1 /* 2 * Copyright (C) 2012 Fusion-io All rights reserved. 3 * Copyright (C) 2012 Intel Corp. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 #include <linux/sched.h> 20 #include <linux/wait.h> 21 #include <linux/bio.h> 22 #include <linux/slab.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/random.h> 26 #include <linux/iocontext.h> 27 #include <linux/capability.h> 28 #include <linux/ratelimit.h> 29 #include <linux/kthread.h> 30 #include <linux/raid/pq.h> 31 #include <linux/hash.h> 32 #include <linux/list_sort.h> 33 #include <linux/raid/xor.h> 34 #include <linux/mm.h> 35 #include <asm/div64.h> 36 #include "ctree.h" 37 #include "extent_map.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "print-tree.h" 41 #include "volumes.h" 42 #include "raid56.h" 43 #include "async-thread.h" 44 #include "check-integrity.h" 45 #include "rcu-string.h" 46 47 /* set when additional merges to this rbio are not allowed */ 48 #define RBIO_RMW_LOCKED_BIT 1 49 50 /* 51 * set when this rbio is sitting in the hash, but it is just a cache 52 * of past RMW 53 */ 54 #define RBIO_CACHE_BIT 2 55 56 /* 57 * set when it is safe to trust the stripe_pages for caching 58 */ 59 #define RBIO_CACHE_READY_BIT 3 60 61 #define RBIO_CACHE_SIZE 1024 62 63 enum btrfs_rbio_ops { 64 BTRFS_RBIO_WRITE, 65 BTRFS_RBIO_READ_REBUILD, 66 BTRFS_RBIO_PARITY_SCRUB, 67 BTRFS_RBIO_REBUILD_MISSING, 68 }; 69 70 struct btrfs_raid_bio { 71 struct btrfs_fs_info *fs_info; 72 struct btrfs_bio *bbio; 73 74 /* while we're doing rmw on a stripe 75 * we put it into a hash table so we can 76 * lock the stripe and merge more rbios 77 * into it. 78 */ 79 struct list_head hash_list; 80 81 /* 82 * LRU list for the stripe cache 83 */ 84 struct list_head stripe_cache; 85 86 /* 87 * for scheduling work in the helper threads 88 */ 89 struct btrfs_work work; 90 91 /* 92 * bio list and bio_list_lock are used 93 * to add more bios into the stripe 94 * in hopes of avoiding the full rmw 95 */ 96 struct bio_list bio_list; 97 spinlock_t bio_list_lock; 98 99 /* also protected by the bio_list_lock, the 100 * plug list is used by the plugging code 101 * to collect partial bios while plugged. The 102 * stripe locking code also uses it to hand off 103 * the stripe lock to the next pending IO 104 */ 105 struct list_head plug_list; 106 107 /* 108 * flags that tell us if it is safe to 109 * merge with this bio 110 */ 111 unsigned long flags; 112 113 /* size of each individual stripe on disk */ 114 int stripe_len; 115 116 /* number of data stripes (no p/q) */ 117 int nr_data; 118 119 int real_stripes; 120 121 int stripe_npages; 122 /* 123 * set if we're doing a parity rebuild 124 * for a read from higher up, which is handled 125 * differently from a parity rebuild as part of 126 * rmw 127 */ 128 enum btrfs_rbio_ops operation; 129 130 /* first bad stripe */ 131 int faila; 132 133 /* second bad stripe (for raid6 use) */ 134 int failb; 135 136 int scrubp; 137 /* 138 * number of pages needed to represent the full 139 * stripe 140 */ 141 int nr_pages; 142 143 /* 144 * size of all the bios in the bio_list. This 145 * helps us decide if the rbio maps to a full 146 * stripe or not 147 */ 148 int bio_list_bytes; 149 150 int generic_bio_cnt; 151 152 refcount_t refs; 153 154 atomic_t stripes_pending; 155 156 atomic_t error; 157 /* 158 * these are two arrays of pointers. We allocate the 159 * rbio big enough to hold them both and setup their 160 * locations when the rbio is allocated 161 */ 162 163 /* pointers to pages that we allocated for 164 * reading/writing stripes directly from the disk (including P/Q) 165 */ 166 struct page **stripe_pages; 167 168 /* 169 * pointers to the pages in the bio_list. Stored 170 * here for faster lookup 171 */ 172 struct page **bio_pages; 173 174 /* 175 * bitmap to record which horizontal stripe has data 176 */ 177 unsigned long *dbitmap; 178 }; 179 180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); 181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio); 182 static void rmw_work(struct btrfs_work *work); 183 static void read_rebuild_work(struct btrfs_work *work); 184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio); 185 static void async_read_rebuild(struct btrfs_raid_bio *rbio); 186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); 187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); 188 static void __free_raid_bio(struct btrfs_raid_bio *rbio); 189 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 191 192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 193 int need_check); 194 static void async_scrub_parity(struct btrfs_raid_bio *rbio); 195 196 /* 197 * the stripe hash table is used for locking, and to collect 198 * bios in hopes of making a full stripe 199 */ 200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 201 { 202 struct btrfs_stripe_hash_table *table; 203 struct btrfs_stripe_hash_table *x; 204 struct btrfs_stripe_hash *cur; 205 struct btrfs_stripe_hash *h; 206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 207 int i; 208 int table_size; 209 210 if (info->stripe_hash_table) 211 return 0; 212 213 /* 214 * The table is large, starting with order 4 and can go as high as 215 * order 7 in case lock debugging is turned on. 216 * 217 * Try harder to allocate and fallback to vmalloc to lower the chance 218 * of a failing mount. 219 */ 220 table_size = sizeof(*table) + sizeof(*h) * num_entries; 221 table = kvzalloc(table_size, GFP_KERNEL); 222 if (!table) 223 return -ENOMEM; 224 225 spin_lock_init(&table->cache_lock); 226 INIT_LIST_HEAD(&table->stripe_cache); 227 228 h = table->table; 229 230 for (i = 0; i < num_entries; i++) { 231 cur = h + i; 232 INIT_LIST_HEAD(&cur->hash_list); 233 spin_lock_init(&cur->lock); 234 } 235 236 x = cmpxchg(&info->stripe_hash_table, NULL, table); 237 if (x) 238 kvfree(x); 239 return 0; 240 } 241 242 /* 243 * caching an rbio means to copy anything from the 244 * bio_pages array into the stripe_pages array. We 245 * use the page uptodate bit in the stripe cache array 246 * to indicate if it has valid data 247 * 248 * once the caching is done, we set the cache ready 249 * bit. 250 */ 251 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 252 { 253 int i; 254 char *s; 255 char *d; 256 int ret; 257 258 ret = alloc_rbio_pages(rbio); 259 if (ret) 260 return; 261 262 for (i = 0; i < rbio->nr_pages; i++) { 263 if (!rbio->bio_pages[i]) 264 continue; 265 266 s = kmap(rbio->bio_pages[i]); 267 d = kmap(rbio->stripe_pages[i]); 268 269 memcpy(d, s, PAGE_SIZE); 270 271 kunmap(rbio->bio_pages[i]); 272 kunmap(rbio->stripe_pages[i]); 273 SetPageUptodate(rbio->stripe_pages[i]); 274 } 275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 276 } 277 278 /* 279 * we hash on the first logical address of the stripe 280 */ 281 static int rbio_bucket(struct btrfs_raid_bio *rbio) 282 { 283 u64 num = rbio->bbio->raid_map[0]; 284 285 /* 286 * we shift down quite a bit. We're using byte 287 * addressing, and most of the lower bits are zeros. 288 * This tends to upset hash_64, and it consistently 289 * returns just one or two different values. 290 * 291 * shifting off the lower bits fixes things. 292 */ 293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 294 } 295 296 /* 297 * stealing an rbio means taking all the uptodate pages from the stripe 298 * array in the source rbio and putting them into the destination rbio 299 */ 300 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 301 { 302 int i; 303 struct page *s; 304 struct page *d; 305 306 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 307 return; 308 309 for (i = 0; i < dest->nr_pages; i++) { 310 s = src->stripe_pages[i]; 311 if (!s || !PageUptodate(s)) { 312 continue; 313 } 314 315 d = dest->stripe_pages[i]; 316 if (d) 317 __free_page(d); 318 319 dest->stripe_pages[i] = s; 320 src->stripe_pages[i] = NULL; 321 } 322 } 323 324 /* 325 * merging means we take the bio_list from the victim and 326 * splice it into the destination. The victim should 327 * be discarded afterwards. 328 * 329 * must be called with dest->rbio_list_lock held 330 */ 331 static void merge_rbio(struct btrfs_raid_bio *dest, 332 struct btrfs_raid_bio *victim) 333 { 334 bio_list_merge(&dest->bio_list, &victim->bio_list); 335 dest->bio_list_bytes += victim->bio_list_bytes; 336 dest->generic_bio_cnt += victim->generic_bio_cnt; 337 bio_list_init(&victim->bio_list); 338 } 339 340 /* 341 * used to prune items that are in the cache. The caller 342 * must hold the hash table lock. 343 */ 344 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 345 { 346 int bucket = rbio_bucket(rbio); 347 struct btrfs_stripe_hash_table *table; 348 struct btrfs_stripe_hash *h; 349 int freeit = 0; 350 351 /* 352 * check the bit again under the hash table lock. 353 */ 354 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 355 return; 356 357 table = rbio->fs_info->stripe_hash_table; 358 h = table->table + bucket; 359 360 /* hold the lock for the bucket because we may be 361 * removing it from the hash table 362 */ 363 spin_lock(&h->lock); 364 365 /* 366 * hold the lock for the bio list because we need 367 * to make sure the bio list is empty 368 */ 369 spin_lock(&rbio->bio_list_lock); 370 371 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 372 list_del_init(&rbio->stripe_cache); 373 table->cache_size -= 1; 374 freeit = 1; 375 376 /* if the bio list isn't empty, this rbio is 377 * still involved in an IO. We take it out 378 * of the cache list, and drop the ref that 379 * was held for the list. 380 * 381 * If the bio_list was empty, we also remove 382 * the rbio from the hash_table, and drop 383 * the