xref: /openbmc/linux/fs/btrfs/raid56.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "misc.h"
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "volumes.h"
21 #include "raid56.h"
22 #include "async-thread.h"
23 #include "file-item.h"
24 #include "btrfs_inode.h"
25 
26 /* set when additional merges to this rbio are not allowed */
27 #define RBIO_RMW_LOCKED_BIT	1
28 
29 /*
30  * set when this rbio is sitting in the hash, but it is just a cache
31  * of past RMW
32  */
33 #define RBIO_CACHE_BIT		2
34 
35 /*
36  * set when it is safe to trust the stripe_pages for caching
37  */
38 #define RBIO_CACHE_READY_BIT	3
39 
40 #define RBIO_CACHE_SIZE 1024
41 
42 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
43 
44 /* Used by the raid56 code to lock stripes for read/modify/write */
45 struct btrfs_stripe_hash {
46 	struct list_head hash_list;
47 	spinlock_t lock;
48 };
49 
50 /* Used by the raid56 code to lock stripes for read/modify/write */
51 struct btrfs_stripe_hash_table {
52 	struct list_head stripe_cache;
53 	spinlock_t cache_lock;
54 	int cache_size;
55 	struct btrfs_stripe_hash table[];
56 };
57 
58 /*
59  * A bvec like structure to present a sector inside a page.
60  *
61  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62  */
63 struct sector_ptr {
64 	struct page *page;
65 	unsigned int pgoff:24;
66 	unsigned int uptodate:8;
67 };
68 
69 static void rmw_rbio_work(struct work_struct *work);
70 static void rmw_rbio_work_locked(struct work_struct *work);
71 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73 
74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
75 static void scrub_rbio_work_locked(struct work_struct *work);
76 
77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78 {
79 	bitmap_free(rbio->error_bitmap);
80 	kfree(rbio->stripe_pages);
81 	kfree(rbio->bio_sectors);
82 	kfree(rbio->stripe_sectors);
83 	kfree(rbio->finish_pointers);
84 }
85 
86 static void free_raid_bio(struct btrfs_raid_bio *rbio)
87 {
88 	int i;
89 
90 	if (!refcount_dec_and_test(&rbio->refs))
91 		return;
92 
93 	WARN_ON(!list_empty(&rbio->stripe_cache));
94 	WARN_ON(!list_empty(&rbio->hash_list));
95 	WARN_ON(!bio_list_empty(&rbio->bio_list));
96 
97 	for (i = 0; i < rbio->nr_pages; i++) {
98 		if (rbio->stripe_pages[i]) {
99 			__free_page(rbio->stripe_pages[i]);
100 			rbio->stripe_pages[i] = NULL;
101 		}
102 	}
103 
104 	btrfs_put_bioc(rbio->bioc);
105 	free_raid_bio_pointers(rbio);
106 	kfree(rbio);
107 }
108 
109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110 {
111 	INIT_WORK(&rbio->work, work_func);
112 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 }
114 
115 /*
116  * the stripe hash table is used for locking, and to collect
117  * bios in hopes of making a full stripe
118  */
119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120 {
121 	struct btrfs_stripe_hash_table *table;
122 	struct btrfs_stripe_hash_table *x;
123 	struct btrfs_stripe_hash *cur;
124 	struct btrfs_stripe_hash *h;
125 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 	int i;
127 
128 	if (info->stripe_hash_table)
129 		return 0;
130 
131 	/*
132 	 * The table is large, starting with order 4 and can go as high as
133 	 * order 7 in case lock debugging is turned on.
134 	 *
135 	 * Try harder to allocate and fallback to vmalloc to lower the chance
136 	 * of a failing mount.
137 	 */
138 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 	if (!table)
140 		return -ENOMEM;
141 
142 	spin_lock_init(&table->cache_lock);
143 	INIT_LIST_HEAD(&table->stripe_cache);
144 
145 	h = table->table;
146 
147 	for (i = 0; i < num_entries; i++) {
148 		cur = h + i;
149 		INIT_LIST_HEAD(&cur->hash_list);
150 		spin_lock_init(&cur->lock);
151 	}
152 
153 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
154 	kvfree(x);
155 	return 0;
156 }
157 
158 /*
159  * caching an rbio means to copy anything from the
160  * bio_sectors array into the stripe_pages array.  We
161  * use the page uptodate bit in the stripe cache array
162  * to indicate if it has valid data
163  *
164  * once the caching is done, we set the cache ready
165  * bit.
166  */
167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168 {
169 	int i;
170 	int ret;
171 
172 	ret = alloc_rbio_pages(rbio);
173 	if (ret)
174 		return;
175 
176 	for (i = 0; i < rbio->nr_sectors; i++) {
177 		/* Some range not covered by bio (partial write), skip it */
178 		if (!rbio->bio_sectors[i].page) {
179 			/*
180 			 * Even if the sector is not covered by bio, if it is
181 			 * a data sector it should still be uptodate as it is
182 			 * read from disk.
183 			 */
184 			if (i < rbio->nr_data * rbio->stripe_nsectors)
185 				ASSERT(rbio->stripe_sectors[i].uptodate);
186 			continue;
187 		}
188 
189 		ASSERT(rbio->stripe_sectors[i].page);
190 		memcpy_page(rbio->stripe_sectors[i].page,
191 			    rbio->stripe_sectors[i].pgoff,
192 			    rbio->bio_sectors[i].page,
193 			    rbio->bio_sectors[i].pgoff,
194 			    rbio->bioc->fs_info->sectorsize);
195 		rbio->stripe_sectors[i].uptodate = 1;
196 	}
197 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198 }
199 
200 /*
201  * we hash on the first logical address of the stripe
202  */
203 static int rbio_bucket(struct btrfs_raid_bio *rbio)
204 {
205 	u64 num = rbio->bioc->raid_map[0];
206 
207 	/*
208 	 * we shift down quite a bit.  We're using byte
209 	 * addressing, and most of the lower bits are zeros.
210 	 * This tends to upset hash_64, and it consistently
211 	 * returns just one or two different values.
212 	 *
213 	 * shifting off the lower bits fixes things.
214 	 */
215 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216 }
217 
218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 				       unsigned int page_nr)
220 {
221 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 	int i;
224 
225 	ASSERT(page_nr < rbio->nr_pages);
226 
227 	for (i = sectors_per_page * page_nr;
228 	     i < sectors_per_page * page_nr + sectors_per_page;
229 	     i++) {
230 		if (!rbio->stripe_sectors[i].uptodate)
231 			return false;
232 	}
233 	return true;
234 }
235 
236 /*
237  * Update the stripe_sectors[] array to use correct page and pgoff
238  *
239  * Should be called every time any page pointer in stripes_pages[] got modified.
240  */
241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242 {
243 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 	u32 offset;
245 	int i;
246 
247 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 		int page_index = offset >> PAGE_SHIFT;
249 
250 		ASSERT(page_index < rbio->nr_pages);
251 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 	}
254 }
255 
256 static void steal_rbio_page(struct btrfs_raid_bio *src,
257 			    struct btrfs_raid_bio *dest, int page_nr)
258 {
259 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 	int i;
262 
263 	if (dest->stripe_pages[page_nr])
264 		__free_page(dest->stripe_pages[page_nr]);
265 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 	src->stripe_pages[page_nr] = NULL;
267 
268 	/* Also update the sector->uptodate bits. */
269 	for (i = sectors_per_page * page_nr;
270 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
271 		dest->stripe_sectors[i].uptodate = true;
272 }
273 
274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275 {
276 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 			      rbio->bioc->fs_info->sectorsize_bits;
278 
279 	/*
280 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 	 * we won't have a page which is half data half parity.
282 	 *
283 	 * Thus if the first sector of the page belongs to data stripes, then
284 	 * the full page belongs to data stripes.
285 	 */
286 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287 }
288 
289 /*
290  * Stealing an rbio means taking all the uptodate pages from the stripe array
291  * in the source rbio and putting them into the destination rbio.
292  *
293  * This will also update the involved stripe_sectors[] which are referring to
294  * the old pages.
295  */
296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297 {
298 	int i;
299 
300 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 		return;
302 
303 	for (i = 0; i < dest->nr_pages; i++) {
304 		struct page *p = src->stripe_pages[i];
305 
306 		/*
307 		 * We don't need to steal P/Q pages as they will always be
308 		 * regenerated for RMW or full write anyway.
309 		 */
310 		if (!is_data_stripe_page(src, i))
311 			continue;
312 
313 		/*
314 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 		 * all data stripe pages present and uptodate.
316 		 */
317 		ASSERT(p);
318 		ASSERT(full_page_sectors_uptodate(src, i));
319 		steal_rbio_page(src, dest, i);
320 	}
321 	index_stripe_sectors(dest);
322 	index_stripe_sectors(src);
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	/* Also inherit the bitmaps from @victim. */
338 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 		  dest->stripe_nsectors);
340 	bio_list_init(&victim->bio_list);
341 }
342 
343 /*
344  * used to prune items that are in the cache.  The caller
345  * must hold the hash table lock.
346  */
347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348 {
349 	int bucket = rbio_bucket(rbio);
350 	struct btrfs_stripe_hash_table *table;
351 	struct btrfs_stripe_hash *h;
352 	int freeit = 0;
353 
354 	/*
355 	 * check the bit again under the hash table lock.
356 	 */
357 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 		return;
359 
360 	table = rbio->bioc->fs_info->stripe_hash_table;
361 	h = table->table + bucket;
362 
363 	/* hold the lock for the bucket because we may be
364 	 * removing it from the hash table
365 	 */
366 	spin_lock(&h->lock);
367 
368 	/*
369 	 * hold the lock for the bio list because we need
370 	 * to make sure the bio list is empty
371 	 */
372 	spin_lock(&rbio->bio_list_lock);
373 
374 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 		list_del_init(&rbio->stripe_cache);
376 		table->cache_size -= 1;
377 		freeit = 1;
378 
379 		/* if the bio list isn't empty, this rbio is
380 		 * still involved in an IO.  We take it out
381 		 * of the cache list, and drop the ref that
382 		 * was held for the list.
