1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "misc.h" 18 #include "ctree.h" 19 #include "disk-io.h" 20 #include "volumes.h" 21 #include "raid56.h" 22 #include "async-thread.h" 23 #include "file-item.h" 24 #include "btrfs_inode.h" 25 26 /* set when additional merges to this rbio are not allowed */ 27 #define RBIO_RMW_LOCKED_BIT 1 28 29 /* 30 * set when this rbio is sitting in the hash, but it is just a cache 31 * of past RMW 32 */ 33 #define RBIO_CACHE_BIT 2 34 35 /* 36 * set when it is safe to trust the stripe_pages for caching 37 */ 38 #define RBIO_CACHE_READY_BIT 3 39 40 #define RBIO_CACHE_SIZE 1024 41 42 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 43 44 /* Used by the raid56 code to lock stripes for read/modify/write */ 45 struct btrfs_stripe_hash { 46 struct list_head hash_list; 47 spinlock_t lock; 48 }; 49 50 /* Used by the raid56 code to lock stripes for read/modify/write */ 51 struct btrfs_stripe_hash_table { 52 struct list_head stripe_cache; 53 spinlock_t cache_lock; 54 int cache_size; 55 struct btrfs_stripe_hash table[]; 56 }; 57 58 /* 59 * A bvec like structure to present a sector inside a page. 60 * 61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 62 */ 63 struct sector_ptr { 64 struct page *page; 65 unsigned int pgoff:24; 66 unsigned int uptodate:8; 67 }; 68 69 static void rmw_rbio_work(struct work_struct *work); 70 static void rmw_rbio_work_locked(struct work_struct *work); 71 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 73 74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check); 75 static void scrub_rbio_work_locked(struct work_struct *work); 76 77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 78 { 79 bitmap_free(rbio->error_bitmap); 80 kfree(rbio->stripe_pages); 81 kfree(rbio->bio_sectors); 82 kfree(rbio->stripe_sectors); 83 kfree(rbio->finish_pointers); 84 } 85 86 static void free_raid_bio(struct btrfs_raid_bio *rbio) 87 { 88 int i; 89 90 if (!refcount_dec_and_test(&rbio->refs)) 91 return; 92 93 WARN_ON(!list_empty(&rbio->stripe_cache)); 94 WARN_ON(!list_empty(&rbio->hash_list)); 95 WARN_ON(!bio_list_empty(&rbio->bio_list)); 96 97 for (i = 0; i < rbio->nr_pages; i++) { 98 if (rbio->stripe_pages[i]) { 99 __free_page(rbio->stripe_pages[i]); 100 rbio->stripe_pages[i] = NULL; 101 } 102 } 103 104 btrfs_put_bioc(rbio->bioc); 105 free_raid_bio_pointers(rbio); 106 kfree(rbio); 107 } 108 109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 110 { 111 INIT_WORK(&rbio->work, work_func); 112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 113 } 114 115 /* 116 * the stripe hash table is used for locking, and to collect 117 * bios in hopes of making a full stripe 118 */ 119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 120 { 121 struct btrfs_stripe_hash_table *table; 122 struct btrfs_stripe_hash_table *x; 123 struct btrfs_stripe_hash *cur; 124 struct btrfs_stripe_hash *h; 125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 126 int i; 127 128 if (info->stripe_hash_table) 129 return 0; 130 131 /* 132 * The table is large, starting with order 4 and can go as high as 133 * order 7 in case lock debugging is turned on. 134 * 135 * Try harder to allocate and fallback to vmalloc to lower the chance 136 * of a failing mount. 137 */ 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 139 if (!table) 140 return -ENOMEM; 141 142 spin_lock_init(&table->cache_lock); 143 INIT_LIST_HEAD(&table->stripe_cache); 144 145 h = table->table; 146 147 for (i = 0; i < num_entries; i++) { 148 cur = h + i; 149 INIT_LIST_HEAD(&cur->hash_list); 150 spin_lock_init(&cur->lock); 151 } 152 153 x = cmpxchg(&info->stripe_hash_table, NULL, table); 154 kvfree(x); 155 return 0; 156 } 157 158 /* 159 * caching an rbio means to copy anything from the 160 * bio_sectors array into the stripe_pages array. We 161 * use the page uptodate bit in the stripe cache array 162 * to indicate if it has valid data 163 * 164 * once the caching is done, we set the cache ready 165 * bit. 166 */ 167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 168 { 169 int i; 170 int ret; 171 172 ret = alloc_rbio_pages(rbio); 173 if (ret) 174 return; 175 176 for (i = 0; i < rbio->nr_sectors; i++) { 177 /* Some range not covered by bio (partial write), skip it */ 178 if (!rbio->bio_sectors[i].page) { 179 /* 180 * Even if the sector is not covered by bio, if it is 181 * a data sector it should still be uptodate as it is 182 * read from disk. 183 */ 184 if (i < rbio->nr_data * rbio->stripe_nsectors) 185 ASSERT(rbio->stripe_sectors[i].uptodate); 186 continue; 187 } 188 189 ASSERT(rbio->stripe_sectors[i].page); 190 memcpy_page(rbio->stripe_sectors[i].page, 191 rbio->stripe_sectors[i].pgoff, 192 rbio->bio_sectors[i].page, 193 rbio->bio_sectors[i].pgoff, 194 rbio->bioc->fs_info->sectorsize); 195 rbio->stripe_sectors[i].uptodate = 1; 196 } 197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 198 } 199 200 /* 201 * we hash on the first logical address of the stripe 202 */ 203 static int rbio_bucket(struct btrfs_raid_bio *rbio) 204 { 205 u64 num = rbio->bioc->raid_map[0]; 206 207 /* 208 * we shift down quite a bit. We're using byte 209 * addressing, and most of the lower bits are zeros. 210 * This tends to upset hash_64, and it consistently 211 * returns just one or two different values. 212 * 213 * shifting off the lower bits fixes things. 214 */ 215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 216 } 217 218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 219 unsigned int page_nr) 220 { 221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 222 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 223 int i; 224 225 ASSERT(page_nr < rbio->nr_pages); 226 227 for (i = sectors_per_page * page_nr; 228 i < sectors_per_page * page_nr + sectors_per_page; 229 i++) { 230 if (!rbio->stripe_sectors[i].uptodate) 231 return false; 232 } 233 return true; 234 } 235 236 /* 237 * Update the stripe_sectors[] array to use correct page and pgoff 238 * 239 * Should be called every time any page pointer in stripes_pages[] got modified. 240 */ 241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 242 { 243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 244 u32 offset; 245 int i; 246 247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 248 int page_index = offset >> PAGE_SHIFT; 249 250 ASSERT(page_index < rbio->nr_pages); 251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 253 } 254 } 255 256 static void steal_rbio_page(struct btrfs_raid_bio *src, 257 struct btrfs_raid_bio *dest, int page_nr) 258 { 259 const u32 sectorsize = src->bioc->fs_info->sectorsize; 260 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 261 int i; 262 263 if (dest->stripe_pages[page_nr]) 264 __free_page(dest->stripe_pages[page_nr]); 265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 266 src->stripe_pages[page_nr] = NULL; 267 268 /* Also update the sector->uptodate bits. */ 269 for (i = sectors_per_page * page_nr; 270 i < sectors_per_page * page_nr + sectors_per_page; i++) 271 dest->stripe_sectors[i].uptodate = true; 272 } 273 274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 275 { 276 const int sector_nr = (page_nr << PAGE_SHIFT) >> 277 rbio->bioc->fs_info->sectorsize_bits; 278 279 /* 280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 281 * we won't have a page which is half data half parity. 282 * 283 * Thus if the first sector of the page belongs to data stripes, then 284 * the full page belongs to data stripes. 285 */ 286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 287 } 288 289 /* 290 * Stealing an rbio means taking all the uptodate pages from the stripe array 291 * in the source rbio and putting them into the destination rbio. 292 * 293 * This will also update the involved stripe_sectors[] which are referring to 294 * the old pages. 295 */ 296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 297 { 298 int i; 299 300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 301 return; 302 303 for (i = 0; i < dest->nr_pages; i++) { 304 struct page *p = src->stripe_pages[i]; 305 306 /* 307 * We don't need to steal P/Q pages as they will always be 308 * regenerated for RMW or full write anyway. 309 */ 310 if (!is_data_stripe_page(src, i)) 311 continue; 312 313 /* 314 * If @src already has RBIO_CACHE_READY_BIT, it should have 315 * all data stripe pages present and uptodate. 316 */ 317 ASSERT(p); 318 ASSERT(full_page_sectors_uptodate(src, i)); 319 steal_rbio_page(src, dest, i); 320 } 321 index_stripe_sectors(dest); 322 index_stripe_sectors(src); 323 } 324 325 /* 326 * merging means we take the bio_list from the victim and 327 * splice it into the destination. The victim should 328 * be discarded afterwards. 