xref: /openbmc/linux/fs/btrfs/raid56.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21 
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT	1
24 
25 /*
26  * set when this rbio is sitting in the hash, but it is just a cache
27  * of past RMW
28  */
29 #define RBIO_CACHE_BIT		2
30 
31 /*
32  * set when it is safe to trust the stripe_pages for caching
33  */
34 #define RBIO_CACHE_READY_BIT	3
35 
36 #define RBIO_CACHE_SIZE 1024
37 
38 enum btrfs_rbio_ops {
39 	BTRFS_RBIO_WRITE,
40 	BTRFS_RBIO_READ_REBUILD,
41 	BTRFS_RBIO_PARITY_SCRUB,
42 	BTRFS_RBIO_REBUILD_MISSING,
43 };
44 
45 struct btrfs_raid_bio {
46 	struct btrfs_fs_info *fs_info;
47 	struct btrfs_bio *bbio;
48 
49 	/* while we're doing rmw on a stripe
50 	 * we put it into a hash table so we can
51 	 * lock the stripe and merge more rbios
52 	 * into it.
53 	 */
54 	struct list_head hash_list;
55 
56 	/*
57 	 * LRU list for the stripe cache
58 	 */
59 	struct list_head stripe_cache;
60 
61 	/*
62 	 * for scheduling work in the helper threads
63 	 */
64 	struct btrfs_work work;
65 
66 	/*
67 	 * bio list and bio_list_lock are used
68 	 * to add more bios into the stripe
69 	 * in hopes of avoiding the full rmw
70 	 */
71 	struct bio_list bio_list;
72 	spinlock_t bio_list_lock;
73 
74 	/* also protected by the bio_list_lock, the
75 	 * plug list is used by the plugging code
76 	 * to collect partial bios while plugged.  The
77 	 * stripe locking code also uses it to hand off
78 	 * the stripe lock to the next pending IO
79 	 */
80 	struct list_head plug_list;
81 
82 	/*
83 	 * flags that tell us if it is safe to
84 	 * merge with this bio
85 	 */
86 	unsigned long flags;
87 
88 	/* size of each individual stripe on disk */
89 	int stripe_len;
90 
91 	/* number of data stripes (no p/q) */
92 	int nr_data;
93 
94 	int real_stripes;
95 
96 	int stripe_npages;
97 	/*
98 	 * set if we're doing a parity rebuild
99 	 * for a read from higher up, which is handled
100 	 * differently from a parity rebuild as part of
101 	 * rmw
102 	 */
103 	enum btrfs_rbio_ops operation;
104 
105 	/* first bad stripe */
106 	int faila;
107 
108 	/* second bad stripe (for raid6 use) */
109 	int failb;
110 
111 	int scrubp;
112 	/*
113 	 * number of pages needed to represent the full
114 	 * stripe
115 	 */
116 	int nr_pages;
117 
118 	/*
119 	 * size of all the bios in the bio_list.  This
120 	 * helps us decide if the rbio maps to a full
121 	 * stripe or not
122 	 */
123 	int bio_list_bytes;
124 
125 	int generic_bio_cnt;
126 
127 	refcount_t refs;
128 
129 	atomic_t stripes_pending;
130 
131 	atomic_t error;
132 	/*
133 	 * these are two arrays of pointers.  We allocate the
134 	 * rbio big enough to hold them both and setup their
135 	 * locations when the rbio is allocated
136 	 */
137 
138 	/* pointers to pages that we allocated for
139 	 * reading/writing stripes directly from the disk (including P/Q)
140 	 */
141 	struct page **stripe_pages;
142 
143 	/*
144 	 * pointers to the pages in the bio_list.  Stored
145 	 * here for faster lookup
146 	 */
147 	struct page **bio_pages;
148 
149 	/*
150 	 * bitmap to record which horizontal stripe has data
151 	 */
152 	unsigned long *dbitmap;
153 
154 	/* allocated with real_stripes-many pointers for finish_*() calls */
155 	void **finish_pointers;
156 
157 	/* allocated with stripe_npages-many bits for finish_*() calls */
158 	unsigned long *finish_pbitmap;
159 };
160 
161 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
162 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
163 static void rmw_work(struct btrfs_work *work);
164 static void read_rebuild_work(struct btrfs_work *work);
165 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
166 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
167 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
168 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
169 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
170 
171 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
172 					 int need_check);
173 static void scrub_parity_work(struct btrfs_work *work);
174 
175 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
176 {
177 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL);
178 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
179 }
180 
181 /*
182  * the stripe hash table is used for locking, and to collect
183  * bios in hopes of making a full stripe
184  */
185 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
186 {
187 	struct btrfs_stripe_hash_table *table;
188 	struct btrfs_stripe_hash_table *x;
189 	struct btrfs_stripe_hash *cur;
190 	struct btrfs_stripe_hash *h;
191 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
192 	int i;
193 	int table_size;
194 
195 	if (info->stripe_hash_table)
196 		return 0;
197 
198 	/*
199 	 * The table is large, starting with order 4 and can go as high as
200 	 * order 7 in case lock debugging is turned on.
201 	 *
202 	 * Try harder to allocate and fallback to vmalloc to lower the chance
203 	 * of a failing mount.
204 	 */
205 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
206 	table = kvzalloc(table_size, GFP_KERNEL);
207 	if (!table)
208 		return -ENOMEM;
209 
210 	spin_lock_init(&table->cache_lock);
211 	INIT_LIST_HEAD(&table->stripe_cache);
212 
213 	h = table->table;
214 
215 	for (i = 0; i < num_entries; i++) {
216 		cur = h + i;
217 		INIT_LIST_HEAD(&cur->hash_list);
218 		spin_lock_init(&cur->lock);
219 	}
220 
221 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
222 	if (x)
223 		kvfree(x);
224 	return 0;
225 }
226 
227 /*
228  * caching an rbio means to copy anything from the
229  * bio_pages array into the stripe_pages array.  We
230  * use the page uptodate bit in the stripe cache array
231  * to indicate if it has valid data
232  *
233  * once the caching is done, we set the cache ready
234  * bit.
235  */
236 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
237 {
238 	int i;
239 	char *s;
240 	char *d;
241 	int ret;
242 
243 	ret = alloc_rbio_pages(rbio);
244 	if (ret)
245 		return;
246 
247 	for (i = 0; i < rbio->nr_pages; i++) {
248 		if (!rbio->bio_pages[i])
249 			continue;
250 
251 		s = kmap(rbio->bio_pages[i]);
252 		d = kmap(rbio->stripe_pages[i]);
253 
254 		copy_page(d, s);
255 
256 		kunmap(rbio->bio_pages[i]);
257 		kunmap(rbio->stripe_pages[i]);
258 		SetPageUptodate(rbio->stripe_pages[i]);
259 	}
260 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
261 }
262 
263 /*
264  * we hash on the first logical address of the stripe
265  */
266 static int rbio_bucket(struct btrfs_raid_bio *rbio)
267 {
268 	u64 num = rbio->bbio->raid_map[0];
269 
270 	/*
271 	 * we shift down quite a bit.  We're using byte
272 	 * addressing, and most of the lower bits are zeros.
273 	 * This tends to upset hash_64, and it consistently
274 	 * returns just one or two different values.
275 	 *
276 	 * shifting off the lower bits fixes things.
277 	 */
278 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
279 }
280 
281 /*
282  * stealing an rbio means taking all the uptodate pages from the stripe
283  * array in the source rbio and putting them into the destination rbio
284  */
285 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
286 {
287 	int i;
288 	struct page *s;
289 	struct page *d;
290 
291 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
292 		return;
293 
294 	for (i = 0; i < dest->nr_pages; i++) {
295 		s = src->stripe_pages[i];
296 		if (!s || !PageUptodate(s)) {
297 			continue;
298 		}
299 
300 		d = dest->stripe_pages[i];
301 		if (d)
302 			__free_page(d);
303 
304 		dest->stripe_pages[i] = s;
305 		src->stripe_pages[i] = NULL;
306 	}
307 }
308 
309 /*
310  * merging means we take the bio_list from the victim and
311  * splice it into the destination.  The victim should
312  * be discarded afterwards.
313  *
314  * must be called with dest->rbio_list_lock held
315  */
316 static void merge_rbio(struct btrfs_raid_bio *dest,
317 		       struct btrfs_raid_bio *victim)
318 {
319 	bio_list_merge(&dest->bio_list, &victim->bio_list);
320 	dest->bio_list_bytes += victim->bio_list_bytes;
321 	dest->generic_bio_cnt += victim->generic_bio_cnt;
322 	bio_list_init(&victim->bio_list);
323 }
324 
325 /*
326  * used to prune items that are in the cache.  The caller
327  * must hold the hash table lock.
328  */
329 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
330 {
331 	int bucket = rbio_bucket(rbio);
332 	struct btrfs_stripe_hash_table *table;
333 	struct btrfs_stripe_hash *h;
334 	int freeit = 0;
335 
336 	/*
337 	 * check the bit again under the hash table lock.
338 	 */
339 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
340 		return;
341 
342 	table = rbio->fs_info->stripe_hash_table;
343 	h = table->table + bucket;
344 
345 	/* hold the lock for the bucket because we may be
346 	 * removing it from the hash table
347 	 */
348 	spin_lock(&h->lock);
349 
350 	/*
351 	 * hold the lock for the bio list because we need
352 	 * to make sure the bio list is empty
353 	 */
354 	spin_lock(&rbio->bio_list_lock);
355 
356 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
357 		list_del_init(&rbio->stripe_cache);
358 		table->cache_size -= 1;
359 		freeit = 1;
360 
361 		/* if the bio list isn't empty, this rbio is
362 		 * still involved in an IO.  We take it out
363 		 * of the cache list, and drop the ref that
364 		 * was held for the list.
