 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 317 } 318 319 /* 320 * stealing an rbio means taking all the uptodate pages from the stripe 321 * array in the source rbio and putting them into the destination rbio 322 */ 323 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 324 { 325 int i; 326 struct page *s; 327 struct page *d; 328 329 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 330 return; 331 332 for (i = 0; i < dest->nr_pages; i++) { 333 s = src->stripe_pages[i]; 334 if (!s || !PageUptodate(s)) { 335 continue; 336 } 337 338 d = dest->stripe_pages[i]; 339 if (d) 340 __free_page(d); 341 342 dest->stripe_pages[i] = s; 343 src->stripe_pages[i] = NULL; 344 } 345 } 346 347 /* 348 * merging means we take the bio_list from the victim and 349 * splice it into the destination. The victim should 350 * be discarded afterwards. 351 * 352 * must be called with dest->rbio_list_lock held 353 */ 354 static void merge_rbio(struct btrfs_raid_bio *dest, 355 struct btrfs_raid_bio *victim) 356 { 357 bio_list_merge(&dest->bio_list, &victim->bio_list); 358 dest->bio_list_bytes += victim->bio_list_bytes; 359 dest->generic_bio_cnt += victim->generic_bio_cnt; 360 bio_list_init(&victim->bio_list); 361 } 362 363 /* 364 * used to prune items that are in the cache. The caller 365 * must hold the hash table lock. 366 */ 367 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 368 { 369 int bucket = rbio_bucket(rbio); 370 struct btrfs_stripe_hash_table *table; 371 struct btrfs_stripe_hash *h; 372 int freeit = 0; 373 374 /* 375 * check the bit again under the hash table lock. 376 */ 377 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 378 return; 379 380 table = rbio->fs_info->stripe_hash_table; 381 h = table->table + bucket; 382 383 /* hold the lock for the bucket because we may be 384 * removing it from the hash table 385 */ 386 spin_lock(&h->lock); 387 388 /* 389 * hold the lock for the bio list because we need 390 * to make sure the bio list is empty 391 */ 392 spin_lock(&rbio->bio_list_lock); 393 394 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 395 list_del_init(&rbio->stripe_cache); 396 table->cache_size -= 1; 397 freeit = 1; 398 399 /* if the bio list isn't empty, this rbio is 400 * still involved in an IO. We take it out 401 * of the cache list, and drop the ref that 402 * was held for the list. 403 * 404 * If the bio_list was empty, we also remove 405 * the rbio from the hash_table, and drop 406 * the corresponding ref 407 */ 408 if (bio_list_empty(&rbio->bio_list)) { 409 if (!list_empty(&rbio->hash_list)) { 410 list_del_init(&rbio->hash_list); 411 atomic_dec(&rbio->refs); 412 BUG_ON(!list_empty(&rbio->plug_list)); 413 } 414 } 415 } 416 417 spin_unlock(&rbio->bio_list_lock); 418 spin_unlock(&h->lock); 419 420 if (freeit) 421 __free_raid_bio(rbio); 422 } 423 424 /* 425 * prune a given rbio from the cache 426 */ 427 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 428 { 429 struct btrfs_stripe_hash_table *table; 430 unsigned long flags; 431 432 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 433 return; 434 435 table = rbio->fs_info->stripe_hash_table; 436 437 spin_lock_irqsave(&table->cache_lock, flags); 438 __remove_rbio_from_cache(rbio); 439 spin_unlock_irqrestore(&table->cache_lock, flags); 440 } 441 442 /* 443 * remove everything in the cache 444 */ 445 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 446 { 447 struct btrfs_stripe_hash_table *table; 448 unsigned long flags; 449 struct btrfs_raid_bio *rbio; 450 451 table = info->stripe_hash_table; 452 453 spin_lock_irqsave(&table->cache_lock, flags); 454 while (!list_empty(&table->stripe_cache)) { 455 rbio = list_entry(table->stripe_cache.next, 456 struct btrfs_raid_bio, 457 stripe_cache); 458 __remove_rbio_from_cache(rbio); 459 } 460 spin_unlock_irqrestore(&table->cache_lock, flags); 461 } 462 463 /* 464 * remove all cached entries and free the hash table 465 * used by unmount 466 */ 467 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 468 { 469 if (!info->stripe_hash_table) 470 return; 471 btrfs_clear_rbio_cache(info); 472 if (is_vmalloc_addr(info->stripe_hash_table)) 473 vfree(info->stripe_hash_table); 474 else 475 kfree(info->stripe_hash_table); 476 info->stripe_hash_table = NULL; 477 } 478 479 /* 480 * insert an rbio into the stripe cache. It 481 * must have already been prepared by calling 482 * cache_rbio_pages 483 * 484 * If this rbio was already cached, it gets 485 * moved to the front of the lru. 486 * 487 * If the size of the rbio cache is too big, we 488 * prune an item. 489 */ 490 static void cache_rbio(struct btrfs_raid_bio *rbio) 491 { 492 struct btrfs_stripe_hash_table *table; 493 unsigned long flags; 494 495 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 496 return; 497 498 table = rbio->fs_info->stripe_hash_table; 499 500 spin_lock_irqsave(&table->cache_lock, flags); 501 spin_lock(&rbio->bio_list_lock); 502 503 /* bump our ref if we were not in the list before */ 504 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 505 atomic_inc(&rbio->refs); 506 507 if (!list_empty(&rbio->stripe_cache)){ 508 list_move(&rbio->stripe_cache, &table->stripe_cache); 509 } else { 510 list_add(&rbio->stripe_cache, &table->stripe_cache); 511 table->cache_size += 1; 512 } 513 514 spin_unlock(&rbio->bio_list_lock); 515 516 if (table->cache_size > RBIO_CACHE_SIZE) { 517 struct btrfs_raid_bio *found; 518 519 found = list_entry(table->stripe_cache.prev, 520 struct btrfs_raid_bio, 521 stripe_cache); 522 523 if (found != rbio) 524 __remove_rbio_from_cache(found); 525 } 526 527 spin_unlock_irqrestore(&table->cache_lock, flags); 528 return; 529 } 530 531 /* 532 * helper function to run the xor_blocks api. It is only 533 * able to do MAX_XOR_BLOCKS at a time, so we need to 534 * loop through. 535 */ 536 static void run_xor(void **pages, int src_cnt, ssize_t len) 537 { 538 int src_off = 0; 539 int xor_src_cnt = 0; 540 void *dest = pages[src_cnt]; 541 542 while(src_cnt > 0) { 543 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 544 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 545 546 src_cnt -= xor_src_cnt; 547 src_off += xor_src_cnt; 548 } 549 } 550 551 /* 552 * returns true if the bio list inside this rbio 553 * covers an entire stripe (no rmw required). 554 * Must be called with the bio list lock held, or 555 * at a time when you know it is impossible to add 556 * new bios into the list 557 */ 558 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 559 { 560 unsigned long size = rbio->bio_list_bytes; 561 int ret = 1; 562 563 if (size != rbio->nr_data * rbio->stripe_len) 564 ret = 0; 565 566 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 567 return ret; 568 } 569 570 static int rbio_is_full(struct btrfs_raid_bio *rbio) 571 { 572 unsigned long flags; 573 int ret; 574 575 spin_lock_irqsave(&rbio->bio_list_lock, flags); 576 ret = __rbio_is_full(rbio); 577 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 578 return ret; 579 } 580 581 /* 582 * returns 1 if it is safe to merge two rbios together. 583 * The merging is safe if the two rbios correspond to 584 * the same stripe and if they are both going in the same 585 * direction (read vs write), and if neither one is 586 * locked for final IO 587 * 588 * The caller is responsible for locking such that 589 * rmw_locked is safe to test 590 */ 591 static int rbio_can_merge(struct btrfs_raid_bio *last, 592 struct btrfs_raid_bio *cur) 593 { 594 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 595 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 596 return 0; 597 598 /* 599 * we can't merge with cached rbios, since the 600 * idea is that when we merge the destination 601 * rbio is going to run our IO for us. We can 602 * steal from cached rbio's though, other functions 603 * handle that. 604 */ 605 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 606 test_bit(RBIO_CACHE_BIT, &cur->flags)) 607 return 0; 608 609 if (last->raid_map[0] != 610 cur->raid_map[0]) 611 return 0; 612 613 /* we can't merge with different operations */ 614 if (last->operation != cur->operation) 615 return 0; 616 /* 617 * We've need read the full stripe from the drive. 618 * check and repair the parity and write the new results. 