1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "misc.h"
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "volumes.h"
21 #include "raid56.h"
22 #include "async-thread.h"
23 #include "file-item.h"
24 #include "btrfs_inode.h"
25
26 /* set when additional merges to this rbio are not allowed */
27 #define RBIO_RMW_LOCKED_BIT 1
28
29 /*
30 * set when this rbio is sitting in the hash, but it is just a cache
31 * of past RMW
32 */
33 #define RBIO_CACHE_BIT 2
34
35 /*
36 * set when it is safe to trust the stripe_pages for caching
37 */
38 #define RBIO_CACHE_READY_BIT 3
39
40 #define RBIO_CACHE_SIZE 1024
41
42 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
43
44 /* Used by the raid56 code to lock stripes for read/modify/write */
45 struct btrfs_stripe_hash {
46 struct list_head hash_list;
47 spinlock_t lock;
48 };
49
50 /* Used by the raid56 code to lock stripes for read/modify/write */
51 struct btrfs_stripe_hash_table {
52 struct list_head stripe_cache;
53 spinlock_t cache_lock;
54 int cache_size;
55 struct btrfs_stripe_hash table[];
56 };
57
58 /*
59 * A bvec like structure to present a sector inside a page.
60 *
61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62 */
63 struct sector_ptr {
64 struct page *page;
65 unsigned int pgoff:24;
66 unsigned int uptodate:8;
67 };
68
69 static void rmw_rbio_work(struct work_struct *work);
70 static void rmw_rbio_work_locked(struct work_struct *work);
71 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73
74 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
75 static void scrub_rbio_work_locked(struct work_struct *work);
76
free_raid_bio_pointers(struct btrfs_raid_bio * rbio)77 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78 {
79 bitmap_free(rbio->error_bitmap);
80 kfree(rbio->stripe_pages);
81 kfree(rbio->bio_sectors);
82 kfree(rbio->stripe_sectors);
83 kfree(rbio->finish_pointers);
84 }
85
free_raid_bio(struct btrfs_raid_bio * rbio)86 static void free_raid_bio(struct btrfs_raid_bio *rbio)
87 {
88 int i;
89
90 if (!refcount_dec_and_test(&rbio->refs))
91 return;
92
93 WARN_ON(!list_empty(&rbio->stripe_cache));
94 WARN_ON(!list_empty(&rbio->hash_list));
95 WARN_ON(!bio_list_empty(&rbio->bio_list));
96
97 for (i = 0; i < rbio->nr_pages; i++) {
98 if (rbio->stripe_pages[i]) {
99 __free_page(rbio->stripe_pages[i]);
100 rbio->stripe_pages[i] = NULL;
101 }
102 }
103
104 btrfs_put_bioc(rbio->bioc);
105 free_raid_bio_pointers(rbio);
106 kfree(rbio);
107 }
108
start_async_work(struct btrfs_raid_bio * rbio,work_func_t work_func)109 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110 {
111 INIT_WORK(&rbio->work, work_func);
112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 }
114
115 /*
116 * the stripe hash table is used for locking, and to collect
117 * bios in hopes of making a full stripe
118 */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)119 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120 {
121 struct btrfs_stripe_hash_table *table;
122 struct btrfs_stripe_hash_table *x;
123 struct btrfs_stripe_hash *cur;
124 struct btrfs_stripe_hash *h;
125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 int i;
127
128 if (info->stripe_hash_table)
129 return 0;
130
131 /*
132 * The table is large, starting with order 4 and can go as high as
133 * order 7 in case lock debugging is turned on.
134 *
135 * Try harder to allocate and fallback to vmalloc to lower the chance
136 * of a failing mount.
137 */
138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 if (!table)
140 return -ENOMEM;
141
142 spin_lock_init(&table->cache_lock);
143 INIT_LIST_HEAD(&table->stripe_cache);
144
145 h = table->table;
146
147 for (i = 0; i < num_entries; i++) {
148 cur = h + i;
149 INIT_LIST_HEAD(&cur->hash_list);
150 spin_lock_init(&cur->lock);
151 }
152
153 x = cmpxchg(&info->stripe_hash_table, NULL, table);
154 kvfree(x);
155 return 0;
156 }
157
158 /*
159 * caching an rbio means to copy anything from the
160 * bio_sectors array into the stripe_pages array. We
161 * use the page uptodate bit in the stripe cache array
162 * to indicate if it has valid data
163 *
164 * once the caching is done, we set the cache ready
165 * bit.