383 		 *
384 		 * If the bio_list was empty, we also remove
385 		 * the rbio from the hash_table, and drop
386 		 * the corresponding ref
387 		 */
388 		if (bio_list_empty(&rbio->bio_list)) {
389 			if (!list_empty(&rbio->hash_list)) {
390 				list_del_init(&rbio->hash_list);
391 				refcount_dec(&rbio->refs);
392 				BUG_ON(!list_empty(&rbio->plug_list));
393 			}
394 		}
395 	}
396 
397 	spin_unlock(&rbio->bio_list_lock);
398 	spin_unlock(&h->lock);
399 
400 	if (freeit)
401 		free_raid_bio(rbio);
402 }
403 
404 /*
405  * prune a given rbio from the cache
406  */
407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408 {
409 	struct btrfs_stripe_hash_table *table;
410 	unsigned long flags;
411 
412 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
413 		return;
414 
415 	table = rbio->bioc->fs_info->stripe_hash_table;
416 
417 	spin_lock_irqsave(&table->cache_lock, flags);
418 	__remove_rbio_from_cache(rbio);
419 	spin_unlock_irqrestore(&table->cache_lock, flags);
420 }
421 
422 /*
423  * remove everything in the cache
424  */
425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
426 {
427 	struct btrfs_stripe_hash_table *table;
428 	unsigned long flags;
429 	struct btrfs_raid_bio *rbio;
430 
431 	table = info->stripe_hash_table;
432 
433 	spin_lock_irqsave(&table->cache_lock, flags);
434 	while (!list_empty(&table->stripe_cache)) {
435 		rbio = list_entry(table->stripe_cache.next,
436 				  struct btrfs_raid_bio,
437 				  stripe_cache);
438 		__remove_rbio_from_cache(rbio);
439 	}
440 	spin_unlock_irqrestore(&table->cache_lock, flags);
441 }
442 
443 /*
444  * remove all cached entries and free the hash table
445  * used by unmount
446  */
447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
448 {
449 	if (!info->stripe_hash_table)
450 		return;
451 	btrfs_clear_rbio_cache(info);
452 	kvfree(info->stripe_hash_table);
453 	info->stripe_hash_table = NULL;
454 }
455 
456 /*
457  * insert an rbio into the stripe cache.  It
458  * must have already been prepared by calling
459  * cache_rbio_pages
460  *
461  * If this rbio was already cached, it gets
462  * moved to the front of the lru.
463  *
464  * If the size of the rbio cache is too big, we
465  * prune an item.
466  */
467 static void cache_rbio(struct btrfs_raid_bio *rbio)
468 {
469 	struct btrfs_stripe_hash_table *table;
470 	unsigned long flags;
471 
472 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
473 		return;
474 
475 	table = rbio->bioc->fs_info->stripe_hash_table;
476 
477 	spin_lock_irqsave(&table->cache_lock, flags);
478 	spin_lock(&rbio->bio_list_lock);
479 
480 	/* bump our ref if we were not in the list before */
481 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
482 		refcount_inc(&rbio->refs);
483 
484 	if (!list_empty(&rbio->stripe_cache)){
485 		list_move(&rbio->stripe_cache, &table->stripe_cache);
486 	} else {
487 		list_add(&rbio->stripe_cache, &table->stripe_cache);
488 		table->cache_size += 1;
489 	}
490 
491 	spin_unlock(&rbio->bio_list_lock);
492 
493 	if (table->cache_size > RBIO_CACHE_SIZE) {
494 		struct btrfs_raid_bio *found;
495 
496 		found = list_entry(table->stripe_cache.prev,
497 				  struct btrfs_raid_bio,
498 				  stripe_cache);
499 
500 		if (found != rbio)
501 			__remove_rbio_from_cache(found);
502 	}
503 
504 	spin_unlock_irqrestore(&table->cache_lock, flags);
505 }
506 
507 /*
508  * helper function to run the xor_blocks api.  It is only
509  * able to do MAX_XOR_BLOCKS at a time, so we need to
510  * loop through.
511  */
512 static void run_xor(void **pages, int src_cnt, ssize_t len)
513 {
514 	int src_off = 0;
515 	int xor_src_cnt = 0;
516 	void *dest = pages[src_cnt];
517 
518 	while(src_cnt > 0) {
519 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
520 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
521 
522 		src_cnt -= xor_src_cnt;
523 		src_off += xor_src_cnt;
524 	}
525 }
526 
527 /*
528  * Returns true if the bio list inside this rbio covers an entire stripe (no
529  * rmw required).
530  */
531 static int rbio_is_full(struct btrfs_raid_bio *rbio)
532 {
533 	unsigned long flags;
534 	unsigned long size = rbio->bio_list_bytes;
535 	int ret = 1;
536 
537 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
538 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
539 		ret = 0;
540 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
541 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
542 
543 	return ret;
544 }
545 
546 /*
547  * returns 1 if it is safe to merge two rbios together.
548  * The merging is safe if the two rbios correspond to
549  * the same stripe and if they are both going in the same
550  * direction (read vs write), and if neither one is
551  * locked for final IO
552  *
553  * The caller is responsible for locking such that
554  * rmw_locked is safe to test
555  */
556 static int rbio_can_merge(struct btrfs_raid_bio *last,
557 			  struct btrfs_raid_bio *cur)
558 {
559 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
560 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
561 		return 0;
562 
563 	/*
564 	 * we can't merge with cached rbios, since the
565 	 * idea is that when we merge the destination
566 	 * rbio is going to run our IO for us.  We can
567 	 * steal from cached rbios though, other functions
568 	 * handle that.
569 	 */
570 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
571 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
572 		return 0;
573 
574 	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
575 		return 0;
576 
577 	/* we can't merge with different operations */
578 	if (last->operation != cur->operation)
579 		return 0;
580 	/*
581 	 * We've need read the full stripe from the drive.
582 	 * check and repair the parity and write the new results.
583 	 *
584 	 * We're not allowed to add any new bios to the
585 	 * bio list here, anyone else that wants to
586 	 * change this stripe needs to do their own rmw.
587 	 */
588 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
589 		return 0;
590 
591 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
592 	    last->operation == BTRFS_RBIO_READ_REBUILD)
593 		return 0;
594 
595 	return 1;
596 }
597 
598 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
599 					     unsigned int stripe_nr,
600 					     unsigned int sector_nr)
601 {
602 	ASSERT(stripe_nr < rbio->real_stripes);
603 	ASSERT(sector_nr < rbio->stripe_nsectors);
604 
605 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
606 }
607 
608 /* Return a sector from rbio->stripe_sectors, not from the bio list */
609 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
610 					     unsigned int stripe_nr,
611 					     unsigned int sector_nr)
612 {
613 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
614 							      sector_nr)];
615 }
616 
617 /* Grab a sector inside P stripe */
618 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
619 					      unsigned int sector_nr)
620 {
621 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
622 }
623 
624 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
625 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
626 					      unsigned int sector_nr)
627 {
628 	if (rbio->nr_data + 1 == rbio->real_stripes)
629 		return NULL;
630 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
631 }
632 
633 /*
634  * The first stripe in the table for a logical address
635  * has the lock.  rbios are added in one of three ways:
636  *
637  * 1) Nobody has the stripe locked yet.  The rbio is given
638  * the lock and 0 is returned.  The caller must start the IO
639  * themselves.
640  *
641  * 2) Someone has the stripe locked, but we're able to merge
642  * with the lock owner.  The rbio is freed and the IO will
643  * start automatically along with the existing rbio.  1 is returned.
644  *
645  * 3) Someone has the stripe locked, but we're not able to merge.
646  * The rbio is added to the lock owner's plug list, or merged into
647  * an rbio already on the plug list.  When the lock owner unlocks,
648  * the next rbio on the list is run and the IO is started automatically.
649  * 1 is returned
650  *
651  * If we return 0, the caller still owns the rbio and must continue with
652  * IO submission.  If we return 1, the caller must assume the rbio has
653  * already been freed.
654  */
655 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
656 {
657 	struct btrfs_stripe_hash *h;
658 	struct btrfs_raid_bio *cur;
659 	struct btrfs_raid_bio *pending;
660 	unsigned long flags;
661 	struct btrfs_raid_bio *freeit = NULL;
662 	struct btrfs_raid_bio *cache_drop = NULL;
663 	int ret = 0;
664 
665 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
666 
667 	spin_lock_irqsave(&h->lock, flags);
668 	list_for_each_entry(cur, &h->hash_list, hash_list) {
669 		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
670 			continue;
671 
672 		spin_lock(&cur->bio_list_lock);
673 
674 		/* Can we steal this cached rbio's pages? */
675 		if (bio_list_empty(&cur->bio_list) &&
676 		    list_empty(&cur->plug_list) &&
677 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
678 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
679 			list_del_init(&cur->hash_list);
680 			refcount_dec(&cur->refs);
681 
682 			steal_rbio(cur, rbio);
683 			cache_drop = cur;
684 			spin_unlock(&cur->bio_list_lock);
685 
686 			goto lockit;
687 		}
688 
689 		/* Can we merge into the lock owner? */
690 		if (rbio_can_merge(cur, rbio)) {
691 			merge_rbio(cur, rbio);
692 			spin_unlock(&cur->bio_list_lock);
693 			freeit = rbio;
694 			ret = 1;
695 			goto out;
696 		}
697 
698 
699 		/*
700 		 * We couldn't merge with the running rbio, see if we can merge
701 		 * with the pending ones.  We don't have to check for rmw_locked
702 		 * because there is no way they are inside finish_rmw right now
703 		 */
704 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
705 			if (rbio_can_merge(pending, rbio)) {
706 				merge_rbio(pending, rbio);
707 				spin_unlock(&cur->bio_list_lock);
708 				freeit = rbio;
709 				ret = 1;
710 				goto out;
711 			}
712 		}
713 
714 		/*
715 		 * No merging, put us on the tail of the plug list, our rbio
716 		 * will be started with the currently running rbio unlocks
717 		 */
718 		list_add_tail(&rbio->plug_list, &cur->plug_list);
719 		spin_unlock(&cur->bio_list_lock);
720 		ret = 1;
721 		goto out;
722 	}
723 lockit:
724 	refcount_inc(&rbio->refs);
725 	list_add(&rbio->hash_list, &h->hash_list);
726 out:
727 	spin_unlock_irqrestore(&h->lock, flags);
728 	if (cache_drop)
729 		remove_rbio_from_cache(cache_drop);
730 	if (freeit)
731 		free_raid_bio(freeit);
732 	return ret;
733 }
734 
735 static void recover_rbio_work_locked(struct work_struct *work);
736 
737 /*
738  * called as rmw or parity rebuild is completed.  If the plug list has more
739  * rbios waiting for this stripe, the next one on the list will be started
740  */
741 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
742 {
743 	int bucket;
744 	struct btrfs_stripe_hash *h;
745 	unsigned long flags;
746 	int keep_cache = 0;
747 
748 	bucket = rbio_bucket(rbio);
749 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
750 
751 	if (list_empty(&rbio->plug_list))
752 		cache_rbio(rbio);
753 
754 	spin_lock_irqsave(&h->lock, flags);
755 	spin_lock(&rbio->bio_list_lock);
756 
757 	if (!list_empty(&rbio->hash_list)) {
758 		/*
759 		 * if we're still cached and there is no other IO
760 		 * to perform, just leave this rbio here for others
761 		 * to steal from later
762 		 */
763 		if (list_empty(&rbio->plug_list) &&
764 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
765 			keep_cache = 1;
766 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
767 			BUG_ON(!bio_list_empty(&rbio->bio_list));
768 			goto done;
769 		}
770 
771 		list_del_init(&rbio->hash_list);
772 		refcount_dec(&rbio->refs);
773 
774 		/*
775 		 * we use the plug list to hold all the rbios
776 		 * waiting for the chance to lock this stripe.