329 * 330 * must be called with dest->rbio_list_lock held 331 */ 332 static void merge_rbio(struct btrfs_raid_bio *dest, 333 struct btrfs_raid_bio *victim) 334 { 335 bio_list_merge(&dest->bio_list, &victim->bio_list); 336 dest->bio_list_bytes += victim->bio_list_bytes; 337 /* Also inherit the bitmaps from @victim. */ 338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 339 dest->stripe_nsectors); 340 bio_list_init(&victim->bio_list); 341 } 342 343 /* 344 * used to prune items that are in the cache. The caller 345 * must hold the hash table lock. 346 */ 347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 348 { 349 int bucket = rbio_bucket(rbio); 350 struct btrfs_stripe_hash_table *table; 351 struct btrfs_stripe_hash *h; 352 int freeit = 0; 353 354 /* 355 * check the bit again under the hash table lock. 356 */ 357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 358 return; 359 360 table = rbio->bioc->fs_info->stripe_hash_table; 361 h = table->table + bucket; 362 363 /* hold the lock for the bucket because we may be 364 * removing it from the hash table 365 */ 366 spin_lock(&h->lock); 367 368 /* 369 * hold the lock for the bio list because we need 370 * to make sure the bio list is empty 371 */ 372 spin_lock(&rbio->bio_list_lock); 373 374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 375 list_del_init(&rbio->stripe_cache); 376 table->cache_size -= 1; 377 freeit = 1; 378 379 /* if the bio list isn't empty, this rbio is 380 * still involved in an IO. We take it out 381 * of the cache list, and drop the ref that 382 * was held for the list. 383 * 384 * If the bio_list was empty, we also remove 385 * the rbio from the hash_table, and drop 386 * the corresponding ref 387 */ 388 if (bio_list_empty(&rbio->bio_list)) { 389 if (!list_empty(&rbio->hash_list)) { 390 list_del_init(&rbio->hash_list); 391 refcount_dec(&rbio->refs); 392 BUG_ON(!list_empty(&rbio->plug_list)); 393 } 394 } 395 } 396 397 spin_unlock(&rbio->bio_list_lock); 398 spin_unlock(&h->lock); 399 400 if (freeit) 401 free_raid_bio(rbio); 402 } 403 404 /* 405 * prune a given rbio from the cache 406 */ 407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 408 { 409 struct btrfs_stripe_hash_table *table; 410 unsigned long flags; 411 412 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 413 return; 414 415 table = rbio->bioc->fs_info->stripe_hash_table; 416 417 spin_lock_irqsave(&table->cache_lock, flags); 418 __remove_rbio_from_cache(rbio); 419 spin_unlock_irqrestore(&table->cache_lock, flags); 420 } 421 422 /* 423 * remove everything in the cache 424 */ 425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 426 { 427 struct btrfs_stripe_hash_table *table; 428 unsigned long flags; 429 struct btrfs_raid_bio *rbio; 430 431 table = info->stripe_hash_table; 432 433 spin_lock_irqsave(&table->cache_lock, flags); 434 while (!list_empty(&table->stripe_cache)) { 435 rbio = list_entry(table->stripe_cache.next, 436 struct btrfs_raid_bio, 437 stripe_cache); 438 __remove_rbio_from_cache(rbio); 439 } 440 spin_unlock_irqrestore(&table->cache_lock, flags); 441 } 442 443 /* 444 * remove all cached entries and free the hash table 445 * used by unmount 446 */ 447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 448 { 449 if (!info->stripe_hash_table) 450 return; 451 btrfs_clear_rbio_cache(info); 452 kvfree(info->stripe_hash_table); 453 info->stripe_hash_table = NULL; 454 } 455 456 /* 457 * insert an rbio into the stripe cache. It 458 * must have already been prepared by calling 459 * cache_rbio_pages 460 * 461 * If this rbio was already cached, it gets 462 * moved to the front of the lru. 463 * 464 * If the size of the rbio cache is too big, we 465 * prune an item. 466 */ 467 static void cache_rbio(struct btrfs_raid_bio *rbio) 468 { 469 struct btrfs_stripe_hash_table *table; 470 unsigned long flags; 471 472 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 473 return; 474 475 table = rbio->bioc->fs_info->stripe_hash_table; 476 477 spin_lock_irqsave(&table->cache_lock, flags); 478 spin_lock(&rbio->bio_list_lock); 479 480 /* bump our ref if we were not in the list before */ 481 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 482 refcount_inc(&rbio->refs); 483 484 if (!list_empty(&rbio->stripe_cache)){ 485 list_move(&rbio->stripe_cache, &table->stripe_cache); 486 } else { 487 list_add(&rbio->stripe_cache, &table->stripe_cache); 488 table->cache_size += 1; 489 } 490 491 spin_unlock(&rbio->bio_list_lock); 492 493 if (table->cache_size > RBIO_CACHE_SIZE) { 494 struct btrfs_raid_bio *found; 495 496 found = list_entry(table->stripe_cache.prev, 497 struct btrfs_raid_bio, 498 stripe_cache); 499 500 if (found != rbio) 501 __remove_rbio_from_cache(found); 502 } 503 504 spin_unlock_irqrestore(&table->cache_lock, flags); 505 } 506 507 /* 508 * helper function to run the xor_blocks api. It is only 509 * able to do MAX_XOR_BLOCKS at a time, so we need to 510 * loop through. 511 */ 512 static void run_xor(void **pages, int src_cnt, ssize_t len) 513 { 514 int src_off = 0; 515 int xor_src_cnt = 0; 516 void *dest = pages[src_cnt]; 517 518 while(src_cnt > 0) { 519 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 520 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 521 522 src_cnt -= xor_src_cnt; 523 src_off += xor_src_cnt; 524 } 525 } 526 527 /* 528 * Returns true if the bio list inside this rbio covers an entire stripe (no 529 * rmw required). 530 */ 531 static int rbio_is_full(struct btrfs_raid_bio *rbio) 532 { 533 unsigned long flags; 534 unsigned long size = rbio->bio_list_bytes; 535 int ret = 1; 536 537 spin_lock_irqsave(&rbio->bio_list_lock, flags); 538 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 539 ret = 0; 540 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 541 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 542 543 return ret; 544 } 545 546 /* 547 * returns 1 if it is safe to merge two rbios together. 548 * The merging is safe if the two rbios correspond to 549 * the same stripe and if they are both going in the same 550 * direction (read vs write), and if neither one is 551 * locked for final IO 552 * 553 * The caller is responsible for locking such that 554 * rmw_locked is safe to test 555 */ 556 static int rbio_can_merge(struct btrfs_raid_bio *last, 557 struct btrfs_raid_bio *cur) 558 { 559 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 560 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 561 return 0; 562 563 /* 564 * we can't merge with cached rbios, since the 565 * idea is that when we merge the destination 566 * rbio is going to run our IO for us. We can 567 * steal from cached rbios though, other functions 568 * handle that. 569 */ 570 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 571 test_bit(RBIO_CACHE_BIT, &cur->flags)) 572 return 0; 573 574 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0]) 575 return 0; 576 577 /* we can't merge with different operations */ 578 if (last->operation != cur->operation) 579 return 0; 580 /* 581 * We've need read the full stripe from the drive. 582 * check and repair the parity and write the new results. 583 * 584 * We're not allowed to add any new bios to the 585 * bio list here, anyone else that wants to 586 * change this stripe needs to do their own rmw. 587 */ 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 589 return 0; 590 591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING || 592 last->operation == BTRFS_RBIO_READ_REBUILD) 593 return 0; 594 595 return 1; 596 } 597 598 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 599 unsigned int stripe_nr, 600 unsigned int sector_nr) 601 { 602 ASSERT(stripe_nr < rbio->real_stripes); 603 ASSERT(sector_nr < rbio->stripe_nsectors); 604 605 return stripe_nr * rbio->stripe_nsectors + sector_nr; 606 } 607 608 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 609 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 610 unsigned int stripe_nr, 611 unsigned int sector_nr) 612 { 613 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 614 sector_nr)]; 615 } 616 617 /* Grab a sector inside P stripe */ 618 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 619 unsigned int sector_nr) 620 { 621 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 622 } 623 624 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 625 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 626 unsigned int sector_nr) 627 { 628 if (rbio->nr_data + 1 == rbio->real_stripes) 629 return NULL; 630 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 631 } 632 633 /* 634 * The first stripe in the table for a logical address 635 * has the lock. rbios are added in one of three ways: 636 * 637 * 1) Nobody has the stripe locked yet. The rbio is given 638 * the lock and 0 is returned. The caller must start the IO 639 * themselves. 640 * 641 * 2) Someone has the stripe locked, but we're able to merge 642 * with the lock owner. The rbio is freed and the IO will 643 * start automatically along with the existing rbio. 1 is returned. 644 * 645 * 3) Someone has the stripe locked, but we're not able to merge. 646 * The rbio is added to the lock owner's plug list, or merged into 647 * an rbio already on the plug list. When the lock owner unlocks, 648 * the next rbio on the list is run and the IO is started automatically. 649 * 1 is returned 650 * 651 * If we return 0, the caller still owns the rbio and must continue with 652 * IO submission. If we return 1, the caller must assume the rbio has 653 * already been freed. 654 */ 655 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 656 { 657 struct btrfs_stripe_hash *h; 658 struct btrfs_raid_bio *cur; 659 struct btrfs_raid_bio *pending; 660 unsigned long flags; 661 struct btrfs_raid_bio *freeit = NULL; 662 struct btrfs_raid_bio *cache_drop = NULL; 663 int ret = 0; 664 665 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 666 667 spin_lock_irqsave(&h->lock, flags); 668 list_for_each_entry(cur, &h->hash_list, hash_list) { 669 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0]) 670 continue; 671 672 spin_lock(&cur->bio_list_lock); 673 674 /* Can we steal this cached rbio's pages? */ 675 if (bio_list_empty(&cur->bio_list) && 676 list_empty(&cur->plug_list) && 677 test_bit(RBIO_CACHE_BIT, &cur->flags) && 678 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 679 list_del_init(&cur->hash_list); 680 refcount_dec(&cur->refs); 681 682 steal_rbio(cur, rbio); 683 cache_drop = cur; 684 spin_unlock(&cur->bio_list_lock); 685 686 goto lockit; 687 } 688 689 /* Can we merge into the lock owner? */ 690 if (rbio_can_merge(cur, rbio)) { 691 merge_rbio(cur, rbio); 692 spin_unlock(&cur->bio_list_lock); 693 freeit = rbio; 694 ret = 1; 695 goto out; 696 } 697 698 699 /* 700 * We couldn't merge with the running rbio, see if we can merge 701 * with the pending ones. We don't have to check for rmw_locked 702 * because there is no way they are inside finish_rmw right now 703 */ 704 list_for_each_entry(pending, &cur->plug_list, plug_list) { 705 if (rbio_can_merge(pending, rbio)) { 706 merge_rbio(pending, rbio); 707 spin_unlock(&cur->bio_list_lock); 708 freeit = rbio; 709 ret = 1; 710 goto out; 711 } 712 } 713 714 /* 715 * No merging, put us on the tail of the plug list, our rbio 716 * will be started with the currently running rbio unlocks 717 */ 718 list_add_tail(&rbio->plug_list, &cur->plug_list); 719 spin_unlock(&cur->bio_list_lock); 720 ret = 1; 721 goto out; 722 } 723 lockit: 724 refcount_inc(&rbio->refs); 725 list_add(&rbio->hash_list, &h->hash_list); 726 out: 727 spin_unlock_irqrestore(&h->lock, flags); 728 if (cache_drop) 729 remove_rbio_from_cache(cache_drop); 730 if (freeit) 731 free_raid_bio(freeit); 732 return ret; 733 } 734 735 static void recover_rbio_work_locked(struct work_struct *work); 736 737 /* 738 * called as rmw or parity rebuild is completed. If the plug list has more 739 * rbios waiting for this stripe, the next one on the list will be started 740 */ 741 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 742 { 743 int bucket; 744 struct btrfs_stripe_hash *h; 745 unsigned long flags; 746 int keep_cache = 0; 747 748 bucket = rbio_bucket(rbio); 749 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 750 751 if (list_empty(&rbio->plug_list)) 752 cache_rbio(rbio); 753 754 spin_lock_irqsave(&h->lock, flags); 755 spin_lock(&rbio->bio_list_lock); 756 757 if (!list_empty(&rbio->hash_list)) { 758 /* 759 * if we're still cached and there is no other IO 760 * to perform, just leave this rbio here for others 761 * to steal from later 762 */ 763 if (list_empty(&rbio->plug_list) && 764 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 765 keep_cache = 1; 766 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 767 BUG_ON(!bio_list_empty(&rbio->bio_list)); 768 goto done; 769 } 770 771 list_del_init(&rbio->hash_list); 772 refcount_dec(&rbio->refs); 773 774 /* 775 * we use the plug list to hold all the rbios 776 * waiting for the chance to lock this stripe. 