corresponding ref 384 */ 385 if (bio_list_empty(&rbio->bio_list)) { 386 if (!list_empty(&rbio->hash_list)) { 387 list_del_init(&rbio->hash_list); 388 refcount_dec(&rbio->refs); 389 BUG_ON(!list_empty(&rbio->plug_list)); 390 } 391 } 392 } 393 394 spin_unlock(&rbio->bio_list_lock); 395 spin_unlock(&h->lock); 396 397 if (freeit) 398 __free_raid_bio(rbio); 399 } 400 401 /* 402 * prune a given rbio from the cache 403 */ 404 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 405 { 406 struct btrfs_stripe_hash_table *table; 407 unsigned long flags; 408 409 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 410 return; 411 412 table = rbio->fs_info->stripe_hash_table; 413 414 spin_lock_irqsave(&table->cache_lock, flags); 415 __remove_rbio_from_cache(rbio); 416 spin_unlock_irqrestore(&table->cache_lock, flags); 417 } 418 419 /* 420 * remove everything in the cache 421 */ 422 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 423 { 424 struct btrfs_stripe_hash_table *table; 425 unsigned long flags; 426 struct btrfs_raid_bio *rbio; 427 428 table = info->stripe_hash_table; 429 430 spin_lock_irqsave(&table->cache_lock, flags); 431 while (!list_empty(&table->stripe_cache)) { 432 rbio = list_entry(table->stripe_cache.next, 433 struct btrfs_raid_bio, 434 stripe_cache); 435 __remove_rbio_from_cache(rbio); 436 } 437 spin_unlock_irqrestore(&table->cache_lock, flags); 438 } 439 440 /* 441 * remove all cached entries and free the hash table 442 * used by unmount 443 */ 444 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 445 { 446 if (!info->stripe_hash_table) 447 return; 448 btrfs_clear_rbio_cache(info); 449 kvfree(info->stripe_hash_table); 450 info->stripe_hash_table = NULL; 451 } 452 453 /* 454 * insert an rbio into the stripe cache. It 455 * must have already been prepared by calling 456 * cache_rbio_pages 457 * 458 * If this rbio was already cached, it gets 459 * moved to the front of the lru. 460 * 461 * If the size of the rbio cache is too big, we 462 * prune an item. 463 */ 464 static void cache_rbio(struct btrfs_raid_bio *rbio) 465 { 466 struct btrfs_stripe_hash_table *table; 467 unsigned long flags; 468 469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 470 return; 471 472 table = rbio->fs_info->stripe_hash_table; 473 474 spin_lock_irqsave(&table->cache_lock, flags); 475 spin_lock(&rbio->bio_list_lock); 476 477 /* bump our ref if we were not in the list before */ 478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 479 refcount_inc(&rbio->refs); 480 481 if (!list_empty(&rbio->stripe_cache)){ 482 list_move(&rbio->stripe_cache, &table->stripe_cache); 483 } else { 484 list_add(&rbio->stripe_cache, &table->stripe_cache); 485 table->cache_size += 1; 486 } 487 488 spin_unlock(&rbio->bio_list_lock); 489 490 if (table->cache_size > RBIO_CACHE_SIZE) { 491 struct btrfs_raid_bio *found; 492 493 found = list_entry(table->stripe_cache.prev, 494 struct btrfs_raid_bio, 495 stripe_cache); 496 497 if (found != rbio) 498 __remove_rbio_from_cache(found); 499 } 500 501 spin_unlock_irqrestore(&table->cache_lock, flags); 502 } 503 504 /* 505 * helper function to run the xor_blocks api. It is only 506 * able to do MAX_XOR_BLOCKS at a time, so we need to 507 * loop through. 508 */ 509 static void run_xor(void **pages, int src_cnt, ssize_t len) 510 { 511 int src_off = 0; 512 int xor_src_cnt = 0; 513 void *dest = pages[src_cnt]; 514 515 while(src_cnt > 0) { 516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 517 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 518 519 src_cnt -= xor_src_cnt; 520 src_off += xor_src_cnt; 521 } 522 } 523 524 /* 525 * returns true if the bio list inside this rbio 526 * covers an entire stripe (no rmw required). 527 * Must be called with the bio list lock held, or 528 * at a time when you know it is impossible to add 529 * new bios into the list 530 */ 531 static int __rbio_is_full(struct btrfs_raid_bio *rbio) 532 { 533 unsigned long size = rbio->bio_list_bytes; 534 int ret = 1; 535 536 if (size != rbio->nr_data * rbio->stripe_len) 537 ret = 0; 538 539 BUG_ON(size > rbio->nr_data * rbio->stripe_len); 540 return ret; 541 } 542 543 static int rbio_is_full(struct btrfs_raid_bio *rbio) 544 { 545 unsigned long flags; 546 int ret; 547 548 spin_lock_irqsave(&rbio->bio_list_lock, flags); 549 ret = __rbio_is_full(rbio); 550 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 551 return ret; 552 } 553 554 /* 555 * returns 1 if it is safe to merge two rbios together. 556 * The merging is safe if the two rbios correspond to 557 * the same stripe and if they are both going in the same 558 * direction (read vs write), and if neither one is 559 * locked for final IO 560 * 561 * The caller is responsible for locking such that 562 * rmw_locked is safe to test 563 */ 564 static int rbio_can_merge(struct btrfs_raid_bio *last, 565 struct btrfs_raid_bio *cur) 566 { 567 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 568 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 569 return 0; 570 571 /* 572 * we can't merge with cached rbios, since the 573 * idea is that when we merge the destination 574 * rbio is going to run our IO for us. We can 575 * steal from cached rbios though, other functions 576 * handle that. 577 */ 578 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 579 test_bit(RBIO_CACHE_BIT, &cur->flags)) 580 return 0; 581 582 if (last->bbio->raid_map[0] != 583 cur->bbio->raid_map[0]) 584 return 0; 585 586 /* we can't merge with different operations */ 587 if (last->operation != cur->operation) 588 return 0; 589 /* 590 * We've need read the full stripe from the drive. 591 * check and repair the parity and write the new results. 592 * 593 * We're not allowed to add any new bios to the 594 * bio list here, anyone else that wants to 595 * change this stripe needs to do their own rmw. 596 */ 597 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 598 return 0; 599 600 if (last->operation == BTRFS_RBIO_REBUILD_MISSING) 601 return 0; 602 603 if (last->operation == BTRFS_RBIO_READ_REBUILD) { 604 int fa = last->faila; 605 int fb = last->failb; 606 int cur_fa = cur->faila; 607 int cur_fb = cur->failb; 608 609 if (last->faila >= last->failb) { 610 fa = last->failb; 611 fb = last->faila; 612 } 613 614 if (cur->faila >= cur->failb) { 615 cur_fa = cur->failb; 616 cur_fb = cur->faila; 617 } 618 619 if (fa != cur_fa || fb != cur_fb) 620 return 0; 621 } 622 return 1; 623 } 624 625 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, 626 int index) 627 { 628 return stripe * rbio->stripe_npages + index; 629 } 630 631 /* 632 * these are just the pages from the rbio array, not from anything 633 * the FS sent down to us 634 */ 635 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, 636 int index) 637 { 638 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; 639 } 640 641 /* 642 * helper to index into the pstripe 643 */ 644 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) 645 { 646 return rbio_stripe_page(rbio, rbio->nr_data, index); 647 } 648 649 /* 650 * helper to index into the qstripe, returns null 651 * if there is no qstripe 652 */ 653 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) 654 { 655 if (rbio->nr_data + 1 == rbio->real_stripes) 656 return NULL; 657 return rbio_stripe_page(rbio, rbio->nr_data + 1, index); 658 } 659 660 /* 661 * The first stripe in the table for a logical address 662 * has the lock. rbios are added in one of three ways: 663 * 664 * 1) Nobody has the stripe locked yet. The rbio is given 665 * the lock and 0 is returned. The caller must start the IO 666 * themselves. 667 * 668 * 2) Someone has the stripe locked, but we're able to merge 669 * with the lock owner. The rbio is freed and the IO will 670 * start automatically along with the existing rbio. 1 is returned. 671 * 672 * 3) Someone has the stripe locked, but we're not able to merge. 673 * The rbio is added to the lock owner's plug list, or merged into 674 * an rbio already on the plug list. When the lock owner unlocks, 675 * the next rbio on the list is run and the IO is started automatically. 676 * 1 is returned 677 * 678 * If we return 0, the caller still owns the rbio and must continue with 679 * IO submission. If we return 1, the caller must assume the rbio has 680 * already been freed. 