166 */
cache_rbio_pages(struct btrfs_raid_bio * rbio)167 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168 {
169 int i;
170 int ret;
171
172 ret = alloc_rbio_pages(rbio);
173 if (ret)
174 return;
175
176 for (i = 0; i < rbio->nr_sectors; i++) {
177 /* Some range not covered by bio (partial write), skip it */
178 if (!rbio->bio_sectors[i].page) {
179 /*
180 * Even if the sector is not covered by bio, if it is
181 * a data sector it should still be uptodate as it is
182 * read from disk.
183 */
184 if (i < rbio->nr_data * rbio->stripe_nsectors)
185 ASSERT(rbio->stripe_sectors[i].uptodate);
186 continue;
187 }
188
189 ASSERT(rbio->stripe_sectors[i].page);
190 memcpy_page(rbio->stripe_sectors[i].page,
191 rbio->stripe_sectors[i].pgoff,
192 rbio->bio_sectors[i].page,
193 rbio->bio_sectors[i].pgoff,
194 rbio->bioc->fs_info->sectorsize);
195 rbio->stripe_sectors[i].uptodate = 1;
196 }
197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198 }
199
200 /*
201 * we hash on the first logical address of the stripe
202 */
rbio_bucket(struct btrfs_raid_bio * rbio)203 static int rbio_bucket(struct btrfs_raid_bio *rbio)
204 {
205 u64 num = rbio->bioc->full_stripe_logical;
206
207 /*
208 * we shift down quite a bit. We're using byte
209 * addressing, and most of the lower bits are zeros.
210 * This tends to upset hash_64, and it consistently
211 * returns just one or two different values.
212 *
213 * shifting off the lower bits fixes things.
214 */
215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216 }
217
full_page_sectors_uptodate(struct btrfs_raid_bio * rbio,unsigned int page_nr)218 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 unsigned int page_nr)
220 {
221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 int i;
224
225 ASSERT(page_nr < rbio->nr_pages);
226
227 for (i = sectors_per_page * page_nr;
228 i < sectors_per_page * page_nr + sectors_per_page;
229 i++) {
230 if (!rbio->stripe_sectors[i].uptodate)
231 return false;
232 }
233 return true;
234 }
235
236 /*
237 * Update the stripe_sectors[] array to use correct page and pgoff
238 *
239 * Should be called every time any page pointer in stripes_pages[] got modified.
240 */
index_stripe_sectors(struct btrfs_raid_bio * rbio)241 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242 {
243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 u32 offset;
245 int i;
246
247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 int page_index = offset >> PAGE_SHIFT;
249
250 ASSERT(page_index < rbio->nr_pages);
251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 }
254 }
255
steal_rbio_page(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest,int page_nr)256 static void steal_rbio_page(struct btrfs_raid_bio *src,
257 struct btrfs_raid_bio *dest, int page_nr)
258 {
259 const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 int i;
262
263 if (dest->stripe_pages[page_nr])
264 __free_page(dest->stripe_pages[page_nr]);
265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 src->stripe_pages[page_nr] = NULL;
267
268 /* Also update the sector->uptodate bits. */
269 for (i = sectors_per_page * page_nr;
270 i < sectors_per_page * page_nr + sectors_per_page; i++)
271 dest->stripe_sectors[i].uptodate = true;
272 }
273
is_data_stripe_page(struct btrfs_raid_bio * rbio,int page_nr)274 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275 {
276 const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 rbio->bioc->fs_info->sectorsize_bits;
278
279 /*
280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 * we won't have a page which is half data half parity.
282 *
283 * Thus if the first sector of the page belongs to data stripes, then
284 * the full page belongs to data stripes.
285 */
286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287 }
288
289 /*
290 * Stealing an rbio means taking all the uptodate pages from the stripe array
291 * in the source rbio and putting them into the destination rbio.
292 *
293 * This will also update the involved stripe_sectors[] which are referring to
294 * the old pages.
295 */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)296 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297 {
298 int i;
299
300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 return;
302
303 for (i = 0; i < dest->nr_pages; i++) {
304 struct page *p = src->stripe_pages[i];
305
306 /*
307 * We don't need to steal P/Q pages as they will always be
308 * regenerated for RMW or full write anyway.
309 */
310 if (!is_data_stripe_page(src, i))
311 continue;
312
313 /*
314 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 * all data stripe pages present and uptodate.