777 * hand the lock over to one of them. 778 */ 779 if (!list_empty(&rbio->plug_list)) { 780 struct btrfs_raid_bio *next; 781 struct list_head *head = rbio->plug_list.next; 782 783 next = list_entry(head, struct btrfs_raid_bio, 784 plug_list); 785 786 list_del_init(&rbio->plug_list); 787 788 list_add(&next->hash_list, &h->hash_list); 789 refcount_inc(&next->refs); 790 spin_unlock(&rbio->bio_list_lock); 791 spin_unlock_irqrestore(&h->lock, flags); 792 793 if (next->operation == BTRFS_RBIO_READ_REBUILD) 794 start_async_work(next, recover_rbio_work_locked); 795 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 796 steal_rbio(rbio, next); 797 start_async_work(next, recover_rbio_work_locked); 798 } else if (next->operation == BTRFS_RBIO_WRITE) { 799 steal_rbio(rbio, next); 800 start_async_work(next, rmw_rbio_work_locked); 801 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 802 steal_rbio(rbio, next); 803 start_async_work(next, scrub_rbio_work_locked); 804 } 805 806 goto done_nolock; 807 } 808 } 809 done: 810 spin_unlock(&rbio->bio_list_lock); 811 spin_unlock_irqrestore(&h->lock, flags); 812 813 done_nolock: 814 if (!keep_cache) 815 remove_rbio_from_cache(rbio); 816 } 817 818 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 819 { 820 struct bio *next; 821 822 while (cur) { 823 next = cur->bi_next; 824 cur->bi_next = NULL; 825 cur->bi_status = err; 826 bio_endio(cur); 827 cur = next; 828 } 829 } 830 831 /* 832 * this frees the rbio and runs through all the bios in the 833 * bio_list and calls end_io on them 834 */ 835 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 836 { 837 struct bio *cur = bio_list_get(&rbio->bio_list); 838 struct bio *extra; 839 840 kfree(rbio->csum_buf); 841 bitmap_free(rbio->csum_bitmap); 842 rbio->csum_buf = NULL; 843 rbio->csum_bitmap = NULL; 844 845 /* 846 * Clear the data bitmap, as the rbio may be cached for later usage. 847 * do this before before unlock_stripe() so there will be no new bio 848 * for this bio. 849 */ 850 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 851 852 /* 853 * At this moment, rbio->bio_list is empty, however since rbio does not 854 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 855 * hash list, rbio may be merged with others so that rbio->bio_list 856 * becomes non-empty. 857 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 858 * more and we can call bio_endio() on all queued bios. 859 */ 860 unlock_stripe(rbio); 861 extra = bio_list_get(&rbio->bio_list); 862 free_raid_bio(rbio); 863 864 rbio_endio_bio_list(cur, err); 865 if (extra) 866 rbio_endio_bio_list(extra, err); 867 } 868 869 /* 870 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 871 * 872 * @rbio: The raid bio 873 * @stripe_nr: Stripe number, valid range [0, real_stripe) 874 * @sector_nr: Sector number inside the stripe, 875 * valid range [0, stripe_nsectors) 876 * @bio_list_only: Whether to use sectors inside the bio list only. 877 * 878 * The read/modify/write code wants to reuse the original bio page as much 879 * as possible, and only use stripe_sectors as fallback. 880 */ 881 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 882 int stripe_nr, int sector_nr, 883 bool bio_list_only) 884 { 885 struct sector_ptr *sector; 886 int index; 887 888 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); 889 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 890 891 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 892 ASSERT(index >= 0 && index < rbio->nr_sectors); 893 894 spin_lock_irq(&rbio->bio_list_lock); 895 sector = &rbio->bio_sectors[index]; 896 if (sector->page || bio_list_only) { 897 /* Don't return sector without a valid page pointer */ 898 if (!sector->page) 899 sector = NULL; 900 spin_unlock_irq(&rbio->bio_list_lock); 901 return sector; 902 } 903 spin_unlock_irq(&rbio->bio_list_lock); 904 905 return &rbio->stripe_sectors[index]; 906 } 907 908 /* 909 * allocation and initial setup for the btrfs_raid_bio. Not 910 * this does not allocate any pages for rbio->pages. 911 */ 912 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 913 struct btrfs_io_context *bioc) 914 { 915 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs; 916 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 917 const unsigned int num_pages = stripe_npages * real_stripes; 918 const unsigned int stripe_nsectors = 919 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 920 const unsigned int num_sectors = stripe_nsectors * real_stripes; 921 struct btrfs_raid_bio *rbio; 922 923 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 924 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 925 /* 926 * Our current stripe len should be fixed to 64k thus stripe_nsectors 927 * (at most 16) should be no larger than BITS_PER_LONG. 928 */ 929 ASSERT(stripe_nsectors <= BITS_PER_LONG); 930 931 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 932 if (!rbio) 933 return ERR_PTR(-ENOMEM); 934 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 935 GFP_NOFS); 936 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 937 GFP_NOFS); 938 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 939 GFP_NOFS); 940 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 941 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 942 943 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 944 !rbio->finish_pointers || !rbio->error_bitmap) { 945 free_raid_bio_pointers(rbio); 946 kfree(rbio); 947 return ERR_PTR(-ENOMEM); 948 } 949 950 bio_list_init(&rbio->bio_list); 951 init_waitqueue_head(&rbio->io_wait); 952 INIT_LIST_HEAD(&rbio->plug_list); 953 spin_lock_init(&rbio->bio_list_lock); 954 INIT_LIST_HEAD(&rbio->stripe_cache); 955 INIT_LIST_HEAD(&rbio->hash_list); 956 btrfs_get_bioc(bioc); 957 rbio->bioc = bioc; 958 rbio->nr_pages = num_pages; 959 rbio->nr_sectors = num_sectors; 960 rbio->real_stripes = real_stripes; 961 rbio->stripe_npages = stripe_npages; 962 rbio->stripe_nsectors = stripe_nsectors; 963 refcount_set(&rbio->refs, 1); 964 atomic_set(&rbio->stripes_pending, 0); 965 966 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 967 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 968 969 return rbio; 970 } 971 972 /* allocate pages for all the stripes in the bio, including parity */ 973 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 974 { 975 int ret; 976 977 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); 978 if (ret < 0) 979 return ret; 980 /* Mapping all sectors */ 981 index_stripe_sectors(rbio); 982 return 0; 983 } 984 985 /* only allocate pages for p/q stripes */ 986 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 987 { 988 const int data_pages = rbio->nr_data * rbio->stripe_npages; 989 int ret; 990 991 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 992 rbio->stripe_pages + data_pages); 993 if (ret < 0) 994 return ret; 995 996 index_stripe_sectors(rbio); 997 return 0; 998 } 999 1000 /* 1001 * Return the total number of errors found in the vertical stripe of @sector_nr. 1002 * 1003 * @faila and @failb will also be updated to the first and second stripe 1004 * number of the errors. 1005 */ 1006 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1007 int *faila, int *failb) 1008 { 1009 int stripe_nr; 1010 int found_errors = 0; 1011 1012 if (faila || failb) { 1013 /* 1014 * Both @faila and @failb should be valid pointers if any of 1015 * them is specified. 1016 */ 1017 ASSERT(faila && failb); 1018 *faila = -1; 1019 *failb = -1; 1020 } 1021 1022 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1023 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1024 1025 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1026 found_errors++; 1027 if (faila) { 1028 /* Update faila and failb. */ 1029 if (*faila < 0) 1030 *faila = stripe_nr; 1031 else if (*failb < 0) 1032 *failb = stripe_nr; 1033 } 1034 } 1035 } 1036 return found_errors; 1037 } 1038 1039 /* 1040 * Add a single sector @sector into our list of bios for IO. 1041 * 1042 * Return 0 if everything went well. 1043 * Return <0 for error. 1044 */ 1045 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1046 struct bio_list *bio_list, 1047 struct sector_ptr *sector, 1048 unsigned int stripe_nr, 1049 unsigned int sector_nr, 1050 enum req_op op) 1051 { 1052 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1053 struct bio *last = bio_list->tail; 1054 int ret; 1055 struct bio *bio; 1056 struct btrfs_io_stripe *stripe; 1057 u64 disk_start; 1058 1059 /* 1060 * Note: here stripe_nr has taken device replace into consideration, 1061 * thus it can be larger than rbio->real_stripe. 