681 */ 682 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 683 { 684 int bucket = rbio_bucket(rbio); 685 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; 686 struct btrfs_raid_bio *cur; 687 struct btrfs_raid_bio *pending; 688 unsigned long flags; 689 struct btrfs_raid_bio *freeit = NULL; 690 struct btrfs_raid_bio *cache_drop = NULL; 691 int ret = 0; 692 693 spin_lock_irqsave(&h->lock, flags); 694 list_for_each_entry(cur, &h->hash_list, hash_list) { 695 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { 696 spin_lock(&cur->bio_list_lock); 697 698 /* can we steal this cached rbio's pages? */ 699 if (bio_list_empty(&cur->bio_list) && 700 list_empty(&cur->plug_list) && 701 test_bit(RBIO_CACHE_BIT, &cur->flags) && 702 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 703 list_del_init(&cur->hash_list); 704 refcount_dec(&cur->refs); 705 706 steal_rbio(cur, rbio); 707 cache_drop = cur; 708 spin_unlock(&cur->bio_list_lock); 709 710 goto lockit; 711 } 712 713 /* can we merge into the lock owner? */ 714 if (rbio_can_merge(cur, rbio)) { 715 merge_rbio(cur, rbio); 716 spin_unlock(&cur->bio_list_lock); 717 freeit = rbio; 718 ret = 1; 719 goto out; 720 } 721 722 723 /* 724 * we couldn't merge with the running 725 * rbio, see if we can merge with the 726 * pending ones. We don't have to 727 * check for rmw_locked because there 728 * is no way they are inside finish_rmw 729 * right now 730 */ 731 list_for_each_entry(pending, &cur->plug_list, 732 plug_list) { 733 if (rbio_can_merge(pending, rbio)) { 734 merge_rbio(pending, rbio); 735 spin_unlock(&cur->bio_list_lock); 736 freeit = rbio; 737 ret = 1; 738 goto out; 739 } 740 } 741 742 /* no merging, put us on the tail of the plug list, 743 * our rbio will be started with the currently 744 * running rbio unlocks 745 */ 746 list_add_tail(&rbio->plug_list, &cur->plug_list); 747 spin_unlock(&cur->bio_list_lock); 748 ret = 1; 749 goto out; 750 } 751 } 752 lockit: 753 refcount_inc(&rbio->refs); 754 list_add(&rbio->hash_list, &h->hash_list); 755 out: 756 spin_unlock_irqrestore(&h->lock, flags); 757 if (cache_drop) 758 remove_rbio_from_cache(cache_drop); 759 if (freeit) 760 __free_raid_bio(freeit); 761 return ret; 762 } 763 764 /* 765 * called as rmw or parity rebuild is completed. If the plug list has more 766 * rbios waiting for this stripe, the next one on the list will be started 767 */ 768 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 769 { 770 int bucket; 771 struct btrfs_stripe_hash *h; 772 unsigned long flags; 773 int keep_cache = 0; 774 775 bucket = rbio_bucket(rbio); 776 h = rbio->fs_info->stripe_hash_table->table + bucket; 777 778 if (list_empty(&rbio->plug_list)) 779 cache_rbio(rbio); 780 781 spin_lock_irqsave(&h->lock, flags); 782 spin_lock(&rbio->bio_list_lock); 783 784 if (!list_empty(&rbio->hash_list)) { 785 /* 786 * if we're still cached and there is no other IO 787 * to perform, just leave this rbio here for others 788 * to steal from later 789 */ 790 if (list_empty(&rbio->plug_list) && 791 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 792 keep_cache = 1; 793 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 794 BUG_ON(!bio_list_empty(&rbio->bio_list)); 795 goto done; 796 } 797 798 list_del_init(&rbio->hash_list); 799 refcount_dec(&rbio->refs); 800 801 /* 802 * we use the plug list to hold all the rbios 803 * waiting for the chance to lock this stripe. 804 * hand the lock over to one of them. 805 */ 806 if (!list_empty(&rbio->plug_list)) { 807 struct btrfs_raid_bio *next; 808 struct list_head *head = rbio->plug_list.next; 809 810 next = list_entry(head, struct btrfs_raid_bio, 811 plug_list); 812 813 list_del_init(&rbio->plug_list); 814 815 list_add(&next->hash_list, &h->hash_list); 816 refcount_inc(&next->refs); 817 spin_unlock(&rbio->bio_list_lock); 818 spin_unlock_irqrestore(&h->lock, flags); 819 820 if (next->operation == BTRFS_RBIO_READ_REBUILD) 821 async_read_rebuild(next); 822 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { 823 steal_rbio(rbio, next); 824 async_read_rebuild(next); 825 } else if (next->operation == BTRFS_RBIO_WRITE) { 826 steal_rbio(rbio, next); 827 async_rmw_stripe(next); 828 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 829 steal_rbio(rbio, next); 830 async_scrub_parity(next); 831 } 832 833 goto done_nolock; 834 } 835 } 836 done: 837 spin_unlock(&rbio->bio_list_lock); 838 spin_unlock_irqrestore(&h->lock, flags); 839 840 done_nolock: 841 if (!keep_cache) 842 remove_rbio_from_cache(rbio); 843 } 844 845 static void __free_raid_bio(struct btrfs_raid_bio *rbio) 846 { 847 int i; 848 849 if (!refcount_dec_and_test(&rbio->refs)) 850 return; 851 852 WARN_ON(!list_empty(&rbio->stripe_cache)); 853 WARN_ON(!list_empty(&rbio->hash_list)); 854 WARN_ON(!bio_list_empty(&rbio->bio_list)); 855 856 for (i = 0; i < rbio->nr_pages; i++) { 857 if (rbio->stripe_pages[i]) { 858 __free_page(rbio->stripe_pages[i]); 859 rbio->stripe_pages[i] = NULL; 860 } 861 } 862 863 btrfs_put_bbio(rbio->bbio); 864 kfree(rbio); 865 } 866 867 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 868 { 869 struct bio *next; 870 871 while (cur) { 872 next = cur->bi_next; 873 cur->bi_next = NULL; 874 cur->bi_status = err; 875 bio_endio(cur); 876 cur = next; 877 } 878 } 879 880 /* 881 * this frees the rbio and runs through all the bios in the 882 * bio_list and calls end_io on them 883 */ 884 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 885 { 886 struct bio *cur = bio_list_get(&rbio->bio_list); 887 struct bio *extra; 888 889 if (rbio->generic_bio_cnt) 890 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); 891 892 /* 893 * At this moment, rbio->bio_list is empty, however since rbio does not 894 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 895 * hash list, rbio may be merged with others so that rbio->bio_list 896 * becomes non-empty. 897 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 898 * more and we can call bio_endio() on all queued bios. 899 */ 900 unlock_stripe(rbio); 901 extra = bio_list_get(&rbio->bio_list); 902 __free_raid_bio(rbio); 903 904 rbio_endio_bio_list(cur, err); 905 if (extra) 906 rbio_endio_bio_list(extra, err); 907 } 908 909 /* 910 * end io function used by finish_rmw. When we finally 911 * get here, we've written a full stripe 912 */ 913 static void raid_write_end_io(struct bio *bio) 914 { 915 struct btrfs_raid_bio *rbio = bio->bi_private; 916 blk_status_t err = bio->bi_status; 917 int max_errors; 918 919 if (err) 920 fail_bio_stripe(rbio, bio); 921 922 bio_put(bio); 923 924 if (!atomic_dec_and_test(&rbio->stripes_pending)) 925 return; 926 927 err = BLK_STS_OK; 928 929 /* OK, we have read all the stripes we need to. */ 930 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 931 0 : rbio->bbio->max_errors; 932 if (atomic_read(&rbio->error) > max_errors) 933 err = BLK_STS_IOERR; 934 935 rbio_orig_end_io(rbio, err); 936 } 937 938 /* 939 * the read/modify/write code wants to use the original bio for 940 * any pages it included, and then use the rbio for everything 941 * else. This function decides if a given index (stripe number) 942 * and page number in that stripe fall inside the original bio 943 * or the rbio. 944 * 945 * if you set bio_list_only, you'll get a NULL back for any ranges 946 * that are outside the bio_list 947 * 948 * This doesn't take any refs on anything, you get a bare page pointer 949 * and the caller must bump refs as required. 950 * 951 * You must call index_rbio_pages once before you can trust 952 * the answers from this function. 953 */ 954 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, 955 int index, int pagenr, int bio_list_only) 956 { 957 int chunk_page; 958 struct page *p = NULL; 959 960 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; 961 962 spin_lock_irq(&rbio->bio_list_lock); 963 p = rbio->bio_pages[chunk_page]; 964 spin_unlock_irq(&rbio->bio_list_lock); 965 966 if (p || bio_list_only) 967 return p; 968 969 return rbio->stripe_pages[chunk_page]; 970 } 971 972 /* 973 * number of pages we need for the entire stripe across all the 974 * drives 975 */ 976 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) 977 { 978 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; 979 } 980 981 /* 982 * allocation and initial setup for the btrfs_raid_bio. Not 983 * this does not allocate any pages for rbio->pages. 984 */ 985 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 986 struct btrfs_bio *bbio, 987 u64 stripe_len) 988 { 989 struct btrfs_raid_bio *rbio; 990 int nr_data = 0; 991 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; 992 int num_pages = rbio_nr_pages(stripe_len, real_stripes); 993 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); 994 void *p; 995 996 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + 997 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * 998 sizeof(long), GFP_NOFS); 999 if (!rbio) 1000 return ERR_PTR(-ENOMEM); 1001 1002 bio_list_init(&rbio->bio_list); 1003 INIT_LIST_HEAD(&rbio->plug_list); 1004 spin_lock_init(&rbio->bio_list_lock); 1005 INIT_LIST_HEAD(&rbio->stripe_cache); 1006 INIT_LIST_HEAD(&rbio->hash_list); 1007 rbio->bbio = bbio; 1008 rbio->fs_info = fs_info; 1009 rbio->stripe_len = stripe_len; 1010 rbio->nr_pages = num_pages; 1011 rbio->real_stripes = real_stripes; 1012 rbio->stripe_npages = stripe_npages; 1013 rbio->faila = -1; 1014 rbio->failb = -1; 1015 refcount_set(&rbio->refs, 1); 1016 atomic_set(&rbio->error, 0); 1017 atomic_set(&rbio->stripes_pending, 0); 1018 1019 /* 1020 * the stripe_pages and bio_pages array point to the extra 1021 * memory we allocated past the end of the rbio 1022 */ 1023 p = rbio + 1; 1024 rbio->stripe_pages = p; 1025 rbio->bio_pages = p + sizeof(struct page *) * num_pages; 1026 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; 1027 1028 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1029 nr_data = real_stripes - 1; 1030 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1031 nr_data = real_stripes - 2; 1032 else 1033 BUG(); 1034 1035 rbio->nr_data = nr_data; 1036 return rbio; 1037 } 1038 1039 /* allocate pages for all the stripes in the bio, including parity */ 1040 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1041 { 1042 int i; 1043 struct page *page; 1044 1045 for (i = 0; i < rbio->nr_pages; i++) { 1046 if (rbio->stripe_pages[i]) 1047 continue; 1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1049 if (!page) 1050 return -ENOMEM; 1051 rbio->stripe_pages[i] = page; 1052 } 1053 return 0; 1054 } 1055 1056 /* only allocate pages for p/q stripes */ 1057 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1058 { 1059 int i; 1060 struct page *page; 1061 1062 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); 1063 1064 for (; i < rbio->nr_pages; i++) { 1065 if (rbio->stripe_pages[i]) 1066 continue; 1067 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1068 if (!page) 1069 return -ENOMEM; 1070 rbio->stripe_pages[i] = page; 1071 } 1072 return 0; 1073 } 1074 1075 /* 