316 */
317 ASSERT(p);
318 ASSERT(full_page_sectors_uptodate(src, i));
319 steal_rbio_page(src, dest, i);
320 }
321 index_stripe_sectors(dest);
322 index_stripe_sectors(src);
323 }
324
325 /*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334 {
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 /* Also inherit the bitmaps from @victim. */
338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 dest->stripe_nsectors);
340 bio_list_init(&victim->bio_list);
341 }
342
343 /*
344 * used to prune items that are in the cache. The caller
345 * must hold the hash table lock.
346 */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)347 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348 {
349 int bucket = rbio_bucket(rbio);
350 struct btrfs_stripe_hash_table *table;
351 struct btrfs_stripe_hash *h;
352 int freeit = 0;
353
354 /*
355 * check the bit again under the hash table lock.
356 */
357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 return;
359
360 table = rbio->bioc->fs_info->stripe_hash_table;
361 h = table->table + bucket;
362
363 /* hold the lock for the bucket because we may be
364 * removing it from the hash table
365 */
366 spin_lock(&h->lock);
367
368 /*
369 * hold the lock for the bio list because we need
370 * to make sure the bio list is empty
371 */
372 spin_lock(&rbio->bio_list_lock);
373
374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 list_del_init(&rbio->stripe_cache);
376 table->cache_size -= 1;
377 freeit = 1;
378
379 /* if the bio list isn't empty, this rbio is
380 * still involved in an IO. We take it out
381 * of the cache list, and drop the ref that
382 * was held for the list.
383 *
384 * If the bio_list was empty, we also remove
385 * the rbio from the hash_table, and drop
386 * the corresponding ref
387 */
388 if (bio_list_empty(&rbio->bio_list)) {
389 if (!list_empty(&rbio->hash_list)) {
390 list_del_init(&rbio->hash_list);
391 refcount_dec(&rbio->refs);
392 BUG_ON(!list_empty(&rbio->plug_list));
393 }
394 }
395 }
396
397 spin_unlock(&rbio->bio_list_lock);
398 spin_unlock(&h->lock);
399
400 if (freeit)
401 free_raid_bio(rbio);
402 }
403
404 /*
405 * prune a given rbio from the cache
406 */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)407 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408 {
409 struct btrfs_stripe_hash_table *table;
410
411 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 return;
413
414 table = rbio->bioc->fs_info->stripe_hash_table;
415
416 spin_lock(&table->cache_lock);
417 __remove_rbio_from_cache(rbio);
418 spin_unlock(&table->cache_lock);
419 }
420
421 /*
422 * remove everything in the cache
423 */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)424 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 {
426 struct btrfs_stripe_hash_table *table;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock(&table->cache_lock);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock(&table->cache_lock);
439 }
440
441 /*
442 * remove all cached entries and free the hash table
443 * used by unmount
444 */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 {
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
452 }
453
454 /*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
cache_rbio(struct btrfs_raid_bio * rbio)465 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 {
467 struct btrfs_stripe_hash_table *table;
468
469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 return;
471
472 table = rbio->bioc->fs_info->stripe_hash_table;
473
474 spin_lock(&table->cache_lock);
475 spin_lock(&rbio->bio_list_lock);
476
477 /* bump our ref if we were not in the list before */
478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
479 refcount_inc(&rbio->refs);
480
481 if (!list_empty(&rbio->stripe_cache)){
482 list_move(&rbio->stripe_cache, &table->stripe_cache);
483 } else {
484 list_add(&rbio->stripe_cache, &table->stripe_cache);
485 table->cache_size += 1;
486 }
487
488 spin_unlock(&rbio->bio_list_lock);
489
490 if (table->cache_size > RBIO_CACHE_SIZE) {
491 struct btrfs_raid_bio *found;
492
493 found = list_entry(table->stripe_cache.prev,
494 struct btrfs_raid_bio,
495 stripe_cache);
496
497 if (found != rbio)
498 __remove_rbio_from_cache(found);
499 }
500
501 spin_unlock(&table->cache_lock);
502 }
503
504 /*
505 * helper function to run the xor_blocks api. It is only
506 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 * loop through.
508 */
run_xor(void ** pages,int src_cnt,ssize_t len)509 static void run_xor(void **pages, int src_cnt, ssize_t len)
510 {
511 int src_off = 0;
512 int xor_src_cnt = 0;
513 void *dest = pages[src_cnt];
514
515 while(src_cnt > 0) {
516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518
519 src_cnt -= xor_src_cnt;
520 src_off += xor_src_cnt;
521 }
522 }
523
524 /*
525 * Returns true if the bio list inside this rbio covers an entire stripe (no
526 * rmw required).