365 		 *
366 		 * If the bio_list was empty, we also remove
367 		 * the rbio from the hash_table, and drop
368 		 * the corresponding ref
369 		 */
370 		if (bio_list_empty(&rbio->bio_list)) {
371 			if (!list_empty(&rbio->hash_list)) {
372 				list_del_init(&rbio->hash_list);
373 				refcount_dec(&rbio->refs);
374 				BUG_ON(!list_empty(&rbio->plug_list));
375 			}
376 		}
377 	}
378 
379 	spin_unlock(&rbio->bio_list_lock);
380 	spin_unlock(&h->lock);
381 
382 	if (freeit)
383 		__free_raid_bio(rbio);
384 }
385 
386 /*
387  * prune a given rbio from the cache
388  */
389 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
390 {
391 	struct btrfs_stripe_hash_table *table;
392 	unsigned long flags;
393 
394 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
395 		return;
396 
397 	table = rbio->fs_info->stripe_hash_table;
398 
399 	spin_lock_irqsave(&table->cache_lock, flags);
400 	__remove_rbio_from_cache(rbio);
401 	spin_unlock_irqrestore(&table->cache_lock, flags);
402 }
403 
404 /*
405  * remove everything in the cache
406  */
407 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
408 {
409 	struct btrfs_stripe_hash_table *table;
410 	unsigned long flags;
411 	struct btrfs_raid_bio *rbio;
412 
413 	table = info->stripe_hash_table;
414 
415 	spin_lock_irqsave(&table->cache_lock, flags);
416 	while (!list_empty(&table->stripe_cache)) {
417 		rbio = list_entry(table->stripe_cache.next,
418 				  struct btrfs_raid_bio,
419 				  stripe_cache);
420 		__remove_rbio_from_cache(rbio);
421 	}
422 	spin_unlock_irqrestore(&table->cache_lock, flags);
423 }
424 
425 /*
426  * remove all cached entries and free the hash table
427  * used by unmount
428  */
429 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
430 {
431 	if (!info->stripe_hash_table)
432 		return;
433 	btrfs_clear_rbio_cache(info);
434 	kvfree(info->stripe_hash_table);
435 	info->stripe_hash_table = NULL;
436 }
437 
438 /*
439  * insert an rbio into the stripe cache.  It
440  * must have already been prepared by calling
441  * cache_rbio_pages
442  *
443  * If this rbio was already cached, it gets
444  * moved to the front of the lru.
445  *
446  * If the size of the rbio cache is too big, we
447  * prune an item.
448  */
449 static void cache_rbio(struct btrfs_raid_bio *rbio)
450 {
451 	struct btrfs_stripe_hash_table *table;
452 	unsigned long flags;
453 
454 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
455 		return;
456 
457 	table = rbio->fs_info->stripe_hash_table;
458 
459 	spin_lock_irqsave(&table->cache_lock, flags);
460 	spin_lock(&rbio->bio_list_lock);
461 
462 	/* bump our ref if we were not in the list before */
463 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
464 		refcount_inc(&rbio->refs);
465 
466 	if (!list_empty(&rbio->stripe_cache)){
467 		list_move(&rbio->stripe_cache, &table->stripe_cache);
468 	} else {
469 		list_add(&rbio->stripe_cache, &table->stripe_cache);
470 		table->cache_size += 1;
471 	}
472 
473 	spin_unlock(&rbio->bio_list_lock);
474 
475 	if (table->cache_size > RBIO_CACHE_SIZE) {
476 		struct btrfs_raid_bio *found;
477 
478 		found = list_entry(table->stripe_cache.prev,
479 				  struct btrfs_raid_bio,
480 				  stripe_cache);
481 
482 		if (found != rbio)
483 			__remove_rbio_from_cache(found);
484 	}
485 
486 	spin_unlock_irqrestore(&table->cache_lock, flags);
487 }
488 
489 /*
490  * helper function to run the xor_blocks api.  It is only
491  * able to do MAX_XOR_BLOCKS at a time, so we need to
492  * loop through.
493  */
494 static void run_xor(void **pages, int src_cnt, ssize_t len)
495 {
496 	int src_off = 0;
497 	int xor_src_cnt = 0;
498 	void *dest = pages[src_cnt];
499 
500 	while(src_cnt > 0) {
501 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
502 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
503 
504 		src_cnt -= xor_src_cnt;
505 		src_off += xor_src_cnt;
506 	}
507 }
508 
509 /*
510  * Returns true if the bio list inside this rbio covers an entire stripe (no
511  * rmw required).
512  */
513 static int rbio_is_full(struct btrfs_raid_bio *rbio)
514 {
515 	unsigned long flags;
516 	unsigned long size = rbio->bio_list_bytes;
517 	int ret = 1;
518 
519 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
520 	if (size != rbio->nr_data * rbio->stripe_len)
521 		ret = 0;
522 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
523 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
524 
525 	return ret;
526 }
527 
528 /*
529  * returns 1 if it is safe to merge two rbios together.
530  * The merging is safe if the two rbios correspond to
531  * the same stripe and if they are both going in the same
532  * direction (read vs write), and if neither one is
533  * locked for final IO
534  *
535  * The caller is responsible for locking such that
536  * rmw_locked is safe to test
537  */
538 static int rbio_can_merge(struct btrfs_raid_bio *last,
539 			  struct btrfs_raid_bio *cur)
540 {
541 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
542 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
543 		return 0;
544 
545 	/*
546 	 * we can't merge with cached rbios, since the
547 	 * idea is that when we merge the destination
548 	 * rbio is going to run our IO for us.  We can
549 	 * steal from cached rbios though, other functions
550 	 * handle that.
551 	 */
552 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
553 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
554 		return 0;
555 
556 	if (last->bbio->raid_map[0] !=
557 	    cur->bbio->raid_map[0])
558 		return 0;
559 
560 	/* we can't merge with different operations */
561 	if (last->operation != cur->operation)
562 		return 0;
563 	/*
564 	 * We've need read the full stripe from the drive.
565 	 * check and repair the parity and write the new results.
566 	 *
567 	 * We're not allowed to add any new bios to the
568 	 * bio list here, anyone else that wants to
569 	 * change this stripe needs to do their own rmw.
570 	 */
571 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
572 		return 0;
573 
574 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
575 		return 0;
576 
577 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
578 		int fa = last->faila;
579 		int fb = last->failb;
580 		int cur_fa = cur->faila;
581 		int cur_fb = cur->failb;
582 
583 		if (last->faila >= last->failb) {
584 			fa = last->failb;
585 			fb = last->faila;
586 		}
587 
588 		if (cur->faila >= cur->failb) {
589 			cur_fa = cur->failb;
590 			cur_fb = cur->faila;
591 		}
592 
593 		if (fa != cur_fa || fb != cur_fb)
594 			return 0;
595 	}
596 	return 1;
597 }
598 
599 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
600 				  int index)
601 {
602 	return stripe * rbio->stripe_npages + index;
603 }
604 
605 /*
606  * these are just the pages from the rbio array, not from anything
607  * the FS sent down to us
608  */
609 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
610 				     int index)
611 {
612 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
613 }
614 
615 /*
616  * helper to index into the pstripe
617  */
618 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
619 {
620 	return rbio_stripe_page(rbio, rbio->nr_data, index);
621 }
622 
623 /*
624  * helper to index into the qstripe, returns null
625  * if there is no qstripe
626  */
627 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
628 {
629 	if (rbio->nr_data + 1 == rbio->real_stripes)
630 		return NULL;
631 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
632 }
633 
634 /*
635  * The first stripe in the table for a logical address
636  * has the lock.  rbios are added in one of three ways:
637  *
638  * 1) Nobody has the stripe locked yet.  The rbio is given
639  * the lock and 0 is returned.  The caller must start the IO
640  * themselves.
641  *
642  * 2) Someone has the stripe locked, but we're able to merge
643  * with the lock owner.  The rbio is freed and the IO will
644  * start automatically along with the existing rbio.  1 is returned.
645  *
646  * 3) Someone has the stripe locked, but we're not able to merge.
647  * The rbio is added to the lock owner's plug list, or merged into
648  * an rbio already on the plug list.  When the lock owner unlocks,
649  * the next rbio on the list is run and the IO is started automatically.
650  * 1 is returned
651  *
652  * If we return 0, the caller still owns the rbio and must continue with
653  * IO submission.  If we return 1, the caller must assume the rbio has
654  * already been freed.
655  */
656 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
657 {
658 	int bucket = rbio_bucket(rbio);
659 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
660 	struct btrfs_raid_bio *cur;
661 	struct btrfs_raid_bio *pending;
662 	unsigned long flags;
663 	struct btrfs_raid_bio *freeit = NULL;
664 	struct btrfs_raid_bio *cache_drop = NULL;
665 	int ret = 0;
666 
667 	spin_lock_irqsave(&h->lock, flags);
668 	list_for_each_entry(cur, &h->hash_list, hash_list) {
669 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
670 			spin_lock(&cur->bio_list_lock);
671 
672 			/* can we steal this cached rbio's pages? */
673 			if (bio_list_empty(&cur->bio_list) &&
674 			    list_empty(&cur->plug_list) &&
675 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
676 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
677 				list_del_init(&cur->hash_list);
678 				refcount_dec(&cur->refs);
679 
680 				steal_rbio(cur, rbio);
681 				cache_drop = cur;
682 				spin_unlock(&cur->bio_list_lock);
683 
684 				goto lockit;
685 			}
686 
687 			/* can we merge into the lock owner? */
688 			if (rbio_can_merge(cur, rbio)) {
689 				merge_rbio(cur, rbio);
690 				spin_unlock(&cur->bio_list_lock);
691 				freeit = rbio;
692 				ret = 1;
693 				goto out;
694 			}
695 
696 
697 			/*
698 			 * we couldn't merge with the running
699 			 * rbio, see if we can merge with the
700 			 * pending ones.  We don't have to
701 			 * check for rmw_locked because there
702 			 * is no way they are inside finish_rmw
703 			 * right now
704 			 */
705 			list_for_each_entry(pending, &cur->plug_list,
706 					    plug_list) {
707 				if (rbio_can_merge(pending, rbio)) {
708 					merge_rbio(pending, rbio);
709 					spin_unlock(&cur->bio_list_lock);
710 					freeit = rbio;
711 					ret = 1;
712 					goto out;
713 				}
714 			}
715 
716 			/* no merging, put us on the tail of the plug list,
717 			 * our rbio will be started with the currently
718 			 * running rbio unlocks
719 			 */
720 			list_add_tail(&rbio->plug_list, &cur->plug_list);
721 			spin_unlock(&cur->bio_list_lock);
722 			ret = 1;
723 			goto out;
724 		}
725 	}
726 lockit:
727 	refcount_inc(&rbio->refs);
728 	list_add(&rbio->hash_list, &h->hash_list);
729 out:
730 	spin_unlock_irqrestore(&h->lock, flags);
731 	if (cache_drop)
732 		remove_rbio_from_cache(cache_drop);
733 	if (freeit)
734 		__free_raid_bio(freeit);
735 	return ret;
736 }
737 
738 /*
739  * called as rmw or parity rebuild is completed.  If the plug list has more
740  * rbios waiting for this stripe, the next one on the list will be started
741  */
742 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
743 {
744 	int bucket;
745 	struct btrfs_stripe_hash *h;
746 	unsigned long flags;
747 	int keep_cache = 0;
748 
749 	bucket = rbio_bucket(rbio);
750 	h = rbio->fs_info->stripe_hash_table->table + bucket;
751 
752 	if (list_empty(&rbio->plug_list))
753 		cache_rbio(rbio);
754 
755 	spin_lock_irqsave(&h->lock, flags);
756 	spin_lock(&rbio->bio_list_lock);
757 
758 	if (!list_empty(&rbio->hash_list)) {
759 		/*
760 		 * if we're still cached and there is no other IO
761 		 * to perform, just leave this rbio here for others
762 		 * to steal from later
763 		 */
764 		if (list_empty(&rbio->plug_list) &&
765 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
766 			keep_cache = 1;
767 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
768 			BUG_ON(!bio_list_empty(&rbio->bio_list));
769 			goto done;
770 		}
771 
772 		list_del_init(&rbio->hash_list);
773 		refcount_dec(&rbio->refs);
774 
775 		/*
776 		 * we use the plug list to hold all the rbios
777 		 * waiting for the chance to lock this stripe.