1076 * add a single page from a specific stripe into our list of bios for IO 1077 * this will try to merge into existing bios if possible, and returns 1078 * zero if all went well. 1079 */ 1080 static int rbio_add_io_page(struct btrfs_raid_bio *rbio, 1081 struct bio_list *bio_list, 1082 struct page *page, 1083 int stripe_nr, 1084 unsigned long page_index, 1085 unsigned long bio_max_len) 1086 { 1087 struct bio *last = bio_list->tail; 1088 u64 last_end = 0; 1089 int ret; 1090 struct bio *bio; 1091 struct btrfs_bio_stripe *stripe; 1092 u64 disk_start; 1093 1094 stripe = &rbio->bbio->stripes[stripe_nr]; 1095 disk_start = stripe->physical + (page_index << PAGE_SHIFT); 1096 1097 /* if the device is missing, just fail this stripe */ 1098 if (!stripe->dev->bdev) 1099 return fail_rbio_index(rbio, stripe_nr); 1100 1101 /* see if we can add this page onto our existing bio */ 1102 if (last) { 1103 last_end = (u64)last->bi_iter.bi_sector << 9; 1104 last_end += last->bi_iter.bi_size; 1105 1106 /* 1107 * we can't merge these if they are from different 1108 * devices or if they are not contiguous 1109 */ 1110 if (last_end == disk_start && stripe->dev->bdev && 1111 !last->bi_status && 1112 last->bi_disk == stripe->dev->bdev->bd_disk && 1113 last->bi_partno == stripe->dev->bdev->bd_partno) { 1114 ret = bio_add_page(last, page, PAGE_SIZE, 0); 1115 if (ret == PAGE_SIZE) 1116 return 0; 1117 } 1118 } 1119 1120 /* put a new bio on the list */ 1121 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); 1122 bio->bi_iter.bi_size = 0; 1123 bio_set_dev(bio, stripe->dev->bdev); 1124 bio->bi_iter.bi_sector = disk_start >> 9; 1125 1126 bio_add_page(bio, page, PAGE_SIZE, 0); 1127 bio_list_add(bio_list, bio); 1128 return 0; 1129 } 1130 1131 /* 1132 * while we're doing the read/modify/write cycle, we could 1133 * have errors in reading pages off the disk. This checks 1134 * for errors and if we're not able to read the page it'll 1135 * trigger parity reconstruction. The rmw will be finished 1136 * after we've reconstructed the failed stripes 1137 */ 1138 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) 1139 { 1140 if (rbio->faila >= 0 || rbio->failb >= 0) { 1141 BUG_ON(rbio->faila == rbio->real_stripes - 1); 1142 __raid56_parity_recover(rbio); 1143 } else { 1144 finish_rmw(rbio); 1145 } 1146 } 1147 1148 /* 1149 * helper function to walk our bio list and populate the bio_pages array with 1150 * the result. This seems expensive, but it is faster than constantly 1151 * searching through the bio list as we setup the IO in finish_rmw or stripe 1152 * reconstruction. 1153 * 1154 * This must be called before you trust the answers from page_in_rbio 1155 */ 1156 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1157 { 1158 struct bio *bio; 1159 u64 start; 1160 unsigned long stripe_offset; 1161 unsigned long page_index; 1162 1163 spin_lock_irq(&rbio->bio_list_lock); 1164 bio_list_for_each(bio, &rbio->bio_list) { 1165 struct bio_vec bvec; 1166 struct bvec_iter iter; 1167 int i = 0; 1168 1169 start = (u64)bio->bi_iter.bi_sector << 9; 1170 stripe_offset = start - rbio->bbio->raid_map[0]; 1171 page_index = stripe_offset >> PAGE_SHIFT; 1172 1173 if (bio_flagged(bio, BIO_CLONED)) 1174 bio->bi_iter = btrfs_io_bio(bio)->iter; 1175 1176 bio_for_each_segment(bvec, bio, iter) { 1177 rbio->bio_pages[page_index + i] = bvec.bv_page; 1178 i++; 1179 } 1180 } 1181 spin_unlock_irq(&rbio->bio_list_lock); 1182 } 1183 1184 /* 1185 * this is called from one of two situations. We either 1186 * have a full stripe from the higher layers, or we've read all 1187 * the missing bits off disk. 1188 * 1189 * This will calculate the parity and then send down any 1190 * changed blocks. 1191 */ 1192 static noinline void finish_rmw(struct btrfs_raid_bio *rbio) 1193 { 1194 struct btrfs_bio *bbio = rbio->bbio; 1195 void *pointers[rbio->real_stripes]; 1196 int nr_data = rbio->nr_data; 1197 int stripe; 1198 int pagenr; 1199 int p_stripe = -1; 1200 int q_stripe = -1; 1201 struct bio_list bio_list; 1202 struct bio *bio; 1203 int ret; 1204 1205 bio_list_init(&bio_list); 1206 1207 if (rbio->real_stripes - rbio->nr_data == 1) { 1208 p_stripe = rbio->real_stripes - 1; 1209 } else if (rbio->real_stripes - rbio->nr_data == 2) { 1210 p_stripe = rbio->real_stripes - 2; 1211 q_stripe = rbio->real_stripes - 1; 1212 } else { 1213 BUG(); 1214 } 1215 1216 /* at this point we either have a full stripe, 1217 * or we've read the full stripe from the drive. 1218 * recalculate the parity and write the new results. 1219 * 1220 * We're not allowed to add any new bios to the 1221 * bio list here, anyone else that wants to 1222 * change this stripe needs to do their own rmw. 1223 */ 1224 spin_lock_irq(&rbio->bio_list_lock); 1225 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1226 spin_unlock_irq(&rbio->bio_list_lock); 1227 1228 atomic_set(&rbio->error, 0); 1229 1230 /* 1231 * now that we've set rmw_locked, run through the 1232 * bio list one last time and map the page pointers 1233 * 1234 * We don't cache full rbios because we're assuming 1235 * the higher layers are unlikely to use this area of 1236 * the disk again soon. If they do use it again, 1237 * hopefully they will send another full bio. 1238 */ 1239 index_rbio_pages(rbio); 1240 if (!rbio_is_full(rbio)) 1241 cache_rbio_pages(rbio); 1242 else 1243 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 1244 1245 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1246 struct page *p; 1247 /* first collect one page from each data stripe */ 1248 for (stripe = 0; stripe < nr_data; stripe++) { 1249 p = page_in_rbio(rbio, stripe, pagenr, 0); 1250 pointers[stripe] = kmap(p); 1251 } 1252 1253 /* then add the parity stripe */ 1254 p = rbio_pstripe_page(rbio, pagenr); 1255 SetPageUptodate(p); 1256 pointers[stripe++] = kmap(p); 1257 1258 if (q_stripe != -1) { 1259 1260 /* 1261 * raid6, add the qstripe and call the 1262 * library function to fill in our p/q 1263 */ 1264 p = rbio_qstripe_page(rbio, pagenr); 1265 SetPageUptodate(p); 1266 pointers[stripe++] = kmap(p); 1267 1268 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 1269 pointers); 1270 } else { 1271 /* raid5 */ 1272 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 1273 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 1274 } 1275 1276 1277 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 1278 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 1279 } 1280 1281 /* 1282 * time to start writing. Make bios for everything from the 1283 * higher layers (the bio_list in our rbio) and our p/q. Ignore 1284 * everything else. 1285 */ 1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1287 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1288 struct page *page; 1289 if (stripe < rbio->nr_data) { 1290 page = page_in_rbio(rbio, stripe, pagenr, 1); 1291 if (!page) 1292 continue; 1293 } else { 1294 page = rbio_stripe_page(rbio, stripe, pagenr); 1295 } 1296 1297 ret = rbio_add_io_page(rbio, &bio_list, 1298 page, stripe, pagenr, rbio->stripe_len); 1299 if (ret) 1300 goto cleanup; 1301 } 1302 } 1303 1304 if (likely(!bbio->num_tgtdevs)) 1305 goto write_data; 1306 1307 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1308 if (!bbio->tgtdev_map[stripe]) 1309 continue; 1310 1311 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1312 struct page *page; 1313 if (stripe < rbio->nr_data) { 1314 page = page_in_rbio(rbio, stripe, pagenr, 1); 1315 if (!page) 1316 continue; 1317 } else { 1318 page = rbio_stripe_page(rbio, stripe, pagenr); 1319 } 1320 1321 ret = rbio_add_io_page(rbio, &bio_list, page, 1322 rbio->bbio->tgtdev_map[stripe], 1323 pagenr, rbio->stripe_len); 1324 if (ret) 1325 goto cleanup; 1326 } 1327 } 1328 1329 write_data: 1330 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); 1331 BUG_ON(atomic_read(&rbio->stripes_pending) == 0); 1332 1333 while (1) { 1334 bio = bio_list_pop(&bio_list); 1335 if (!bio) 1336 break; 1337 1338 bio->bi_private = rbio; 1339 bio->bi_end_io = raid_write_end_io; 1340 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1341 1342 submit_bio(bio); 1343 } 1344 return; 1345 1346 cleanup: 1347 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1348 1349 while ((bio = bio_list_pop(&bio_list))) 1350 bio_put(bio); 1351 } 1352 1353 /* 1354 * helper to find the stripe number for a given bio. Used to figure out which 1355 * stripe has failed. This expects the bio to correspond to a physical disk, 1356 * so it looks up based on physical sector numbers. 1357 */ 1358 static int find_bio_stripe(struct btrfs_raid_bio *rbio, 1359 struct bio *bio) 1360 { 1361 u64 physical = bio->bi_iter.bi_sector; 1362 u64 stripe_start; 1363 int i; 1364 struct btrfs_bio_stripe *stripe; 1365 1366 physical <<= 9; 1367 1368 for (i = 0; i < rbio->bbio->num_stripes; i++) { 1369 stripe = &rbio->bbio->stripes[i]; 1370 stripe_start = stripe->physical; 1371 if (physical >= stripe_start && 1372 physical < stripe_start + rbio->stripe_len && 1373 bio->bi_disk == stripe->dev->bdev->bd_disk && 1374 bio->bi_partno == stripe->dev->bdev->bd_partno) { 1375 return i; 1376 } 1377 } 1378 return -1; 1379 } 1380 1381 /* 1382 * helper to find the stripe number for a given 1383 * bio (before mapping). Used to figure out which stripe has 1384 * failed. This looks up based on logical block numbers. 