777 		 * hand the lock over to one of them.
778 		 */
779 		if (!list_empty(&rbio->plug_list)) {
780 			struct btrfs_raid_bio *next;
781 			struct list_head *head = rbio->plug_list.next;
782 
783 			next = list_entry(head, struct btrfs_raid_bio,
784 					  plug_list);
785 
786 			list_del_init(&rbio->plug_list);
787 
788 			list_add(&next->hash_list, &h->hash_list);
789 			refcount_inc(&next->refs);
790 			spin_unlock(&rbio->bio_list_lock);
791 			spin_unlock_irqrestore(&h->lock, flags);
792 
793 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
794 				start_async_work(next, recover_rbio_work_locked);
795 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
796 				steal_rbio(rbio, next);
797 				start_async_work(next, recover_rbio_work_locked);
798 			} else if (next->operation == BTRFS_RBIO_WRITE) {
799 				steal_rbio(rbio, next);
800 				start_async_work(next, rmw_rbio_work_locked);
801 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
802 				steal_rbio(rbio, next);
803 				start_async_work(next, scrub_rbio_work_locked);
804 			}
805 
806 			goto done_nolock;
807 		}
808 	}
809 done:
810 	spin_unlock(&rbio->bio_list_lock);
811 	spin_unlock_irqrestore(&h->lock, flags);
812 
813 done_nolock:
814 	if (!keep_cache)
815 		remove_rbio_from_cache(rbio);
816 }
817 
818 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
819 {
820 	struct bio *next;
821 
822 	while (cur) {
823 		next = cur->bi_next;
824 		cur->bi_next = NULL;
825 		cur->bi_status = err;
826 		bio_endio(cur);
827 		cur = next;
828 	}
829 }
830 
831 /*
832  * this frees the rbio and runs through all the bios in the
833  * bio_list and calls end_io on them
834  */
835 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
836 {
837 	struct bio *cur = bio_list_get(&rbio->bio_list);
838 	struct bio *extra;
839 
840 	kfree(rbio->csum_buf);
841 	bitmap_free(rbio->csum_bitmap);
842 	rbio->csum_buf = NULL;
843 	rbio->csum_bitmap = NULL;
844 
845 	/*
846 	 * Clear the data bitmap, as the rbio may be cached for later usage.
847 	 * do this before before unlock_stripe() so there will be no new bio
848 	 * for this bio.
849 	 */
850 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
851 
852 	/*
853 	 * At this moment, rbio->bio_list is empty, however since rbio does not
854 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
855 	 * hash list, rbio may be merged with others so that rbio->bio_list
856 	 * becomes non-empty.
857 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
858 	 * more and we can call bio_endio() on all queued bios.
859 	 */
860 	unlock_stripe(rbio);
861 	extra = bio_list_get(&rbio->bio_list);
862 	free_raid_bio(rbio);
863 
864 	rbio_endio_bio_list(cur, err);
865 	if (extra)
866 		rbio_endio_bio_list(extra, err);
867 }
868 
869 /*
870  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
871  *
872  * @rbio:               The raid bio
873  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
874  * @sector_nr:		Sector number inside the stripe,
875  *			valid range [0, stripe_nsectors)
876  * @bio_list_only:      Whether to use sectors inside the bio list only.
877  *
878  * The read/modify/write code wants to reuse the original bio page as much
879  * as possible, and only use stripe_sectors as fallback.
880  */
881 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
882 					 int stripe_nr, int sector_nr,
883 					 bool bio_list_only)
884 {
885 	struct sector_ptr *sector;
886 	int index;
887 
888 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
889 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
890 
891 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
892 	ASSERT(index >= 0 && index < rbio->nr_sectors);
893 
894 	spin_lock_irq(&rbio->bio_list_lock);
895 	sector = &rbio->bio_sectors[index];
896 	if (sector->page || bio_list_only) {
897 		/* Don't return sector without a valid page pointer */
898 		if (!sector->page)
899 			sector = NULL;
900 		spin_unlock_irq(&rbio->bio_list_lock);
901 		return sector;
902 	}
903 	spin_unlock_irq(&rbio->bio_list_lock);
904 
905 	return &rbio->stripe_sectors[index];
906 }
907 
908 /*
909  * allocation and initial setup for the btrfs_raid_bio.  Not
910  * this does not allocate any pages for rbio->pages.
911  */
912 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
913 					 struct btrfs_io_context *bioc)
914 {
915 	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
916 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
917 	const unsigned int num_pages = stripe_npages * real_stripes;
918 	const unsigned int stripe_nsectors =
919 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
920 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
921 	struct btrfs_raid_bio *rbio;
922 
923 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
924 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
925 	/*
926 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
927 	 * (at most 16) should be no larger than BITS_PER_LONG.
928 	 */
929 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
930 
931 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
932 	if (!rbio)
933 		return ERR_PTR(-ENOMEM);
934 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
935 				     GFP_NOFS);
936 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
937 				    GFP_NOFS);
938 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
939 				       GFP_NOFS);
940 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
941 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
942 
943 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
944 	    !rbio->finish_pointers || !rbio->error_bitmap) {
945 		free_raid_bio_pointers(rbio);
946 		kfree(rbio);
947 		return ERR_PTR(-ENOMEM);
948 	}
949 
950 	bio_list_init(&rbio->bio_list);
951 	init_waitqueue_head(&rbio->io_wait);
952 	INIT_LIST_HEAD(&rbio->plug_list);
953 	spin_lock_init(&rbio->bio_list_lock);
954 	INIT_LIST_HEAD(&rbio->stripe_cache);
955 	INIT_LIST_HEAD(&rbio->hash_list);
956 	btrfs_get_bioc(bioc);
957 	rbio->bioc = bioc;
958 	rbio->nr_pages = num_pages;
959 	rbio->nr_sectors = num_sectors;
960 	rbio->real_stripes = real_stripes;
961 	rbio->stripe_npages = stripe_npages;
962 	rbio->stripe_nsectors = stripe_nsectors;
963 	refcount_set(&rbio->refs, 1);
964 	atomic_set(&rbio->stripes_pending, 0);
965 
966 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
967 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
968 
969 	return rbio;
970 }
971 
972 /* allocate pages for all the stripes in the bio, including parity */
973 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
974 {
975 	int ret;
976 
977 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
978 	if (ret < 0)
979 		return ret;
980 	/* Mapping all sectors */
981 	index_stripe_sectors(rbio);
982 	return 0;
983 }
984 
985 /* only allocate pages for p/q stripes */
986 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
987 {
988 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
989 	int ret;
990 
991 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
992 				     rbio->stripe_pages + data_pages);
993 	if (ret < 0)
994 		return ret;
995 
996 	index_stripe_sectors(rbio);
997 	return 0;
998 }
999 
1000 /*
1001  * Return the total number of errors found in the vertical stripe of @sector_nr.
1002  *
1003  * @faila and @failb will also be updated to the first and second stripe
1004  * number of the errors.
1005  */
1006 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1007 				     int *faila, int *failb)
1008 {
1009 	int stripe_nr;
1010 	int found_errors = 0;
1011 
1012 	if (faila || failb) {
1013 		/*
1014 		 * Both @faila and @failb should be valid pointers if any of
1015 		 * them is specified.
1016 		 */
1017 		ASSERT(faila && failb);
1018 		*faila = -1;
1019 		*failb = -1;
1020 	}
1021 
1022 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1023 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1024 
1025 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1026 			found_errors++;
1027 			if (faila) {
1028 				/* Update faila and failb. */
1029 				if (*faila < 0)
1030 					*faila = stripe_nr;
1031 				else if (*failb < 0)
1032 					*failb = stripe_nr;
1033 			}
1034 		}
1035 	}
1036 	return found_errors;
1037 }
1038 
1039 /*
1040  * Add a single sector @sector into our list of bios for IO.
1041  *
1042  * Return 0 if everything went well.
1043  * Return <0 for error.
1044  */
1045 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1046 			      struct bio_list *bio_list,
1047 			      struct sector_ptr *sector,
1048 			      unsigned int stripe_nr,
1049 			      unsigned int sector_nr,
1050 			      enum req_op op)
1051 {
1052 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1053 	struct bio *last = bio_list->tail;
1054 	int ret;
1055 	struct bio *bio;
1056 	struct btrfs_io_stripe *stripe;
1057 	u64 disk_start;
1058 
1059 	/*
1060 	 * Note: here stripe_nr has taken device replace into consideration,
1061 	 * thus it can be larger than rbio->real_stripe.