619 * 620 * We're not allowed to add any new bios to the 621 * bio list here, anyone else that wants to 622 * change this stripe needs to do their own rmw. 623 */ 624 if (last->operation == BTRFS_RBIO_PARITY_SCRUB || 625 cur->operation == BTRFS_RBIO_PARITY_SCRUB) 626 return 0; 627 628 return 1; 629 } 630 631 /* 632 * helper to index into the pstripe 633 */ 634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 635 { 636 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 637 return rbio->stripe_pages[index]; 638 } 639 640 /* 641 * helper to index into the qstripe, returns null 642 * if there is no qstripe 643 */ 644 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 645 { 646 if (rbio->nr_data + 1 == rbio->real_stripes) 647 return NULL; 648 649 index += ((rbio->nr_data + 1) * rbio->stripe_len) >> 650 PAGE_CACHE_SHIFT; 651 return rbio->stripe_pages[index]; 652 } 653 654 /* 655 * The first stripe in the table for a logical address 656 * has the lock. rbios are added in one of three ways: 657 * 658 * 1) Nobody has the stripe locked yet. The rbio is given 659 * the lock and 0 is returned. The caller must start the IO 660 * themselves. 661 * 662 * 2) Someone has the stripe locked, but we're able to merge 663 * with the lock owner. The rbio is freed and the IO will 664 * start automatically along with the existing rbio. 1 is returned. 665 * 666 * 3) Someone has the stripe locked, but we're not able to merge. 667 * The rbio is added to the lock owner's plug list, or merged into 668 * an rbio already on the plug list. When the lock owner unlocks, 669 * the next rbio on the list is run and the IO is started automatically. 670 * 1 is returned 671 * 672 * If we return 0, the caller still owns the rbio and must continue with 673 * IO submission. If we return 1, the caller must assume the rbio has 674 * already been freed. 675 */ 676 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 677 { 678 int bucket = rbio_bucket(rbio); 679 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 680 struct btrfs_raid_bio *cur; 681 struct btrfs_raid_bio *pending; 682 unsigned long flags; 683 DEFINE_WAIT(wait); 684 struct btrfs_raid_bio *freeit = NULL; 685 struct btrfs_raid_bio *cache_drop = NULL; 686 int ret = 0; 687 int walk = 0; 688 689 spin_lock_irqsave(&h->lock, flags); 690 list_for_each_entry(cur, &h->hash_list, hash_list) { 691 walk++; 692 if (cur->raid_map[0] == rbio->raid_map[0]) { 693 spin_lock(&cur->bio_list_lock); 694 695 /* can we steal this cached rbio's pages? */ 696 if (bio_list_empty(&cur->bio_list) && 697 list_empty(&cur->plug_list) && 698 test_bit(RBIO_CACHE_BIT, &cur->flags) && 699 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 700 list_del_init(&cur->hash_list); 701 atomic_dec(&cur->refs); 702 703 steal_rbio(cur, rbio); 704 cache_drop = cur; 705 spin_unlock(&cur->bio_list_lock); 706 707 goto lockit; 708 } 709 710 /* can we merge into the lock owner? */ 711 if (rbio_can_merge(cur, rbio)) { 712 merge_rbio(cur, rbio); 713 spin_unlock(&cur->bio_list_lock); 714 freeit = rbio; 715 ret = 1; 716 goto out; 717 } 718 719 720 /* 721 * we couldn't merge with the running 722 * rbio, see if we can merge with the 723 * pending ones. We don't have to 724 * check for rmw_locked because there 725 * is no way they are inside finish_rmw 726 * right now 727 */ 728 list_for_each_entry(pending, &cur->plug_list, 729 plug_list) { 730 if (rbio_can_merge(pending, rbio)) { 731 merge_rbio(pending, rbio); 732 spin_unlock(&cur->bio_list_lock); 733 freeit = rbio; 734 ret = 1; 735 goto out; 736 } 737 } 738 739 /* no merging, put us on the tail of the plug list, 740 * our rbio will be started with the currently 741 * running rbio unlocks 742 */ 743 list_add_tail(&rbio->plug_list, &cur->plug_list); 744 spin_unlock(&cur->bio_list_lock); 745 ret = 1; 746 goto out; 747 } 748 } 749 lockit: 750 atomic_inc(&rbio->refs); 751 list_add(&rbio->hash_list, &h->hash_list); 752 out: 753 spin_unlock_irqrestore(&h->lock, flags); 754 if (cache_drop) 755 remove_rbio_from_cache(cache_drop); 756 if (freeit) 757 __free_raid_bio(freeit); 758 return ret; 759 } 760 761 /* 762 * called as rmw or parity rebuild is completed. If the plug list has more 763 * rbios waiting for this stripe, the next one on the list will be started 764 */ 765 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 766 { 767 int bucket; 768 struct btrfs_stripe_hash *h; 769 unsigned long flags; 770 int keep_cache = 0; 771 772 bucket = rbio_bucket(rbio); 773 h = rbio->fs_info->stripe_hash_table->table + bucket; 774 775 if (list_empty(&rbio->plug_list)) 776 cache_rbio(rbio); 777 778 spin_lock_irqsave(&h->lock, flags); 779 spin_lock(&rbio->bio_list_lock); 780 781 if (!list_empty(&rbio->hash_list)) { 782 /* 783 * if we're still cached and there is no other IO 784 * to perform, just leave this rbio here for others 785 * to steal from later 786 */ 787 if (list_empty(&rbio->plug_list) && 788 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 789 keep_cache = 1; 790 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 791 BUG_ON(!bio_list_empty(&rbio->bio_list)); 792 goto done; 793 } 794 795 list_del_init(&rbio->hash_list); 796 atomic_dec(&rbio->refs); 797 798 /* 799 * we use the plug list to hold all the rbios 800 * waiting for the chance to lock this stripe. 801 * hand the lock over to one of them. 802 */ 803 if (!list_empty(&rbio->plug_list)) { 804 struct btrfs_raid_bio *next; 805 struct list_head *head = rbio->plug_list.next; 806 807 next = list_entry(head, struct btrfs_raid_bio, 808 plug_list); 809 810 list_del_init(&rbio->plug_list); 811 812 list_add(&next->hash_list, &h->hash_list); 813 atomic_inc(&next->refs); 814 spin_unlock(&rbio->bio_list_lock); 815 spin_unlock_irqrestore(&h->lock, flags); 816 817 if (next->operation == BTRFS_RBIO_READ_REBUILD) 818 async_read_rebuild(next); 819 else if (next->operation == BTRFS_RBIO_WRITE) { 820 steal_rbio(rbio, next); 821 async_rmw_stripe(next); 822 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 823 steal_rbio(rbio, next); 824 async_scrub_parity(next); 825 } 826 827 goto done_nolock; 828 } else if (waitqueue_active(&h->wait)) { 829 spin_unlock(&rbio->bio_list_lock); 830 spin_unlock_irqrestore(&h->lock, flags); 831 wake_up(&h->wait); 832 goto done_nolock; 833 } 834 } 835 done: 836 spin_unlock(&rbio->bio_list_lock); 837 spin_unlock_irqrestore(&h->lock, flags); 838 839 done_nolock: 840 if (!keep_cache) 841 remove_rbio_from_cache(rbio); 842 } 843 844 static inline void 845 __free_bbio_and_raid_map(struct btrfs_bio *bbio, u64 *raid_map, int need) 846 { 847 if (need) { 848 kfree(raid_map); 849 kfree(bbio); 850 } 851 } 852 853 static inline void free_bbio_and_raid_map(struct btrfs_raid_bio *rbio) 854 { 855 __free_bbio_and_raid_map(rbio->bbio, rbio->raid_map, 856 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags)); 857 } 858 859 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 860 { 861 int i; 862 863 WARN_ON(atomic_read(&rbio->refs) < 0); 864 if (!atomic_dec_and_test(&rbio->refs)) 865 return; 866 867 WARN_ON(!list_empty(&rbio->stripe_cache)); 868 WARN_ON(!list_empty(&rbio->hash_list)); 869 WARN_ON(!bio_list_empty(&rbio->bio_list)); 870 871 for (i = 0; i < rbio->nr_pages; i++) { 872 if (rbio->stripe_pages[i]) { 873 __free_page(rbio->stripe_pages[i]); 874 rbio->stripe_pages[i] = NULL; 875 } 876 } 877 878 free_bbio_and_raid_map(rbio); 879 880 kfree(rbio); 881 } 882 883 static void free_raid_bio(struct btrfs_raid_bio *rbio) 884 { 885 unlock_stripe(rbio); 886 __free_raid_bio(rbio); 887 } 888 889 /* 890 * this frees the rbio and runs through all the bios in the 891 * bio_list and calls end_io on them 892 */ 893 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) 894 { 895 struct bio *cur = bio_list_get(&rbio->bio_list); 896 struct bio *next; 897 898 if (rbio->generic_bio_cnt) 899 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 900 901 free_raid_bio(rbio); 902 903 while (cur) { 904 next = cur->bi_next; 905 cur->bi_next = NULL; 906 if (uptodate) 907 set_bit(BIO_UPTODATE, &cur->bi_flags); 908 bio_endio(cur, err); 909 cur = next; 910 } 911 } 912 913 /* 914 * end io function used by finish_rmw. When we finally 915 * get here, we've written a full stripe 916 */ 917 static void raid_write_end_io(struct bio *bio, int err) 918 { 919 struct btrfs_raid_bio *rbio = bio->bi_private; 920 921 if (err) 922 fail_bio_stripe(rbio, bio); 923 924 bio_put(bio); 925 926 if (!atomic_dec_and_test(&rbio->stripes_pending)) 927 return; 928 929 err = 0; 930 931 /* OK, we have read all the stripes we need to. */ 932 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 933 err = -EIO; 934 935 rbio_orig_end_io(rbio, err, 0); 936 return; 937 } 938 939 /* 940 * the read/modify/write code wants to use the original bio for 941 * any pages it included, and then use the rbio for everything 942 * else. This function decides if a given index (stripe number) 943 * and page number in that stripe fall inside the original bio 944 * or the rbio. 945 * 946 * if you set bio_list_only, you'll get a NULL back for any ranges 947 * that are outside the bio_list 948 * 949 * This doesn't take any refs on anything, you get a bare page pointer 950 * and the caller must bump refs as required. 