1062 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1063 */ 1064 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); 1065 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); 1066 ASSERT(sector->page); 1067 1068 stripe = &rbio->bioc->stripes[stripe_nr]; 1069 disk_start = stripe->physical + sector_nr * sectorsize; 1070 1071 /* if the device is missing, just fail this stripe */ 1072 if (!stripe->dev->bdev) { 1073 int found_errors; 1074 1075 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1076 rbio->error_bitmap); 1077 1078 /* Check if we have reached tolerance early. */ 1079 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1080 NULL, NULL); 1081 if (found_errors > rbio->bioc->max_errors) 1082 return -EIO; 1083 return 0; 1084 } 1085 1086 /* see if we can add this page onto our existing bio */ 1087 if (last) { 1088 u64 last_end = last->bi_iter.bi_sector << 9; 1089 last_end += last->bi_iter.bi_size; 1090 1091 /* 1092 * we can't merge these if they are from different 1093 * devices or if they are not contiguous 1094 */ 1095 if (last_end == disk_start && !last->bi_status && 1096 last->bi_bdev == stripe->dev->bdev) { 1097 ret = bio_add_page(last, sector->page, sectorsize, 1098 sector->pgoff); 1099 if (ret == sectorsize) 1100 return 0; 1101 } 1102 } 1103 1104 /* put a new bio on the list */ 1105 bio = bio_alloc(stripe->dev->bdev, 1106 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1107 op, GFP_NOFS); 1108 bio->bi_iter.bi_sector = disk_start >> 9; 1109 bio->bi_private = rbio; 1110 1111 bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1112 bio_list_add(bio_list, bio); 1113 return 0; 1114 } 1115 1116 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1117 { 1118 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1119 struct bio_vec bvec; 1120 struct bvec_iter iter; 1121 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1122 rbio->bioc->raid_map[0]; 1123 1124 bio_for_each_segment(bvec, bio, iter) { 1125 u32 bvec_offset; 1126 1127 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1128 bvec_offset += sectorsize, offset += sectorsize) { 1129 int index = offset / sectorsize; 1130 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1131 1132 sector->page = bvec.bv_page; 1133 sector->pgoff = bvec.bv_offset + bvec_offset; 1134 ASSERT(sector->pgoff < PAGE_SIZE); 1135 } 1136 } 1137 } 1138 1139 /* 1140 * helper function to walk our bio list and populate the bio_pages array with 1141 * the result. This seems expensive, but it is faster than constantly 1142 * searching through the bio list as we setup the IO in finish_rmw or stripe 1143 * reconstruction. 1144 * 1145 * This must be called before you trust the answers from page_in_rbio 1146 */ 1147 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1148 { 1149 struct bio *bio; 1150 1151 spin_lock_irq(&rbio->bio_list_lock); 1152 bio_list_for_each(bio, &rbio->bio_list) 1153 index_one_bio(rbio, bio); 1154 1155 spin_unlock_irq(&rbio->bio_list_lock); 1156 } 1157 1158 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1159 struct raid56_bio_trace_info *trace_info) 1160 { 1161 const struct btrfs_io_context *bioc = rbio->bioc; 1162 int i; 1163 1164 ASSERT(bioc); 1165 1166 /* We rely on bio->bi_bdev to find the stripe number. */ 1167 if (!bio->bi_bdev) 1168 goto not_found; 1169 1170 for (i = 0; i < bioc->num_stripes; i++) { 1171 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1172 continue; 1173 trace_info->stripe_nr = i; 1174 trace_info->devid = bioc->stripes[i].dev->devid; 1175 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1176 bioc->stripes[i].physical; 1177 return; 1178 } 1179 1180 not_found: 1181 trace_info->devid = -1; 1182 trace_info->offset = -1; 1183 trace_info->stripe_nr = -1; 1184 } 1185 1186 static inline void bio_list_put(struct bio_list *bio_list) 1187 { 1188 struct bio *bio; 1189 1190 while ((bio = bio_list_pop(bio_list))) 1191 bio_put(bio); 1192 } 1193 1194 /* Generate PQ for one vertical stripe. */ 1195 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1196 { 1197 void **pointers = rbio->finish_pointers; 1198 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1199 struct sector_ptr *sector; 1200 int stripe; 1201 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1202 1203 /* First collect one sector from each data stripe */ 1204 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1205 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1206 pointers[stripe] = kmap_local_page(sector->page) + 1207 sector->pgoff; 1208 } 1209 1210 /* Then add the parity stripe */ 1211 sector = rbio_pstripe_sector(rbio, sectornr); 1212 sector->uptodate = 1; 1213 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1214 1215 if (has_qstripe) { 1216 /* 1217 * RAID6, add the qstripe and call the library function 1218 * to fill in our p/q 1219 */ 1220 sector = rbio_qstripe_sector(rbio, sectornr); 1221 sector->uptodate = 1; 1222 pointers[stripe++] = kmap_local_page(sector->page) + 1223 sector->pgoff; 1224 1225 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1226 pointers); 1227 } else { 1228 /* raid5 */ 1229 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1230 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1231 } 1232 for (stripe = stripe - 1; stripe >= 0; stripe--) 1233 kunmap_local(pointers[stripe]); 1234 } 1235 1236 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1237 struct bio_list *bio_list) 1238 { 1239 /* The total sector number inside the full stripe. */ 1240 int total_sector_nr; 1241 int sectornr; 1242 int stripe; 1243 int ret; 1244 1245 ASSERT(bio_list_size(bio_list) == 0); 1246 1247 /* We should have at least one data sector. */ 1248 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1249 1250 /* 1251 * Reset errors, as we may have errors inherited from from degraded 1252 * write. 1253 */ 1254 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1255 1256 /* 1257 * Start assembly. Make bios for everything from the higher layers (the 1258 * bio_list in our rbio) and our P/Q. Ignore everything else. 1259 */ 1260 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1261 total_sector_nr++) { 1262 struct sector_ptr *sector; 1263 1264 stripe = total_sector_nr / rbio->stripe_nsectors; 1265 sectornr = total_sector_nr % rbio->stripe_nsectors; 1266 1267 /* This vertical stripe has no data, skip it. */ 1268 if (!test_bit(sectornr, &rbio->dbitmap)) 1269 continue; 1270 1271 if (stripe < rbio->nr_data) { 1272 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1273 if (!sector) 1274 continue; 1275 } else { 1276 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1277 } 1278 1279 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1280 sectornr, REQ_OP_WRITE); 1281 if (ret) 1282 goto error; 1283 } 1284 1285 if (likely(!rbio->bioc->num_tgtdevs)) 1286 return 0; 1287 1288 /* Make a copy for the replace target device. */ 1289 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1290 total_sector_nr++) { 1291 struct sector_ptr *sector; 1292 1293 stripe = total_sector_nr / rbio->stripe_nsectors; 1294 sectornr = total_sector_nr % rbio->stripe_nsectors; 1295 1296 if (!rbio->bioc->tgtdev_map[stripe]) { 1297 /* 1298 * We can skip the whole stripe completely, note 1299 * total_sector_nr will be increased by one anyway. 1300 */ 1301 ASSERT(sectornr == 0); 1302 total_sector_nr += rbio->stripe_nsectors - 1; 1303 continue; 1304 } 1305 1306 /* This vertical stripe has no data, skip it. */ 1307 if (!test_bit(sectornr, &rbio->dbitmap)) 1308 continue; 1309 1310 if (stripe < rbio->nr_data) { 1311 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1312 if (!sector) 1313 continue; 1314 } else { 1315 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1316 } 1317 1318 ret = rbio_add_io_sector(rbio, bio_list, sector, 1319 rbio->bioc->tgtdev_map[stripe], 1320 sectornr, REQ_OP_WRITE); 1321 if (ret) 1322 goto error; 1323 } 1324 1325 return 0; 1326 error: 1327 bio_list_put(bio_list); 1328 return -EIO; 1329 } 1330 1331 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1332 { 1333 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1334 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1335 rbio->bioc->raid_map[0]; 1336 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1337 1338 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1339 1340 bitmap_set(rbio->error_bitmap, total_nr_sector, 1341 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1342 1343 /* 1344 * Special handling for raid56_alloc_missing_rbio() used by 1345 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1346 * pass an empty bio here. Thus we have to find out the missing device 1347 * and mark the stripe error instead. 1348 */ 1349 if (bio->bi_iter.bi_size == 0) { 1350 bool found_missing = false; 1351 int stripe_nr; 1352 1353 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1354 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1355 found_missing = true; 1356 bitmap_set(rbio->error_bitmap, 1357 stripe_nr * rbio->stripe_nsectors, 1358 rbio->stripe_nsectors); 1359 } 1360 } 1361 ASSERT(found_missing); 1362 } 1363 } 1364 1365 /* 1366 * For subpage case, we can no longer set page Up-to-date directly for 1367 * stripe_pages[], thus we need to locate the sector. 1368 */ 1369 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1370 struct page *page, 1371 unsigned int pgoff) 1372 { 1373 int i; 1374 1375 for (i = 0; i < rbio->nr_sectors; i++) { 1376 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1377 1378 if (sector->page == page && sector->pgoff == pgoff) 1379 return sector; 1380 } 1381 return NULL; 1382 } 1383 1384 /* 1385 * this sets each page in the bio uptodate. It should only be used on private 1386 * rbio pages, nothing that comes in from the higher layers 1387 */ 1388 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1389 { 1390 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1391 struct bio_vec *bvec; 1392 struct bvec_iter_all iter_all; 1393 1394 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1395 1396 bio_for_each_segment_all(bvec, bio, iter_all) { 1397 struct sector_ptr *sector; 1398 int pgoff; 1399 1400 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1401 pgoff += sectorsize) { 1402 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1403 ASSERT(sector); 1404 if (sector) 1405 sector->uptodate = 1; 1406 } 1407 } 1408 } 1409 1410 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1411 { 1412 struct bio_vec *bv = bio_first_bvec_all(bio); 1413 int i; 1414 1415 for (i = 0; i < rbio->nr_sectors; i++) { 1416 struct sector_ptr *sector; 1417 1418 sector = &rbio->stripe_sectors[i]; 1419 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1420 break; 1421 sector = &rbio->bio_sectors[i]; 1422 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1423 break; 1424 } 1425 ASSERT(i < rbio->nr_sectors); 1426 return i; 1427 } 1428 1429 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1430 { 1431 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1432 u32 bio_size = 0; 1433 struct bio_vec *bvec; 1434 int i; 1435 1436 bio_for_each_bvec_all(bvec, bio, i) 1437 bio_size += bvec->bv_len; 1438 1439 /* 1440 * Since we can have multiple bios touching the error_bitmap, we cannot 1441 * call bitmap_set() without protection. 