1062 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1063 	 */
1064 	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1065 	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1066 	ASSERT(sector->page);
1067 
1068 	stripe = &rbio->bioc->stripes[stripe_nr];
1069 	disk_start = stripe->physical + sector_nr * sectorsize;
1070 
1071 	/* if the device is missing, just fail this stripe */
1072 	if (!stripe->dev->bdev) {
1073 		int found_errors;
1074 
1075 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1076 			rbio->error_bitmap);
1077 
1078 		/* Check if we have reached tolerance early. */
1079 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1080 							 NULL, NULL);
1081 		if (found_errors > rbio->bioc->max_errors)
1082 			return -EIO;
1083 		return 0;
1084 	}
1085 
1086 	/* see if we can add this page onto our existing bio */
1087 	if (last) {
1088 		u64 last_end = last->bi_iter.bi_sector << 9;
1089 		last_end += last->bi_iter.bi_size;
1090 
1091 		/*
1092 		 * we can't merge these if they are from different
1093 		 * devices or if they are not contiguous
1094 		 */
1095 		if (last_end == disk_start && !last->bi_status &&
1096 		    last->bi_bdev == stripe->dev->bdev) {
1097 			ret = bio_add_page(last, sector->page, sectorsize,
1098 					   sector->pgoff);
1099 			if (ret == sectorsize)
1100 				return 0;
1101 		}
1102 	}
1103 
1104 	/* put a new bio on the list */
1105 	bio = bio_alloc(stripe->dev->bdev,
1106 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1107 			op, GFP_NOFS);
1108 	bio->bi_iter.bi_sector = disk_start >> 9;
1109 	bio->bi_private = rbio;
1110 
1111 	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1112 	bio_list_add(bio_list, bio);
1113 	return 0;
1114 }
1115 
1116 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1117 {
1118 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1119 	struct bio_vec bvec;
1120 	struct bvec_iter iter;
1121 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1122 		     rbio->bioc->raid_map[0];
1123 
1124 	bio_for_each_segment(bvec, bio, iter) {
1125 		u32 bvec_offset;
1126 
1127 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1128 		     bvec_offset += sectorsize, offset += sectorsize) {
1129 			int index = offset / sectorsize;
1130 			struct sector_ptr *sector = &rbio->bio_sectors[index];
1131 
1132 			sector->page = bvec.bv_page;
1133 			sector->pgoff = bvec.bv_offset + bvec_offset;
1134 			ASSERT(sector->pgoff < PAGE_SIZE);
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * helper function to walk our bio list and populate the bio_pages array with
1141  * the result.  This seems expensive, but it is faster than constantly
1142  * searching through the bio list as we setup the IO in finish_rmw or stripe
1143  * reconstruction.
1144  *
1145  * This must be called before you trust the answers from page_in_rbio
1146  */
1147 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1148 {
1149 	struct bio *bio;
1150 
1151 	spin_lock_irq(&rbio->bio_list_lock);
1152 	bio_list_for_each(bio, &rbio->bio_list)
1153 		index_one_bio(rbio, bio);
1154 
1155 	spin_unlock_irq(&rbio->bio_list_lock);
1156 }
1157 
1158 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1159 			       struct raid56_bio_trace_info *trace_info)
1160 {
1161 	const struct btrfs_io_context *bioc = rbio->bioc;
1162 	int i;
1163 
1164 	ASSERT(bioc);
1165 
1166 	/* We rely on bio->bi_bdev to find the stripe number. */
1167 	if (!bio->bi_bdev)
1168 		goto not_found;
1169 
1170 	for (i = 0; i < bioc->num_stripes; i++) {
1171 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1172 			continue;
1173 		trace_info->stripe_nr = i;
1174 		trace_info->devid = bioc->stripes[i].dev->devid;
1175 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1176 				     bioc->stripes[i].physical;
1177 		return;
1178 	}
1179 
1180 not_found:
1181 	trace_info->devid = -1;
1182 	trace_info->offset = -1;
1183 	trace_info->stripe_nr = -1;
1184 }
1185 
1186 static inline void bio_list_put(struct bio_list *bio_list)
1187 {
1188 	struct bio *bio;
1189 
1190 	while ((bio = bio_list_pop(bio_list)))
1191 		bio_put(bio);
1192 }
1193 
1194 /* Generate PQ for one vertical stripe. */
1195 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1196 {
1197 	void **pointers = rbio->finish_pointers;
1198 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1199 	struct sector_ptr *sector;
1200 	int stripe;
1201 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1202 
1203 	/* First collect one sector from each data stripe */
1204 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1205 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1206 		pointers[stripe] = kmap_local_page(sector->page) +
1207 				   sector->pgoff;
1208 	}
1209 
1210 	/* Then add the parity stripe */
1211 	sector = rbio_pstripe_sector(rbio, sectornr);
1212 	sector->uptodate = 1;
1213 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1214 
1215 	if (has_qstripe) {
1216 		/*
1217 		 * RAID6, add the qstripe and call the library function
1218 		 * to fill in our p/q
1219 		 */
1220 		sector = rbio_qstripe_sector(rbio, sectornr);
1221 		sector->uptodate = 1;
1222 		pointers[stripe++] = kmap_local_page(sector->page) +
1223 				     sector->pgoff;
1224 
1225 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1226 					pointers);
1227 	} else {
1228 		/* raid5 */
1229 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1230 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1231 	}
1232 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1233 		kunmap_local(pointers[stripe]);
1234 }
1235 
1236 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1237 				   struct bio_list *bio_list)
1238 {
1239 	/* The total sector number inside the full stripe. */
1240 	int total_sector_nr;
1241 	int sectornr;
1242 	int stripe;
1243 	int ret;
1244 
1245 	ASSERT(bio_list_size(bio_list) == 0);
1246 
1247 	/* We should have at least one data sector. */
1248 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1249 
1250 	/*
1251 	 * Reset errors, as we may have errors inherited from from degraded
1252 	 * write.
1253 	 */
1254 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1255 
1256 	/*
1257 	 * Start assembly.  Make bios for everything from the higher layers (the
1258 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1259 	 */
1260 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1261 	     total_sector_nr++) {
1262 		struct sector_ptr *sector;
1263 
1264 		stripe = total_sector_nr / rbio->stripe_nsectors;
1265 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1266 
1267 		/* This vertical stripe has no data, skip it. */
1268 		if (!test_bit(sectornr, &rbio->dbitmap))
1269 			continue;
1270 
1271 		if (stripe < rbio->nr_data) {
1272 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1273 			if (!sector)
1274 				continue;
1275 		} else {
1276 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1277 		}
1278 
1279 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1280 					 sectornr, REQ_OP_WRITE);
1281 		if (ret)
1282 			goto error;
1283 	}
1284 
1285 	if (likely(!rbio->bioc->num_tgtdevs))
1286 		return 0;
1287 
1288 	/* Make a copy for the replace target device. */
1289 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1290 	     total_sector_nr++) {
1291 		struct sector_ptr *sector;
1292 
1293 		stripe = total_sector_nr / rbio->stripe_nsectors;
1294 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1295 
1296 		if (!rbio->bioc->tgtdev_map[stripe]) {
1297 			/*
1298 			 * We can skip the whole stripe completely, note
1299 			 * total_sector_nr will be increased by one anyway.
1300 			 */
1301 			ASSERT(sectornr == 0);
1302 			total_sector_nr += rbio->stripe_nsectors - 1;
1303 			continue;
1304 		}
1305 
1306 		/* This vertical stripe has no data, skip it. */
1307 		if (!test_bit(sectornr, &rbio->dbitmap))
1308 			continue;
1309 
1310 		if (stripe < rbio->nr_data) {
1311 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1312 			if (!sector)
1313 				continue;
1314 		} else {
1315 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1316 		}
1317 
1318 		ret = rbio_add_io_sector(rbio, bio_list, sector,
1319 					 rbio->bioc->tgtdev_map[stripe],
1320 					 sectornr, REQ_OP_WRITE);
1321 		if (ret)
1322 			goto error;
1323 	}
1324 
1325 	return 0;
1326 error:
1327 	bio_list_put(bio_list);
1328 	return -EIO;
1329 }
1330 
1331 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1332 {
1333 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1334 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1335 		     rbio->bioc->raid_map[0];
1336 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1337 
1338 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1339 
1340 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1341 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1342 
1343 	/*
1344 	 * Special handling for raid56_alloc_missing_rbio() used by
1345 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1346 	 * pass an empty bio here.  Thus we have to find out the missing device
1347 	 * and mark the stripe error instead.
1348 	 */
1349 	if (bio->bi_iter.bi_size == 0) {
1350 		bool found_missing = false;
1351 		int stripe_nr;
1352 
1353 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1354 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1355 				found_missing = true;
1356 				bitmap_set(rbio->error_bitmap,
1357 					   stripe_nr * rbio->stripe_nsectors,
1358 					   rbio->stripe_nsectors);
1359 			}
1360 		}
1361 		ASSERT(found_missing);
1362 	}
1363 }
1364 
1365 /*
1366  * For subpage case, we can no longer set page Up-to-date directly for
1367  * stripe_pages[], thus we need to locate the sector.
1368  */
1369 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1370 					     struct page *page,
1371 					     unsigned int pgoff)
1372 {
1373 	int i;
1374 
1375 	for (i = 0; i < rbio->nr_sectors; i++) {
1376 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1377 
1378 		if (sector->page == page && sector->pgoff == pgoff)
1379 			return sector;
1380 	}
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * this sets each page in the bio uptodate.  It should only be used on private
1386  * rbio pages, nothing that comes in from the higher layers
1387  */
1388 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1389 {
1390 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1391 	struct bio_vec *bvec;
1392 	struct bvec_iter_all iter_all;
1393 
1394 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1395 
1396 	bio_for_each_segment_all(bvec, bio, iter_all) {
1397 		struct sector_ptr *sector;
1398 		int pgoff;
1399 
1400 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1401 		     pgoff += sectorsize) {
1402 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1403 			ASSERT(sector);
1404 			if (sector)
1405 				sector->uptodate = 1;
1406 		}
1407 	}
1408 }
1409 
1410 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1411 {
1412 	struct bio_vec *bv = bio_first_bvec_all(bio);
1413 	int i;
1414 
1415 	for (i = 0; i < rbio->nr_sectors; i++) {
1416 		struct sector_ptr *sector;
1417 
1418 		sector = &rbio->stripe_sectors[i];
1419 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1420 			break;
1421 		sector = &rbio->bio_sectors[i];
1422 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1423 			break;
1424 	}
1425 	ASSERT(i < rbio->nr_sectors);
1426 	return i;
1427 }
1428 
1429 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1430 {
1431 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1432 	u32 bio_size = 0;
1433 	struct bio_vec *bvec;
1434 	int i;
1435 
1436 	bio_for_each_bvec_all(bvec, bio, i)
1437 		bio_size += bvec->bv_len;
1438 
1439 	/*
1440 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1441 	 * call bitmap_set() without protection.