951 * 952 * You must call index_rbio_pages once before you can trust 953 * the answers from this function. 954 */ 955 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 956 int index, int pagenr, int bio_list_only) 957 { 958 int chunk_page; 959 struct page *p = NULL; 960 961 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 962 963 spin_lock_irq(&rbio->bio_list_lock); 964 p = rbio->bio_pages[chunk_page]; 965 spin_unlock_irq(&rbio->bio_list_lock); 966 967 if (p || bio_list_only) 968 return p; 969 970 return rbio->stripe_pages[chunk_page]; 971 } 972 973 /* 974 * number of pages we need for the entire stripe across all the 975 * drives 976 */ 977 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 978 { 979 unsigned long nr = stripe_len * nr_stripes; 980 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE); 981 } 982 983 /* 984 * allocation and initial setup for the btrfs_raid_bio. Not 985 * this does not allocate any pages for rbio->pages. 986 */ 987 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, 988 struct btrfs_bio *bbio, u64 *raid_map, 989 u64 stripe_len) 990 { 991 struct btrfs_raid_bio *rbio; 992 int nr_data = 0; 993 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 994 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 995 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 996 void *p; 997 998 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 999 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8), 1000 GFP_NOFS); 1001 if (!rbio) 1002 return ERR_PTR(-ENOMEM); 1003 1004 bio_list_init(&rbio->bio_list); 1005 INIT_LIST_HEAD(&rbio->plug_list); 1006 spin_lock_init(&rbio->bio_list_lock); 1007 INIT_LIST_HEAD(&rbio->stripe_cache); 1008 INIT_LIST_HEAD(&rbio->hash_list); 1009 rbio->bbio = bbio; 1010 rbio->raid_map = raid_map; 1011 rbio->fs_info = root->fs_info; 1012 rbio->stripe_len = stripe_len; 1013 rbio->nr_pages = num_pages; 1014 rbio->real_stripes = real_stripes; 1015 rbio->stripe_npages = stripe_npages; 1016 rbio->faila = -1; 1017 rbio->failb = -1; 1018 atomic_set(&rbio->refs, 1); 1019 atomic_set(&rbio->error, 0); 1020 atomic_set(&rbio->stripes_pending, 0); 1021 1022 /* 1023 * the stripe_pages and bio_pages array point to the extra 1024 * memory we allocated past the end of the rbio 1025 */ 1026 p = rbio + 1; 1027 rbio->stripe_pages = p; 1028 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1029 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1030 1031 if (raid_map[real_stripes - 1] == RAID6_Q_STRIPE) 1032 nr_data = real_stripes - 2; 1033 else 1034 nr_data = real_stripes - 1; 1035 1036 rbio->nr_data = nr_data; 1037 return rbio; 1038 } 1039 1040 /* allocate pages for all the stripes in the bio, including parity */ 1041 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1042 { 1043 int i; 1044 struct page *page; 1045 1046 for (i = 0; i < rbio->nr_pages; i++) { 1047 if (rbio->stripe_pages[i]) 1048 continue; 1049 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1050 if (!page) 1051 return -ENOMEM; 1052 rbio->stripe_pages[i] = page; 1053 ClearPageUptodate(page); 1054 } 1055 return 0; 1056 } 1057 1058 /* allocate pages for just the p/q stripes */ 1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1060 { 1061 int i; 1062 struct page *page; 1063 1064 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; 1065 1066 for (; i < rbio->nr_pages; i++) { 1067 if (rbio->stripe_pages[i]) 1068 continue; 1069 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1070 if (!page) 1071 return -ENOMEM; 1072 rbio->stripe_pages[i] = page; 1073 } 1074 return 0; 1075 } 1076 1077 /* 1078 * add a single page from a specific stripe into our list of bios for IO 1079 * this will try to merge into existing bios if possible, and returns 1080 * zero if all went well. 1081 */ 1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1083 struct bio_list *bio_list, 1084 struct page *page, 1085 int stripe_nr, 1086 unsigned long page_index, 1087 unsigned long bio_max_len) 1088 { 1089 struct bio *last = bio_list->tail; 1090 u64 last_end = 0; 1091 int ret; 1092 struct bio *bio; 1093 struct btrfs_bio_stripe *stripe; 1094 u64 disk_start; 1095 1096 stripe = &rbio->bbio->stripes[stripe_nr]; 1097 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); 1098 1099 /* if the device is missing, just fail this stripe */ 1100 if (!stripe->dev->bdev) 1101 return fail_rbio_index(rbio, stripe_nr); 1102 1103 /* see if we can add this page onto our existing bio */ 1104 if (last) { 1105 last_end = (u64)last->bi_iter.bi_sector << 9; 1106 last_end += last->bi_iter.bi_size; 1107 1108 /* 1109 * we can't merge these if they are from different 1110 * devices or if they are not contiguous 1111 */ 1112 if (last_end == disk_start && stripe->dev->bdev && 1113 test_bit(BIO_UPTODATE, &last->bi_flags) && 1114 last->bi_bdev == stripe->dev->bdev) { 1115 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); 1116 if (ret == PAGE_CACHE_SIZE) 1117 return 0; 1118 } 1119 } 1120 1121 /* put a new bio on the list */ 1122 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); 1123 if (!bio) 1124 return -ENOMEM; 1125 1126 bio->bi_iter.bi_size = 0; 1127 bio->bi_bdev = stripe->dev->bdev; 1128 bio->bi_iter.bi_sector = disk_start >> 9; 1129 set_bit(BIO_UPTODATE, &bio->bi_flags); 1130 1131 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 1132 bio_list_add(bio_list, bio); 1133 return 0; 1134 } 1135 1136 /* 1137 * while we're doing the read/modify/write cycle, we could 1138 * have errors in reading pages off the disk. This checks 1139 * for errors and if we're not able to read the page it'll 1140 * trigger parity reconstruction. The rmw will be finished 1141 * after we've reconstructed the failed stripes 1142 */ 1143 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1144 { 1145 if (rbio->faila >= 0 || rbio->failb >= 0) { 1146 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1147 __raid56_parity_recover(rbio); 1148 } else { 1149 finish_rmw(rbio); 1150 } 1151 } 1152 1153 /* 1154 * these are just the pages from the rbio array, not from anything 1155 * the FS sent down to us 1156 */ 1157 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) 1158 { 1159 int index; 1160 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); 1161 index += page; 1162 return rbio->stripe_pages[index]; 1163 } 1164 1165 /* 1166 * helper function to walk our bio list and populate the bio_pages array with 1167 * the result. This seems expensive, but it is faster than constantly 1168 * searching through the bio list as we setup the IO in finish_rmw or stripe 1169 * reconstruction. 1170 * 1171 * This must be called before you trust the answers from page_in_rbio 1172 */ 1173 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1174 { 1175 struct bio *bio; 1176 u64 start; 1177 unsigned long stripe_offset; 1178 unsigned long page_index; 1179 struct page *p; 1180 int i; 1181 1182 spin_lock_irq(&rbio->bio_list_lock); 1183 bio_list_for_each(bio, &rbio->bio_list) { 1184 start = (u64)bio->bi_iter.bi_sector << 9; 1185 stripe_offset = start - rbio->raid_map[0]; 1186 page_index = stripe_offset >> PAGE_CACHE_SHIFT; 1187 1188 for (i = 0; i < bio->bi_vcnt; i++) { 1189 p = bio->bi_io_vec[i].bv_page; 1190 rbio->bio_pages[page_index + i] = p; 1191 } 1192 } 1193 spin_unlock_irq(&rbio->bio_list_lock); 1194 } 1195 1196 /* 1197 * this is called from one of two situations. We either 1198 * have a full stripe from the higher layers, or we've read all 1199 * the missing bits off disk. 1200 * 1201 * This will calculate the parity and then send down any 1202 * changed blocks. 