1442 * 1443 * Instead use set_bit() for each bit, as set_bit() itself is atomic. 1444 */ 1445 for (i = total_sector_nr; i < total_sector_nr + 1446 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) 1447 set_bit(i, rbio->error_bitmap); 1448 } 1449 1450 /* Verify the data sectors at read time. */ 1451 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1452 struct bio *bio) 1453 { 1454 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1455 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1456 struct bio_vec *bvec; 1457 struct bvec_iter_all iter_all; 1458 1459 /* No data csum for the whole stripe, no need to verify. */ 1460 if (!rbio->csum_bitmap || !rbio->csum_buf) 1461 return; 1462 1463 /* P/Q stripes, they have no data csum to verify against. */ 1464 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1465 return; 1466 1467 bio_for_each_segment_all(bvec, bio, iter_all) { 1468 int bv_offset; 1469 1470 for (bv_offset = bvec->bv_offset; 1471 bv_offset < bvec->bv_offset + bvec->bv_len; 1472 bv_offset += fs_info->sectorsize, total_sector_nr++) { 1473 u8 csum_buf[BTRFS_CSUM_SIZE]; 1474 u8 *expected_csum = rbio->csum_buf + 1475 total_sector_nr * fs_info->csum_size; 1476 int ret; 1477 1478 /* No csum for this sector, skip to the next sector. */ 1479 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1480 continue; 1481 1482 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, 1483 bv_offset, csum_buf, expected_csum); 1484 if (ret < 0) 1485 set_bit(total_sector_nr, rbio->error_bitmap); 1486 } 1487 } 1488 } 1489 1490 static void raid_wait_read_end_io(struct bio *bio) 1491 { 1492 struct btrfs_raid_bio *rbio = bio->bi_private; 1493 1494 if (bio->bi_status) { 1495 rbio_update_error_bitmap(rbio, bio); 1496 } else { 1497 set_bio_pages_uptodate(rbio, bio); 1498 verify_bio_data_sectors(rbio, bio); 1499 } 1500 1501 bio_put(bio); 1502 if (atomic_dec_and_test(&rbio->stripes_pending)) 1503 wake_up(&rbio->io_wait); 1504 } 1505 1506 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, 1507 struct bio_list *bio_list) 1508 { 1509 struct bio *bio; 1510 1511 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1512 while ((bio = bio_list_pop(bio_list))) { 1513 bio->bi_end_io = raid_wait_read_end_io; 1514 1515 if (trace_raid56_scrub_read_recover_enabled()) { 1516 struct raid56_bio_trace_info trace_info = { 0 }; 1517 1518 bio_get_trace_info(rbio, bio, &trace_info); 1519 trace_raid56_scrub_read_recover(rbio, bio, &trace_info); 1520 } 1521 submit_bio(bio); 1522 } 1523 1524 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 1525 } 1526 1527 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1528 { 1529 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1530 int ret; 1531 1532 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages); 1533 if (ret < 0) 1534 return ret; 1535 1536 index_stripe_sectors(rbio); 1537 return 0; 1538 } 1539 1540 /* 1541 * We use plugging call backs to collect full stripes. 1542 * Any time we get a partial stripe write while plugged 1543 * we collect it into a list. When the unplug comes down, 1544 * we sort the list by logical block number and merge 1545 * everything we can into the same rbios 1546 */ 1547 struct btrfs_plug_cb { 1548 struct blk_plug_cb cb; 1549 struct btrfs_fs_info *info; 1550 struct list_head rbio_list; 1551 struct work_struct work; 1552 }; 1553 1554 /* 1555 * rbios on the plug list are sorted for easier merging. 1556 */ 1557 static int plug_cmp(void *priv, const struct list_head *a, 1558 const struct list_head *b) 1559 { 1560 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1561 plug_list); 1562 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1563 plug_list); 1564 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1565 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1566 1567 if (a_sector < b_sector) 1568 return -1; 1569 if (a_sector > b_sector) 1570 return 1; 1571 return 0; 1572 } 1573 1574 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1575 { 1576 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1577 struct btrfs_raid_bio *cur; 1578 struct btrfs_raid_bio *last = NULL; 1579 1580 list_sort(NULL, &plug->rbio_list, plug_cmp); 1581 1582 while (!list_empty(&plug->rbio_list)) { 1583 cur = list_entry(plug->rbio_list.next, 1584 struct btrfs_raid_bio, plug_list); 1585 list_del_init(&cur->plug_list); 1586 1587 if (rbio_is_full(cur)) { 1588 /* We have a full stripe, queue it down. */ 1589 start_async_work(cur, rmw_rbio_work); 1590 continue; 1591 } 1592 if (last) { 1593 if (rbio_can_merge(last, cur)) { 1594 merge_rbio(last, cur); 1595 free_raid_bio(cur); 1596 continue; 1597 } 1598 start_async_work(last, rmw_rbio_work); 1599 } 1600 last = cur; 1601 } 1602 if (last) 1603 start_async_work(last, rmw_rbio_work); 1604 kfree(plug); 1605 } 1606 1607 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1608 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1609 { 1610 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1611 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1612 const u64 full_stripe_start = rbio->bioc->raid_map[0]; 1613 const u32 orig_len = orig_bio->bi_iter.bi_size; 1614 const u32 sectorsize = fs_info->sectorsize; 1615 u64 cur_logical; 1616 1617 ASSERT(orig_logical >= full_stripe_start && 1618 orig_logical + orig_len <= full_stripe_start + 1619 rbio->nr_data * BTRFS_STRIPE_LEN); 1620 1621 bio_list_add(&rbio->bio_list, orig_bio); 1622 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1623 1624 /* Update the dbitmap. */ 1625 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1626 cur_logical += sectorsize) { 1627 int bit = ((u32)(cur_logical - full_stripe_start) >> 1628 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1629 1630 set_bit(bit, &rbio->dbitmap); 1631 } 1632 } 1633 1634 /* 1635 * our main entry point for writes from the rest of the FS. 1636 */ 1637 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1638 { 1639 struct btrfs_fs_info *fs_info = bioc->fs_info; 1640 struct btrfs_raid_bio *rbio; 1641 struct btrfs_plug_cb *plug = NULL; 1642 struct blk_plug_cb *cb; 1643 1644 rbio = alloc_rbio(fs_info, bioc); 1645 if (IS_ERR(rbio)) { 1646 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 1647 bio_endio(bio); 1648 return; 1649 } 1650 rbio->operation = BTRFS_RBIO_WRITE; 1651 rbio_add_bio(rbio, bio); 1652 1653 /* 1654 * Don't plug on full rbios, just get them out the door 1655 * as quickly as we can 1656 */ 1657 if (!rbio_is_full(rbio)) { 1658 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1659 if (cb) { 1660 plug = container_of(cb, struct btrfs_plug_cb, cb); 1661 if (!plug->info) { 1662 plug->info = fs_info; 1663 INIT_LIST_HEAD(&plug->rbio_list); 1664 } 1665 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1666 return; 1667 } 1668 } 1669 1670 /* 1671 * Either we don't have any existing plug, or we're doing a full stripe, 1672 * queue the rmw work now. 1673 */ 1674 start_async_work(rbio, rmw_rbio_work); 1675 } 1676 1677 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1678 int stripe_nr, int sector_nr) 1679 { 1680 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1681 struct sector_ptr *sector; 1682 u8 csum_buf[BTRFS_CSUM_SIZE]; 1683 u8 *csum_expected; 1684 int ret; 1685 1686 if (!rbio->csum_bitmap || !rbio->csum_buf) 1687 return 0; 1688 1689 /* No way to verify P/Q as they are not covered by data csum. */ 1690 if (stripe_nr >= rbio->nr_data) 1691 return 0; 1692 /* 1693 * If we're rebuilding a read, we have to use pages from the 1694 * bio list if possible. 1695 */ 1696 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1697 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1698 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1699 } else { 1700 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1701 } 1702 1703 ASSERT(sector->page); 1704 1705 csum_expected = rbio->csum_buf + 1706 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1707 fs_info->csum_size; 1708 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, 1709 csum_buf, csum_expected); 1710 return ret; 1711 } 1712 1713 /* 1714 * Recover a vertical stripe specified by @sector_nr. 1715 * @*pointers are the pre-allocated pointers by the caller, so we don't 1716 * need to allocate/free the pointers again and again. 1717 */ 1718 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1719 void **pointers, void **unmap_array) 1720 { 1721 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1722 struct sector_ptr *sector; 1723 const u32 sectorsize = fs_info->sectorsize; 1724 int found_errors; 1725 int faila; 1726 int failb; 1727 int stripe_nr; 1728 int ret = 0; 1729 1730 /* 1731 * Now we just use bitmap to mark the horizontal stripes in 1732 * which we have data when doing parity scrub. 1733 */ 1734 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1735 !test_bit(sector_nr, &rbio->dbitmap)) 1736 return 0; 1737 1738 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1739 &failb); 1740 /* 1741 * No errors in the vertical stripe, skip it. Can happen for recovery 1742 * which only part of a stripe failed csum check. 