1442 	 *
1443 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1444 	 */
1445 	for (i = total_sector_nr; i < total_sector_nr +
1446 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1447 		set_bit(i, rbio->error_bitmap);
1448 }
1449 
1450 /* Verify the data sectors at read time. */
1451 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1452 				    struct bio *bio)
1453 {
1454 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1455 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1456 	struct bio_vec *bvec;
1457 	struct bvec_iter_all iter_all;
1458 
1459 	/* No data csum for the whole stripe, no need to verify. */
1460 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1461 		return;
1462 
1463 	/* P/Q stripes, they have no data csum to verify against. */
1464 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1465 		return;
1466 
1467 	bio_for_each_segment_all(bvec, bio, iter_all) {
1468 		int bv_offset;
1469 
1470 		for (bv_offset = bvec->bv_offset;
1471 		     bv_offset < bvec->bv_offset + bvec->bv_len;
1472 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1473 			u8 csum_buf[BTRFS_CSUM_SIZE];
1474 			u8 *expected_csum = rbio->csum_buf +
1475 					    total_sector_nr * fs_info->csum_size;
1476 			int ret;
1477 
1478 			/* No csum for this sector, skip to the next sector. */
1479 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1480 				continue;
1481 
1482 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1483 				bv_offset, csum_buf, expected_csum);
1484 			if (ret < 0)
1485 				set_bit(total_sector_nr, rbio->error_bitmap);
1486 		}
1487 	}
1488 }
1489 
1490 static void raid_wait_read_end_io(struct bio *bio)
1491 {
1492 	struct btrfs_raid_bio *rbio = bio->bi_private;
1493 
1494 	if (bio->bi_status) {
1495 		rbio_update_error_bitmap(rbio, bio);
1496 	} else {
1497 		set_bio_pages_uptodate(rbio, bio);
1498 		verify_bio_data_sectors(rbio, bio);
1499 	}
1500 
1501 	bio_put(bio);
1502 	if (atomic_dec_and_test(&rbio->stripes_pending))
1503 		wake_up(&rbio->io_wait);
1504 }
1505 
1506 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1507 			     struct bio_list *bio_list)
1508 {
1509 	struct bio *bio;
1510 
1511 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1512 	while ((bio = bio_list_pop(bio_list))) {
1513 		bio->bi_end_io = raid_wait_read_end_io;
1514 
1515 		if (trace_raid56_scrub_read_recover_enabled()) {
1516 			struct raid56_bio_trace_info trace_info = { 0 };
1517 
1518 			bio_get_trace_info(rbio, bio, &trace_info);
1519 			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
1520 		}
1521 		submit_bio(bio);
1522 	}
1523 
1524 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1525 }
1526 
1527 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1528 {
1529 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1530 	int ret;
1531 
1532 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1533 	if (ret < 0)
1534 		return ret;
1535 
1536 	index_stripe_sectors(rbio);
1537 	return 0;
1538 }
1539 
1540 /*
1541  * We use plugging call backs to collect full stripes.
1542  * Any time we get a partial stripe write while plugged
1543  * we collect it into a list.  When the unplug comes down,
1544  * we sort the list by logical block number and merge
1545  * everything we can into the same rbios
1546  */
1547 struct btrfs_plug_cb {
1548 	struct blk_plug_cb cb;
1549 	struct btrfs_fs_info *info;
1550 	struct list_head rbio_list;
1551 	struct work_struct work;
1552 };
1553 
1554 /*
1555  * rbios on the plug list are sorted for easier merging.
1556  */
1557 static int plug_cmp(void *priv, const struct list_head *a,
1558 		    const struct list_head *b)
1559 {
1560 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1561 						       plug_list);
1562 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1563 						       plug_list);
1564 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1565 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1566 
1567 	if (a_sector < b_sector)
1568 		return -1;
1569 	if (a_sector > b_sector)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1575 {
1576 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1577 	struct btrfs_raid_bio *cur;
1578 	struct btrfs_raid_bio *last = NULL;
1579 
1580 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1581 
1582 	while (!list_empty(&plug->rbio_list)) {
1583 		cur = list_entry(plug->rbio_list.next,
1584 				 struct btrfs_raid_bio, plug_list);
1585 		list_del_init(&cur->plug_list);
1586 
1587 		if (rbio_is_full(cur)) {
1588 			/* We have a full stripe, queue it down. */
1589 			start_async_work(cur, rmw_rbio_work);
1590 			continue;
1591 		}
1592 		if (last) {
1593 			if (rbio_can_merge(last, cur)) {
1594 				merge_rbio(last, cur);
1595 				free_raid_bio(cur);
1596 				continue;
1597 			}
1598 			start_async_work(last, rmw_rbio_work);
1599 		}
1600 		last = cur;
1601 	}
1602 	if (last)
1603 		start_async_work(last, rmw_rbio_work);
1604 	kfree(plug);
1605 }
1606 
1607 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1608 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1609 {
1610 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1611 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1612 	const u64 full_stripe_start = rbio->bioc->raid_map[0];
1613 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1614 	const u32 sectorsize = fs_info->sectorsize;
1615 	u64 cur_logical;
1616 
1617 	ASSERT(orig_logical >= full_stripe_start &&
1618 	       orig_logical + orig_len <= full_stripe_start +
1619 	       rbio->nr_data * BTRFS_STRIPE_LEN);
1620 
1621 	bio_list_add(&rbio->bio_list, orig_bio);
1622 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1623 
1624 	/* Update the dbitmap. */
1625 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1626 	     cur_logical += sectorsize) {
1627 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1628 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1629 
1630 		set_bit(bit, &rbio->dbitmap);
1631 	}
1632 }
1633 
1634 /*
1635  * our main entry point for writes from the rest of the FS.
1636  */
1637 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1638 {
1639 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1640 	struct btrfs_raid_bio *rbio;
1641 	struct btrfs_plug_cb *plug = NULL;
1642 	struct blk_plug_cb *cb;
1643 
1644 	rbio = alloc_rbio(fs_info, bioc);
1645 	if (IS_ERR(rbio)) {
1646 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1647 		bio_endio(bio);
1648 		return;
1649 	}
1650 	rbio->operation = BTRFS_RBIO_WRITE;
1651 	rbio_add_bio(rbio, bio);
1652 
1653 	/*
1654 	 * Don't plug on full rbios, just get them out the door
1655 	 * as quickly as we can
1656 	 */
1657 	if (!rbio_is_full(rbio)) {
1658 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1659 		if (cb) {
1660 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1661 			if (!plug->info) {
1662 				plug->info = fs_info;
1663 				INIT_LIST_HEAD(&plug->rbio_list);
1664 			}
1665 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1666 			return;
1667 		}
1668 	}
1669 
1670 	/*
1671 	 * Either we don't have any existing plug, or we're doing a full stripe,
1672 	 * queue the rmw work now.
1673 	 */
1674 	start_async_work(rbio, rmw_rbio_work);
1675 }
1676 
1677 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1678 			     int stripe_nr, int sector_nr)
1679 {
1680 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1681 	struct sector_ptr *sector;
1682 	u8 csum_buf[BTRFS_CSUM_SIZE];
1683 	u8 *csum_expected;
1684 	int ret;
1685 
1686 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1687 		return 0;
1688 
1689 	/* No way to verify P/Q as they are not covered by data csum. */
1690 	if (stripe_nr >= rbio->nr_data)
1691 		return 0;
1692 	/*
1693 	 * If we're rebuilding a read, we have to use pages from the
1694 	 * bio list if possible.
1695 	 */
1696 	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1697 	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1698 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1699 	} else {
1700 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1701 	}
1702 
1703 	ASSERT(sector->page);
1704 
1705 	csum_expected = rbio->csum_buf +
1706 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1707 			fs_info->csum_size;
1708 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1709 				      csum_buf, csum_expected);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Recover a vertical stripe specified by @sector_nr.
1715  * @*pointers are the pre-allocated pointers by the caller, so we don't
1716  * need to allocate/free the pointers again and again.
1717  */
1718 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1719 			    void **pointers, void **unmap_array)
1720 {
1721 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1722 	struct sector_ptr *sector;
1723 	const u32 sectorsize = fs_info->sectorsize;
1724 	int found_errors;
1725 	int faila;
1726 	int failb;
1727 	int stripe_nr;
1728 	int ret = 0;
1729 
1730 	/*
1731 	 * Now we just use bitmap to mark the horizontal stripes in
1732 	 * which we have data when doing parity scrub.
1733 	 */
1734 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1735 	    !test_bit(sector_nr, &rbio->dbitmap))
1736 		return 0;
1737 
1738 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1739 						 &failb);
1740 	/*
1741 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1742 	 * which only part of a stripe failed csum check.
1743 	 */
1744 	if (!found_errors)
1745 		return 0;
1746 
1747 	if (found_errors > rbio->bioc->max_errors)
1748 		return -EIO;
1749 
1750 	/*
1751 	 * Setup our array of pointers with sectors from each stripe
1752 	 *
1753 	 * NOTE: store a duplicate array of pointers to preserve the
1754 	 * pointer order.
1755 	 */
1756 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1757 		/*
1758 		 * If we're rebuilding a read, we have to use pages from the
1759 		 * bio list if possible.