1203 */ 1204 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1205 { 1206 struct btrfs_bio *bbio = rbio->bbio; 1207 void *pointers[rbio->real_stripes]; 1208 int stripe_len = rbio->stripe_len; 1209 int nr_data = rbio->nr_data; 1210 int stripe; 1211 int pagenr; 1212 int p_stripe = -1; 1213 int q_stripe = -1; 1214 struct bio_list bio_list; 1215 struct bio *bio; 1216 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; 1217 int ret; 1218 1219 bio_list_init(&bio_list); 1220 1221 if (rbio->real_stripes - rbio->nr_data == 1) { 1222 p_stripe = rbio->real_stripes - 1; 1223 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1224 p_stripe = rbio->real_stripes - 2; 1225 q_stripe = rbio->real_stripes - 1; 1226 } else { 1227 BUG(); 1228 } 1229 1230 /* at this point we either have a full stripe, 1231 * or we've read the full stripe from the drive. 1232 * recalculate the parity and write the new results. 1233 * 1234 * We're not allowed to add any new bios to the 1235 * bio list here, anyone else that wants to 1236 * change this stripe needs to do their own rmw. 1237 */ 1238 spin_lock_irq(&rbio->bio_list_lock); 1239 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1240 spin_unlock_irq(&rbio->bio_list_lock); 1241 1242 atomic_set(&rbio->error, 0); 1243 1244 /* 1245 * now that we've set rmw_locked, run through the 1246 * bio list one last time and map the page pointers 1247 * 1248 * We don't cache full rbios because we're assuming 1249 * the higher layers are unlikely to use this area of 1250 * the disk again soon. If they do use it again, 1251 * hopefully they will send another full bio. 1252 */ 1253 index_rbio_pages(rbio); 1254 if (!rbio_is_full(rbio)) 1255 cache_rbio_pages(rbio); 1256 else 1257 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1258 1259 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1260 struct page *p; 1261 /* first collect one page from each data stripe */ 1262 for (stripe = 0; stripe < nr_data; stripe++) { 1263 p = page_in_rbio(rbio, stripe, pagenr, 0); 1264 pointers[stripe] = kmap(p); 1265 } 1266 1267 /* then add the parity stripe */ 1268 p = rbio_pstripe_page(rbio, pagenr); 1269 SetPageUptodate(p); 1270 pointers[stripe++] = kmap(p); 1271 1272 if (q_stripe != -1) { 1273 1274 /* 1275 * raid6, add the qstripe and call the 1276 * library function to fill in our p/q 1277 */ 1278 p = rbio_qstripe_page(rbio, pagenr); 1279 SetPageUptodate(p); 1280 pointers[stripe++] = kmap(p); 1281 1282 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1283 pointers); 1284 } else { 1285 /* raid5 */ 1286 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1287 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 1288 } 1289 1290 1291 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1292 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1293 } 1294 1295 /* 1296 * time to start writing. Make bios for everything from the 1297 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1298 * everything else. 1299 */ 1300 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1301 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1302 struct page *page; 1303 if (stripe < rbio->nr_data) { 1304 page = page_in_rbio(rbio, stripe, pagenr, 1); 1305 if (!page) 1306 continue; 1307 } else { 1308 page = rbio_stripe_page(rbio, stripe, pagenr); 1309 } 1310 1311 ret = rbio_add_io_page(rbio, &bio_list, 1312 page, stripe, pagenr, rbio->stripe_len); 1313 if (ret) 1314 goto cleanup; 1315 } 1316 } 1317 1318 if (likely(!bbio->num_tgtdevs)) 1319 goto write_data; 1320 1321 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1322 if (!bbio->tgtdev_map[stripe]) 1323 continue; 1324 1325 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { 1326 struct page *page; 1327 if (stripe < rbio->nr_data) { 1328 page = page_in_rbio(rbio, stripe, pagenr, 1); 1329 if (!page) 1330 continue; 1331 } else { 1332 page = rbio_stripe_page(rbio, stripe, pagenr); 1333 } 1334 1335 ret = rbio_add_io_page(rbio, &bio_list, page, 1336 rbio->bbio->tgtdev_map[stripe], 1337 pagenr, rbio->stripe_len); 1338 if (ret) 1339 goto cleanup; 1340 } 1341 } 1342 1343 write_data: 1344 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1345 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1346 1347 while (1) { 1348 bio = bio_list_pop(&bio_list); 1349 if (!bio) 1350 break; 1351 1352 bio->bi_private = rbio; 1353 bio->bi_end_io = raid_write_end_io; 1354 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 1355 submit_bio(WRITE, bio); 1356 } 1357 return; 1358 1359 cleanup: 1360 rbio_orig_end_io(rbio, -EIO, 0); 1361 } 1362 1363 /* 1364 * helper to find the stripe number for a given bio. Used to figure out which 1365 * stripe has failed. This expects the bio to correspond to a physical disk, 1366 * so it looks up based on physical sector numbers. 1367 */ 1368 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1369 struct bio *bio) 1370 { 1371 u64 physical = bio->bi_iter.bi_sector; 1372 u64 stripe_start; 1373 int i; 1374 struct btrfs_bio_stripe *stripe; 1375 1376 physical <<= 9; 1377 1378 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1379 stripe = &rbio->bbio->stripes[i]; 1380 stripe_start = stripe->physical; 1381 if (physical >= stripe_start && 1382 physical < stripe_start + rbio->stripe_len && 1383 bio->bi_bdev == stripe->dev->bdev) { 1384 return i; 1385 } 1386 } 1387 return -1; 1388 } 1389 1390 /* 1391 * helper to find the stripe number for a given 1392 * bio (before mapping). Used to figure out which stripe has 1393 * failed. This looks up based on logical block numbers. 1394 */ 1395 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1396 struct bio *bio) 1397 { 1398 u64 logical = bio->bi_iter.bi_sector; 1399 u64 stripe_start; 1400 int i; 1401 1402 logical <<= 9; 1403 1404 for (i = 0; i < rbio->nr_data; i++) { 1405 stripe_start = rbio->raid_map[i]; 1406 if (logical >= stripe_start && 1407 logical < stripe_start + rbio->stripe_len) { 1408 return i; 1409 } 1410 } 1411 return -1; 1412 } 1413 1414 /* 1415 * returns -EIO if we had too many failures 1416 */ 1417 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1418 { 1419 unsigned long flags; 1420 int ret = 0; 1421 1422 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1423 1424 /* we already know this stripe is bad, move on */ 1425 if (rbio->faila == failed || rbio->failb == failed) 1426 goto out; 1427 1428 if (rbio->faila == -1) { 1429 /* first failure on this rbio */ 1430 rbio->faila = failed; 1431 atomic_inc(&rbio->error); 1432 } else if (rbio->failb == -1) { 1433 /* second failure on this rbio */ 1434 rbio->failb = failed; 1435 atomic_inc(&rbio->error); 1436 } else { 1437 ret = -EIO; 1438 } 1439 out: 1440 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1441 1442 return ret; 1443 } 1444 1445 /* 1446 * helper to fail a stripe based on a physical disk 1447 * bio. 1448 */ 1449 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1450 struct bio *bio) 1451 { 1452 int failed = find_bio_stripe(rbio, bio); 1453 1454 if (failed < 0) 1455 return -EIO; 1456 1457 return fail_rbio_index(rbio, failed); 1458 } 1459 1460 /* 1461 * this sets each page in the bio uptodate. It should only be used on private 1462 * rbio pages, nothing that comes in from the higher layers 1463 */ 1464 static void set_bio_pages_uptodate(struct bio *bio) 1465 { 1466 int i; 1467 struct page *p; 1468 1469 for (i = 0; i < bio->bi_vcnt; i++) { 1470 p = bio->bi_io_vec[i].bv_page; 1471 SetPageUptodate(p); 1472 } 1473 } 1474 1475 /* 1476 * end io for the read phase of the rmw cycle. All the bios here are physical 1477 * stripe bios we've read from the disk so we can recalculate the parity of the 1478 * stripe. 