1385 */ 1386 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, 1387 struct bio *bio) 1388 { 1389 u64 logical = bio->bi_iter.bi_sector; 1390 u64 stripe_start; 1391 int i; 1392 1393 logical <<= 9; 1394 1395 for (i = 0; i < rbio->nr_data; i++) { 1396 stripe_start = rbio->bbio->raid_map[i]; 1397 if (logical >= stripe_start && 1398 logical < stripe_start + rbio->stripe_len) { 1399 return i; 1400 } 1401 } 1402 return -1; 1403 } 1404 1405 /* 1406 * returns -EIO if we had too many failures 1407 */ 1408 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) 1409 { 1410 unsigned long flags; 1411 int ret = 0; 1412 1413 spin_lock_irqsave(&rbio->bio_list_lock, flags); 1414 1415 /* we already know this stripe is bad, move on */ 1416 if (rbio->faila == failed || rbio->failb == failed) 1417 goto out; 1418 1419 if (rbio->faila == -1) { 1420 /* first failure on this rbio */ 1421 rbio->faila = failed; 1422 atomic_inc(&rbio->error); 1423 } else if (rbio->failb == -1) { 1424 /* second failure on this rbio */ 1425 rbio->failb = failed; 1426 atomic_inc(&rbio->error); 1427 } else { 1428 ret = -EIO; 1429 } 1430 out: 1431 spin_unlock_irqrestore(&rbio->bio_list_lock, flags); 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * helper to fail a stripe based on a physical disk 1438 * bio. 1439 */ 1440 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, 1441 struct bio *bio) 1442 { 1443 int failed = find_bio_stripe(rbio, bio); 1444 1445 if (failed < 0) 1446 return -EIO; 1447 1448 return fail_rbio_index(rbio, failed); 1449 } 1450 1451 /* 1452 * this sets each page in the bio uptodate. It should only be used on private 1453 * rbio pages, nothing that comes in from the higher layers 1454 */ 1455 static void set_bio_pages_uptodate(struct bio *bio) 1456 { 1457 struct bio_vec *bvec; 1458 int i; 1459 1460 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1461 1462 bio_for_each_segment_all(bvec, bio, i) 1463 SetPageUptodate(bvec->bv_page); 1464 } 1465 1466 /* 1467 * end io for the read phase of the rmw cycle. All the bios here are physical 1468 * stripe bios we've read from the disk so we can recalculate the parity of the 1469 * stripe. 1470 * 1471 * This will usually kick off finish_rmw once all the bios are read in, but it 1472 * may trigger parity reconstruction if we had any errors along the way 1473 */ 1474 static void raid_rmw_end_io(struct bio *bio) 1475 { 1476 struct btrfs_raid_bio *rbio = bio->bi_private; 1477 1478 if (bio->bi_status) 1479 fail_bio_stripe(rbio, bio); 1480 else 1481 set_bio_pages_uptodate(bio); 1482 1483 bio_put(bio); 1484 1485 if (!atomic_dec_and_test(&rbio->stripes_pending)) 1486 return; 1487 1488 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 1489 goto cleanup; 1490 1491 /* 1492 * this will normally call finish_rmw to start our write 1493 * but if there are any failed stripes we'll reconstruct 1494 * from parity first 1495 */ 1496 validate_rbio_for_rmw(rbio); 1497 return; 1498 1499 cleanup: 1500 1501 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1502 } 1503 1504 static void async_rmw_stripe(struct btrfs_raid_bio *rbio) 1505 { 1506 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); 1507 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1508 } 1509 1510 static void async_read_rebuild(struct btrfs_raid_bio *rbio) 1511 { 1512 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 1513 read_rebuild_work, NULL, NULL); 1514 1515 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 1516 } 1517 1518 /* 1519 * the stripe must be locked by the caller. It will 1520 * unlock after all the writes are done 1521 */ 1522 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) 1523 { 1524 int bios_to_read = 0; 1525 struct bio_list bio_list; 1526 int ret; 1527 int pagenr; 1528 int stripe; 1529 struct bio *bio; 1530 1531 bio_list_init(&bio_list); 1532 1533 ret = alloc_rbio_pages(rbio); 1534 if (ret) 1535 goto cleanup; 1536 1537 index_rbio_pages(rbio); 1538 1539 atomic_set(&rbio->error, 0); 1540 /* 1541 * build a list of bios to read all the missing parts of this 1542 * stripe 1543 */ 1544 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1545 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1546 struct page *page; 1547 /* 1548 * we want to find all the pages missing from 1549 * the rbio and read them from the disk. If 1550 * page_in_rbio finds a page in the bio list 1551 * we don't need to read it off the stripe. 1552 */ 1553 page = page_in_rbio(rbio, stripe, pagenr, 1); 1554 if (page) 1555 continue; 1556 1557 page = rbio_stripe_page(rbio, stripe, pagenr); 1558 /* 1559 * the bio cache may have handed us an uptodate 1560 * page. If so, be happy and use it 1561 */ 1562 if (PageUptodate(page)) 1563 continue; 1564 1565 ret = rbio_add_io_page(rbio, &bio_list, page, 1566 stripe, pagenr, rbio->stripe_len); 1567 if (ret) 1568 goto cleanup; 1569 } 1570 } 1571 1572 bios_to_read = bio_list_size(&bio_list); 1573 if (!bios_to_read) { 1574 /* 1575 * this can happen if others have merged with 1576 * us, it means there is nothing left to read. 1577 * But if there are missing devices it may not be 1578 * safe to do the full stripe write yet. 1579 */ 1580 goto finish; 1581 } 1582 1583 /* 1584 * the bbio may be freed once we submit the last bio. Make sure 1585 * not to touch it after that 1586 */ 1587 atomic_set(&rbio->stripes_pending, bios_to_read); 1588 while (1) { 1589 bio = bio_list_pop(&bio_list); 1590 if (!bio) 1591 break; 1592 1593 bio->bi_private = rbio; 1594 bio->bi_end_io = raid_rmw_end_io; 1595 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1596 1597 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 1598 1599 submit_bio(bio); 1600 } 1601 /* the actual write will happen once the reads are done */ 1602 return 0; 1603 1604 cleanup: 1605 rbio_orig_end_io(rbio, BLK_STS_IOERR); 1606 1607 while ((bio = bio_list_pop(&bio_list))) 1608 bio_put(bio); 1609 1610 return -EIO; 1611 1612 finish: 1613 validate_rbio_for_rmw(rbio); 1614 return 0; 1615 } 1616 1617 /* 1618 * if the upper layers pass in a full stripe, we thank them by only allocating 1619 * enough pages to hold the parity, and sending it all down quickly. 1620 */ 1621 static int full_stripe_write(struct btrfs_raid_bio *rbio) 1622 { 1623 int ret; 1624 1625 ret = alloc_rbio_parity_pages(rbio); 1626 if (ret) { 1627 __free_raid_bio(rbio); 1628 return ret; 1629 } 1630 1631 ret = lock_stripe_add(rbio); 1632 if (ret == 0) 1633 finish_rmw(rbio); 1634 return 0; 1635 } 1636 1637 /* 1638 * partial stripe writes get handed over to async helpers. 1639 * We're really hoping to merge a few more writes into this 1640 * rbio before calculating new parity 1641 */ 1642 static int partial_stripe_write(struct btrfs_raid_bio *rbio) 1643 { 1644 int ret; 1645 1646 ret = lock_stripe_add(rbio); 1647 if (ret == 0) 1648 async_rmw_stripe(rbio); 1649 return 0; 1650 } 1651 1652 /* 1653 * sometimes while we were reading from the drive to 1654 * recalculate parity, enough new bios come into create 1655 * a full stripe. So we do a check here to see if we can 1656 * go directly to finish_rmw 1657 */ 1658 static int __raid56_parity_write(struct btrfs_raid_bio *rbio) 1659 { 1660 /* head off into rmw land if we don't have a full stripe */ 1661 if (!rbio_is_full(rbio)) 1662 return partial_stripe_write(rbio); 1663 return full_stripe_write(rbio); 1664 } 1665 1666 /* 1667 * We use plugging call backs to collect full stripes. 1668 * Any time we get a partial stripe write while plugged 1669 * we collect it into a list. When the unplug comes down, 1670 * we sort the list by logical block number and merge 1671 * everything we can into the same rbios 1672 */ 1673 struct btrfs_plug_cb { 1674 struct blk_plug_cb cb; 1675 struct btrfs_fs_info *info; 1676 struct list_head rbio_list; 1677 struct btrfs_work work; 1678 }; 1679 1680 /* 1681 * rbios on the plug list are sorted for easier merging. 1682 */ 1683 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) 1684 { 1685 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1686 plug_list); 1687 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1688 plug_list); 1689 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1690 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1691 1692 if (a_sector < b_sector) 1693 return -1; 1694 if (a_sector > b_sector) 1695 return 1; 1696 return 0; 1697 } 1698 1699 static void run_plug(struct btrfs_plug_cb *plug) 1700 { 1701 struct btrfs_raid_bio *cur; 1702 struct btrfs_raid_bio *last = NULL; 1703 1704 /* 1705 * sort our plug list then try to merge 1706 * everything we can in hopes of creating full 1707 * stripes. 