1760 		 */
1761 		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1762 		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1763 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1764 		} else {
1765 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1766 		}
1767 		ASSERT(sector->page);
1768 		pointers[stripe_nr] = kmap_local_page(sector->page) +
1769 				   sector->pgoff;
1770 		unmap_array[stripe_nr] = pointers[stripe_nr];
1771 	}
1772 
1773 	/* All raid6 handling here */
1774 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1775 		/* Single failure, rebuild from parity raid5 style */
1776 		if (failb < 0) {
1777 			if (faila == rbio->nr_data)
1778 				/*
1779 				 * Just the P stripe has failed, without
1780 				 * a bad data or Q stripe.
1781 				 * We have nothing to do, just skip the
1782 				 * recovery for this stripe.
1783 				 */
1784 				goto cleanup;
1785 			/*
1786 			 * a single failure in raid6 is rebuilt
1787 			 * in the pstripe code below
1788 			 */
1789 			goto pstripe;
1790 		}
1791 
1792 		/*
1793 		 * If the q stripe is failed, do a pstripe reconstruction from
1794 		 * the xors.
1795 		 * If both the q stripe and the P stripe are failed, we're
1796 		 * here due to a crc mismatch and we can't give them the
1797 		 * data they want.
1798 		 */
1799 		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1800 			if (rbio->bioc->raid_map[faila] ==
1801 			    RAID5_P_STRIPE)
1802 				/*
1803 				 * Only P and Q are corrupted.
1804 				 * We only care about data stripes recovery,
1805 				 * can skip this vertical stripe.
1806 				 */
1807 				goto cleanup;
1808 			/*
1809 			 * Otherwise we have one bad data stripe and
1810 			 * a good P stripe.  raid5!
1811 			 */
1812 			goto pstripe;
1813 		}
1814 
1815 		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1816 			raid6_datap_recov(rbio->real_stripes, sectorsize,
1817 					  faila, pointers);
1818 		} else {
1819 			raid6_2data_recov(rbio->real_stripes, sectorsize,
1820 					  faila, failb, pointers);
1821 		}
1822 	} else {
1823 		void *p;
1824 
1825 		/* Rebuild from P stripe here (raid5 or raid6). */
1826 		ASSERT(failb == -1);
1827 pstripe:
1828 		/* Copy parity block into failed block to start with */
1829 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1830 
1831 		/* Rearrange the pointer array */
1832 		p = pointers[faila];
1833 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1834 		     stripe_nr++)
1835 			pointers[stripe_nr] = pointers[stripe_nr + 1];
1836 		pointers[rbio->nr_data - 1] = p;
1837 
1838 		/* Xor in the rest */
1839 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1840 
1841 	}
1842 
1843 	/*
1844 	 * No matter if this is a RMW or recovery, we should have all
1845 	 * failed sectors repaired in the vertical stripe, thus they are now
1846 	 * uptodate.
1847 	 * Especially if we determine to cache the rbio, we need to
1848 	 * have at least all data sectors uptodate.
1849 	 *
1850 	 * If possible, also check if the repaired sector matches its data
1851 	 * checksum.
1852 	 */
1853 	if (faila >= 0) {
1854 		ret = verify_one_sector(rbio, faila, sector_nr);
1855 		if (ret < 0)
1856 			goto cleanup;
1857 
1858 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1859 		sector->uptodate = 1;
1860 	}
1861 	if (failb >= 0) {
1862 		ret = verify_one_sector(rbio, failb, sector_nr);
1863 		if (ret < 0)
1864 			goto cleanup;
1865 
1866 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1867 		sector->uptodate = 1;
1868 	}
1869 
1870 cleanup:
1871 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1872 		kunmap_local(unmap_array[stripe_nr]);
1873 	return ret;
1874 }
1875 
1876 static int recover_sectors(struct btrfs_raid_bio *rbio)
1877 {
1878 	void **pointers = NULL;
1879 	void **unmap_array = NULL;
1880 	int sectornr;
1881 	int ret = 0;
1882 
1883 	/*
1884 	 * @pointers array stores the pointer for each sector.
1885 	 *
1886 	 * @unmap_array stores copy of pointers that does not get reordered
1887 	 * during reconstruction so that kunmap_local works.
1888 	 */
1889 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1890 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1891 	if (!pointers || !unmap_array) {
1892 		ret = -ENOMEM;
1893 		goto out;
1894 	}
1895 
1896 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1897 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1898 		spin_lock_irq(&rbio->bio_list_lock);
1899 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1900 		spin_unlock_irq(&rbio->bio_list_lock);
1901 	}
1902 
1903 	index_rbio_pages(rbio);
1904 
1905 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1906 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1907 		if (ret < 0)
1908 			break;
1909 	}
1910 
1911 out:
1912 	kfree(pointers);
1913 	kfree(unmap_array);
1914 	return ret;
1915 }
1916 
1917 static void recover_rbio(struct btrfs_raid_bio *rbio)
1918 {
1919 	struct bio_list bio_list = BIO_EMPTY_LIST;
1920 	int total_sector_nr;
1921 	int ret = 0;
1922 
1923 	/*
1924 	 * Either we're doing recover for a read failure or degraded write,
1925 	 * caller should have set error bitmap correctly.
1926 	 */
1927 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1928 
1929 	/* For recovery, we need to read all sectors including P/Q. */
1930 	ret = alloc_rbio_pages(rbio);
1931 	if (ret < 0)
1932 		goto out;
1933 
1934 	index_rbio_pages(rbio);
1935 
1936 	/*
1937 	 * Read everything that hasn't failed. However this time we will
1938 	 * not trust any cached sector.
1939 	 * As we may read out some stale data but higher layer is not reading
1940 	 * that stale part.
1941 	 *
1942 	 * So here we always re-read everything in recovery path.
1943 	 */
1944 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1945 	     total_sector_nr++) {
1946 		int stripe = total_sector_nr / rbio->stripe_nsectors;
1947 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1948 		struct sector_ptr *sector;
1949 
1950 		/*
1951 		 * Skip the range which has error.  It can be a range which is
1952 		 * marked error (for csum mismatch), or it can be a missing
1953 		 * device.
1954 		 */
1955 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1956 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1957 			/*
1958 			 * Also set the error bit for missing device, which
1959 			 * may not yet have its error bit set.
1960 			 */
1961 			set_bit(total_sector_nr, rbio->error_bitmap);
1962 			continue;
1963 		}
1964 
1965 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1966 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1967 					 sectornr, REQ_OP_READ);
1968 		if (ret < 0) {
1969 			bio_list_put(&bio_list);
1970 			goto out;
1971 		}
1972 	}
1973 
1974 	submit_read_wait_bio_list(rbio, &bio_list);
1975 	ret = recover_sectors(rbio);
1976 out:
1977 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1978 }
1979 
1980 static void recover_rbio_work(struct work_struct *work)
1981 {
1982 	struct btrfs_raid_bio *rbio;
1983 
1984 	rbio = container_of(work, struct btrfs_raid_bio, work);
1985 	if (!lock_stripe_add(rbio))
1986 		recover_rbio(rbio);
1987 }
1988 
1989 static void recover_rbio_work_locked(struct work_struct *work)
1990 {
1991 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1992 }
1993 
1994 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1995 {
1996 	bool found = false;
1997 	int sector_nr;
1998 
1999 	/*
2000 	 * This is for RAID6 extra recovery tries, thus mirror number should
2001 	 * be large than 2.
2002 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2003 	 * RAID5 methods.
2004 	 */
2005 	ASSERT(mirror_num > 2);
2006 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2007 		int found_errors;
2008 		int faila;
2009 		int failb;
2010 
2011 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2012 							 &faila, &failb);
2013 		/* This vertical stripe doesn't have errors. */
2014 		if (!found_errors)
2015 			continue;
2016 
2017 		/*
2018 		 * If we found errors, there should be only one error marked
2019 		 * by previous set_rbio_range_error().
2020 		 */
2021 		ASSERT(found_errors == 1);
2022 		found = true;
2023 
2024 		/* Now select another stripe to mark as error. */
2025 		failb = rbio->real_stripes - (mirror_num - 1);
2026 		if (failb <= faila)
2027 			failb--;
2028 
2029 		/* Set the extra bit in error bitmap. */
2030 		if (failb >= 0)
2031 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2032 				rbio->error_bitmap);
2033 	}
2034 
2035 	/* We should found at least one vertical stripe with error.*/
2036 	ASSERT(found);
2037 }
2038 
2039 /*
2040  * the main entry point for reads from the higher layers.  This
2041  * is really only called when the normal read path had a failure,
2042  * so we assume the bio they send down corresponds to a failed part
2043  * of the drive.
2044  */
2045 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2046 			   int mirror_num)
2047 {
2048 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2049 	struct btrfs_raid_bio *rbio;
2050 
2051 	rbio = alloc_rbio(fs_info, bioc);
2052 	if (IS_ERR(rbio)) {
2053 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2054 		bio_endio(bio);
2055 		return;
2056 	}
2057 
2058 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2059 	rbio_add_bio(rbio, bio);
2060 
2061 	set_rbio_range_error(rbio, bio);
2062 
2063 	/*
2064 	 * Loop retry:
2065 	 * for 'mirror == 2', reconstruct from all other stripes.
2066 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2067 	 */
2068 	if (mirror_num > 2)
2069 		set_rbio_raid6_extra_error(rbio, mirror_num);
2070 
2071 	start_async_work(rbio, recover_rbio_work);
2072 }
2073 
2074 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2075 {
2076 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2077 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2078 						       rbio->bioc->raid_map[0]);
2079 	const u64 start = rbio->bioc->raid_map[0];
2080 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2081 			fs_info->sectorsize_bits;
2082 	int ret;
2083 
2084 	/* The rbio should not have its csum buffer initialized. */
2085 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2086 
2087 	/*
2088 	 * Skip the csum search if:
2089 	 *
2090 	 * - The rbio doesn't belong to data block groups
2091 	 *   Then we are doing IO for tree blocks, no need to search csums.
2092 	 *
2093 	 * - The rbio belongs to mixed block groups
2094 	 *   This is to avoid deadlock, as we're already holding the full
2095 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2096 	 *   raid56 recovery, we will deadlock.