1743 */ 1744 if (!found_errors) 1745 return 0; 1746 1747 if (found_errors > rbio->bioc->max_errors) 1748 return -EIO; 1749 1750 /* 1751 * Setup our array of pointers with sectors from each stripe 1752 * 1753 * NOTE: store a duplicate array of pointers to preserve the 1754 * pointer order. 1755 */ 1756 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1757 /* 1758 * If we're rebuilding a read, we have to use pages from the 1759 * bio list if possible. 1760 */ 1761 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1762 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { 1763 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1764 } else { 1765 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1766 } 1767 ASSERT(sector->page); 1768 pointers[stripe_nr] = kmap_local_page(sector->page) + 1769 sector->pgoff; 1770 unmap_array[stripe_nr] = pointers[stripe_nr]; 1771 } 1772 1773 /* All raid6 handling here */ 1774 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1775 /* Single failure, rebuild from parity raid5 style */ 1776 if (failb < 0) { 1777 if (faila == rbio->nr_data) 1778 /* 1779 * Just the P stripe has failed, without 1780 * a bad data or Q stripe. 1781 * We have nothing to do, just skip the 1782 * recovery for this stripe. 1783 */ 1784 goto cleanup; 1785 /* 1786 * a single failure in raid6 is rebuilt 1787 * in the pstripe code below 1788 */ 1789 goto pstripe; 1790 } 1791 1792 /* 1793 * If the q stripe is failed, do a pstripe reconstruction from 1794 * the xors. 1795 * If both the q stripe and the P stripe are failed, we're 1796 * here due to a crc mismatch and we can't give them the 1797 * data they want. 1798 */ 1799 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) { 1800 if (rbio->bioc->raid_map[faila] == 1801 RAID5_P_STRIPE) 1802 /* 1803 * Only P and Q are corrupted. 1804 * We only care about data stripes recovery, 1805 * can skip this vertical stripe. 1806 */ 1807 goto cleanup; 1808 /* 1809 * Otherwise we have one bad data stripe and 1810 * a good P stripe. raid5! 1811 */ 1812 goto pstripe; 1813 } 1814 1815 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) { 1816 raid6_datap_recov(rbio->real_stripes, sectorsize, 1817 faila, pointers); 1818 } else { 1819 raid6_2data_recov(rbio->real_stripes, sectorsize, 1820 faila, failb, pointers); 1821 } 1822 } else { 1823 void *p; 1824 1825 /* Rebuild from P stripe here (raid5 or raid6). */ 1826 ASSERT(failb == -1); 1827 pstripe: 1828 /* Copy parity block into failed block to start with */ 1829 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1830 1831 /* Rearrange the pointer array */ 1832 p = pointers[faila]; 1833 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1834 stripe_nr++) 1835 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1836 pointers[rbio->nr_data - 1] = p; 1837 1838 /* Xor in the rest */ 1839 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1840 1841 } 1842 1843 /* 1844 * No matter if this is a RMW or recovery, we should have all 1845 * failed sectors repaired in the vertical stripe, thus they are now 1846 * uptodate. 1847 * Especially if we determine to cache the rbio, we need to 1848 * have at least all data sectors uptodate. 1849 * 1850 * If possible, also check if the repaired sector matches its data 1851 * checksum. 1852 */ 1853 if (faila >= 0) { 1854 ret = verify_one_sector(rbio, faila, sector_nr); 1855 if (ret < 0) 1856 goto cleanup; 1857 1858 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1859 sector->uptodate = 1; 1860 } 1861 if (failb >= 0) { 1862 ret = verify_one_sector(rbio, failb, sector_nr); 1863 if (ret < 0) 1864 goto cleanup; 1865 1866 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1867 sector->uptodate = 1; 1868 } 1869 1870 cleanup: 1871 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1872 kunmap_local(unmap_array[stripe_nr]); 1873 return ret; 1874 } 1875 1876 static int recover_sectors(struct btrfs_raid_bio *rbio) 1877 { 1878 void **pointers = NULL; 1879 void **unmap_array = NULL; 1880 int sectornr; 1881 int ret = 0; 1882 1883 /* 1884 * @pointers array stores the pointer for each sector. 1885 * 1886 * @unmap_array stores copy of pointers that does not get reordered 1887 * during reconstruction so that kunmap_local works. 1888 */ 1889 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1890 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1891 if (!pointers || !unmap_array) { 1892 ret = -ENOMEM; 1893 goto out; 1894 } 1895 1896 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1897 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1898 spin_lock_irq(&rbio->bio_list_lock); 1899 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1900 spin_unlock_irq(&rbio->bio_list_lock); 1901 } 1902 1903 index_rbio_pages(rbio); 1904 1905 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 1906 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 1907 if (ret < 0) 1908 break; 1909 } 1910 1911 out: 1912 kfree(pointers); 1913 kfree(unmap_array); 1914 return ret; 1915 } 1916 1917 static void recover_rbio(struct btrfs_raid_bio *rbio) 1918 { 1919 struct bio_list bio_list = BIO_EMPTY_LIST; 1920 int total_sector_nr; 1921 int ret = 0; 1922 1923 /* 1924 * Either we're doing recover for a read failure or degraded write, 1925 * caller should have set error bitmap correctly. 1926 */ 1927 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 1928 1929 /* For recovery, we need to read all sectors including P/Q. */ 1930 ret = alloc_rbio_pages(rbio); 1931 if (ret < 0) 1932 goto out; 1933 1934 index_rbio_pages(rbio); 1935 1936 /* 1937 * Read everything that hasn't failed. However this time we will 1938 * not trust any cached sector. 1939 * As we may read out some stale data but higher layer is not reading 1940 * that stale part. 1941 * 1942 * So here we always re-read everything in recovery path. 1943 */ 1944 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1945 total_sector_nr++) { 1946 int stripe = total_sector_nr / rbio->stripe_nsectors; 1947 int sectornr = total_sector_nr % rbio->stripe_nsectors; 1948 struct sector_ptr *sector; 1949 1950 /* 1951 * Skip the range which has error. It can be a range which is 1952 * marked error (for csum mismatch), or it can be a missing 1953 * device. 1954 */ 1955 if (!rbio->bioc->stripes[stripe].dev->bdev || 1956 test_bit(total_sector_nr, rbio->error_bitmap)) { 1957 /* 1958 * Also set the error bit for missing device, which 1959 * may not yet have its error bit set. 1960 */ 1961 set_bit(total_sector_nr, rbio->error_bitmap); 1962 continue; 1963 } 1964 1965 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1966 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 1967 sectornr, REQ_OP_READ); 1968 if (ret < 0) { 1969 bio_list_put(&bio_list); 1970 goto out; 1971 } 1972 } 1973 1974 submit_read_wait_bio_list(rbio, &bio_list); 1975 ret = recover_sectors(rbio); 1976 out: 1977 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 1978 } 1979 1980 static void recover_rbio_work(struct work_struct *work) 1981 { 1982 struct btrfs_raid_bio *rbio; 1983 1984 rbio = container_of(work, struct btrfs_raid_bio, work); 1985 if (!lock_stripe_add(rbio)) 1986 recover_rbio(rbio); 1987 } 1988 1989 static void recover_rbio_work_locked(struct work_struct *work) 1990 { 1991 recover_rbio(container_of(work, struct btrfs_raid_bio, work)); 1992 } 1993 1994 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 1995 { 1996 bool found = false; 1997 int sector_nr; 1998 1999 /* 2000 * This is for RAID6 extra recovery tries, thus mirror number should 2001 * be large than 2. 2002 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2003 * RAID5 methods. 2004 */ 2005 ASSERT(mirror_num > 2); 2006 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2007 int found_errors; 2008 int faila; 2009 int failb; 2010 2011 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2012 &faila, &failb); 2013 /* This vertical stripe doesn't have errors. */ 2014 if (!found_errors) 2015 continue; 2016 2017 /* 2018 * If we found errors, there should be only one error marked 2019 * by previous set_rbio_range_error(). 2020 */ 2021 ASSERT(found_errors == 1); 2022 found = true; 2023 2024 /* Now select another stripe to mark as error. */ 2025 failb = rbio->real_stripes - (mirror_num - 1); 2026 if (failb <= faila) 2027 failb--; 2028 2029 /* Set the extra bit in error bitmap. */ 2030 if (failb >= 0) 2031 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2032 rbio->error_bitmap); 2033 } 2034 2035 /* We should found at least one vertical stripe with error.*/ 2036 ASSERT(found); 2037 } 2038 2039 /* 2040 * the main entry point for reads from the higher layers. This 2041 * is really only called when the normal read path had a failure, 2042 * so we assume the bio they send down corresponds to a failed part 2043 * of the drive. 2044 */ 2045 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2046 int mirror_num) 2047 { 2048 struct btrfs_fs_info *fs_info = bioc->fs_info; 2049 struct btrfs_raid_bio *rbio; 2050 2051 rbio = alloc_rbio(fs_info, bioc); 2052 if (IS_ERR(rbio)) { 2053 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2054 bio_endio(bio); 2055 return; 2056 } 2057 2058 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2059 rbio_add_bio(rbio, bio); 2060 2061 set_rbio_range_error(rbio, bio); 2062 2063 /* 2064 * Loop retry: 2065 * for 'mirror == 2', reconstruct from all other stripes. 2066 * for 'mirror_num > 2', select a stripe to fail on every retry. 2067 */ 2068 if (mirror_num > 2) 2069 set_rbio_raid6_extra_error(rbio, mirror_num); 2070 2071 start_async_work(rbio, recover_rbio_work); 2072 } 2073 2074 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2075 { 2076 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2077 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2078 rbio->bioc->raid_map[0]); 2079 const u64 start = rbio->bioc->raid_map[0]; 2080 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2081 fs_info->sectorsize_bits; 2082 int ret; 2083 2084 /* The rbio should not have its csum buffer initialized. */ 2085 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2086 2087 /* 2088 * Skip the csum search if: 2089 * 2090 * - The rbio doesn't belong to data block groups 2091 * Then we are doing IO for tree blocks, no need to search csums. 