1708 */ 1709 list_sort(NULL, &plug->rbio_list, plug_cmp); 1710 while (!list_empty(&plug->rbio_list)) { 1711 cur = list_entry(plug->rbio_list.next, 1712 struct btrfs_raid_bio, plug_list); 1713 list_del_init(&cur->plug_list); 1714 1715 if (rbio_is_full(cur)) { 1716 /* we have a full stripe, send it down */ 1717 full_stripe_write(cur); 1718 continue; 1719 } 1720 if (last) { 1721 if (rbio_can_merge(last, cur)) { 1722 merge_rbio(last, cur); 1723 __free_raid_bio(cur); 1724 continue; 1725 1726 } 1727 __raid56_parity_write(last); 1728 } 1729 last = cur; 1730 } 1731 if (last) { 1732 __raid56_parity_write(last); 1733 } 1734 kfree(plug); 1735 } 1736 1737 /* 1738 * if the unplug comes from schedule, we have to push the 1739 * work off to a helper thread 1740 */ 1741 static void unplug_work(struct btrfs_work *work) 1742 { 1743 struct btrfs_plug_cb *plug; 1744 plug = container_of(work, struct btrfs_plug_cb, work); 1745 run_plug(plug); 1746 } 1747 1748 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1749 { 1750 struct btrfs_plug_cb *plug; 1751 plug = container_of(cb, struct btrfs_plug_cb, cb); 1752 1753 if (from_schedule) { 1754 btrfs_init_work(&plug->work, btrfs_rmw_helper, 1755 unplug_work, NULL, NULL); 1756 btrfs_queue_work(plug->info->rmw_workers, 1757 &plug->work); 1758 return; 1759 } 1760 run_plug(plug); 1761 } 1762 1763 /* 1764 * our main entry point for writes from the rest of the FS. 1765 */ 1766 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, 1767 struct btrfs_bio *bbio, u64 stripe_len) 1768 { 1769 struct btrfs_raid_bio *rbio; 1770 struct btrfs_plug_cb *plug = NULL; 1771 struct blk_plug_cb *cb; 1772 int ret; 1773 1774 rbio = alloc_rbio(fs_info, bbio, stripe_len); 1775 if (IS_ERR(rbio)) { 1776 btrfs_put_bbio(bbio); 1777 return PTR_ERR(rbio); 1778 } 1779 bio_list_add(&rbio->bio_list, bio); 1780 rbio->bio_list_bytes = bio->bi_iter.bi_size; 1781 rbio->operation = BTRFS_RBIO_WRITE; 1782 1783 btrfs_bio_counter_inc_noblocked(fs_info); 1784 rbio->generic_bio_cnt = 1; 1785 1786 /* 1787 * don't plug on full rbios, just get them out the door 1788 * as quickly as we can 1789 */ 1790 if (rbio_is_full(rbio)) { 1791 ret = full_stripe_write(rbio); 1792 if (ret) 1793 btrfs_bio_counter_dec(fs_info); 1794 return ret; 1795 } 1796 1797 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); 1798 if (cb) { 1799 plug = container_of(cb, struct btrfs_plug_cb, cb); 1800 if (!plug->info) { 1801 plug->info = fs_info; 1802 INIT_LIST_HEAD(&plug->rbio_list); 1803 } 1804 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1805 ret = 0; 1806 } else { 1807 ret = __raid56_parity_write(rbio); 1808 if (ret) 1809 btrfs_bio_counter_dec(fs_info); 1810 } 1811 return ret; 1812 } 1813 1814 /* 1815 * all parity reconstruction happens here. We've read in everything 1816 * we can find from the drives and this does the heavy lifting of 1817 * sorting the good from the bad. 1818 */ 1819 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) 1820 { 1821 int pagenr, stripe; 1822 void **pointers; 1823 int faila = -1, failb = -1; 1824 struct page *page; 1825 blk_status_t err; 1826 int i; 1827 1828 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1829 if (!pointers) { 1830 err = BLK_STS_RESOURCE; 1831 goto cleanup_io; 1832 } 1833 1834 faila = rbio->faila; 1835 failb = rbio->failb; 1836 1837 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 1838 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 1839 spin_lock_irq(&rbio->bio_list_lock); 1840 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 1841 spin_unlock_irq(&rbio->bio_list_lock); 1842 } 1843 1844 index_rbio_pages(rbio); 1845 1846 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 1847 /* 1848 * Now we just use bitmap to mark the horizontal stripes in 1849 * which we have data when doing parity scrub. 1850 */ 1851 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1852 !test_bit(pagenr, rbio->dbitmap)) 1853 continue; 1854 1855 /* setup our array of pointers with pages 1856 * from each stripe 1857 */ 1858 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1859 /* 1860 * if we're rebuilding a read, we have to use 1861 * pages from the bio list 1862 */ 1863 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1864 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1865 (stripe == faila || stripe == failb)) { 1866 page = page_in_rbio(rbio, stripe, pagenr, 0); 1867 } else { 1868 page = rbio_stripe_page(rbio, stripe, pagenr); 1869 } 1870 pointers[stripe] = kmap(page); 1871 } 1872 1873 /* all raid6 handling here */ 1874 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1875 /* 1876 * single failure, rebuild from parity raid5 1877 * style 1878 */ 1879 if (failb < 0) { 1880 if (faila == rbio->nr_data) { 1881 /* 1882 * Just the P stripe has failed, without 1883 * a bad data or Q stripe. 1884 * TODO, we should redo the xor here. 1885 */ 1886 err = BLK_STS_IOERR; 1887 goto cleanup; 1888 } 1889 /* 1890 * a single failure in raid6 is rebuilt 1891 * in the pstripe code below 1892 */ 1893 goto pstripe; 1894 } 1895 1896 /* make sure our ps and qs are in order */ 1897 if (faila > failb) { 1898 int tmp = failb; 1899 failb = faila; 1900 faila = tmp; 1901 } 1902 1903 /* if the q stripe is failed, do a pstripe reconstruction 1904 * from the xors. 1905 * If both the q stripe and the P stripe are failed, we're 1906 * here due to a crc mismatch and we can't give them the 1907 * data they want 1908 */ 1909 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { 1910 if (rbio->bbio->raid_map[faila] == 1911 RAID5_P_STRIPE) { 1912 err = BLK_STS_IOERR; 1913 goto cleanup; 1914 } 1915 /* 1916 * otherwise we have one bad data stripe and 1917 * a good P stripe. raid5! 1918 */ 1919 goto pstripe; 1920 } 1921 1922 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { 1923 raid6_datap_recov(rbio->real_stripes, 1924 PAGE_SIZE, faila, pointers); 1925 } else { 1926 raid6_2data_recov(rbio->real_stripes, 1927 PAGE_SIZE, faila, failb, 1928 pointers); 1929 } 1930 } else { 1931 void *p; 1932 1933 /* rebuild from P stripe here (raid5 or raid6) */ 1934 BUG_ON(failb != -1); 1935 pstripe: 1936 /* Copy parity block into failed block to start with */ 1937 memcpy(pointers[faila], 1938 pointers[rbio->nr_data], 1939 PAGE_SIZE); 1940 1941 /* rearrange the pointer array */ 1942 p = pointers[faila]; 1943 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) 1944 pointers[stripe] = pointers[stripe + 1]; 1945 pointers[rbio->nr_data - 1] = p; 1946 1947 /* xor in the rest */ 1948 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); 1949 } 1950 /* if we're doing this rebuild as part of an rmw, go through 1951 * and set all of our private rbio pages in the 1952 * failed stripes as uptodate. This way finish_rmw will 1953 * know they can be trusted. If this was a read reconstruction, 1954 * other endio functions will fiddle the uptodate bits 1955 */ 1956 if (rbio->operation == BTRFS_RBIO_WRITE) { 1957 for (i = 0; i < rbio->stripe_npages; i++) { 1958 if (faila != -1) { 1959 page = rbio_stripe_page(rbio, faila, i); 1960 SetPageUptodate(page); 1961 } 1962 if (failb != -1) { 1963 page = rbio_stripe_page(rbio, failb, i); 1964 SetPageUptodate(page); 1965 } 1966 } 1967 } 1968 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 1969 /* 1970 * if we're rebuilding a read, we have to use 1971 * pages from the bio list 1972 */ 1973 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || 1974 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && 1975 (stripe == faila || stripe == failb)) { 1976 page = page_in_rbio(rbio, stripe, pagenr, 0); 1977 } else { 1978 page = rbio_stripe_page(rbio, stripe, pagenr); 1979 } 1980 kunmap(page); 1981 } 1982 } 1983 1984 err = BLK_STS_OK; 1985 cleanup: 1986 kfree(pointers); 1987 1988 cleanup_io: 1989 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1990 /* 1991 * - In case of two failures, where rbio->failb != -1: 1992 * 1993 * Do not cache this rbio since the above read reconstruction 1994 * (raid6_datap_recov() or raid6_2data_recov()) may have 1995 * changed some content of stripes which are not identical to 1996 * on-disk content any more, otherwise, a later write/recover 1997 * may steal stripe_pages from this rbio and end up with 1998 * corruptions or rebuild failures. 1999 * 2000 * - In case of single failure, where rbio->failb == -1: 2001 * 2002 * Cache this rbio iff the above read reconstruction is 2003 * excuted without problems. 2004 */ 2005 if (err == BLK_STS_OK && rbio->failb < 0) 2006 cache_rbio_pages(rbio); 2007 else 2008 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2009 2010 rbio_orig_end_io(rbio, err); 2011 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { 2012 rbio_orig_end_io(rbio, err); 2013 } else if (err == BLK_STS_OK) { 2014 rbio->faila = -1; 2015 rbio->failb = -1; 2016 2017 if (rbio->operation == BTRFS_RBIO_WRITE) 2018 finish_rmw(rbio); 2019 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) 2020 finish_parity_scrub(rbio, 0); 2021 else 2022 BUG(); 2023 } else { 2024 rbio_orig_end_io(rbio, err); 2025 } 2026 } 2027 2028 /* 2029 * This is called only for stripes we've read from disk to 2030 * reconstruct the parity. 2031 */ 2032 static void raid_recover_end_io(struct bio *bio) 2033 { 2034 struct btrfs_raid_bio *rbio = bio->bi_private; 2035 2036 /* 2037 * we only read stripe pages off the disk, set them 2038 * up to date if there were no errors 2039 */ 2040 if (bio->bi_status) 2041 fail_bio_stripe(rbio, bio); 2042 else 2043 set_bio_pages_uptodate(bio); 2044 bio_put(bio); 2045 2046 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2047 return; 2048 2049 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2050 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2051 else 2052 __raid_recover_end_io(rbio); 2053 } 2054 2055 /* 2056 * reads everything we need off the disk to reconstruct 2057 * the parity. endio handlers trigger final reconstruction 2058 * when the IO is done. 2059 * 2060 * This is used both for reads from the higher layers and for 2061 * parity construction required to finish a rmw cycle. 2062 */ 2063 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) 2064 { 2065 int bios_to_read = 0; 2066 struct bio_list bio_list; 2067 int ret; 2068 int pagenr; 2069 int stripe; 2070 struct bio *bio; 2071 2072 bio_list_init(&bio_list); 2073 2074 ret = alloc_rbio_pages(rbio); 2075 if (ret) 2076 goto cleanup; 2077 2078 atomic_set(&rbio->error, 0); 2079 2080 /* 2081 * read everything that hasn't failed. Thanks to the 2082 * stripe cache, it is possible that some or all of these 2083 * pages are going to be uptodate. 