1479 * 1480 * This will usually kick off finish_rmw once all the bios are read in, but it 1481 * may trigger parity reconstruction if we had any errors along the way 1482 */ 1483 static void raid_rmw_end_io(struct bio *bio, int err) 1484 { 1485 struct btrfs_raid_bio *rbio = bio->bi_private; 1486 1487 if (err) 1488 fail_bio_stripe(rbio, bio); 1489 else 1490 set_bio_pages_uptodate(bio); 1491 1492 bio_put(bio); 1493 1494 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1495 return; 1496 1497 err = 0; 1498 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1499 goto cleanup; 1500 1501 /* 1502 * this will normally call finish_rmw to start our write 1503 * but if there are any failed stripes we'll reconstruct 1504 * from parity first 1505 */ 1506 validate_rbio_for_rmw(rbio); 1507 return; 1508 1509 cleanup: 1510 1511 rbio_orig_end_io(rbio, -EIO, 0); 1512 } 1513 1514 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1515 { 1516 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1517 rmw_work, NULL, NULL); 1518 1519 btrfs_queue_work(rbio->fs_info->rmw_workers, 1520 &rbio->work); 1521 } 1522 1523 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1524 { 1525 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1526 read_rebuild_work, NULL, NULL); 1527 1528 btrfs_queue_work(rbio->fs_info->rmw_workers, 1529 &rbio->work); 1530 } 1531 1532 /* 1533 * the stripe must be locked by the caller. It will 1534 * unlock after all the writes are done 1535 */ 1536 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1537 { 1538 int bios_to_read = 0; 1539 struct bio_list bio_list; 1540 int ret; 1541 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1542 int pagenr; 1543 int stripe; 1544 struct bio *bio; 1545 1546 bio_list_init(&bio_list); 1547 1548 ret = alloc_rbio_pages(rbio); 1549 if (ret) 1550 goto cleanup; 1551 1552 index_rbio_pages(rbio); 1553 1554 atomic_set(&rbio->error, 0); 1555 /* 1556 * build a list of bios to read all the missing parts of this 1557 * stripe 1558 */ 1559 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1560 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1561 struct page *page; 1562 /* 1563 * we want to find all the pages missing from 1564 * the rbio and read them from the disk. If 1565 * page_in_rbio finds a page in the bio list 1566 * we don't need to read it off the stripe. 1567 */ 1568 page = page_in_rbio(rbio, stripe, pagenr, 1); 1569 if (page) 1570 continue; 1571 1572 page = rbio_stripe_page(rbio, stripe, pagenr); 1573 /* 1574 * the bio cache may have handed us an uptodate 1575 * page. If so, be happy and use it 1576 */ 1577 if (PageUptodate(page)) 1578 continue; 1579 1580 ret = rbio_add_io_page(rbio, &bio_list, page, 1581 stripe, pagenr, rbio->stripe_len); 1582 if (ret) 1583 goto cleanup; 1584 } 1585 } 1586 1587 bios_to_read = bio_list_size(&bio_list); 1588 if (!bios_to_read) { 1589 /* 1590 * this can happen if others have merged with 1591 * us, it means there is nothing left to read. 1592 * But if there are missing devices it may not be 1593 * safe to do the full stripe write yet. 1594 */ 1595 goto finish; 1596 } 1597 1598 /* 1599 * the bbio may be freed once we submit the last bio. Make sure 1600 * not to touch it after that 1601 */ 1602 atomic_set(&rbio->stripes_pending, bios_to_read); 1603 while (1) { 1604 bio = bio_list_pop(&bio_list); 1605 if (!bio) 1606 break; 1607 1608 bio->bi_private = rbio; 1609 bio->bi_end_io = raid_rmw_end_io; 1610 1611 btrfs_bio_wq_end_io(rbio->fs_info, bio, 1612 BTRFS_WQ_ENDIO_RAID56); 1613 1614 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 1615 submit_bio(READ, bio); 1616 } 1617 /* the actual write will happen once the reads are done */ 1618 return 0; 1619 1620 cleanup: 1621 rbio_orig_end_io(rbio, -EIO, 0); 1622 return -EIO; 1623 1624 finish: 1625 validate_rbio_for_rmw(rbio); 1626 return 0; 1627 } 1628 1629 /* 1630 * if the upper layers pass in a full stripe, we thank them by only allocating 1631 * enough pages to hold the parity, and sending it all down quickly. 1632 */ 1633 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1634 { 1635 int ret; 1636 1637 ret = alloc_rbio_parity_pages(rbio); 1638 if (ret) { 1639 __free_raid_bio(rbio); 1640 return ret; 1641 } 1642 1643 ret = lock_stripe_add(rbio); 1644 if (ret == 0) 1645 finish_rmw(rbio); 1646 return 0; 1647 } 1648 1649 /* 1650 * partial stripe writes get handed over to async helpers. 1651 * We're really hoping to merge a few more writes into this 1652 * rbio before calculating new parity 1653 */ 1654 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1655 { 1656 int ret; 1657 1658 ret = lock_stripe_add(rbio); 1659 if (ret == 0) 1660 async_rmw_stripe(rbio); 1661 return 0; 1662 } 1663 1664 /* 1665 * sometimes while we were reading from the drive to 1666 * recalculate parity, enough new bios come into create 1667 * a full stripe. So we do a check here to see if we can 1668 * go directly to finish_rmw 1669 */ 1670 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1671 { 1672 /* head off into rmw land if we don't have a full stripe */ 1673 if (!rbio_is_full(rbio)) 1674 return partial_stripe_write(rbio); 1675 return full_stripe_write(rbio); 1676 } 1677 1678 /* 1679 * We use plugging call backs to collect full stripes. 1680 * Any time we get a partial stripe write while plugged 1681 * we collect it into a list. When the unplug comes down, 1682 * we sort the list by logical block number and merge 1683 * everything we can into the same rbios 1684 */ 1685 struct btrfs_plug_cb { 1686 struct blk_plug_cb cb; 1687 struct btrfs_fs_info *info; 1688 struct list_head rbio_list; 1689 struct btrfs_work work; 1690 }; 1691 1692 /* 1693 * rbios on the plug list are sorted for easier merging. 1694 */ 1695 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1696 { 1697 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1698 plug_list); 1699 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1700 plug_list); 1701 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1702 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1703 1704 if (a_sector < b_sector) 1705 return -1; 1706 if (a_sector > b_sector) 1707 return 1; 1708 return 0; 1709 } 1710 1711 static void run_plug(struct btrfs_plug_cb *plug) 1712 { 1713 struct btrfs_raid_bio *cur; 1714 struct btrfs_raid_bio *last = NULL; 1715 1716 /* 1717 * sort our plug list then try to merge 1718 * everything we can in hopes of creating full 1719 * stripes. 1720 */ 1721 list_sort(NULL, &plug->rbio_list, plug_cmp); 1722 while (!list_empty(&plug->rbio_list)) { 1723 cur = list_entry(plug->rbio_list.next, 1724 struct btrfs_raid_bio, plug_list); 1725 list_del_init(&cur->plug_list); 1726 1727 if (rbio_is_full(cur)) { 1728 /* we have a full stripe, send it down */ 1729 full_stripe_write(cur); 1730 continue; 1731 } 1732 if (last) { 1733 if (rbio_can_merge(last, cur)) { 1734 merge_rbio(last, cur); 1735 __free_raid_bio(cur); 1736 continue; 1737 1738 } 1739 __raid56_parity_write(last); 1740 } 1741 last = cur; 1742 } 1743 if (last) { 1744 __raid56_parity_write(last); 1745 } 1746 kfree(plug); 1747 } 1748 1749 /* 1750 * if the unplug comes from schedule, we have to push the 1751 * work off to a helper thread 1752 */ 1753 static void unplug_work(struct btrfs_work *work) 1754 { 1755 struct btrfs_plug_cb *plug; 1756 plug = container_of(work, struct btrfs_plug_cb, work); 1757 run_plug(plug); 1758 } 1759 1760 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1761 { 1762 struct btrfs_plug_cb *plug; 1763 plug = container_of(cb, struct btrfs_plug_cb, cb); 1764 1765 if (from_schedule) { 1766 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1767 unplug_work, NULL, NULL); 1768 btrfs_queue_work(plug->info->rmw_workers, 1769 &plug->work); 1770 return; 1771 } 1772 run_plug(plug); 1773 } 1774 1775 /* 1776 * our main entry point for writes from the rest of the FS. 1777 */ 1778 int raid56_parity_write(struct btrfs_root *root, struct bio *bio, 1779 struct btrfs_bio *bbio, u64 *raid_map, 1780 u64 stripe_len) 1781 { 1782 struct btrfs_raid_bio *rbio; 1783 struct btrfs_plug_cb *plug = NULL; 1784 struct blk_plug_cb *cb; 1785 int ret; 1786 1787 rbio = alloc_rbio(root, bbio, raid_map, stripe_len); 1788 if (IS_ERR(rbio)) { 1789 __free_bbio_and_raid_map(bbio, raid_map, 1); 1790 return PTR_ERR(rbio); 1791 } 1792 bio_list_add(&rbio->bio_list, bio); 1793 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1794 rbio->operation = BTRFS_RBIO_WRITE; 1795 1796 btrfs_bio_counter_inc_noblocked(root->fs_info); 1797 rbio->generic_bio_cnt = 1; 1798 1799 /* 1800 * don't plug on full rbios, just get them out the door 1801 * as quickly as we can 1802 */ 1803 if (rbio_is_full(rbio)) { 1804 ret = full_stripe_write(rbio); 1805 if (ret) 1806 