2097 	 */
2098 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2099 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2100 		return;
2101 
2102 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2103 				 fs_info->csum_size, GFP_NOFS);
2104 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2105 					  GFP_NOFS);
2106 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2107 		ret = -ENOMEM;
2108 		goto error;
2109 	}
2110 
2111 	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2112 					rbio->csum_buf, rbio->csum_bitmap);
2113 	if (ret < 0)
2114 		goto error;
2115 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2116 		goto no_csum;
2117 	return;
2118 
2119 error:
2120 	/*
2121 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2122 	 * we can still continue.  But better to warn users that RMW is no
2123 	 * longer safe for this particular sub-stripe write.
2124 	 */
2125 	btrfs_warn_rl(fs_info,
2126 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2127 			rbio->bioc->raid_map[0], ret);
2128 no_csum:
2129 	kfree(rbio->csum_buf);
2130 	bitmap_free(rbio->csum_bitmap);
2131 	rbio->csum_buf = NULL;
2132 	rbio->csum_bitmap = NULL;
2133 }
2134 
2135 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2136 {
2137 	struct bio_list bio_list = BIO_EMPTY_LIST;
2138 	int total_sector_nr;
2139 	int ret = 0;
2140 
2141 	/*
2142 	 * Fill the data csums we need for data verification.  We need to fill
2143 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2144 	 * verify the data sectors.
2145 	 */
2146 	fill_data_csums(rbio);
2147 
2148 	/*
2149 	 * Build a list of bios to read all sectors (including data and P/Q).
2150 	 *
2151 	 * This behavior is to compensate the later csum verification and recovery.
2152 	 */
2153 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2154 	     total_sector_nr++) {
2155 		struct sector_ptr *sector;
2156 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2157 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2158 
2159 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2160 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2161 			       stripe, sectornr, REQ_OP_READ);
2162 		if (ret) {
2163 			bio_list_put(&bio_list);
2164 			return ret;
2165 		}
2166 	}
2167 
2168 	/*
2169 	 * We may or may not have any corrupted sectors (including missing dev
2170 	 * and csum mismatch), just let recover_sectors() to handle them all.
2171 	 */
2172 	submit_read_wait_bio_list(rbio, &bio_list);
2173 	return recover_sectors(rbio);
2174 }
2175 
2176 static void raid_wait_write_end_io(struct bio *bio)
2177 {
2178 	struct btrfs_raid_bio *rbio = bio->bi_private;
2179 	blk_status_t err = bio->bi_status;
2180 
2181 	if (err)
2182 		rbio_update_error_bitmap(rbio, bio);
2183 	bio_put(bio);
2184 	if (atomic_dec_and_test(&rbio->stripes_pending))
2185 		wake_up(&rbio->io_wait);
2186 }
2187 
2188 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2189 			      struct bio_list *bio_list)
2190 {
2191 	struct bio *bio;
2192 
2193 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2194 	while ((bio = bio_list_pop(bio_list))) {
2195 		bio->bi_end_io = raid_wait_write_end_io;
2196 
2197 		if (trace_raid56_write_stripe_enabled()) {
2198 			struct raid56_bio_trace_info trace_info = { 0 };
2199 
2200 			bio_get_trace_info(rbio, bio, &trace_info);
2201 			trace_raid56_write_stripe(rbio, bio, &trace_info);
2202 		}
2203 		submit_bio(bio);
2204 	}
2205 }
2206 
2207 /*
2208  * To determine if we need to read any sector from the disk.
2209  * Should only be utilized in RMW path, to skip cached rbio.
2210  */
2211 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2212 {
2213 	int i;
2214 
2215 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2216 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2217 
2218 		/*
2219 		 * We have a sector which doesn't have page nor uptodate,
2220 		 * thus this rbio can not be cached one, as cached one must
2221 		 * have all its data sectors present and uptodate.
2222 		 */
2223 		if (!sector->page || !sector->uptodate)
2224 			return true;
2225 	}
2226 	return false;
2227 }
2228 
2229 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2230 {
2231 	struct bio_list bio_list;
2232 	int sectornr;
2233 	int ret = 0;
2234 
2235 	/*
2236 	 * Allocate the pages for parity first, as P/Q pages will always be
2237 	 * needed for both full-stripe and sub-stripe writes.
2238 	 */
2239 	ret = alloc_rbio_parity_pages(rbio);
2240 	if (ret < 0)
2241 		goto out;
2242 
2243 	/*
2244 	 * Either full stripe write, or we have every data sector already
2245 	 * cached, can go to write path immediately.
2246 	 */
2247 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2248 		/*
2249 		 * Now we're doing sub-stripe write, also need all data stripes
2250 		 * to do the full RMW.
2251 		 */
2252 		ret = alloc_rbio_data_pages(rbio);
2253 		if (ret < 0)
2254 			goto out;
2255 
2256 		index_rbio_pages(rbio);
2257 
2258 		ret = rmw_read_wait_recover(rbio);
2259 		if (ret < 0)
2260 			goto out;
2261 	}
2262 
2263 	/*
2264 	 * At this stage we're not allowed to add any new bios to the
2265 	 * bio list any more, anyone else that wants to change this stripe
2266 	 * needs to do their own rmw.
2267 	 */
2268 	spin_lock_irq(&rbio->bio_list_lock);
2269 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2270 	spin_unlock_irq(&rbio->bio_list_lock);
2271 
2272 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2273 
2274 	index_rbio_pages(rbio);
2275 
2276 	/*
2277 	 * We don't cache full rbios because we're assuming
2278 	 * the higher layers are unlikely to use this area of
2279 	 * the disk again soon.  If they do use it again,
2280 	 * hopefully they will send another full bio.
2281 	 */
2282 	if (!rbio_is_full(rbio))
2283 		cache_rbio_pages(rbio);
2284 	else
2285 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2286 
2287 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2288 		generate_pq_vertical(rbio, sectornr);
2289 
2290 	bio_list_init(&bio_list);
2291 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2292 	if (ret < 0)
2293 		goto out;
2294 
2295 	/* We should have at least one bio assembled. */
2296 	ASSERT(bio_list_size(&bio_list));
2297 	submit_write_bios(rbio, &bio_list);
2298 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2299 
2300 	/* We may have more errors than our tolerance during the read. */
2301 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2302 		int found_errors;
2303 
2304 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2305 		if (found_errors > rbio->bioc->max_errors) {
2306 			ret = -EIO;
2307 			break;
2308 		}
2309 	}
2310 out:
2311 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2312 }
2313 
2314 static void rmw_rbio_work(struct work_struct *work)
2315 {
2316 	struct btrfs_raid_bio *rbio;
2317 
2318 	rbio = container_of(work, struct btrfs_raid_bio, work);
2319 	if (lock_stripe_add(rbio) == 0)
2320 		rmw_rbio(rbio);
2321 }
2322 
2323 static void rmw_rbio_work_locked(struct work_struct *work)
2324 {
2325 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2326 }
2327 
2328 /*
2329  * The following code is used to scrub/replace the parity stripe
2330  *
2331  * Caller must have already increased bio_counter for getting @bioc.
2332  *
2333  * Note: We need make sure all the pages that add into the scrub/replace
2334  * raid bio are correct and not be changed during the scrub/replace. That
2335  * is those pages just hold metadata or file data with checksum.
2336  */
2337 
2338 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2339 				struct btrfs_io_context *bioc,
2340 				struct btrfs_device *scrub_dev,
2341 				unsigned long *dbitmap, int stripe_nsectors)
2342 {
2343 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2344 	struct btrfs_raid_bio *rbio;
2345 	int i;
2346 
2347 	rbio = alloc_rbio(fs_info, bioc);
2348 	if (IS_ERR(rbio))
2349 		return NULL;
2350 	bio_list_add(&rbio->bio_list, bio);
2351 	/*
2352 	 * This is a special bio which is used to hold the completion handler
2353 	 * and make the scrub rbio is similar to the other types
2354 	 */
2355 	ASSERT(!bio->bi_iter.bi_size);
2356 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2357 
2358 	/*
2359 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2360 	 * to the end position, so this search can start from the first parity
2361 	 * stripe.
2362 	 */
2363 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2364 		if (bioc->stripes[i].dev == scrub_dev) {
2365 			rbio->scrubp = i;
2366 			break;
2367 		}
2368 	}
2369 	ASSERT(i < rbio->real_stripes);
2370 
2371 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2372 	return rbio;
2373 }
2374 
2375 /* Used for both parity scrub and missing. */
2376 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2377 			    unsigned int pgoff, u64 logical)
2378 {
2379 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2380 	int stripe_offset;
2381 	int index;
2382 
2383 	ASSERT(logical >= rbio->bioc->raid_map[0]);
2384 	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2385 				       BTRFS_STRIPE_LEN * rbio->nr_data);
2386 	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2387 	index = stripe_offset / sectorsize;
2388 	rbio->bio_sectors[index].page = page;
2389 	rbio->bio_sectors[index].pgoff = pgoff;
2390 }
2391 
2392 /*
2393  * We just scrub the parity that we have correct data on the same horizontal,
2394  * so we needn't allocate all pages for all the stripes.
2395  */
2396 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2397 {
2398 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2399 	int total_sector_nr;
2400 
2401 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2402 	     total_sector_nr++) {
2403 		struct page *page;
2404 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2405 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2406 
2407 		if (!test_bit(sectornr, &rbio->dbitmap))
2408 			continue;
2409 		if (rbio->stripe_pages[index])
2410 			continue;
2411 		page = alloc_page(GFP_NOFS);
2412 		if (!page)
2413 			return -ENOMEM;
2414 		rbio->stripe_pages[index] = page;
2415 	}
2416 	index_stripe_sectors(rbio);
2417 	return 0;
2418 }
2419 
2420 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
2421 {
2422 	struct btrfs_io_context *bioc = rbio->bioc;
2423 	const u32 sectorsize = bioc->fs_info->sectorsize;
2424 	void **pointers = rbio->finish_pointers;
2425 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2426 	int nr_data = rbio->nr_data;
2427 	int stripe;
2428 	int sectornr;
2429 	bool has_qstripe;
2430 	struct sector_ptr p_sector = { 0 };
2431 	struct sector_ptr q_sector = { 0 };
2432 	struct bio_list bio_list;
2433 	int is_replace = 0;
2434 	int ret;
2435 
2436 	bio_list_init(&bio_list);
2437 
2438 	if (rbio->real_stripes - rbio->nr_data == 1)
2439 		has_qstripe = false;
2440 	else if (rbio->real_stripes - rbio->nr_data == 2)
2441 		has_qstripe = true;
2442 	else
2443 		BUG();
2444 
2445 	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2446 		is_replace = 1;
2447 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2448 	}
2449 
2450 	/*
2451 	 * Because the higher layers(scrubber) are unlikely to
2452 	 * use this area of the disk again soon, so don't cache
2453 	 * it.