2084 */ 2085 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2086 if (rbio->faila == stripe || rbio->failb == stripe) { 2087 atomic_inc(&rbio->error); 2088 continue; 2089 } 2090 2091 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { 2092 struct page *p; 2093 2094 /* 2095 * the rmw code may have already read this 2096 * page in 2097 */ 2098 p = rbio_stripe_page(rbio, stripe, pagenr); 2099 if (PageUptodate(p)) 2100 continue; 2101 2102 ret = rbio_add_io_page(rbio, &bio_list, 2103 rbio_stripe_page(rbio, stripe, pagenr), 2104 stripe, pagenr, rbio->stripe_len); 2105 if (ret < 0) 2106 goto cleanup; 2107 } 2108 } 2109 2110 bios_to_read = bio_list_size(&bio_list); 2111 if (!bios_to_read) { 2112 /* 2113 * we might have no bios to read just because the pages 2114 * were up to date, or we might have no bios to read because 2115 * the devices were gone. 2116 */ 2117 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { 2118 __raid_recover_end_io(rbio); 2119 goto out; 2120 } else { 2121 goto cleanup; 2122 } 2123 } 2124 2125 /* 2126 * the bbio may be freed once we submit the last bio. Make sure 2127 * not to touch it after that 2128 */ 2129 atomic_set(&rbio->stripes_pending, bios_to_read); 2130 while (1) { 2131 bio = bio_list_pop(&bio_list); 2132 if (!bio) 2133 break; 2134 2135 bio->bi_private = rbio; 2136 bio->bi_end_io = raid_recover_end_io; 2137 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2138 2139 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2140 2141 submit_bio(bio); 2142 } 2143 out: 2144 return 0; 2145 2146 cleanup: 2147 if (rbio->operation == BTRFS_RBIO_READ_REBUILD || 2148 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) 2149 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2150 2151 while ((bio = bio_list_pop(&bio_list))) 2152 bio_put(bio); 2153 2154 return -EIO; 2155 } 2156 2157 /* 2158 * the main entry point for reads from the higher layers. This 2159 * is really only called when the normal read path had a failure, 2160 * so we assume the bio they send down corresponds to a failed part 2161 * of the drive. 2162 */ 2163 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, 2164 struct btrfs_bio *bbio, u64 stripe_len, 2165 int mirror_num, int generic_io) 2166 { 2167 struct btrfs_raid_bio *rbio; 2168 int ret; 2169 2170 if (generic_io) { 2171 ASSERT(bbio->mirror_num == mirror_num); 2172 btrfs_io_bio(bio)->mirror_num = mirror_num; 2173 } 2174 2175 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2176 if (IS_ERR(rbio)) { 2177 if (generic_io) 2178 btrfs_put_bbio(bbio); 2179 return PTR_ERR(rbio); 2180 } 2181 2182 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2183 bio_list_add(&rbio->bio_list, bio); 2184 rbio->bio_list_bytes = bio->bi_iter.bi_size; 2185 2186 rbio->faila = find_logical_bio_stripe(rbio, bio); 2187 if (rbio->faila == -1) { 2188 btrfs_warn(fs_info, 2189 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", 2190 __func__, (u64)bio->bi_iter.bi_sector << 9, 2191 (u64)bio->bi_iter.bi_size, bbio->map_type); 2192 if (generic_io) 2193 btrfs_put_bbio(bbio); 2194 kfree(rbio); 2195 return -EIO; 2196 } 2197 2198 if (generic_io) { 2199 btrfs_bio_counter_inc_noblocked(fs_info); 2200 rbio->generic_bio_cnt = 1; 2201 } else { 2202 btrfs_get_bbio(bbio); 2203 } 2204 2205 /* 2206 * Loop retry: 2207 * for 'mirror == 2', reconstruct from all other stripes. 2208 * for 'mirror_num > 2', select a stripe to fail on every retry. 2209 */ 2210 if (mirror_num > 2) { 2211 /* 2212 * 'mirror == 3' is to fail the p stripe and 2213 * reconstruct from the q stripe. 'mirror > 3' is to 2214 * fail a data stripe and reconstruct from p+q stripe. 2215 */ 2216 rbio->failb = rbio->real_stripes - (mirror_num - 1); 2217 ASSERT(rbio->failb > 0); 2218 if (rbio->failb <= rbio->faila) 2219 rbio->failb--; 2220 } 2221 2222 ret = lock_stripe_add(rbio); 2223 2224 /* 2225 * __raid56_parity_recover will end the bio with 2226 * any errors it hits. We don't want to return 2227 * its error value up the stack because our caller 2228 * will end up calling bio_endio with any nonzero 2229 * return 2230 */ 2231 if (ret == 0) 2232 __raid56_parity_recover(rbio); 2233 /* 2234 * our rbio has been added to the list of 2235 * rbios that will be handled after the 2236 * currently lock owner is done 2237 */ 2238 return 0; 2239 2240 } 2241 2242 static void rmw_work(struct btrfs_work *work) 2243 { 2244 struct btrfs_raid_bio *rbio; 2245 2246 rbio = container_of(work, struct btrfs_raid_bio, work); 2247 raid56_rmw_stripe(rbio); 2248 } 2249 2250 static void read_rebuild_work(struct btrfs_work *work) 2251 { 2252 struct btrfs_raid_bio *rbio; 2253 2254 rbio = container_of(work, struct btrfs_raid_bio, work); 2255 __raid56_parity_recover(rbio); 2256 } 2257 2258 /* 2259 * The following code is used to scrub/replace the parity stripe 2260 * 2261 * Caller must have already increased bio_counter for getting @bbio. 2262 * 2263 * Note: We need make sure all the pages that add into the scrub/replace 2264 * raid bio are correct and not be changed during the scrub/replace. That 2265 * is those pages just hold metadata or file data with checksum. 2266 */ 2267 2268 struct btrfs_raid_bio * 2269 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2270 struct btrfs_bio *bbio, u64 stripe_len, 2271 struct btrfs_device *scrub_dev, 2272 unsigned long *dbitmap, int stripe_nsectors) 2273 { 2274 struct btrfs_raid_bio *rbio; 2275 int i; 2276 2277 rbio = alloc_rbio(fs_info, bbio, stripe_len); 2278 if (IS_ERR(rbio)) 2279 return NULL; 2280 bio_list_add(&rbio->bio_list, bio); 2281 /* 2282 * This is a special bio which is used to hold the completion handler 2283 * and make the scrub rbio is similar to the other types 2284 */ 2285 ASSERT(!bio->bi_iter.bi_size); 2286 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2287 2288 /* 2289 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted 2290 * to the end position, so this search can start from the first parity 2291 * stripe. 2292 */ 2293 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2294 if (bbio->stripes[i].dev == scrub_dev) { 2295 rbio->scrubp = i; 2296 break; 2297 } 2298 } 2299 ASSERT(i < rbio->real_stripes); 2300 2301 /* Now we just support the sectorsize equals to page size */ 2302 ASSERT(fs_info->sectorsize == PAGE_SIZE); 2303 ASSERT(rbio->stripe_npages == stripe_nsectors); 2304 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); 2305 2306 /* 2307 * We have already increased bio_counter when getting bbio, record it 2308 * so we can free it at rbio_orig_end_io(). 2309 */ 2310 rbio->generic_bio_cnt = 1; 2311 2312 return rbio; 2313 } 2314 2315 /* Used for both parity scrub and missing. */ 2316 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, 2317 u64 logical) 2318 { 2319 int stripe_offset; 2320 int index; 2321 2322 ASSERT(logical >= rbio->bbio->raid_map[0]); 2323 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + 2324 rbio->stripe_len * rbio->nr_data); 2325 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); 2326 index = stripe_offset >> PAGE_SHIFT; 2327 rbio->bio_pages[index] = page; 2328 } 2329 2330 /* 2331 * We just scrub the parity that we have correct data on the same horizontal, 2332 * so we needn't allocate all pages for all the stripes. 2333 */ 2334 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2335 { 2336 int i; 2337 int bit; 2338 int index; 2339 struct page *page; 2340 2341 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { 2342 for (i = 0; i < rbio->real_stripes; i++) { 2343 index = i * rbio->stripe_npages + bit; 2344 if (rbio->stripe_pages[index]) 2345 continue; 2346 2347 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2348 if (!page) 2349 return -ENOMEM; 2350 rbio->stripe_pages[index] = page; 2351 } 2352 } 2353 return 0; 2354 } 2355 2356 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, 2357 int need_check) 2358 { 2359 struct btrfs_bio *bbio = rbio->bbio; 2360 void *pointers[rbio->real_stripes]; 2361 DECLARE_BITMAP(pbitmap, rbio->stripe_npages); 2362 int nr_data = rbio->nr_data; 2363 int stripe; 2364 int pagenr; 2365 int p_stripe = -1; 2366 int q_stripe = -1; 2367 struct page *p_page = NULL; 2368 struct page *q_page = NULL; 2369 struct bio_list bio_list; 2370 struct bio *bio; 2371 int is_replace = 0; 2372 int ret; 2373 2374 bio_list_init(&bio_list); 2375 2376 if (rbio->real_stripes - rbio->nr_data == 1) { 2377 p_stripe = rbio->real_stripes - 1; 2378 } else if (rbio->real_stripes - rbio->nr_data == 2) { 2379 p_stripe = rbio->real_stripes - 2; 2380 q_stripe = rbio->real_stripes - 1; 2381 } else { 2382 BUG(); 2383 } 2384 2385 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { 2386 is_replace = 1; 2387 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); 2388 } 2389 2390 /* 2391 * Because the higher layers(scrubber) are unlikely to 2392 * use this area of the disk again soon, so don't cache 2393 * it. 2394 */ 2395 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2396 2397 if (!need_check) 2398 goto writeback; 2399 2400 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2401 if (!p_page) 2402 goto cleanup; 2403 SetPageUptodate(p_page); 2404 2405 if (q_stripe != -1) { 2406 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2407 if (!q_page) { 2408 __free_page(p_page); 2409 goto cleanup; 2410 } 2411 SetPageUptodate(q_page); 2412 } 2413 2414 atomic_set(&rbio->error, 0); 2415 2416 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2417 struct page *p; 2418 void *parity; 2419 /* first collect one page from each data stripe */ 2420 for (stripe = 0; stripe < nr_data; stripe++) { 2421 p = page_in_rbio(rbio, stripe, pagenr, 0); 2422 pointers[stripe] = kmap(p); 2423 } 2424 2425 /* then add the parity stripe */ 2426 pointers[stripe++] = kmap(p_page); 2427 2428 if (q_stripe != -1) { 2429 2430 /* 2431 * raid6, add the qstripe and call the 2432 * library function to fill in our p/q 2433 */ 2434 pointers[stripe++] = kmap(q_page); 2435 2436 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, 2437 pointers); 2438 } else { 2439 /* raid5 */ 