btrfs_bio_counter_dec(root->fs_info); 1807 return ret; 1808 } 1809 1810 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, 1811 sizeof(*plug)); 1812 if (cb) { 1813 plug = container_of(cb, struct btrfs_plug_cb, cb); 1814 if (!plug->info) { 1815 plug->info = root->fs_info; 1816 INIT_LIST_HEAD(&plug->rbio_list); 1817 } 1818 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1819 ret = 0; 1820 } else { 1821 ret = __raid56_parity_write(rbio); 1822 if (ret) 1823 btrfs_bio_counter_dec(root->fs_info); 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * all parity reconstruction happens here. We've read in everything 1830 * we can find from the drives and this does the heavy lifting of 1831 * sorting the good from the bad. 1832 */ 1833 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1834 { 1835 int pagenr, stripe; 1836 void **pointers; 1837 int faila = -1, failb = -1; 1838 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 1839 struct page *page; 1840 int err; 1841 int i; 1842 1843 pointers = kzalloc(rbio->real_stripes * sizeof(void *), 1844 GFP_NOFS); 1845 if (!pointers) { 1846 err = -ENOMEM; 1847 goto cleanup_io; 1848 } 1849 1850 faila = rbio->faila; 1851 failb = rbio->failb; 1852 1853 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1854 spin_lock_irq(&rbio->bio_list_lock); 1855 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1856 spin_unlock_irq(&rbio->bio_list_lock); 1857 } 1858 1859 index_rbio_pages(rbio); 1860 1861 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 1862 /* 1863 * Now we just use bitmap to mark the horizontal stripes in 1864 * which we have data when doing parity scrub. 1865 */ 1866 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1867 !test_bit(pagenr, rbio->dbitmap)) 1868 continue; 1869 1870 /* setup our array of pointers with pages 1871 * from each stripe 1872 */ 1873 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1874 /* 1875 * if we're rebuilding a read, we have to use 1876 * pages from the bio list 1877 */ 1878 if (rbio->operation == BTRFS_RBIO_READ_REBUILD && 1879 (stripe == faila || stripe == failb)) { 1880 page = page_in_rbio(rbio, stripe, pagenr, 0); 1881 } else { 1882 page = rbio_stripe_page(rbio, stripe, pagenr); 1883 } 1884 pointers[stripe] = kmap(page); 1885 } 1886 1887 /* all raid6 handling here */ 1888 if (rbio->raid_map[rbio->real_stripes - 1] == 1889 RAID6_Q_STRIPE) { 1890 1891 /* 1892 * single failure, rebuild from parity raid5 1893 * style 1894 */ 1895 if (failb < 0) { 1896 if (faila == rbio->nr_data) { 1897 /* 1898 * Just the P stripe has failed, without 1899 * a bad data or Q stripe. 1900 * TODO, we should redo the xor here. 1901 */ 1902 err = -EIO; 1903 goto cleanup; 1904 } 1905 /* 1906 * a single failure in raid6 is rebuilt 1907 * in the pstripe code below 1908 */ 1909 goto pstripe; 1910 } 1911 1912 /* make sure our ps and qs are in order */ 1913 if (faila > failb) { 1914 int tmp = failb; 1915 failb = faila; 1916 faila = tmp; 1917 } 1918 1919 /* if the q stripe is failed, do a pstripe reconstruction 1920 * from the xors. 1921 * If both the q stripe and the P stripe are failed, we're 1922 * here due to a crc mismatch and we can't give them the 1923 * data they want 1924 */ 1925 if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { 1926 if (rbio->raid_map[faila] == RAID5_P_STRIPE) { 1927 err = -EIO; 1928 goto cleanup; 1929 } 1930 /* 1931 * otherwise we have one bad data stripe and 1932 * a good P stripe. raid5! 1933 */ 1934 goto pstripe; 1935 } 1936 1937 if (rbio->raid_map[failb] == RAID5_P_STRIPE) { 1938 raid6_datap_recov(rbio->real_stripes, 1939 PAGE_SIZE, faila, pointers); 1940 } else { 1941 raid6_2data_recov(rbio->real_stripes, 1942 PAGE_SIZE, faila, failb, 1943 pointers); 1944 } 1945 } else { 1946 void *p; 1947 1948 /* rebuild from P stripe here (raid5 or raid6) */ 1949 BUG_ON(failb != -1); 1950 pstripe: 1951 /* Copy parity block into failed block to start with */ 1952 memcpy(pointers[faila], 1953 pointers[rbio->nr_data], 1954 PAGE_CACHE_SIZE); 1955 1956 /* rearrange the pointer array */ 1957 p = pointers[faila]; 1958 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1959 pointers[stripe] = pointers[stripe + 1]; 1960 pointers[rbio->nr_data - 1] = p; 1961 1962 /* xor in the rest */ 1963 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); 1964 } 1965 /* if we're doing this rebuild as part of an rmw, go through 1966 * and set all of our private rbio pages in the 1967 * failed stripes as uptodate. This way finish_rmw will 1968 * know they can be trusted. If this was a read reconstruction, 1969 * other endio functions will fiddle the uptodate bits 1970 */ 1971 if (rbio->operation == BTRFS_RBIO_WRITE) { 1972 for (i = 0; i < nr_pages; i++) { 1973 if (faila != -1) { 1974 page = rbio_stripe_page(rbio, faila, i); 1975 SetPageUptodate(page); 1976 } 1977 if (failb != -1) { 1978 page = rbio_stripe_page(rbio, failb, i); 1979 SetPageUptodate(page); 1980 } 1981 } 1982 } 1983 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1984 /* 1985 * if we're rebuilding a read, we have to use 1986 * pages from the bio list 1987 */ 1988 if (rbio->operation == BTRFS_RBIO_READ_REBUILD && 1989 (stripe == faila || stripe == failb)) { 1990 page = page_in_rbio(rbio, stripe, pagenr, 0); 1991 } else { 1992 page = rbio_stripe_page(rbio, stripe, pagenr); 1993 } 1994 kunmap(page); 1995 } 1996 } 1997 1998 err = 0; 1999 cleanup: 2000 kfree(pointers); 2001 2002 cleanup_io: 2003 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 2004 if (err == 0 && 2005 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags)) 2006 cache_rbio_pages(rbio); 2007 else 2008 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2009 2010 rbio_orig_end_io(rbio, err, err == 0); 2011 } else if (err == 0) { 2012 rbio->faila = -1; 2013 rbio->failb = -1; 2014 2015 if (rbio->operation == BTRFS_RBIO_WRITE) 2016 finish_rmw(rbio); 2017 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 2018 finish_parity_scrub(rbio, 0); 2019 else 2020 BUG(); 2021 } else { 2022 rbio_orig_end_io(rbio, err, 0); 2023 } 2024 } 2025 2026 /* 2027 * This is called only for stripes we've read from disk to 2028 * reconstruct the parity. 2029 */ 2030 static void raid_recover_end_io(struct bio *bio, int err) 2031 { 2032 struct btrfs_raid_bio *rbio = bio->bi_private; 2033 2034 /* 2035 * we only read stripe pages off the disk, set them 2036 * up to date if there were no errors 2037 */ 2038 if (err) 2039 fail_bio_stripe(rbio, bio); 2040 else 2041 set_bio_pages_uptodate(bio); 2042 bio_put(bio); 2043 2044 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2045 return; 2046 2047 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2048 rbio_orig_end_io(rbio, -EIO, 0); 2049 else 2050 __raid_recover_end_io(rbio); 2051 } 2052 2053 /* 2054 * reads everything we need off the disk to reconstruct 2055 * the parity. endio handlers trigger final reconstruction 2056 * when the IO is done. 2057 * 2058 * This is used both for reads from the higher layers and for 2059 * parity construction required to finish a rmw cycle. 2060 */ 2061 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2062 { 2063 int bios_to_read = 0; 2064 struct bio_list bio_list; 2065 int ret; 2066 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); 2067 int pagenr; 2068 int stripe; 2069 struct bio *bio; 2070 2071 bio_list_init(&bio_list); 2072 2073 ret = alloc_rbio_pages(rbio); 2074 if (ret) 2075 goto cleanup; 2076 2077 atomic_set(&rbio->error, 0); 2078 2079 /* 2080 * read everything that hasn't failed. Thanks to the 2081 * stripe cache, it is possible that some or all of these 2082 * pages are going to be uptodate. 