778 		 * hand the lock over to one of them.
779 		 */
780 		if (!list_empty(&rbio->plug_list)) {
781 			struct btrfs_raid_bio *next;
782 			struct list_head *head = rbio->plug_list.next;
783 
784 			next = list_entry(head, struct btrfs_raid_bio,
785 					  plug_list);
786 
787 			list_del_init(&rbio->plug_list);
788 
789 			list_add(&next->hash_list, &h->hash_list);
790 			refcount_inc(&next->refs);
791 			spin_unlock(&rbio->bio_list_lock);
792 			spin_unlock_irqrestore(&h->lock, flags);
793 
794 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
795 				start_async_work(next, read_rebuild_work);
796 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
797 				steal_rbio(rbio, next);
798 				start_async_work(next, read_rebuild_work);
799 			} else if (next->operation == BTRFS_RBIO_WRITE) {
800 				steal_rbio(rbio, next);
801 				start_async_work(next, rmw_work);
802 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
803 				steal_rbio(rbio, next);
804 				start_async_work(next, scrub_parity_work);
805 			}
806 
807 			goto done_nolock;
808 		}
809 	}
810 done:
811 	spin_unlock(&rbio->bio_list_lock);
812 	spin_unlock_irqrestore(&h->lock, flags);
813 
814 done_nolock:
815 	if (!keep_cache)
816 		remove_rbio_from_cache(rbio);
817 }
818 
819 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
820 {
821 	int i;
822 
823 	if (!refcount_dec_and_test(&rbio->refs))
824 		return;
825 
826 	WARN_ON(!list_empty(&rbio->stripe_cache));
827 	WARN_ON(!list_empty(&rbio->hash_list));
828 	WARN_ON(!bio_list_empty(&rbio->bio_list));
829 
830 	for (i = 0; i < rbio->nr_pages; i++) {
831 		if (rbio->stripe_pages[i]) {
832 			__free_page(rbio->stripe_pages[i]);
833 			rbio->stripe_pages[i] = NULL;
834 		}
835 	}
836 
837 	btrfs_put_bbio(rbio->bbio);
838 	kfree(rbio);
839 }
840 
841 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
842 {
843 	struct bio *next;
844 
845 	while (cur) {
846 		next = cur->bi_next;
847 		cur->bi_next = NULL;
848 		cur->bi_status = err;
849 		bio_endio(cur);
850 		cur = next;
851 	}
852 }
853 
854 /*
855  * this frees the rbio and runs through all the bios in the
856  * bio_list and calls end_io on them
857  */
858 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
859 {
860 	struct bio *cur = bio_list_get(&rbio->bio_list);
861 	struct bio *extra;
862 
863 	if (rbio->generic_bio_cnt)
864 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
865 
866 	/*
867 	 * At this moment, rbio->bio_list is empty, however since rbio does not
868 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
869 	 * hash list, rbio may be merged with others so that rbio->bio_list
870 	 * becomes non-empty.
871 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
872 	 * more and we can call bio_endio() on all queued bios.
873 	 */
874 	unlock_stripe(rbio);
875 	extra = bio_list_get(&rbio->bio_list);
876 	__free_raid_bio(rbio);
877 
878 	rbio_endio_bio_list(cur, err);
879 	if (extra)
880 		rbio_endio_bio_list(extra, err);
881 }
882 
883 /*
884  * end io function used by finish_rmw.  When we finally
885  * get here, we've written a full stripe
886  */
887 static void raid_write_end_io(struct bio *bio)
888 {
889 	struct btrfs_raid_bio *rbio = bio->bi_private;
890 	blk_status_t err = bio->bi_status;
891 	int max_errors;
892 
893 	if (err)
894 		fail_bio_stripe(rbio, bio);
895 
896 	bio_put(bio);
897 
898 	if (!atomic_dec_and_test(&rbio->stripes_pending))
899 		return;
900 
901 	err = BLK_STS_OK;
902 
903 	/* OK, we have read all the stripes we need to. */
904 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
905 		     0 : rbio->bbio->max_errors;
906 	if (atomic_read(&rbio->error) > max_errors)
907 		err = BLK_STS_IOERR;
908 
909 	rbio_orig_end_io(rbio, err);
910 }
911 
912 /*
913  * the read/modify/write code wants to use the original bio for
914  * any pages it included, and then use the rbio for everything
915  * else.  This function decides if a given index (stripe number)
916  * and page number in that stripe fall inside the original bio
917  * or the rbio.
918  *
919  * if you set bio_list_only, you'll get a NULL back for any ranges
920  * that are outside the bio_list
921  *
922  * This doesn't take any refs on anything, you get a bare page pointer
923  * and the caller must bump refs as required.
924  *
925  * You must call index_rbio_pages once before you can trust
926  * the answers from this function.
927  */
928 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
929 				 int index, int pagenr, int bio_list_only)
930 {
931 	int chunk_page;
932 	struct page *p = NULL;
933 
934 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
935 
936 	spin_lock_irq(&rbio->bio_list_lock);
937 	p = rbio->bio_pages[chunk_page];
938 	spin_unlock_irq(&rbio->bio_list_lock);
939 
940 	if (p || bio_list_only)
941 		return p;
942 
943 	return rbio->stripe_pages[chunk_page];
944 }
945 
946 /*
947  * number of pages we need for the entire stripe across all the
948  * drives
949  */
950 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
951 {
952 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
953 }
954 
955 /*
956  * allocation and initial setup for the btrfs_raid_bio.  Not
957  * this does not allocate any pages for rbio->pages.
958  */
959 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
960 					 struct btrfs_bio *bbio,
961 					 u64 stripe_len)
962 {
963 	struct btrfs_raid_bio *rbio;
964 	int nr_data = 0;
965 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
966 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
967 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
968 	void *p;
969 
970 	rbio = kzalloc(sizeof(*rbio) +
971 		       sizeof(*rbio->stripe_pages) * num_pages +
972 		       sizeof(*rbio->bio_pages) * num_pages +
973 		       sizeof(*rbio->finish_pointers) * real_stripes +
974 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
975 		       sizeof(*rbio->finish_pbitmap) *
976 				BITS_TO_LONGS(stripe_npages),
977 		       GFP_NOFS);
978 	if (!rbio)
979 		return ERR_PTR(-ENOMEM);
980 
981 	bio_list_init(&rbio->bio_list);
982 	INIT_LIST_HEAD(&rbio->plug_list);
983 	spin_lock_init(&rbio->bio_list_lock);
984 	INIT_LIST_HEAD(&rbio->stripe_cache);
985 	INIT_LIST_HEAD(&rbio->hash_list);
986 	rbio->bbio = bbio;
987 	rbio->fs_info = fs_info;
988 	rbio->stripe_len = stripe_len;
989 	rbio->nr_pages = num_pages;
990 	rbio->real_stripes = real_stripes;
991 	rbio->stripe_npages = stripe_npages;
992 	rbio->faila = -1;
993 	rbio->failb = -1;
994 	refcount_set(&rbio->refs, 1);
995 	atomic_set(&rbio->error, 0);
996 	atomic_set(&rbio->stripes_pending, 0);
997 
998 	/*
999 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1000 	 * memory we allocated past the end of the rbio
1001 	 */
1002 	p = rbio + 1;
1003 #define CONSUME_ALLOC(ptr, count)	do {				\
1004 		ptr = p;						\
1005 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1006 	} while (0)
1007 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1008 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1009 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1010 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1011 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1012 #undef  CONSUME_ALLOC
1013 
1014 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015 		nr_data = real_stripes - 1;
1016 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017 		nr_data = real_stripes - 2;
1018 	else
1019 		BUG();
1020 
1021 	rbio->nr_data = nr_data;
1022 	return rbio;
1023 }
1024 
1025 /* allocate pages for all the stripes in the bio, including parity */
1026 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027 {
1028 	int i;
1029 	struct page *page;
1030 
1031 	for (i = 0; i < rbio->nr_pages; i++) {
1032 		if (rbio->stripe_pages[i])
1033 			continue;
1034 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035 		if (!page)
1036 			return -ENOMEM;
1037 		rbio->stripe_pages[i] = page;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /* only allocate pages for p/q stripes */
1043 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044 {
1045 	int i;
1046 	struct page *page;
1047 
1048 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049 
1050 	for (; i < rbio->nr_pages; i++) {
1051 		if (rbio->stripe_pages[i])
1052 			continue;
1053 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054 		if (!page)
1055 			return -ENOMEM;
1056 		rbio->stripe_pages[i] = page;
1057 	}
1058 	return 0;
1059 }
1060 
1061 /*
1062  * add a single page from a specific stripe into our list of bios for IO
1063  * this will try to merge into existing bios if possible, and returns
1064  * zero if all went well.