2092 * 2093 * - The rbio belongs to mixed block groups 2094 * This is to avoid deadlock, as we're already holding the full 2095 * stripe lock, if we trigger a metadata read, and it needs to do 2096 * raid56 recovery, we will deadlock. 2097 */ 2098 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2099 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2100 return; 2101 2102 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2103 fs_info->csum_size, GFP_NOFS); 2104 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2105 GFP_NOFS); 2106 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2107 ret = -ENOMEM; 2108 goto error; 2109 } 2110 2111 ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1, 2112 rbio->csum_buf, rbio->csum_bitmap); 2113 if (ret < 0) 2114 goto error; 2115 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2116 goto no_csum; 2117 return; 2118 2119 error: 2120 /* 2121 * We failed to allocate memory or grab the csum, but it's not fatal, 2122 * we can still continue. But better to warn users that RMW is no 2123 * longer safe for this particular sub-stripe write. 2124 */ 2125 btrfs_warn_rl(fs_info, 2126 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2127 rbio->bioc->raid_map[0], ret); 2128 no_csum: 2129 kfree(rbio->csum_buf); 2130 bitmap_free(rbio->csum_bitmap); 2131 rbio->csum_buf = NULL; 2132 rbio->csum_bitmap = NULL; 2133 } 2134 2135 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2136 { 2137 struct bio_list bio_list = BIO_EMPTY_LIST; 2138 int total_sector_nr; 2139 int ret = 0; 2140 2141 /* 2142 * Fill the data csums we need for data verification. We need to fill 2143 * the csum_bitmap/csum_buf first, as our endio function will try to 2144 * verify the data sectors. 2145 */ 2146 fill_data_csums(rbio); 2147 2148 /* 2149 * Build a list of bios to read all sectors (including data and P/Q). 2150 * 2151 * This behavior is to compensate the later csum verification and recovery. 2152 */ 2153 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2154 total_sector_nr++) { 2155 struct sector_ptr *sector; 2156 int stripe = total_sector_nr / rbio->stripe_nsectors; 2157 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2158 2159 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2160 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2161 stripe, sectornr, REQ_OP_READ); 2162 if (ret) { 2163 bio_list_put(&bio_list); 2164 return ret; 2165 } 2166 } 2167 2168 /* 2169 * We may or may not have any corrupted sectors (including missing dev 2170 * and csum mismatch), just let recover_sectors() to handle them all. 2171 */ 2172 submit_read_wait_bio_list(rbio, &bio_list); 2173 return recover_sectors(rbio); 2174 } 2175 2176 static void raid_wait_write_end_io(struct bio *bio) 2177 { 2178 struct btrfs_raid_bio *rbio = bio->bi_private; 2179 blk_status_t err = bio->bi_status; 2180 2181 if (err) 2182 rbio_update_error_bitmap(rbio, bio); 2183 bio_put(bio); 2184 if (atomic_dec_and_test(&rbio->stripes_pending)) 2185 wake_up(&rbio->io_wait); 2186 } 2187 2188 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2189 struct bio_list *bio_list) 2190 { 2191 struct bio *bio; 2192 2193 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2194 while ((bio = bio_list_pop(bio_list))) { 2195 bio->bi_end_io = raid_wait_write_end_io; 2196 2197 if (trace_raid56_write_stripe_enabled()) { 2198 struct raid56_bio_trace_info trace_info = { 0 }; 2199 2200 bio_get_trace_info(rbio, bio, &trace_info); 2201 trace_raid56_write_stripe(rbio, bio, &trace_info); 2202 } 2203 submit_bio(bio); 2204 } 2205 } 2206 2207 /* 2208 * To determine if we need to read any sector from the disk. 2209 * Should only be utilized in RMW path, to skip cached rbio. 2210 */ 2211 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2212 { 2213 int i; 2214 2215 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2216 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2217 2218 /* 2219 * We have a sector which doesn't have page nor uptodate, 2220 * thus this rbio can not be cached one, as cached one must 2221 * have all its data sectors present and uptodate. 2222 */ 2223 if (!sector->page || !sector->uptodate) 2224 return true; 2225 } 2226 return false; 2227 } 2228 2229 static void rmw_rbio(struct btrfs_raid_bio *rbio) 2230 { 2231 struct bio_list bio_list; 2232 int sectornr; 2233 int ret = 0; 2234 2235 /* 2236 * Allocate the pages for parity first, as P/Q pages will always be 2237 * needed for both full-stripe and sub-stripe writes. 2238 */ 2239 ret = alloc_rbio_parity_pages(rbio); 2240 if (ret < 0) 2241 goto out; 2242 2243 /* 2244 * Either full stripe write, or we have every data sector already 2245 * cached, can go to write path immediately. 2246 */ 2247 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { 2248 /* 2249 * Now we're doing sub-stripe write, also need all data stripes 2250 * to do the full RMW. 2251 */ 2252 ret = alloc_rbio_data_pages(rbio); 2253 if (ret < 0) 2254 goto out; 2255 2256 index_rbio_pages(rbio); 2257 2258 ret = rmw_read_wait_recover(rbio); 2259 if (ret < 0) 2260 goto out; 2261 } 2262 2263 /* 2264 * At this stage we're not allowed to add any new bios to the 2265 * bio list any more, anyone else that wants to change this stripe 2266 * needs to do their own rmw. 2267 */ 2268 spin_lock_irq(&rbio->bio_list_lock); 2269 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2270 spin_unlock_irq(&rbio->bio_list_lock); 2271 2272 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2273 2274 index_rbio_pages(rbio); 2275 2276 /* 2277 * We don't cache full rbios because we're assuming 2278 * the higher layers are unlikely to use this area of 2279 * the disk again soon. If they do use it again, 2280 * hopefully they will send another full bio. 2281 */ 2282 if (!rbio_is_full(rbio)) 2283 cache_rbio_pages(rbio); 2284 else 2285 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2286 2287 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2288 generate_pq_vertical(rbio, sectornr); 2289 2290 bio_list_init(&bio_list); 2291 ret = rmw_assemble_write_bios(rbio, &bio_list); 2292 if (ret < 0) 2293 goto out; 2294 2295 /* We should have at least one bio assembled. */ 2296 ASSERT(bio_list_size(&bio_list)); 2297 submit_write_bios(rbio, &bio_list); 2298 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2299 2300 /* We may have more errors than our tolerance during the read. */ 2301 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2302 int found_errors; 2303 2304 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2305 if (found_errors > rbio->bioc->max_errors) { 2306 ret = -EIO; 2307 break; 2308 } 2309 } 2310 out: 2311 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2312 } 2313 2314 static void rmw_rbio_work(struct work_struct *work) 2315 { 2316 struct btrfs_raid_bio *rbio; 2317 2318 rbio = container_of(work, struct btrfs_raid_bio, work); 2319 if (lock_stripe_add(rbio) == 0) 2320 rmw_rbio(rbio); 2321 } 2322 2323 static void rmw_rbio_work_locked(struct work_struct *work) 2324 { 2325 rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); 2326 } 2327 2328 /* 2329 * The following code is used to scrub/replace the parity stripe 2330 * 2331 * Caller must have already increased bio_counter for getting @bioc. 2332 * 2333 * Note: We need make sure all the pages that add into the scrub/replace 2334 * raid bio are correct and not be changed during the scrub/replace. That 2335 * is those pages just hold metadata or file data with checksum. 2336 */ 2337 2338 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2339 struct btrfs_io_context *bioc, 2340 struct btrfs_device *scrub_dev, 2341 unsigned long *dbitmap, int stripe_nsectors) 2342 { 2343 struct btrfs_fs_info *fs_info = bioc->fs_info; 2344 struct btrfs_raid_bio *rbio; 2345 int i; 2346 2347 rbio = alloc_rbio(fs_info, bioc); 2348 if (IS_ERR(rbio)) 2349 return NULL; 2350 bio_list_add(&rbio->bio_list, bio); 2351 /* 2352 * This is a special bio which is used to hold the completion handler 2353 * and make the scrub rbio is similar to the other types 2354 */ 2355 ASSERT(!bio->bi_iter.bi_size); 2356 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2357 2358 /* 2359 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2360 * to the end position, so this search can start from the first parity 2361 * stripe. 2362 */ 2363 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2364 if (bioc->stripes[i].dev == scrub_dev) { 2365 rbio->scrubp = i; 2366 break; 2367 } 2368 } 2369 ASSERT(i < rbio->real_stripes); 2370 2371 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2372 return rbio; 2373 } 2374 2375 /* Used for both parity scrub and missing. */ 2376 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2377 unsigned int pgoff, u64 logical) 2378 { 2379 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2380 int stripe_offset; 2381 int index; 2382 2383 ASSERT(logical >= rbio->bioc->raid_map[0]); 2384 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] + 2385 BTRFS_STRIPE_LEN * rbio->nr_data); 2386 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]); 2387 index = stripe_offset / sectorsize; 2388 rbio->bio_sectors[index].page = page; 2389 rbio->bio_sectors[index].pgoff = pgoff; 2390 } 2391 2392 /* 2393 * We just scrub the parity that we have correct data on the same horizontal, 2394 * so we needn't allocate all pages for all the stripes. 