2454 	 */
2455 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2456 
2457 	if (!need_check)
2458 		goto writeback;
2459 
2460 	p_sector.page = alloc_page(GFP_NOFS);
2461 	if (!p_sector.page)
2462 		return -ENOMEM;
2463 	p_sector.pgoff = 0;
2464 	p_sector.uptodate = 1;
2465 
2466 	if (has_qstripe) {
2467 		/* RAID6, allocate and map temp space for the Q stripe */
2468 		q_sector.page = alloc_page(GFP_NOFS);
2469 		if (!q_sector.page) {
2470 			__free_page(p_sector.page);
2471 			p_sector.page = NULL;
2472 			return -ENOMEM;
2473 		}
2474 		q_sector.pgoff = 0;
2475 		q_sector.uptodate = 1;
2476 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2477 	}
2478 
2479 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2480 
2481 	/* Map the parity stripe just once */
2482 	pointers[nr_data] = kmap_local_page(p_sector.page);
2483 
2484 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2485 		struct sector_ptr *sector;
2486 		void *parity;
2487 
2488 		/* first collect one page from each data stripe */
2489 		for (stripe = 0; stripe < nr_data; stripe++) {
2490 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2491 			pointers[stripe] = kmap_local_page(sector->page) +
2492 					   sector->pgoff;
2493 		}
2494 
2495 		if (has_qstripe) {
2496 			/* RAID6, call the library function to fill in our P/Q */
2497 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2498 						pointers);
2499 		} else {
2500 			/* raid5 */
2501 			memcpy(pointers[nr_data], pointers[0], sectorsize);
2502 			run_xor(pointers + 1, nr_data - 1, sectorsize);
2503 		}
2504 
2505 		/* Check scrubbing parity and repair it */
2506 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2507 		parity = kmap_local_page(sector->page) + sector->pgoff;
2508 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2509 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2510 		else
2511 			/* Parity is right, needn't writeback */
2512 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2513 		kunmap_local(parity);
2514 
2515 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2516 			kunmap_local(pointers[stripe]);
2517 	}
2518 
2519 	kunmap_local(pointers[nr_data]);
2520 	__free_page(p_sector.page);
2521 	p_sector.page = NULL;
2522 	if (q_sector.page) {
2523 		kunmap_local(pointers[rbio->real_stripes - 1]);
2524 		__free_page(q_sector.page);
2525 		q_sector.page = NULL;
2526 	}
2527 
2528 writeback:
2529 	/*
2530 	 * time to start writing.  Make bios for everything from the
2531 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2532 	 * everything else.
2533 	 */
2534 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2535 		struct sector_ptr *sector;
2536 
2537 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2538 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2539 					 sectornr, REQ_OP_WRITE);
2540 		if (ret)
2541 			goto cleanup;
2542 	}
2543 
2544 	if (!is_replace)
2545 		goto submit_write;
2546 
2547 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2548 		struct sector_ptr *sector;
2549 
2550 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2551 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2552 				       bioc->tgtdev_map[rbio->scrubp],
2553 				       sectornr, REQ_OP_WRITE);
2554 		if (ret)
2555 			goto cleanup;
2556 	}
2557 
2558 submit_write:
2559 	submit_write_bios(rbio, &bio_list);
2560 	return 0;
2561 
2562 cleanup:
2563 	bio_list_put(&bio_list);
2564 	return ret;
2565 }
2566 
2567 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2568 {
2569 	if (stripe >= 0 && stripe < rbio->nr_data)
2570 		return 1;
2571 	return 0;
2572 }
2573 
2574 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2575 {
2576 	void **pointers = NULL;
2577 	void **unmap_array = NULL;
2578 	int sector_nr;
2579 	int ret = 0;
2580 
2581 	/*
2582 	 * @pointers array stores the pointer for each sector.
2583 	 *
2584 	 * @unmap_array stores copy of pointers that does not get reordered
2585 	 * during reconstruction so that kunmap_local works.
2586 	 */
2587 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2588 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2589 	if (!pointers || !unmap_array) {
2590 		ret = -ENOMEM;
2591 		goto out;
2592 	}
2593 
2594 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2595 		int dfail = 0, failp = -1;
2596 		int faila;
2597 		int failb;
2598 		int found_errors;
2599 
2600 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2601 							 &faila, &failb);
2602 		if (found_errors > rbio->bioc->max_errors) {
2603 			ret = -EIO;
2604 			goto out;
2605 		}
2606 		if (found_errors == 0)
2607 			continue;
2608 
2609 		/* We should have at least one error here. */
2610 		ASSERT(faila >= 0 || failb >= 0);
2611 
2612 		if (is_data_stripe(rbio, faila))
2613 			dfail++;
2614 		else if (is_parity_stripe(faila))
2615 			failp = faila;
2616 
2617 		if (is_data_stripe(rbio, failb))
2618 			dfail++;
2619 		else if (is_parity_stripe(failb))
2620 			failp = failb;
2621 		/*
2622 		 * Because we can not use a scrubbing parity to repair the
2623 		 * data, so the capability of the repair is declined.  (In the
2624 		 * case of RAID5, we can not repair anything.)
2625 		 */
2626 		if (dfail > rbio->bioc->max_errors - 1) {
2627 			ret = -EIO;
2628 			goto out;
2629 		}
2630 		/*
2631 		 * If all data is good, only parity is correctly, just repair
2632 		 * the parity, no need to recover data stripes.
2633 		 */
2634 		if (dfail == 0)
2635 			continue;
2636 
2637 		/*
2638 		 * Here means we got one corrupted data stripe and one
2639 		 * corrupted parity on RAID6, if the corrupted parity is
2640 		 * scrubbing parity, luckily, use the other one to repair the
2641 		 * data, or we can not repair the data stripe.
2642 		 */
2643 		if (failp != rbio->scrubp) {
2644 			ret = -EIO;
2645 			goto out;
2646 		}
2647 
2648 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2649 		if (ret < 0)
2650 			goto out;
2651 	}
2652 out:
2653 	kfree(pointers);
2654 	kfree(unmap_array);
2655 	return ret;
2656 }
2657 
2658 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2659 {
2660 	struct bio_list bio_list = BIO_EMPTY_LIST;
2661 	int total_sector_nr;
2662 	int ret = 0;
2663 
2664 	/* Build a list of bios to read all the missing parts. */
2665 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2666 	     total_sector_nr++) {
2667 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2668 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2669 		struct sector_ptr *sector;
2670 
2671 		/* No data in the vertical stripe, no need to read. */
2672 		if (!test_bit(sectornr, &rbio->dbitmap))
2673 			continue;
2674 
2675 		/*
2676 		 * We want to find all the sectors missing from the rbio and
2677 		 * read them from the disk. If sector_in_rbio() finds a sector
2678 		 * in the bio list we don't need to read it off the stripe.
2679 		 */
2680 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2681 		if (sector)
2682 			continue;
2683 
2684 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2685 		/*
2686 		 * The bio cache may have handed us an uptodate sector.  If so,
2687 		 * use it.
2688 		 */
2689 		if (sector->uptodate)
2690 			continue;
2691 
2692 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2693 					 sectornr, REQ_OP_READ);
2694 		if (ret) {
2695 			bio_list_put(&bio_list);
2696 			return ret;
2697 		}
2698 	}
2699 
2700 	submit_read_wait_bio_list(rbio, &bio_list);
2701 	return 0;
2702 }
2703 
2704 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2705 {
2706 	bool need_check = false;
2707 	int sector_nr;
2708 	int ret;
2709 
2710 	ret = alloc_rbio_essential_pages(rbio);
2711 	if (ret)
2712 		goto out;
2713 
2714 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2715 
2716 	ret = scrub_assemble_read_bios(rbio);
2717 	if (ret < 0)
2718 		goto out;
2719 
2720 	/* We may have some failures, recover the failed sectors first. */
2721 	ret = recover_scrub_rbio(rbio);
2722 	if (ret < 0)
2723 		goto out;
2724 
2725 	/*
2726 	 * We have every sector properly prepared. Can finish the scrub
2727 	 * and writeback the good content.
2728 	 */
2729 	ret = finish_parity_scrub(rbio, need_check);
2730 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2731 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2732 		int found_errors;
2733 
2734 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2735 		if (found_errors > rbio->bioc->max_errors) {
2736 			ret = -EIO;
2737 			break;
2738 		}
2739 	}
2740 out:
2741 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2742 }
2743 
2744 static void scrub_rbio_work_locked(struct work_struct *work)
2745 {
2746 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2747 }
2748 
2749 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2750 {
2751 	if (!lock_stripe_add(rbio))
2752 		start_async_work(rbio, scrub_rbio_work_locked);
2753 }
2754 
2755 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2756 
2757 struct btrfs_raid_bio *
2758 raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2759 {
2760 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2761 	struct btrfs_raid_bio *rbio;
2762 
2763 	rbio = alloc_rbio(fs_info, bioc);
2764 	if (IS_ERR(rbio))
2765 		return NULL;
2766 
2767 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2768 	bio_list_add(&rbio->bio_list, bio);
2769 	/*
2770 	 * This is a special bio which is used to hold the completion handler
2771 	 * and make the scrub rbio is similar to the other types
2772 	 */
2773 	ASSERT(!bio->bi_iter.bi_size);
2774 
2775 	set_rbio_range_error(rbio, bio);
2776 
2777 	return rbio;
2778 }
2779 
2780 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2781 {
2782 	start_async_work(rbio, recover_rbio_work);
2783 }
2784