2440 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); 2441 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); 2442 } 2443 2444 /* Check scrubbing parity and repair it */ 2445 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2446 parity = kmap(p); 2447 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) 2448 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); 2449 else 2450 /* Parity is right, needn't writeback */ 2451 bitmap_clear(rbio->dbitmap, pagenr, 1); 2452 kunmap(p); 2453 2454 for (stripe = 0; stripe < rbio->real_stripes; stripe++) 2455 kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); 2456 } 2457 2458 __free_page(p_page); 2459 if (q_page) 2460 __free_page(q_page); 2461 2462 writeback: 2463 /* 2464 * time to start writing. Make bios for everything from the 2465 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2466 * everything else. 2467 */ 2468 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2469 struct page *page; 2470 2471 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2472 ret = rbio_add_io_page(rbio, &bio_list, 2473 page, rbio->scrubp, pagenr, rbio->stripe_len); 2474 if (ret) 2475 goto cleanup; 2476 } 2477 2478 if (!is_replace) 2479 goto submit_write; 2480 2481 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { 2482 struct page *page; 2483 2484 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); 2485 ret = rbio_add_io_page(rbio, &bio_list, page, 2486 bbio->tgtdev_map[rbio->scrubp], 2487 pagenr, rbio->stripe_len); 2488 if (ret) 2489 goto cleanup; 2490 } 2491 2492 submit_write: 2493 nr_data = bio_list_size(&bio_list); 2494 if (!nr_data) { 2495 /* Every parity is right */ 2496 rbio_orig_end_io(rbio, BLK_STS_OK); 2497 return; 2498 } 2499 2500 atomic_set(&rbio->stripes_pending, nr_data); 2501 2502 while (1) { 2503 bio = bio_list_pop(&bio_list); 2504 if (!bio) 2505 break; 2506 2507 bio->bi_private = rbio; 2508 bio->bi_end_io = raid_write_end_io; 2509 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2510 2511 submit_bio(bio); 2512 } 2513 return; 2514 2515 cleanup: 2516 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2517 2518 while ((bio = bio_list_pop(&bio_list))) 2519 bio_put(bio); 2520 } 2521 2522 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2523 { 2524 if (stripe >= 0 && stripe < rbio->nr_data) 2525 return 1; 2526 return 0; 2527 } 2528 2529 /* 2530 * While we're doing the parity check and repair, we could have errors 2531 * in reading pages off the disk. This checks for errors and if we're 2532 * not able to read the page it'll trigger parity reconstruction. The 2533 * parity scrub will be finished after we've reconstructed the failed 2534 * stripes 2535 */ 2536 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) 2537 { 2538 if (atomic_read(&rbio->error) > rbio->bbio->max_errors) 2539 goto cleanup; 2540 2541 if (rbio->faila >= 0 || rbio->failb >= 0) { 2542 int dfail = 0, failp = -1; 2543 2544 if (is_data_stripe(rbio, rbio->faila)) 2545 dfail++; 2546 else if (is_parity_stripe(rbio->faila)) 2547 failp = rbio->faila; 2548 2549 if (is_data_stripe(rbio, rbio->failb)) 2550 dfail++; 2551 else if (is_parity_stripe(rbio->failb)) 2552 failp = rbio->failb; 2553 2554 /* 2555 * Because we can not use a scrubbing parity to repair 2556 * the data, so the capability of the repair is declined. 2557 * (In the case of RAID5, we can not repair anything) 2558 */ 2559 if (dfail > rbio->bbio->max_errors - 1) 2560 goto cleanup; 2561 2562 /* 2563 * If all data is good, only parity is correctly, just 2564 * repair the parity. 2565 */ 2566 if (dfail == 0) { 2567 finish_parity_scrub(rbio, 0); 2568 return; 2569 } 2570 2571 /* 2572 * Here means we got one corrupted data stripe and one 2573 * corrupted parity on RAID6, if the corrupted parity 2574 * is scrubbing parity, luckily, use the other one to repair 2575 * the data, or we can not repair the data stripe. 2576 */ 2577 if (failp != rbio->scrubp) 2578 goto cleanup; 2579 2580 __raid_recover_end_io(rbio); 2581 } else { 2582 finish_parity_scrub(rbio, 1); 2583 } 2584 return; 2585 2586 cleanup: 2587 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2588 } 2589 2590 /* 2591 * end io for the read phase of the rmw cycle. All the bios here are physical 2592 * stripe bios we've read from the disk so we can recalculate the parity of the 2593 * stripe. 2594 * 2595 * This will usually kick off finish_rmw once all the bios are read in, but it 2596 * may trigger parity reconstruction if we had any errors along the way 2597 */ 2598 static void raid56_parity_scrub_end_io(struct bio *bio) 2599 { 2600 struct btrfs_raid_bio *rbio = bio->bi_private; 2601 2602 if (bio->bi_status) 2603 fail_bio_stripe(rbio, bio); 2604 else 2605 set_bio_pages_uptodate(bio); 2606 2607 bio_put(bio); 2608 2609 if (!atomic_dec_and_test(&rbio->stripes_pending)) 2610 return; 2611 2612 /* 2613 * this will normally call finish_rmw to start our write 2614 * but if there are any failed stripes we'll reconstruct 2615 * from parity first 2616 */ 2617 validate_rbio_for_parity_scrub(rbio); 2618 } 2619 2620 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) 2621 { 2622 int bios_to_read = 0; 2623 struct bio_list bio_list; 2624 int ret; 2625 int pagenr; 2626 int stripe; 2627 struct bio *bio; 2628 2629 bio_list_init(&bio_list); 2630 2631 ret = alloc_rbio_essential_pages(rbio); 2632 if (ret) 2633 goto cleanup; 2634 2635 atomic_set(&rbio->error, 0); 2636 /* 2637 * build a list of bios to read all the missing parts of this 2638 * stripe 2639 */ 2640 for (stripe = 0; stripe < rbio->real_stripes; stripe++) { 2641 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { 2642 struct page *page; 2643 /* 2644 * we want to find all the pages missing from 2645 * the rbio and read them from the disk. If 2646 * page_in_rbio finds a page in the bio list 2647 * we don't need to read it off the stripe. 2648 */ 2649 page = page_in_rbio(rbio, stripe, pagenr, 1); 2650 if (page) 2651 continue; 2652 2653 page = rbio_stripe_page(rbio, stripe, pagenr); 2654 /* 2655 * the bio cache may have handed us an uptodate 2656 * page. If so, be happy and use it 2657 */ 2658 if (PageUptodate(page)) 2659 continue; 2660 2661 ret = rbio_add_io_page(rbio, &bio_list, page, 2662 stripe, pagenr, rbio->stripe_len); 2663 if (ret) 2664 goto cleanup; 2665 } 2666 } 2667 2668 bios_to_read = bio_list_size(&bio_list); 2669 if (!bios_to_read) { 2670 /* 2671 * this can happen if others have merged with 2672 * us, it means there is nothing left to read. 2673 * But if there are missing devices it may not be 2674 * safe to do the full stripe write yet. 2675 */ 2676 goto finish; 2677 } 2678 2679 /* 2680 * the bbio may be freed once we submit the last bio. Make sure 2681 * not to touch it after that 2682 */ 2683 atomic_set(&rbio->stripes_pending, bios_to_read); 2684 while (1) { 2685 bio = bio_list_pop(&bio_list); 2686 if (!bio) 2687 break; 2688 2689 bio->bi_private = rbio; 2690 bio->bi_end_io = raid56_parity_scrub_end_io; 2691 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2692 2693 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); 2694 2695 submit_bio(bio); 2696 } 2697 /* the actual write will happen once the reads are done */ 2698 return; 2699 2700 cleanup: 2701 rbio_orig_end_io(rbio, BLK_STS_IOERR); 2702 2703 while ((bio = bio_list_pop(&bio_list))) 2704 bio_put(bio); 2705 2706 return; 2707 2708 finish: 2709 validate_rbio_for_parity_scrub(rbio); 2710 } 2711 2712 static void scrub_parity_work(struct btrfs_work *work) 2713 { 2714 struct btrfs_raid_bio *rbio; 2715 2716 rbio = container_of(work, struct btrfs_raid_bio, work); 2717 raid56_parity_scrub_stripe(rbio); 2718 } 2719 2720 static void async_scrub_parity(struct btrfs_raid_bio *rbio) 2721 { 2722 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2723 scrub_parity_work, NULL, NULL); 2724 2725 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2726 } 2727 2728 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2729 { 2730 if (!lock_stripe_add(rbio)) 2731 async_scrub_parity(rbio); 2732 } 2733 2734 /* The following code is used for dev replace of a missing RAID 5/6 device. */ 2735 2736 struct btrfs_raid_bio * 2737 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, 2738 struct btrfs_bio *bbio, u64 length) 2739 { 2740 struct btrfs_raid_bio *rbio; 2741 2742 rbio = alloc_rbio(fs_info, bbio, length); 2743 if (IS_ERR(rbio)) 2744 return NULL; 2745 2746 rbio->operation = BTRFS_RBIO_REBUILD_MISSING; 2747 bio_list_add(&rbio->bio_list, bio); 2748 /* 2749 * This is a special bio which is used to hold the completion handler 2750 * and make the scrub rbio is similar to the other types 2751 */ 2752 ASSERT(!bio->bi_iter.bi_size); 2753 2754 rbio->faila = find_logical_bio_stripe(rbio, bio); 2755 if (rbio->faila == -1) { 2756 BUG(); 2757 kfree(rbio); 2758 return NULL; 2759 } 2760 2761 /* 2762 * When we get bbio, we have already increased bio_counter, record it 2763 * so we can free it at rbio_orig_end_io() 2764 */ 2765 rbio->generic_bio_cnt = 1; 2766 2767 return rbio; 2768 } 2769 2770 static void missing_raid56_work(struct btrfs_work *work) 2771 { 2772 struct btrfs_raid_bio *rbio; 2773 2774 rbio = container_of(work, struct btrfs_raid_bio, work); 2775 __raid56_parity_recover(rbio); 2776 } 2777 2778 static void async_missing_raid56(struct btrfs_raid_bio *rbio) 2779 { 2780 btrfs_init_work(&rbio->work, btrfs_rmw_helper, 2781 missing_raid56_work, NULL, NULL); 2782 2783 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); 2784 } 2785 2786 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) 2787 { 2788 if (!lock_stripe_add(rbio)) 2789 async_missing_raid56(rbio); 2790 } 2791