2395 */ 2396 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2397 { 2398 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2399 int total_sector_nr; 2400 2401 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2402 total_sector_nr++) { 2403 struct page *page; 2404 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2405 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2406 2407 if (!test_bit(sectornr, &rbio->dbitmap)) 2408 continue; 2409 if (rbio->stripe_pages[index]) 2410 continue; 2411 page = alloc_page(GFP_NOFS); 2412 if (!page) 2413 return -ENOMEM; 2414 rbio->stripe_pages[index] = page; 2415 } 2416 index_stripe_sectors(rbio); 2417 return 0; 2418 } 2419 2420 static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check) 2421 { 2422 struct btrfs_io_context *bioc = rbio->bioc; 2423 const u32 sectorsize = bioc->fs_info->sectorsize; 2424 void **pointers = rbio->finish_pointers; 2425 unsigned long *pbitmap = &rbio->finish_pbitmap; 2426 int nr_data = rbio->nr_data; 2427 int stripe; 2428 int sectornr; 2429 bool has_qstripe; 2430 struct sector_ptr p_sector = { 0 }; 2431 struct sector_ptr q_sector = { 0 }; 2432 struct bio_list bio_list; 2433 int is_replace = 0; 2434 int ret; 2435 2436 bio_list_init(&bio_list); 2437 2438 if (rbio->real_stripes - rbio->nr_data == 1) 2439 has_qstripe = false; 2440 else if (rbio->real_stripes - rbio->nr_data == 2) 2441 has_qstripe = true; 2442 else 2443 BUG(); 2444 2445 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) { 2446 is_replace = 1; 2447 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2448 } 2449 2450 /* 2451 * Because the higher layers(scrubber) are unlikely to 2452 * use this area of the disk again soon, so don't cache 2453 * it. 2454 */ 2455 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2456 2457 if (!need_check) 2458 goto writeback; 2459 2460 p_sector.page = alloc_page(GFP_NOFS); 2461 if (!p_sector.page) 2462 return -ENOMEM; 2463 p_sector.pgoff = 0; 2464 p_sector.uptodate = 1; 2465 2466 if (has_qstripe) { 2467 /* RAID6, allocate and map temp space for the Q stripe */ 2468 q_sector.page = alloc_page(GFP_NOFS); 2469 if (!q_sector.page) { 2470 __free_page(p_sector.page); 2471 p_sector.page = NULL; 2472 return -ENOMEM; 2473 } 2474 q_sector.pgoff = 0; 2475 q_sector.uptodate = 1; 2476 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2477 } 2478 2479 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2480 2481 /* Map the parity stripe just once */ 2482 pointers[nr_data] = kmap_local_page(p_sector.page); 2483 2484 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2485 struct sector_ptr *sector; 2486 void *parity; 2487 2488 /* first collect one page from each data stripe */ 2489 for (stripe = 0; stripe < nr_data; stripe++) { 2490 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2491 pointers[stripe] = kmap_local_page(sector->page) + 2492 sector->pgoff; 2493 } 2494 2495 if (has_qstripe) { 2496 /* RAID6, call the library function to fill in our P/Q */ 2497 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2498 pointers); 2499 } else { 2500 /* raid5 */ 2501 memcpy(pointers[nr_data], pointers[0], sectorsize); 2502 run_xor(pointers + 1, nr_data - 1, sectorsize); 2503 } 2504 2505 /* Check scrubbing parity and repair it */ 2506 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2507 parity = kmap_local_page(sector->page) + sector->pgoff; 2508 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2509 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2510 else 2511 /* Parity is right, needn't writeback */ 2512 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2513 kunmap_local(parity); 2514 2515 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2516 kunmap_local(pointers[stripe]); 2517 } 2518 2519 kunmap_local(pointers[nr_data]); 2520 __free_page(p_sector.page); 2521 p_sector.page = NULL; 2522 if (q_sector.page) { 2523 kunmap_local(pointers[rbio->real_stripes - 1]); 2524 __free_page(q_sector.page); 2525 q_sector.page = NULL; 2526 } 2527 2528 writeback: 2529 /* 2530 * time to start writing. Make bios for everything from the 2531 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2532 * everything else. 2533 */ 2534 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2535 struct sector_ptr *sector; 2536 2537 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2538 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2539 sectornr, REQ_OP_WRITE); 2540 if (ret) 2541 goto cleanup; 2542 } 2543 2544 if (!is_replace) 2545 goto submit_write; 2546 2547 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2548 struct sector_ptr *sector; 2549 2550 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2551 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2552 bioc->tgtdev_map[rbio->scrubp], 2553 sectornr, REQ_OP_WRITE); 2554 if (ret) 2555 goto cleanup; 2556 } 2557 2558 submit_write: 2559 submit_write_bios(rbio, &bio_list); 2560 return 0; 2561 2562 cleanup: 2563 bio_list_put(&bio_list); 2564 return ret; 2565 } 2566 2567 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2568 { 2569 if (stripe >= 0 && stripe < rbio->nr_data) 2570 return 1; 2571 return 0; 2572 } 2573 2574 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2575 { 2576 void **pointers = NULL; 2577 void **unmap_array = NULL; 2578 int sector_nr; 2579 int ret = 0; 2580 2581 /* 2582 * @pointers array stores the pointer for each sector. 2583 * 2584 * @unmap_array stores copy of pointers that does not get reordered 2585 * during reconstruction so that kunmap_local works. 2586 */ 2587 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2588 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2589 if (!pointers || !unmap_array) { 2590 ret = -ENOMEM; 2591 goto out; 2592 } 2593 2594 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2595 int dfail = 0, failp = -1; 2596 int faila; 2597 int failb; 2598 int found_errors; 2599 2600 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2601 &faila, &failb); 2602 if (found_errors > rbio->bioc->max_errors) { 2603 ret = -EIO; 2604 goto out; 2605 } 2606 if (found_errors == 0) 2607 continue; 2608 2609 /* We should have at least one error here. */ 2610 ASSERT(faila >= 0 || failb >= 0); 2611 2612 if (is_data_stripe(rbio, faila)) 2613 dfail++; 2614 else if (is_parity_stripe(faila)) 2615 failp = faila; 2616 2617 if (is_data_stripe(rbio, failb)) 2618 dfail++; 2619 else if (is_parity_stripe(failb)) 2620 failp = failb; 2621 /* 2622 * Because we can not use a scrubbing parity to repair the 2623 * data, so the capability of the repair is declined. (In the 2624 * case of RAID5, we can not repair anything.) 2625 */ 2626 if (dfail > rbio->bioc->max_errors - 1) { 2627 ret = -EIO; 2628 goto out; 2629 } 2630 /* 2631 * If all data is good, only parity is correctly, just repair 2632 * the parity, no need to recover data stripes. 2633 */ 2634 if (dfail == 0) 2635 continue; 2636 2637 /* 2638 * Here means we got one corrupted data stripe and one 2639 * corrupted parity on RAID6, if the corrupted parity is 2640 * scrubbing parity, luckily, use the other one to repair the 2641 * data, or we can not repair the data stripe. 2642 */ 2643 if (failp != rbio->scrubp) { 2644 ret = -EIO; 2645 goto out; 2646 } 2647 2648 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2649 if (ret < 0) 2650 goto out; 2651 } 2652 out: 2653 kfree(pointers); 2654 kfree(unmap_array); 2655 return ret; 2656 } 2657 2658 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) 2659 { 2660 struct bio_list bio_list = BIO_EMPTY_LIST; 2661 int total_sector_nr; 2662 int ret = 0; 2663 2664 /* Build a list of bios to read all the missing parts. */ 2665 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2666 total_sector_nr++) { 2667 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2668 int stripe = total_sector_nr / rbio->stripe_nsectors; 2669 struct sector_ptr *sector; 2670 2671 /* No data in the vertical stripe, no need to read. */ 2672 if (!test_bit(sectornr, &rbio->dbitmap)) 2673 continue; 2674 2675 /* 2676 * We want to find all the sectors missing from the rbio and 2677 * read them from the disk. If sector_in_rbio() finds a sector 2678 * in the bio list we don't need to read it off the stripe. 2679 */ 2680 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2681 if (sector) 2682 continue; 2683 2684 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2685 /* 2686 * The bio cache may have handed us an uptodate sector. If so, 2687 * use it. 2688 */ 2689 if (sector->uptodate) 2690 continue; 2691 2692 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2693 sectornr, REQ_OP_READ); 2694 if (ret) { 2695 bio_list_put(&bio_list); 2696 return ret; 2697 } 2698 } 2699 2700 submit_read_wait_bio_list(rbio, &bio_list); 2701 return 0; 2702 } 2703 2704 static void scrub_rbio(struct btrfs_raid_bio *rbio) 2705 { 2706 bool need_check = false; 2707 int sector_nr; 2708 int ret; 2709 2710 ret = alloc_rbio_essential_pages(rbio); 2711 if (ret) 2712 goto out; 2713 2714 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2715 2716 ret = scrub_assemble_read_bios(rbio); 2717 if (ret < 0) 2718 goto out; 2719 2720 /* We may have some failures, recover the failed sectors first. */ 2721 ret = recover_scrub_rbio(rbio); 2722 if (ret < 0) 2723 goto out; 2724 2725 /* 2726 * We have every sector properly prepared. Can finish the scrub 2727 * and writeback the good content. 2728 */ 2729 ret = finish_parity_scrub(rbio, need_check); 2730 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2731 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2732 int found_errors; 2733 2734 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2735 if (found_errors > rbio->bioc->max_errors) { 2736 ret = -EIO; 2737 break; 2738 } 2739 } 2740 out: 2741 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2742 } 2743 2744 static void scrub_rbio_work_locked(struct work_struct *work) 2745 { 2746 scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); 2747 } 2748 2749 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2750 { 2751 if (!lock_stripe_add(rbio)) 2752 start_async_work(rbio, scrub_rbio_work_locked); 2753 } 2754 2755 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2756 2757 struct btrfs_raid_bio * 2758 raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc) 2759 { 2760 struct btrfs_fs_info *fs_info = bioc->fs_info; 2761 struct btrfs_raid_bio *rbio; 2762 2763 rbio = alloc_rbio(fs_info, bioc); 2764 if (IS_ERR(rbio)) 2765 return NULL; 2766 2767 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2768 bio_list_add(&rbio->bio_list, bio); 2769 /* 2770 * This is a special bio which is used to hold the completion handler 2771 * and make the scrub rbio is similar to the other types 2772 */ 2773 ASSERT(!bio->bi_iter.bi_size); 2774 2775 set_rbio_range_error(rbio, bio); 2776 2777 return rbio; 2778 } 2779 2780 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2781 { 2782 start_async_work(rbio, recover_rbio_work); 2783 } 2784