1065  */
1066 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067 			    struct bio_list *bio_list,
1068 			    struct page *page,
1069 			    int stripe_nr,
1070 			    unsigned long page_index,
1071 			    unsigned long bio_max_len)
1072 {
1073 	struct bio *last = bio_list->tail;
1074 	u64 last_end = 0;
1075 	int ret;
1076 	struct bio *bio;
1077 	struct btrfs_bio_stripe *stripe;
1078 	u64 disk_start;
1079 
1080 	stripe = &rbio->bbio->stripes[stripe_nr];
1081 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082 
1083 	/* if the device is missing, just fail this stripe */
1084 	if (!stripe->dev->bdev)
1085 		return fail_rbio_index(rbio, stripe_nr);
1086 
1087 	/* see if we can add this page onto our existing bio */
1088 	if (last) {
1089 		last_end = (u64)last->bi_iter.bi_sector << 9;
1090 		last_end += last->bi_iter.bi_size;
1091 
1092 		/*
1093 		 * we can't merge these if they are from different
1094 		 * devices or if they are not contiguous
1095 		 */
1096 		if (last_end == disk_start && stripe->dev->bdev &&
1097 		    !last->bi_status &&
1098 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1099 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1100 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1101 			if (ret == PAGE_SIZE)
1102 				return 0;
1103 		}
1104 	}
1105 
1106 	/* put a new bio on the list */
1107 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1108 	bio->bi_iter.bi_size = 0;
1109 	bio_set_dev(bio, stripe->dev->bdev);
1110 	bio->bi_iter.bi_sector = disk_start >> 9;
1111 
1112 	bio_add_page(bio, page, PAGE_SIZE, 0);
1113 	bio_list_add(bio_list, bio);
1114 	return 0;
1115 }
1116 
1117 /*
1118  * while we're doing the read/modify/write cycle, we could
1119  * have errors in reading pages off the disk.  This checks
1120  * for errors and if we're not able to read the page it'll
1121  * trigger parity reconstruction.  The rmw will be finished
1122  * after we've reconstructed the failed stripes
1123  */
1124 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125 {
1126 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1127 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1128 		__raid56_parity_recover(rbio);
1129 	} else {
1130 		finish_rmw(rbio);
1131 	}
1132 }
1133 
1134 /*
1135  * helper function to walk our bio list and populate the bio_pages array with
1136  * the result.  This seems expensive, but it is faster than constantly
1137  * searching through the bio list as we setup the IO in finish_rmw or stripe
1138  * reconstruction.
1139  *
1140  * This must be called before you trust the answers from page_in_rbio
1141  */
1142 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143 {
1144 	struct bio *bio;
1145 	u64 start;
1146 	unsigned long stripe_offset;
1147 	unsigned long page_index;
1148 
1149 	spin_lock_irq(&rbio->bio_list_lock);
1150 	bio_list_for_each(bio, &rbio->bio_list) {
1151 		struct bio_vec bvec;
1152 		struct bvec_iter iter;
1153 		int i = 0;
1154 
1155 		start = (u64)bio->bi_iter.bi_sector << 9;
1156 		stripe_offset = start - rbio->bbio->raid_map[0];
1157 		page_index = stripe_offset >> PAGE_SHIFT;
1158 
1159 		if (bio_flagged(bio, BIO_CLONED))
1160 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1161 
1162 		bio_for_each_segment(bvec, bio, iter) {
1163 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1164 			i++;
1165 		}
1166 	}
1167 	spin_unlock_irq(&rbio->bio_list_lock);
1168 }
1169 
1170 /*
1171  * this is called from one of two situations.  We either
1172  * have a full stripe from the higher layers, or we've read all
1173  * the missing bits off disk.
1174  *
1175  * This will calculate the parity and then send down any
1176  * changed blocks.
1177  */
1178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1179 {
1180 	struct btrfs_bio *bbio = rbio->bbio;
1181 	void **pointers = rbio->finish_pointers;
1182 	int nr_data = rbio->nr_data;
1183 	int stripe;
1184 	int pagenr;
1185 	int p_stripe = -1;
1186 	int q_stripe = -1;
1187 	struct bio_list bio_list;
1188 	struct bio *bio;
1189 	int ret;
1190 
1191 	bio_list_init(&bio_list);
1192 
1193 	if (rbio->real_stripes - rbio->nr_data == 1) {
1194 		p_stripe = rbio->real_stripes - 1;
1195 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1196 		p_stripe = rbio->real_stripes - 2;
1197 		q_stripe = rbio->real_stripes - 1;
1198 	} else {
1199 		BUG();
1200 	}
1201 
1202 	/* at this point we either have a full stripe,
1203 	 * or we've read the full stripe from the drive.
1204 	 * recalculate the parity and write the new results.
1205 	 *
1206 	 * We're not allowed to add any new bios to the
1207 	 * bio list here, anyone else that wants to
1208 	 * change this stripe needs to do their own rmw.
1209 	 */
1210 	spin_lock_irq(&rbio->bio_list_lock);
1211 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1212 	spin_unlock_irq(&rbio->bio_list_lock);
1213 
1214 	atomic_set(&rbio->error, 0);
1215 
1216 	/*
1217 	 * now that we've set rmw_locked, run through the
1218 	 * bio list one last time and map the page pointers
1219 	 *
1220 	 * We don't cache full rbios because we're assuming
1221 	 * the higher layers are unlikely to use this area of
1222 	 * the disk again soon.  If they do use it again,
1223 	 * hopefully they will send another full bio.
1224 	 */
1225 	index_rbio_pages(rbio);
1226 	if (!rbio_is_full(rbio))
1227 		cache_rbio_pages(rbio);
1228 	else
1229 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1230 
1231 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1232 		struct page *p;
1233 		/* first collect one page from each data stripe */
1234 		for (stripe = 0; stripe < nr_data; stripe++) {
1235 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1236 			pointers[stripe] = kmap(p);
1237 		}
1238 
1239 		/* then add the parity stripe */
1240 		p = rbio_pstripe_page(rbio, pagenr);
1241 		SetPageUptodate(p);
1242 		pointers[stripe++] = kmap(p);
1243 
1244 		if (q_stripe != -1) {
1245 
1246 			/*
1247 			 * raid6, add the qstripe and call the
1248 			 * library function to fill in our p/q
1249 			 */
1250 			p = rbio_qstripe_page(rbio, pagenr);
1251 			SetPageUptodate(p);
1252 			pointers[stripe++] = kmap(p);
1253 
1254 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1255 						pointers);
1256 		} else {
1257 			/* raid5 */
1258 			copy_page(pointers[nr_data], pointers[0]);
1259 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1260 		}
1261 
1262 
1263 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1264 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1265 	}
1266 
1267 	/*
1268 	 * time to start writing.  Make bios for everything from the
1269 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1270 	 * everything else.
1271 	 */
1272 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1273 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1274 			struct page *page;
1275 			if (stripe < rbio->nr_data) {
1276 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1277 				if (!page)
1278 					continue;
1279 			} else {
1280 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1281 			}
1282 
1283 			ret = rbio_add_io_page(rbio, &bio_list,
1284 				       page, stripe, pagenr, rbio->stripe_len);
1285 			if (ret)
1286 				goto cleanup;
1287 		}
1288 	}
1289 
1290 	if (likely(!bbio->num_tgtdevs))
1291 		goto write_data;
1292 
1293 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1294 		if (!bbio->tgtdev_map[stripe])
1295 			continue;
1296 
1297 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1298 			struct page *page;
1299 			if (stripe < rbio->nr_data) {
1300 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1301 				if (!page)
1302 					continue;
1303 			} else {
1304 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1305 			}
1306 
1307 			ret = rbio_add_io_page(rbio, &bio_list, page,
1308 					       rbio->bbio->tgtdev_map[stripe],
1309 					       pagenr, rbio->stripe_len);
1310 			if (ret)
1311 				goto cleanup;
1312 		}
1313 	}
1314 
1315 write_data:
1316 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1317 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1318 
1319 	while (1) {
1320 		bio = bio_list_pop(&bio_list);
1321 		if (!bio)
1322 			break;
1323 
1324 		bio->bi_private = rbio;
1325 		bio->bi_end_io = raid_write_end_io;
1326 		bio->bi_opf = REQ_OP_WRITE;
1327 
1328 		submit_bio(bio);
1329 	}
1330 	return;
1331 
1332 cleanup:
1333 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1334 
1335 	while ((bio = bio_list_pop(&bio_list)))
1336 		bio_put(bio);
1337 }
1338 
1339 /*
1340  * helper to find the stripe number for a given bio.  Used to figure out which
1341  * stripe has failed.  This expects the bio to correspond to a physical disk,
1342  * so it looks up based on physical sector numbers.
1343  */
1344 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1345 			   struct bio *bio)
1346 {
1347 	u64 physical = bio->bi_iter.bi_sector;
1348 	u64 stripe_start;
1349 	int i;
1350 	struct btrfs_bio_stripe *stripe;
1351 
1352 	physical <<= 9;
1353 
1354 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1355 		stripe = &rbio->bbio->stripes[i];
1356 		stripe_start = stripe->physical;
1357 		if (physical >= stripe_start &&
1358 		    physical < stripe_start + rbio->stripe_len &&
1359 		    stripe->dev->bdev &&
1360 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1361 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1362 			return i;
1363 		}
1364 	}
1365 	return -1;
1366 }
1367 
1368 /*
1369  * helper to find the stripe number for a given
1370  * bio (before mapping).  Used to figure out which stripe has
1371  * failed.  This looks up based on logical block numbers.