2083 */ 2084 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2085 if (rbio->faila == stripe || rbio->failb == stripe) { 2086 atomic_inc(&rbio->error); 2087 continue; 2088 } 2089 2090 for (pagenr = 0; pagenr < nr_pages; pagenr++) { 2091 struct page *p; 2092 2093 /* 2094 * the rmw code may have already read this 2095 * page in 2096 */ 2097 p = rbio_stripe_page(rbio, stripe, pagenr); 2098 if (PageUptodate(p)) 2099 continue; 2100 2101 ret = rbio_add_io_page(rbio, &bio_list, 2102 rbio_stripe_page(rbio, stripe, pagenr), 2103 stripe, pagenr, rbio->stripe_len); 2104 if (ret < 0) 2105 goto cleanup; 2106 } 2107 } 2108 2109 bios_to_read = bio_list_size(&bio_list); 2110 if (!bios_to_read) { 2111 /* 2112 * we might have no bios to read just because the pages 2113 * were up to date, or we might have no bios to read because 2114 * the devices were gone. 2115 */ 2116 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2117 __raid_recover_end_io(rbio); 2118 goto out; 2119 } else { 2120 goto cleanup; 2121 } 2122 } 2123 2124 /* 2125 * the bbio may be freed once we submit the last bio. Make sure 2126 * not to touch it after that 2127 */ 2128 atomic_set(&rbio->stripes_pending, bios_to_read); 2129 while (1) { 2130 bio = bio_list_pop(&bio_list); 2131 if (!bio) 2132 break; 2133 2134 bio->bi_private = rbio; 2135 bio->bi_end_io = raid_recover_end_io; 2136 2137 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2138 BTRFS_WQ_ENDIO_RAID56); 2139 2140 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2141 submit_bio(READ, bio); 2142 } 2143 out: 2144 return 0; 2145 2146 cleanup: 2147 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) 2148 rbio_orig_end_io(rbio, -EIO, 0); 2149 return -EIO; 2150 } 2151 2152 /* 2153 * the main entry point for reads from the higher layers. This 2154 * is really only called when the normal read path had a failure, 2155 * so we assume the bio they send down corresponds to a failed part 2156 * of the drive. 2157 */ 2158 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, 2159 struct btrfs_bio *bbio, u64 *raid_map, 2160 u64 stripe_len, int mirror_num, int generic_io) 2161 { 2162 struct btrfs_raid_bio *rbio; 2163 int ret; 2164 2165 rbio = alloc_rbio(root, bbio, raid_map, stripe_len); 2166 if (IS_ERR(rbio)) { 2167 __free_bbio_and_raid_map(bbio, raid_map, generic_io); 2168 return PTR_ERR(rbio); 2169 } 2170 2171 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2172 bio_list_add(&rbio->bio_list, bio); 2173 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2174 2175 rbio->faila = find_logical_bio_stripe(rbio, bio); 2176 if (rbio->faila == -1) { 2177 BUG(); 2178 __free_bbio_and_raid_map(bbio, raid_map, generic_io); 2179 kfree(rbio); 2180 return -EIO; 2181 } 2182 2183 if (generic_io) { 2184 btrfs_bio_counter_inc_noblocked(root->fs_info); 2185 rbio->generic_bio_cnt = 1; 2186 } else { 2187 set_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags); 2188 } 2189 2190 /* 2191 * reconstruct from the q stripe if they are 2192 * asking for mirror 3 2193 */ 2194 if (mirror_num == 3) 2195 rbio->failb = rbio->real_stripes - 2; 2196 2197 ret = lock_stripe_add(rbio); 2198 2199 /* 2200 * __raid56_parity_recover will end the bio with 2201 * any errors it hits. We don't want to return 2202 * its error value up the stack because our caller 2203 * will end up calling bio_endio with any nonzero 2204 * return 2205 */ 2206 if (ret == 0) 2207 __raid56_parity_recover(rbio); 2208 /* 2209 * our rbio has been added to the list of 2210 * rbios that will be handled after the 2211 * currently lock owner is done 2212 */ 2213 return 0; 2214 2215 } 2216 2217 static void rmw_work(struct btrfs_work *work) 2218 { 2219 struct btrfs_raid_bio *rbio; 2220 2221 rbio = container_of(work, struct btrfs_raid_bio, work); 2222 raid56_rmw_stripe(rbio); 2223 } 2224 2225 static void read_rebuild_work(struct btrfs_work *work) 2226 { 2227 struct btrfs_raid_bio *rbio; 2228 2229 rbio = container_of(work, struct btrfs_raid_bio, work); 2230 __raid56_parity_recover(rbio); 2231 } 2232 2233 /* 2234 * The following code is used to scrub/replace the parity stripe 2235 * 2236 * Note: We need make sure all the pages that add into the scrub/replace 2237 * raid bio are correct and not be changed during the scrub/replace. That 2238 * is those pages just hold metadata or file data with checksum. 2239 */ 2240 2241 struct btrfs_raid_bio * 2242 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, 2243 struct btrfs_bio *bbio, u64 *raid_map, 2244 u64 stripe_len, struct btrfs_device *scrub_dev, 2245 unsigned long *dbitmap, int stripe_nsectors) 2246 { 2247 struct btrfs_raid_bio *rbio; 2248 int i; 2249 2250 rbio = alloc_rbio(root, bbio, raid_map, stripe_len); 2251 if (IS_ERR(rbio)) 2252 return NULL; 2253 bio_list_add(&rbio->bio_list, bio); 2254 /* 2255 * This is a special bio which is used to hold the completion handler 2256 * and make the scrub rbio is similar to the other types 2257 */ 2258 ASSERT(!bio->bi_iter.bi_size); 2259 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2260 2261 for (i = 0; i < rbio->real_stripes; i++) { 2262 if (bbio->stripes[i].dev == scrub_dev) { 2263 rbio->scrubp = i; 2264 break; 2265 } 2266 } 2267 2268 /* Now we just support the sectorsize equals to page size */ 2269 ASSERT(root->sectorsize == PAGE_SIZE); 2270 ASSERT(rbio->stripe_npages == stripe_nsectors); 2271 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2272 2273 return rbio; 2274 } 2275 2276 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio, 2277 struct page *page, u64 logical) 2278 { 2279 int stripe_offset; 2280 int index; 2281 2282 ASSERT(logical >= rbio->raid_map[0]); 2283 ASSERT(logical + PAGE_SIZE <= rbio->raid_map[0] + 2284 rbio->stripe_len * rbio->nr_data); 2285 stripe_offset = (int)(logical - rbio->raid_map[0]); 2286 index = stripe_offset >> PAGE_CACHE_SHIFT; 2287 rbio->bio_pages[index] = page; 2288 } 2289 2290 /* 2291 * We just scrub the parity that we have correct data on the same horizontal, 2292 * so we needn't allocate all pages for all the stripes. 2293 */ 2294 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2295 { 2296 int i; 2297 int bit; 2298 int index; 2299 struct page *page; 2300 2301 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2302 for (i = 0; i < rbio->real_stripes; i++) { 2303 index = i * rbio->stripe_npages + bit; 2304 if (rbio->stripe_pages[index]) 2305 continue; 2306 2307 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2308 if (!page) 2309 return -ENOMEM; 2310 rbio->stripe_pages[index] = page; 2311 ClearPageUptodate(page); 2312 } 2313 } 2314 return 0; 2315 } 2316 2317 /* 2318 * end io function used by finish_rmw. When we finally 2319 * get here, we've written a full stripe 2320 */ 2321 static void raid_write_parity_end_io(struct bio *bio, int err) 2322 { 2323 struct btrfs_raid_bio *rbio = bio->bi_private; 2324 2325 if (err) 2326 fail_bio_stripe(rbio, bio); 2327 2328 bio_put(bio); 2329 2330 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2331 return; 2332 2333 err = 0; 2334 2335 if (atomic_read(&rbio->error)) 2336 err = -EIO; 2337 2338 rbio_orig_end_io(rbio, err, 0); 2339 } 2340 2341 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2342 int need_check) 2343 { 2344 struct btrfs_bio *bbio = rbio->bbio; 2345 void *pointers[rbio->real_stripes]; 2346 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2347 int nr_data = rbio->nr_data; 2348 int stripe; 2349 int pagenr; 2350 int p_stripe = -1; 2351 int q_stripe = -1; 2352 struct page *p_page = NULL; 2353 struct page *q_page = NULL; 2354 struct bio_list bio_list; 2355 struct bio *bio; 2356 int is_replace = 0; 2357 int ret; 2358 2359 bio_list_init(&bio_list); 2360 2361 if (rbio->real_stripes - rbio->nr_data == 1) { 2362 p_stripe = rbio->real_stripes - 1; 2363 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2364 p_stripe = rbio->real_stripes - 2; 2365 q_stripe = rbio->real_stripes - 1; 2366 } else { 2367 BUG(); 2368 } 2369 2370 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2371 is_replace = 1; 2372 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2373 } 2374 2375 /* 2376 * Because the higher layers(scrubber) are unlikely to 2377 * use this area of the disk again soon, so don't cache 2378 * it. 2379 */ 2380 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2381 2382 if (!need_check) 2383 goto writeback; 2384 2385 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2386 if (!p_page) 2387 goto cleanup; 2388 SetPageUptodate(p_page); 2389 2390 if (q_stripe != -1) { 2391 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2392 if (!q_page) { 2393 __free_page(p_page); 2394 goto cleanup; 2395 } 2396 SetPageUptodate(q_page); 2397 } 2398 2399 atomic_set(&rbio->error, 0); 2400 2401 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2402 struct page *p; 2403 void *parity; 2404 /* first collect one page from each data stripe */ 2405 for (stripe = 0; stripe < nr_data; stripe++) { 2406 p = page_in_rbio(rbio, stripe, pagenr, 0); 2407 pointers[stripe] = kmap(p); 2408 } 2409 2410 /* then add the parity stripe */ 2411 pointers[stripe++] = kmap(p_page); 2412 2413 if (q_stripe != -1) { 2414 2415 /* 2416 * raid6, add the qstripe and call the 2417 * library function to fill in our p/q 2418 */ 2419 pointers[stripe++] = kmap(q_page); 2420 2421 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2422 pointers); 2423 } else { 2424 /* raid5 */ 2425 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2426 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); 2427 } 2428 2429 /* Check scrubbing pairty and repair it */ 2430 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2431 parity = kmap(p); 2432 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) 2433 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); 2434 else 2435 /* Parity is right, needn't writeback */ 2436 bitmap_clear(rbio->dbitmap, pagenr, 1); 2437 kunmap(p); 2438 2439 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2440 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2441 } 2442 2443 __free_page(p_page); 2444 if (q_page) 2445 __free_page(q_page); 2446 2447 writeback: 2448 /* 2449 * time to start writing. Make bios for everything from the 2450 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2451 * everything else. 2452 */ 2453 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2454 struct page *page; 2455 2456 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2457 ret = rbio_add_io_page(rbio, &bio_list, 2458 page, rbio->scrubp, pagenr, rbio->stripe_len); 2459 if (ret) 2460 goto cleanup; 2461 } 2462 2463 if (!is_replace) 2464 goto submit_write; 2465 2466 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2467 struct page *page; 2468 2469 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2470 ret = rbio_add_io_page(rbio, &bio_list, page, 2471 bbio->tgtdev_map[rbio->scrubp], 2472 pagenr, rbio->stripe_len); 2473 if (ret) 2474 goto cleanup; 2475 } 2476 2477 submit_write: 2478 nr_data = bio_list_size(&bio_list); 2479 if (!nr_data) { 2480 /* Every parity is right */ 2481 rbio_orig_end_io(rbio, 0, 0); 2482 return; 2483 } 2484 2485 atomic_set(&rbio->stripes_pending, nr_data); 2486 2487 while (1) { 2488 bio = bio_list_pop(&bio_list); 2489 if (!bio) 2490 break; 2491 2492 bio->bi_private = rbio; 2493 bio->bi_end_io = raid_write_parity_end_io; 2494 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2495 submit_bio(WRITE, bio); 2496 } 2497 return; 2498 2499 cleanup: 2500 rbio_orig_end_io(rbio, -EIO, 0); 2501 } 2502 2503 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2504 { 2505 if (stripe >= 0 && stripe < rbio->nr_data) 2506 return 1; 2507 return 0; 2508 } 2509 2510 /* 2511 * While we're doing the parity check and repair, we could have errors 2512 * in reading pages off the disk. This checks for errors and if we're 2513 * not able to read the page it'll trigger parity reconstruction. The 2514 * parity scrub will be finished after we've reconstructed the failed 2515 * stripes 2516 */ 2517 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2518 { 2519 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2520 goto cleanup; 2521 2522 if (rbio->faila >= 0 || rbio->failb >= 0) { 2523 int dfail = 0, failp = -1; 2524 2525 if (is_data_stripe(rbio, rbio->faila)) 2526 dfail++; 2527 else if (is_parity_stripe(rbio->faila)) 2528 failp = rbio->faila; 2529 2530 if (is_data_stripe(rbio, rbio->failb)) 2531 dfail++; 2532 else if (is_parity_stripe(rbio->failb)) 2533 failp = rbio->failb; 2534 2535 /* 2536 * Because we can not use a scrubbing parity to repair 2537 * the data, so the capability of the repair is declined. 2538 * (In the case of RAID5, we can not repair anything) 2539 */ 2540 if (dfail > rbio->bbio->max_errors - 1) 2541 goto cleanup; 2542 2543 /* 2544 * If all data is good, only parity is correctly, just 2545 * repair the parity. 2546 */ 2547 if (dfail == 0) { 2548 finish_parity_scrub(rbio, 0); 2549 return; 2550 } 2551 2552 /* 2553 * Here means we got one corrupted data stripe and one 2554 * corrupted parity on RAID6, if the corrupted parity 2555 * is scrubbing parity, luckly, use the other one to repair 2556 * the data, or we can not repair the data stripe. 2557 */ 2558 if (failp != rbio->scrubp) 2559 goto cleanup; 2560 2561 __raid_recover_end_io(rbio); 2562 } else { 2563 finish_parity_scrub(rbio, 1); 2564 } 2565 return; 2566 2567 cleanup: 2568 rbio_orig_end_io(rbio, -EIO, 0); 2569 } 2570 2571 /* 2572 * end io for the read phase of the rmw cycle. All the bios here are physical 2573 * stripe bios we've read from the disk so we can recalculate the parity of the 2574 * stripe. 2575 * 2576 * This will usually kick off finish_rmw once all the bios are read in, but it 2577 * may trigger parity reconstruction if we had any errors along the way 2578 */ 2579 static void raid56_parity_scrub_end_io(struct bio *bio, int err) 2580 { 2581 struct btrfs_raid_bio *rbio = bio->bi_private; 2582 2583 if (err) 2584 fail_bio_stripe(rbio, bio); 2585 else 2586 set_bio_pages_uptodate(bio); 2587 2588 bio_put(bio); 2589 2590 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2591 return; 2592 2593 /* 2594 * this will normally call finish_rmw to start our write 2595 * but if there are any failed stripes we'll reconstruct 2596 * from parity first 2597 */ 2598 validate_rbio_for_parity_scrub(rbio); 2599 } 2600 2601 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2602 { 2603 int bios_to_read = 0; 2604 struct bio_list bio_list; 2605 int ret; 2606 int pagenr; 2607 int stripe; 2608 struct bio *bio; 2609 2610 ret = alloc_rbio_essential_pages(rbio); 2611 if (ret) 2612 goto cleanup; 2613 2614 bio_list_init(&bio_list); 2615 2616 atomic_set(&rbio->error, 0); 2617 /* 2618 * build a list of bios to read all the missing parts of this 2619 * stripe 2620 */ 2621 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2622 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2623 struct page *page; 2624 /* 2625 * we want to find all the pages missing from 2626 * the rbio and read them from the disk. If 2627 * page_in_rbio finds a page in the bio list 2628 * we don't need to read it off the stripe. 2629 */ 2630 page = page_in_rbio(rbio, stripe, pagenr, 1); 2631 if (page) 2632 continue; 2633 2634 page = rbio_stripe_page(rbio, stripe, pagenr); 2635 /* 2636 * the bio cache may have handed us an uptodate 2637 * page. If so, be happy and use it 2638 */ 2639 if (PageUptodate(page)) 2640 continue; 2641 2642 ret = rbio_add_io_page(rbio, &bio_list, page, 2643 stripe, pagenr, rbio->stripe_len); 2644 if (ret) 2645 goto cleanup; 2646 } 2647 } 2648 2649 bios_to_read = bio_list_size(&bio_list); 2650 if (!bios_to_read) { 2651 /* 2652 * this can happen if others have merged with 2653 * us, it means there is nothing left to read. 2654 * But if there are missing devices it may not be 2655 * safe to do the full stripe write yet. 2656 */ 2657 goto finish; 2658 } 2659 2660 /* 2661 * the bbio may be freed once we submit the last bio. Make sure 2662 * not to touch it after that 2663 */ 2664 atomic_set(&rbio->stripes_pending, bios_to_read); 2665 while (1) { 2666 bio = bio_list_pop(&bio_list); 2667 if (!bio) 2668 break; 2669 2670 bio->bi_private = rbio; 2671 bio->bi_end_io = raid56_parity_scrub_end_io; 2672 2673 btrfs_bio_wq_end_io(rbio->fs_info, bio, 2674 BTRFS_WQ_ENDIO_RAID56); 2675 2676 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); 2677 submit_bio(READ, bio); 2678 } 2679 /* the actual write will happen once the reads are done */ 2680 return; 2681 2682 cleanup: 2683 rbio_orig_end_io(rbio, -EIO, 0); 2684 return; 2685 2686 finish: 2687 validate_rbio_for_parity_scrub(rbio); 2688 } 2689 2690 static void scrub_parity_work(struct btrfs_work *work) 2691 { 2692 struct btrfs_raid_bio *rbio; 2693 2694 rbio = container_of(work, struct btrfs_raid_bio, work); 2695 raid56_parity_scrub_stripe(rbio); 2696 } 2697 2698 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2699 { 2700 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2701 scrub_parity_work, NULL, NULL); 2702 2703 btrfs_queue_work(rbio->fs_info->rmw_workers, 2704 &rbio->work); 2705 } 2706 2707 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2708 { 2709 if (!lock_stripe_add(rbio)) 2710 async_scrub_parity(rbio); 2711 } 2712