1372  */
1373 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1374 				   struct bio *bio)
1375 {
1376 	u64 logical = bio->bi_iter.bi_sector;
1377 	u64 stripe_start;
1378 	int i;
1379 
1380 	logical <<= 9;
1381 
1382 	for (i = 0; i < rbio->nr_data; i++) {
1383 		stripe_start = rbio->bbio->raid_map[i];
1384 		if (logical >= stripe_start &&
1385 		    logical < stripe_start + rbio->stripe_len) {
1386 			return i;
1387 		}
1388 	}
1389 	return -1;
1390 }
1391 
1392 /*
1393  * returns -EIO if we had too many failures
1394  */
1395 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1396 {
1397 	unsigned long flags;
1398 	int ret = 0;
1399 
1400 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1401 
1402 	/* we already know this stripe is bad, move on */
1403 	if (rbio->faila == failed || rbio->failb == failed)
1404 		goto out;
1405 
1406 	if (rbio->faila == -1) {
1407 		/* first failure on this rbio */
1408 		rbio->faila = failed;
1409 		atomic_inc(&rbio->error);
1410 	} else if (rbio->failb == -1) {
1411 		/* second failure on this rbio */
1412 		rbio->failb = failed;
1413 		atomic_inc(&rbio->error);
1414 	} else {
1415 		ret = -EIO;
1416 	}
1417 out:
1418 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * helper to fail a stripe based on a physical disk
1425  * bio.
1426  */
1427 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1428 			   struct bio *bio)
1429 {
1430 	int failed = find_bio_stripe(rbio, bio);
1431 
1432 	if (failed < 0)
1433 		return -EIO;
1434 
1435 	return fail_rbio_index(rbio, failed);
1436 }
1437 
1438 /*
1439  * this sets each page in the bio uptodate.  It should only be used on private
1440  * rbio pages, nothing that comes in from the higher layers
1441  */
1442 static void set_bio_pages_uptodate(struct bio *bio)
1443 {
1444 	struct bio_vec *bvec;
1445 	int i;
1446 	struct bvec_iter_all iter_all;
1447 
1448 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1449 
1450 	bio_for_each_segment_all(bvec, bio, i, iter_all)
1451 		SetPageUptodate(bvec->bv_page);
1452 }
1453 
1454 /*
1455  * end io for the read phase of the rmw cycle.  All the bios here are physical
1456  * stripe bios we've read from the disk so we can recalculate the parity of the
1457  * stripe.
1458  *
1459  * This will usually kick off finish_rmw once all the bios are read in, but it
1460  * may trigger parity reconstruction if we had any errors along the way
1461  */
1462 static void raid_rmw_end_io(struct bio *bio)
1463 {
1464 	struct btrfs_raid_bio *rbio = bio->bi_private;
1465 
1466 	if (bio->bi_status)
1467 		fail_bio_stripe(rbio, bio);
1468 	else
1469 		set_bio_pages_uptodate(bio);
1470 
1471 	bio_put(bio);
1472 
1473 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1474 		return;
1475 
1476 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1477 		goto cleanup;
1478 
1479 	/*
1480 	 * this will normally call finish_rmw to start our write
1481 	 * but if there are any failed stripes we'll reconstruct
1482 	 * from parity first
1483 	 */
1484 	validate_rbio_for_rmw(rbio);
1485 	return;
1486 
1487 cleanup:
1488 
1489 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1490 }
1491 
1492 /*
1493  * the stripe must be locked by the caller.  It will
1494  * unlock after all the writes are done
1495  */
1496 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1497 {
1498 	int bios_to_read = 0;
1499 	struct bio_list bio_list;
1500 	int ret;
1501 	int pagenr;
1502 	int stripe;
1503 	struct bio *bio;
1504 
1505 	bio_list_init(&bio_list);
1506 
1507 	ret = alloc_rbio_pages(rbio);
1508 	if (ret)
1509 		goto cleanup;
1510 
1511 	index_rbio_pages(rbio);
1512 
1513 	atomic_set(&rbio->error, 0);
1514 	/*
1515 	 * build a list of bios to read all the missing parts of this
1516 	 * stripe
1517 	 */
1518 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1519 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1520 			struct page *page;
1521 			/*
1522 			 * we want to find all the pages missing from
1523 			 * the rbio and read them from the disk.  If
1524 			 * page_in_rbio finds a page in the bio list
1525 			 * we don't need to read it off the stripe.
1526 			 */
1527 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1528 			if (page)
1529 				continue;
1530 
1531 			page = rbio_stripe_page(rbio, stripe, pagenr);
1532 			/*
1533 			 * the bio cache may have handed us an uptodate
1534 			 * page.  If so, be happy and use it
1535 			 */
1536 			if (PageUptodate(page))
1537 				continue;
1538 
1539 			ret = rbio_add_io_page(rbio, &bio_list, page,
1540 				       stripe, pagenr, rbio->stripe_len);
1541 			if (ret)
1542 				goto cleanup;
1543 		}
1544 	}
1545 
1546 	bios_to_read = bio_list_size(&bio_list);
1547 	if (!bios_to_read) {
1548 		/*
1549 		 * this can happen if others have merged with
1550 		 * us, it means there is nothing left to read.
1551 		 * But if there are missing devices it may not be
1552 		 * safe to do the full stripe write yet.
1553 		 */
1554 		goto finish;
1555 	}
1556 
1557 	/*
1558 	 * the bbio may be freed once we submit the last bio.  Make sure
1559 	 * not to touch it after that
1560 	 */
1561 	atomic_set(&rbio->stripes_pending, bios_to_read);
1562 	while (1) {
1563 		bio = bio_list_pop(&bio_list);
1564 		if (!bio)
1565 			break;
1566 
1567 		bio->bi_private = rbio;
1568 		bio->bi_end_io = raid_rmw_end_io;
1569 		bio->bi_opf = REQ_OP_READ;
1570 
1571 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1572 
1573 		submit_bio(bio);
1574 	}
1575 	/* the actual write will happen once the reads are done */
1576 	return 0;
1577 
1578 cleanup:
1579 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1580 
1581 	while ((bio = bio_list_pop(&bio_list)))
1582 		bio_put(bio);
1583 
1584 	return -EIO;
1585 
1586 finish:
1587 	validate_rbio_for_rmw(rbio);
1588 	return 0;
1589 }
1590 
1591 /*
1592  * if the upper layers pass in a full stripe, we thank them by only allocating
1593  * enough pages to hold the parity, and sending it all down quickly.
1594  */
1595 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1596 {
1597 	int ret;
1598 
1599 	ret = alloc_rbio_parity_pages(rbio);
1600 	if (ret) {
1601 		__free_raid_bio(rbio);
1602 		return ret;
1603 	}
1604 
1605 	ret = lock_stripe_add(rbio);
1606 	if (ret == 0)
1607 		finish_rmw(rbio);
1608 	return 0;
1609 }
1610 
1611 /*
1612  * partial stripe writes get handed over to async helpers.
1613  * We're really hoping to merge a few more writes into this
1614  * rbio before calculating new parity
1615  */
1616 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1617 {
1618 	int ret;
1619 
1620 	ret = lock_stripe_add(rbio);
1621 	if (ret == 0)
1622 		start_async_work(rbio, rmw_work);
1623 	return 0;
1624 }
1625 
1626 /*
1627  * sometimes while we were reading from the drive to
1628  * recalculate parity, enough new bios come into create
1629  * a full stripe.  So we do a check here to see if we can
1630  * go directly to finish_rmw
1631  */
1632 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1633 {
1634 	/* head off into rmw land if we don't have a full stripe */
1635 	if (!rbio_is_full(rbio))
1636 		return partial_stripe_write(rbio);
1637 	return full_stripe_write(rbio);
1638 }
1639 
1640 /*
1641  * We use plugging call backs to collect full stripes.
1642  * Any time we get a partial stripe write while plugged
1643  * we collect it into a list.  When the unplug comes down,
1644  * we sort the list by logical block number and merge
1645  * everything we can into the same rbios
1646  */
1647 struct btrfs_plug_cb {
1648 	struct blk_plug_cb cb;
1649 	struct btrfs_fs_info *info;
1650 	struct list_head rbio_list;
1651 	struct btrfs_work work;
1652 };
1653 
1654 /*
1655  * rbios on the plug list are sorted for easier merging.
1656  */
1657 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1658 {
1659 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1660 						 plug_list);
1661 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1662 						 plug_list);
1663 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1664 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1665 
1666 	if (a_sector < b_sector)
1667 		return -1;
1668 	if (a_sector > b_sector)
1669 		return 1;
1670 	return 0;
1671 }
1672 
1673 static void run_plug(struct btrfs_plug_cb *plug)
1674 {
1675 	struct btrfs_raid_bio *cur;
1676 	struct btrfs_raid_bio *last = NULL;
1677 
1678 	/*
1679 	 * sort our plug list then try to merge
1680 	 * everything we can in hopes of creating full
1681 	 * stripes.
1682 	 */
1683 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1684 	while (!list_empty(&plug->rbio_list)) {
1685 		cur = list_entry(plug->rbio_list.next,
1686 				 struct btrfs_raid_bio, plug_list);
1687 		list_del_init(&cur->plug_list);
1688 
1689 		if (rbio_is_full(cur)) {
1690 			int ret;
1691 
1692 			/* we have a full stripe, send it down */
1693 			ret = full_stripe_write(cur);
1694 			BUG_ON(ret);
1695 			continue;
1696 		}
1697 		if (last) {
1698 			if (rbio_can_merge(last, cur)) {
1699 				merge_rbio(last, cur);
1700 				__free_raid_bio(cur);
1701 				continue;
1702 
1703 			}
1704 			__raid56_parity_write(last);
1705 		}
1706 		last = cur;
1707 	}
1708 	if (last) {
1709 		__raid56_parity_write(last);
1710 	}
1711 	kfree(plug);
1712 }
1713 
1714 /*
1715  * if the unplug comes from schedule, we have to push the
1716  * work off to a helper thread
1717  */
1718 static void unplug_work(struct btrfs_work *work)
1719 {
1720 	struct btrfs_plug_cb *plug;
1721 	plug = container_of(work, struct btrfs_plug_cb, work);
1722 	run_plug(plug);
1723 }
1724 
1725 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726 {
1727 	struct btrfs_plug_cb *plug;
1728 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1729 
1730 	if (from_schedule) {
1731 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732 				unplug_work, NULL, NULL);
1733 		btrfs_queue_work(plug->info->rmw_workers,
1734 				 &plug->work);
1735 		return;
1736 	}
1737 	run_plug(plug);
1738 }
1739 
1740 /*
1741  * our main entry point for writes from the rest of the FS.
1742  */
1743 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1744 			struct btrfs_bio *bbio, u64 stripe_len)
1745 {
1746 	struct btrfs_raid_bio *rbio;
1747 	struct btrfs_plug_cb *plug = NULL;
1748 	struct blk_plug_cb *cb;
1749 	int ret;
1750 
1751 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1752 	if (IS_ERR(rbio)) {
1753 		btrfs_put_bbio(bbio);
1754 		return PTR_ERR(rbio);
1755 	}
1756 	bio_list_add(&rbio->bio_list, bio);
1757 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758 	rbio->operation = BTRFS_RBIO_WRITE;
1759 
1760 	btrfs_bio_counter_inc_noblocked(fs_info);
1761 	rbio->generic_bio_cnt = 1;
1762 
1763 	/*
1764 	 * don't plug on full rbios, just get them out the door
1765 	 * as quickly as we can
1766 	 */
1767 	if (rbio_is_full(rbio)) {
1768 		ret = full_stripe_write(rbio);
1769 		if (ret)
1770 			btrfs_bio_counter_dec(fs_info);
1771 		return ret;
1772 	}
1773 
1774 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1775 	if (cb) {
1776 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1777 		if (!plug->info) {
1778 			plug->info = fs_info;
1779 			INIT_LIST_HEAD(&plug->rbio_list);
1780 		}
1781 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1782 		ret = 0;
1783 	} else {
1784 		ret = __raid56_parity_write(rbio);
1785 		if (ret)
1786 			btrfs_bio_counter_dec(fs_info);
1787 	}
1788 	return ret;
1789 }
1790 
1791 /*
1792  * all parity reconstruction happens here.  We've read in everything
1793  * we can find from the drives and this does the heavy lifting of
1794  * sorting the good from the bad.
1795  */
1796 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1797 {
1798 	int pagenr, stripe;
1799 	void **pointers;
1800 	int faila = -1, failb = -1;
1801 	struct page *page;
1802 	blk_status_t err;
1803 	int i;
1804 
1805 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1806 	if (!pointers) {
1807 		err = BLK_STS_RESOURCE;
1808 		goto cleanup_io;
1809 	}
1810 
1811 	faila = rbio->faila;
1812 	failb = rbio->failb;
1813 
1814 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1815 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1816 		spin_lock_irq(&rbio->bio_list_lock);
1817 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1818 		spin_unlock_irq(&rbio->bio_list_lock);
1819 	}
1820 
1821 	index_rbio_pages(rbio);
1822 
1823 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1824 		/*
1825 		 * Now we just use bitmap to mark the horizontal stripes in
1826 		 * which we have data when doing parity scrub.
1827 		 */
1828 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1829 		    !test_bit(pagenr, rbio->dbitmap))
1830 			continue;
1831 
1832 		/* setup our array of pointers with pages
1833 		 * from each stripe
1834 		 */
1835 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1836 			/*
1837 			 * if we're rebuilding a read, we have to use
1838 			 * pages from the bio list
1839 			 */
1840 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1841 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1842 			    (stripe == faila || stripe == failb)) {
1843 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1844 			} else {
1845 				page = rbio_stripe_page(rbio, stripe, pagenr);
1846 			}
1847 			pointers[stripe] = kmap(page);
1848 		}
1849 
1850 		/* all raid6 handling here */
1851 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1852 			/*
1853 			 * single failure, rebuild from parity raid5
1854 			 * style
1855 			 */
1856 			if (failb < 0) {
1857 				if (faila == rbio->nr_data) {
1858 					/*
1859 					 * Just the P stripe has failed, without
1860 					 * a bad data or Q stripe.
1861 					 * TODO, we should redo the xor here.
1862 					 */
1863 					err = BLK_STS_IOERR;
1864 					goto cleanup;
1865 				}
1866 				/*
1867 				 * a single failure in raid6 is rebuilt
1868 				 * in the pstripe code below
1869 				 */
1870 				goto pstripe;
1871 			}
1872 
1873 			/* make sure our ps and qs are in order */
1874 			if (faila > failb) {
1875 				int tmp = failb;
1876 				failb = faila;
1877 				faila = tmp;
1878 			}
1879 
1880 			/* if the q stripe is failed, do a pstripe reconstruction
1881 			 * from the xors.
1882 			 * If both the q stripe and the P stripe are failed, we're
1883 			 * here due to a crc mismatch and we can't give them the
1884 			 * data they want
1885 			 */
1886 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1887 				if (rbio->bbio->raid_map[faila] ==
1888 				    RAID5_P_STRIPE) {
1889 					err = BLK_STS_IOERR;
1890 					goto cleanup;
1891 				}
1892 				/*
1893 				 * otherwise we have one bad data stripe and
1894 				 * a good P stripe.  raid5!
1895 				 */
1896 				goto pstripe;
1897 			}
1898 
1899 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1900 				raid6_datap_recov(rbio->real_stripes,
1901 						  PAGE_SIZE, faila, pointers);
1902 			} else {
1903 				raid6_2data_recov(rbio->real_stripes,
1904 						  PAGE_SIZE, faila, failb,
1905 						  pointers);
1906 			}
1907 		} else {
1908 			void *p;
1909 
1910 			/* rebuild from P stripe here (raid5 or raid6) */
1911 			BUG_ON(failb != -1);
1912 pstripe:
1913 			/* Copy parity block into failed block to start with */
1914 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1915 
1916 			/* rearrange the pointer array */
1917 			p = pointers[faila];
1918 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1919 				pointers[stripe] = pointers[stripe + 1];
1920 			pointers[rbio->nr_data - 1] = p;
1921 
1922 			/* xor in the rest */
1923 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1924 		}
1925 		/* if we're doing this rebuild as part of an rmw, go through
1926 		 * and set all of our private rbio pages in the
1927 		 * failed stripes as uptodate.  This way finish_rmw will
1928 		 * know they can be trusted.  If this was a read reconstruction,
1929 		 * other endio functions will fiddle the uptodate bits
1930 		 */
1931 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1932 			for (i = 0;  i < rbio->stripe_npages; i++) {
1933 				if (faila != -1) {
1934 					page = rbio_stripe_page(rbio, faila, i);
1935 					SetPageUptodate(page);
1936 				}
1937 				if (failb != -1) {
1938 					page = rbio_stripe_page(rbio, failb, i);
1939 					SetPageUptodate(page);
1940 				}
1941 			}
1942 		}
1943 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1944 			/*
1945 			 * if we're rebuilding a read, we have to use
1946 			 * pages from the bio list
1947 			 */
1948 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1949 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1950 			    (stripe == faila || stripe == failb)) {
1951 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1952 			} else {
1953 				page = rbio_stripe_page(rbio, stripe, pagenr);
1954 			}
1955 			kunmap(page);
1956 		}
1957 	}
1958 
1959 	err = BLK_STS_OK;
1960 cleanup:
1961 	kfree(pointers);
1962 
1963 cleanup_io:
1964 	/*
1965 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1966 	 * valid rbio which is consistent with ondisk content, thus such a
1967 	 * valid rbio can be cached to avoid further disk reads.
1968 	 */
1969 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1970 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1971 		/*
1972 		 * - In case of two failures, where rbio->failb != -1:
1973 		 *
1974 		 *   Do not cache this rbio since the above read reconstruction
1975 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1976 		 *   changed some content of stripes which are not identical to
1977 		 *   on-disk content any more, otherwise, a later write/recover
1978 		 *   may steal stripe_pages from this rbio and end up with
1979 		 *   corruptions or rebuild failures.
1980 		 *
1981 		 * - In case of single failure, where rbio->failb == -1:
1982 		 *
1983 		 *   Cache this rbio iff the above read reconstruction is
1984 		 *   executed without problems.
1985 		 */
1986 		if (err == BLK_STS_OK && rbio->failb < 0)
1987 			cache_rbio_pages(rbio);
1988 		else
1989 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1990 
1991 		rbio_orig_end_io(rbio, err);
1992 	} else if (err == BLK_STS_OK) {
1993 		rbio->faila = -1;
1994 		rbio->failb = -1;
1995 
1996 		if (rbio->operation == BTRFS_RBIO_WRITE)
1997 			finish_rmw(rbio);
1998 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1999 			finish_parity_scrub(rbio, 0);
2000 		else
2001 			BUG();
2002 	} else {
2003 		rbio_orig_end_io(rbio, err);
2004 	}
2005 }
2006 
2007 /*
2008  * This is called only for stripes we've read from disk to
2009  * reconstruct the parity.
2010  */
2011 static void raid_recover_end_io(struct bio *bio)
2012 {
2013 	struct btrfs_raid_bio *rbio = bio->bi_private;
2014 
2015 	/*
2016 	 * we only read stripe pages off the disk, set them
2017 	 * up to date if there were no errors
2018 	 */
2019 	if (bio->bi_status)
2020 		fail_bio_stripe(rbio, bio);
2021 	else
2022 		set_bio_pages_uptodate(bio);
2023 	bio_put(bio);
2024 
2025 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2026 		return;
2027 
2028 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2029 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2030 	else
2031 		__raid_recover_end_io(rbio);
2032 }
2033 
2034 /*
2035  * reads everything we need off the disk to reconstruct
2036  * the parity. endio handlers trigger final reconstruction
2037  * when the IO is done.
2038  *
2039  * This is used both for reads from the higher layers and for
2040  * parity construction required to finish a rmw cycle.
2041  */
2042 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2043 {
2044 	int bios_to_read = 0;
2045 	struct bio_list bio_list;
2046 	int ret;
2047 	int pagenr;
2048 	int stripe;
2049 	struct bio *bio;
2050 
2051 	bio_list_init(&bio_list);
2052 
2053 	ret = alloc_rbio_pages(rbio);
2054 	if (ret)
2055 		goto cleanup;
2056 
2057 	atomic_set(&rbio->error, 0);
2058 
2059 	/*
2060 	 * read everything that hasn't failed.  Thanks to the
2061 	 * stripe cache, it is possible that some or all of these
2062 	 * pages are going to be uptodate.
2063 	 */
2064 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2065 		if (rbio->faila == stripe || rbio->failb == stripe) {
2066 			atomic_inc(&rbio->error);
2067 			continue;
2068 		}
2069 
2070 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2071 			struct page *p;
2072 
2073 			/*
2074 			 * the rmw code may have already read this
2075 			 * page in
2076 			 */
2077 			p = rbio_stripe_page(rbio, stripe, pagenr);
2078 			if (PageUptodate(p))
2079 				continue;
2080 
2081 			ret = rbio_add_io_page(rbio, &bio_list,
2082 				       rbio_stripe_page(rbio, stripe, pagenr),
2083 				       stripe, pagenr, rbio->stripe_len);
2084 			if (ret < 0)
2085 				goto cleanup;
2086 		}
2087 	}
2088 
2089 	bios_to_read = bio_list_size(&bio_list);
2090 	if (!bios_to_read) {
2091 		/*
2092 		 * we might have no bios to read just because the pages
2093 		 * were up to date, or we might have no bios to read because
2094 		 * the devices were gone.
2095 		 */
2096 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2097 			__raid_recover_end_io(rbio);
2098 			goto out;
2099 		} else {
2100 			goto cleanup;
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * the bbio may be freed once we submit the last bio.  Make sure
2106 	 * not to touch it after that
2107 	 */
2108 	atomic_set(&rbio->stripes_pending, bios_to_read);
2109 	while (1) {
2110 		bio = bio_list_pop(&bio_list);
2111 		if (!bio)
2112 			break;
2113 
2114 		bio->bi_private = rbio;
2115 		bio->bi_end_io = raid_recover_end_io;
2116 		bio->bi_opf = REQ_OP_READ;
2117 
2118 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2119 
2120 		submit_bio(bio);
2121 	}
2122 out:
2123 	return 0;
2124 
2125 cleanup:
2126 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2127 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2128 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2129 
2130 	while ((bio = bio_list_pop(&bio_list)))
2131 		bio_put(bio);
2132 
2133 	return -EIO;
2134 }
2135 
2136 /*
2137  * the main entry point for reads from the higher layers.  This
2138  * is really only called when the normal read path had a failure,
2139  * so we assume the bio they send down corresponds to a failed part
2140  * of the drive.
2141  */
2142 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2143 			  struct btrfs_bio *bbio, u64 stripe_len,
2144 			  int mirror_num, int generic_io)
2145 {
2146 	struct btrfs_raid_bio *rbio;
2147 	int ret;
2148 
2149 	if (generic_io) {
2150 		ASSERT(bbio->mirror_num == mirror_num);
2151 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2152 	}
2153 
2154 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2155 	if (IS_ERR(rbio)) {
2156 		if (generic_io)
2157 			btrfs_put_bbio(bbio);
2158 		return PTR_ERR(rbio);
2159 	}
2160 
2161 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2162 	bio_list_add(&rbio->bio_list, bio);
2163 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2164 
2165 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2166 	if (rbio->faila == -1) {
2167 		btrfs_warn(fs_info,
2168 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2169 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2170 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2171 		if (generic_io)
2172 			btrfs_put_bbio(bbio);
2173 		kfree(rbio);
2174 		return -EIO;
2175 	}
2176 
2177 	if (generic_io) {
2178 		btrfs_bio_counter_inc_noblocked(fs_info);
2179 		rbio->generic_bio_cnt = 1;
2180 	} else {
2181 		btrfs_get_bbio(bbio);
2182 	}
2183 
2184 	/*
2185 	 * Loop retry:
2186 	 * for 'mirror == 2', reconstruct from all other stripes.
2187 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2188 	 */
2189 	if (mirror_num > 2) {
2190 		/*
2191 		 * 'mirror == 3' is to fail the p stripe and
2192 		 * reconstruct from the q stripe.  'mirror > 3' is to
2193 		 * fail a data stripe and reconstruct from p+q stripe.
2194 		 */
2195 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2196 		ASSERT(rbio->failb > 0);
2197 		if (rbio->failb <= rbio->faila)
2198 			rbio->failb--;
2199 	}
2200 
2201 	ret = lock_stripe_add(rbio);
2202 
2203 	/*
2204 	 * __raid56_parity_recover will end the bio with
2205 	 * any errors it hits.  We don't want to return
2206 	 * its error value up the stack because our caller
2207 	 * will end up calling bio_endio with any nonzero
2208 	 * return
2209 	 */
2210 	if (ret == 0)
2211 		__raid56_parity_recover(rbio);
2212 	/*
2213 	 * our rbio has been added to the list of
2214 	 * rbios that will be handled after the
2215 	 * currently lock owner is done
2216 	 */
2217 	return 0;
2218 
2219 }
2220 
2221 static void rmw_work(struct btrfs_work *work)
2222 {
2223 	struct btrfs_raid_bio *rbio;
2224 
2225 	rbio = container_of(work, struct btrfs_raid_bio, work);
2226 	raid56_rmw_stripe(rbio);
2227 }
2228 
2229 static void read_rebuild_work(struct btrfs_work *work)
2230 {
2231 	struct btrfs_raid_bio *rbio;
2232 
2233 	rbio = container_of(work, struct btrfs_raid_bio, work);
2234 	__raid56_parity_recover(rbio);
2235 }
2236 
2237 /*
2238  * The following code is used to scrub/replace the parity stripe
2239  *
2240  * Caller must have already increased bio_counter for getting @bbio.
2241  *
2242  * Note: We need make sure all the pages that add into the scrub/replace
2243  * raid bio are correct and not be changed during the scrub/replace. That
2244  * is those pages just hold metadata or file data with checksum.
2245  */
2246 
2247 struct btrfs_raid_bio *
2248 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2249 			       struct btrfs_bio *bbio, u64 stripe_len,
2250 			       struct btrfs_device *scrub_dev,
2251 			       unsigned long *dbitmap, int stripe_nsectors)
2252 {
2253 	struct btrfs_raid_bio *rbio;
2254 	int i;
2255 
2256 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2257 	if (IS_ERR(rbio))
2258 		return NULL;
2259 	bio_list_add(&rbio->bio_list, bio);
2260 	/*
2261 	 * This is a special bio which is used to hold the completion handler
2262 	 * and make the scrub rbio is similar to the other types
2263 	 */
2264 	ASSERT(!bio->bi_iter.bi_size);
2265 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2266 
2267 	/*
2268 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2269 	 * to the end position, so this search can start from the first parity
2270 	 * stripe.
2271 	 */
2272 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2273 		if (bbio->stripes[i].dev == scrub_dev) {
2274 			rbio->scrubp = i;
2275 			break;
2276 		}
2277 	}
2278 	ASSERT(i < rbio->real_stripes);
2279 
2280 	/* Now we just support the sectorsize equals to page size */
2281 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2282 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2283 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2284 
2285 	/*
2286 	 * We have already increased bio_counter when getting bbio, record it
2287 	 * so we can free it at rbio_orig_end_io().
2288 	 */
2289 	rbio->generic_bio_cnt = 1;
2290 
2291 	return rbio;
2292 }
2293 
2294 /* Used for both parity scrub and missing. */
2295 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2296 			    u64 logical)
2297 {
2298 	int stripe_offset;
2299 	int index;
2300 
2301 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2302 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2303 				rbio->stripe_len * rbio->nr_data);
2304 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2305 	index = stripe_offset >> PAGE_SHIFT;
2306 	rbio->bio_pages[index] = page;
2307 }
2308 
2309 /*
2310  * We just scrub the parity that we have correct data on the same horizontal,
2311  * so we needn't allocate all pages for all the stripes.
2312  */
2313 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2314 {
2315 	int i;
2316 	int bit;
2317 	int index;
2318 	struct page *page;
2319 
2320 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2321 		for (i = 0; i < rbio->real_stripes; i++) {
2322 			index = i * rbio->stripe_npages + bit;
2323 			if (rbio->stripe_pages[index])
2324 				continue;
2325 
2326 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2327 			if (!page)
2328 				return -ENOMEM;
2329 			rbio->stripe_pages[index] = page;
2330 		}
2331 	}
2332 	return 0;
2333 }
2334 
2335 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2336 					 int need_check)
2337 {
2338 	struct btrfs_bio *bbio = rbio->bbio;
2339 	void **pointers = rbio->finish_pointers;
2340 	unsigned long *pbitmap = rbio->finish_pbitmap;
2341 	int nr_data = rbio->nr_data;
2342 	int stripe;
2343 	int pagenr;
2344 	int p_stripe = -1;
2345 	int q_stripe = -1;
2346 	struct page *p_page = NULL;
2347 	struct page *q_page = NULL;
2348 	struct bio_list bio_list;
2349 	struct bio *bio;
2350 	int is_replace = 0;
2351 	int ret;
2352 
2353 	bio_list_init(&bio_list);
2354 
2355 	if (rbio->real_stripes - rbio->nr_data == 1) {
2356 		p_stripe = rbio->real_stripes - 1;
2357 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2358 		p_stripe = rbio->real_stripes - 2;
2359 		q_stripe = rbio->real_stripes - 1;
2360 	} else {
2361 		BUG();
2362 	}
2363 
2364 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2365 		is_replace = 1;
2366 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2367 	}
2368 
2369 	/*
2370 	 * Because the higher layers(scrubber) are unlikely to
2371 	 * use this area of the disk again soon, so don't cache
2372 	 * it.
2373 	 */
2374 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2375 
2376 	if (!need_check)
2377 		goto writeback;
2378 
2379 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2380 	if (!p_page)
2381 		goto cleanup;
2382 	SetPageUptodate(p_page);
2383 
2384 	if (q_stripe != -1) {
2385 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2386 		if (!q_page) {
2387 			__free_page(p_page);
2388 			goto cleanup;
2389 		}
2390 		SetPageUptodate(q_page);
2391 	}
2392 
2393 	atomic_set(&rbio->error, 0);
2394 
2395 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396 		struct page *p;
2397 		void *parity;
2398 		/* first collect one page from each data stripe */
2399 		for (stripe = 0; stripe < nr_data; stripe++) {
2400 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2401 			pointers[stripe] = kmap(p);
2402 		}
2403 
2404 		/* then add the parity stripe */
2405 		pointers[stripe++] = kmap(p_page);
2406 
2407 		if (q_stripe != -1) {
2408 
2409 			/*
2410 			 * raid6, add the qstripe and call the
2411 			 * library function to fill in our p/q
2412 			 */
2413 			pointers[stripe++] = kmap(q_page);
2414 
2415 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2416 						pointers);
2417 		} else {
2418 			/* raid5 */
2419 			copy_page(pointers[nr_data], pointers[0]);
2420 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2421 		}
2422 
2423 		/* Check scrubbing parity and repair it */
2424 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2425 		parity = kmap(p);
2426 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2427 			copy_page(parity, pointers[rbio->scrubp]);
2428 		else
2429 			/* Parity is right, needn't writeback */
2430 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2431 		kunmap(p);
2432 
2433 		for (stripe = 0; stripe < nr_data; stripe++)
2434 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2435 		kunmap(p_page);
2436 	}
2437 
2438 	__free_page(p_page);
2439 	if (q_page)
2440 		__free_page(q_page);
2441 
2442 writeback:
2443 	/*
2444 	 * time to start writing.  Make bios for everything from the
2445 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2446 	 * everything else.
2447 	 */
2448 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2449 		struct page *page;
2450 
2451 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2452 		ret = rbio_add_io_page(rbio, &bio_list,
2453 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2454 		if (ret)
2455 			goto cleanup;
2456 	}
2457 
2458 	if (!is_replace)
2459 		goto submit_write;
2460 
2461 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2462 		struct page *page;
2463 
2464 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2465 		ret = rbio_add_io_page(rbio, &bio_list, page,
2466 				       bbio->tgtdev_map[rbio->scrubp],
2467 				       pagenr, rbio->stripe_len);
2468 		if (ret)
2469 			goto cleanup;
2470 	}
2471 
2472 submit_write:
2473 	nr_data = bio_list_size(&bio_list);
2474 	if (!nr_data) {
2475 		/* Every parity is right */
2476 		rbio_orig_end_io(rbio, BLK_STS_OK);
2477 		return;
2478 	}
2479 
2480 	atomic_set(&rbio->stripes_pending, nr_data);
2481 
2482 	while (1) {
2483 		bio = bio_list_pop(&bio_list);
2484 		if (!bio)
2485 			break;
2486 
2487 		bio->bi_private = rbio;
2488 		bio->bi_end_io = raid_write_end_io;
2489 		bio->bi_opf = REQ_OP_WRITE;
2490 
2491 		submit_bio(bio);
2492 	}
2493 	return;
2494 
2495 cleanup:
2496 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2497 
2498 	while ((bio = bio_list_pop(&bio_list)))
2499 		bio_put(bio);
2500 }
2501 
2502 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2503 {
2504 	if (stripe >= 0 && stripe < rbio->nr_data)
2505 		return 1;
2506 	return 0;
2507 }
2508 
2509 /*
2510  * While we're doing the parity check and repair, we could have errors
2511  * in reading pages off the disk.  This checks for errors and if we're
2512  * not able to read the page it'll trigger parity reconstruction.  The
2513  * parity scrub will be finished after we've reconstructed the failed
2514  * stripes
2515  */
2516 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2517 {
2518 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2519 		goto cleanup;
2520 
2521 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2522 		int dfail = 0, failp = -1;
2523 
2524 		if (is_data_stripe(rbio, rbio->faila))
2525 			dfail++;
2526 		else if (is_parity_stripe(rbio->faila))
2527 			failp = rbio->faila;
2528 
2529 		if (is_data_stripe(rbio, rbio->failb))
2530 			dfail++;
2531 		else if (is_parity_stripe(rbio->failb))
2532 			failp = rbio->failb;
2533 
2534 		/*
2535 		 * Because we can not use a scrubbing parity to repair
2536 		 * the data, so the capability of the repair is declined.
2537 		 * (In the case of RAID5, we can not repair anything)
2538 		 */
2539 		if (dfail > rbio->bbio->max_errors - 1)
2540 			goto cleanup;
2541 
2542 		/*
2543 		 * If all data is good, only parity is correctly, just
2544 		 * repair the parity.
2545 		 */
2546 		if (dfail == 0) {
2547 			finish_parity_scrub(rbio, 0);
2548 			return;
2549 		}
2550 
2551 		/*
2552 		 * Here means we got one corrupted data stripe and one
2553 		 * corrupted parity on RAID6, if the corrupted parity
2554 		 * is scrubbing parity, luckily, use the other one to repair
2555 		 * the data, or we can not repair the data stripe.
2556 		 */
2557 		if (failp != rbio->scrubp)
2558 			goto cleanup;
2559 
2560 		__raid_recover_end_io(rbio);
2561 	} else {
2562 		finish_parity_scrub(rbio, 1);
2563 	}
2564 	return;
2565 
2566 cleanup:
2567 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2568 }
2569 
2570 /*
2571  * end io for the read phase of the rmw cycle.  All the bios here are physical
2572  * stripe bios we've read from the disk so we can recalculate the parity of the
2573  * stripe.
2574  *
2575  * This will usually kick off finish_rmw once all the bios are read in, but it
2576  * may trigger parity reconstruction if we had any errors along the way
2577  */
2578 static void raid56_parity_scrub_end_io(struct bio *bio)
2579 {
2580 	struct btrfs_raid_bio *rbio = bio->bi_private;
2581 
2582 	if (bio->bi_status)
2583 		fail_bio_stripe(rbio, bio);
2584 	else
2585 		set_bio_pages_uptodate(bio);
2586 
2587 	bio_put(bio);
2588 
2589 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2590 		return;
2591 
2592 	/*
2593 	 * this will normally call finish_rmw to start our write
2594 	 * but if there are any failed stripes we'll reconstruct
2595 	 * from parity first
2596 	 */
2597 	validate_rbio_for_parity_scrub(rbio);
2598 }
2599 
2600 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2601 {
2602 	int bios_to_read = 0;
2603 	struct bio_list bio_list;
2604 	int ret;
2605 	int pagenr;
2606 	int stripe;
2607 	struct bio *bio;
2608 
2609 	bio_list_init(&bio_list);
2610 
2611 	ret = alloc_rbio_essential_pages(rbio);
2612 	if (ret)
2613 		goto cleanup;
2614 
2615 	atomic_set(&rbio->error, 0);
2616 	/*
2617 	 * build a list of bios to read all the missing parts of this
2618 	 * stripe
2619 	 */
2620 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2621 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2622 			struct page *page;
2623 			/*
2624 			 * we want to find all the pages missing from
2625 			 * the rbio and read them from the disk.  If
2626 			 * page_in_rbio finds a page in the bio list
2627 			 * we don't need to read it off the stripe.
2628 			 */
2629 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2630 			if (page)
2631 				continue;
2632 
2633 			page = rbio_stripe_page(rbio, stripe, pagenr);
2634 			/*
2635 			 * the bio cache may have handed us an uptodate
2636 			 * page.  If so, be happy and use it
2637 			 */
2638 			if (PageUptodate(page))
2639 				continue;
2640 
2641 			ret = rbio_add_io_page(rbio, &bio_list, page,
2642 				       stripe, pagenr, rbio->stripe_len);
2643 			if (ret)
2644 				goto cleanup;
2645 		}
2646 	}
2647 
2648 	bios_to_read = bio_list_size(&bio_list);
2649 	if (!bios_to_read) {
2650 		/*
2651 		 * this can happen if others have merged with
2652 		 * us, it means there is nothing left to read.
2653 		 * But if there are missing devices it may not be
2654 		 * safe to do the full stripe write yet.
2655 		 */
2656 		goto finish;
2657 	}
2658 
2659 	/*
2660 	 * the bbio may be freed once we submit the last bio.  Make sure
2661 	 * not to touch it after that
2662 	 */
2663 	atomic_set(&rbio->stripes_pending, bios_to_read);
2664 	while (1) {
2665 		bio = bio_list_pop(&bio_list);
2666 		if (!bio)
2667 			break;
2668 
2669 		bio->bi_private = rbio;
2670 		bio->bi_end_io = raid56_parity_scrub_end_io;
2671 		bio->bi_opf = REQ_OP_READ;
2672 
2673 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2674 
2675 		submit_bio(bio);
2676 	}
2677 	/* the actual write will happen once the reads are done */
2678 	return;
2679 
2680 cleanup:
2681 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2682 
2683 	while ((bio = bio_list_pop(&bio_list)))
2684 		bio_put(bio);
2685 
2686 	return;
2687 
2688 finish:
2689 	validate_rbio_for_parity_scrub(rbio);
2690 }
2691 
2692 static void scrub_parity_work(struct btrfs_work *work)
2693 {
2694 	struct btrfs_raid_bio *rbio;
2695 
2696 	rbio = container_of(work, struct btrfs_raid_bio, work);
2697 	raid56_parity_scrub_stripe(rbio);
2698 }
2699 
2700 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2701 {
2702 	if (!lock_stripe_add(rbio))
2703 		start_async_work(rbio, scrub_parity_work);
2704 }
2705 
2706 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2707 
2708 struct btrfs_raid_bio *
2709 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2710 			  struct btrfs_bio *bbio, u64 length)
2711 {
2712 	struct btrfs_raid_bio *rbio;
2713 
2714 	rbio = alloc_rbio(fs_info, bbio, length);
2715 	if (IS_ERR(rbio))
2716 		return NULL;
2717 
2718 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2719 	bio_list_add(&rbio->bio_list, bio);
2720 	/*
2721 	 * This is a special bio which is used to hold the completion handler
2722 	 * and make the scrub rbio is similar to the other types
2723 	 */
2724 	ASSERT(!bio->bi_iter.bi_size);
2725 
2726 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2727 	if (rbio->faila == -1) {
2728 		BUG();
2729 		kfree(rbio);
2730 		return NULL;
2731 	}
2732 
2733 	/*
2734 	 * When we get bbio, we have already increased bio_counter, record it
2735 	 * so we can free it at rbio_orig_end_io()
2736 	 */
2737 	rbio->generic_bio_cnt = 1;
2738 
2739 	return rbio;
2740 }
2741 
2742 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2743 {
2744 	if (!lock_stripe_add(rbio))
2745 		start_async_work(rbio, read_rebuild_work);
2746 }
2747