527 */
rbio_is_full(struct btrfs_raid_bio * rbio)528 static int rbio_is_full(struct btrfs_raid_bio *rbio)
529 {
530 unsigned long size = rbio->bio_list_bytes;
531 int ret = 1;
532
533 spin_lock(&rbio->bio_list_lock);
534 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
535 ret = 0;
536 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
537 spin_unlock(&rbio->bio_list_lock);
538
539 return ret;
540 }
541
542 /*
543 * returns 1 if it is safe to merge two rbios together.
544 * The merging is safe if the two rbios correspond to
545 * the same stripe and if they are both going in the same
546 * direction (read vs write), and if neither one is
547 * locked for final IO
548 *
549 * The caller is responsible for locking such that
550 * rmw_locked is safe to test
551 */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)552 static int rbio_can_merge(struct btrfs_raid_bio *last,
553 struct btrfs_raid_bio *cur)
554 {
555 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 return 0;
558
559 /*
560 * we can't merge with cached rbios, since the
561 * idea is that when we merge the destination
562 * rbio is going to run our IO for us. We can
563 * steal from cached rbios though, other functions
564 * handle that.
565 */
566 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 test_bit(RBIO_CACHE_BIT, &cur->flags))
568 return 0;
569
570 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
571 return 0;
572
573 /* we can't merge with different operations */
574 if (last->operation != cur->operation)
575 return 0;
576 /*
577 * We've need read the full stripe from the drive.
578 * check and repair the parity and write the new results.
579 *
580 * We're not allowed to add any new bios to the
581 * bio list here, anyone else that wants to
582 * change this stripe needs to do their own rmw.
583 */
584 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
585 return 0;
586
587 if (last->operation == BTRFS_RBIO_READ_REBUILD)
588 return 0;
589
590 return 1;
591 }
592
rbio_stripe_sector_index(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr)593 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
594 unsigned int stripe_nr,
595 unsigned int sector_nr)
596 {
597 ASSERT(stripe_nr < rbio->real_stripes);
598 ASSERT(sector_nr < rbio->stripe_nsectors);
599
600 return stripe_nr * rbio->stripe_nsectors + sector_nr;
601 }
602
603 /* Return a sector from rbio->stripe_sectors, not from the bio list */
rbio_stripe_sector(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr)604 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
605 unsigned int stripe_nr,
606 unsigned int sector_nr)
607 {
608 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
609 sector_nr)];
610 }
611
612 /* Grab a sector inside P stripe */
rbio_pstripe_sector(const struct btrfs_raid_bio * rbio,unsigned int sector_nr)613 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
614 unsigned int sector_nr)
615 {
616 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
617 }
618
619 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
rbio_qstripe_sector(const struct btrfs_raid_bio * rbio,unsigned int sector_nr)620 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
621 unsigned int sector_nr)
622 {
623 if (rbio->nr_data + 1 == rbio->real_stripes)
624 return NULL;
625 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
626 }
627
628 /*
629 * The first stripe in the table for a logical address
630 * has the lock. rbios are added in one of three ways:
631 *
632 * 1) Nobody has the stripe locked yet. The rbio is given
633 * the lock and 0 is returned. The caller must start the IO
634 * themselves.
635 *
636 * 2) Someone has the stripe locked, but we're able to merge
637 * with the lock owner. The rbio is freed and the IO will
638 * start automatically along with the existing rbio. 1 is returned.
639 *
640 * 3) Someone has the stripe locked, but we're not able to merge.
641 * The rbio is added to the lock owner's plug list, or merged into
642 * an rbio already on the plug list. When the lock owner unlocks,
643 * the next rbio on the list is run and the IO is started automatically.
644 * 1 is returned
645 *
646 * If we return 0, the caller still owns the rbio and must continue with
647 * IO submission. If we return 1, the caller must assume the rbio has
648 * already been freed.
649 */
lock_stripe_add(struct btrfs_raid_bio * rbio)650 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
651 {
652 struct btrfs_stripe_hash *h;
653 struct btrfs_raid_bio *cur;
654 struct btrfs_raid_bio *pending;
655 struct btrfs_raid_bio *freeit = NULL;
656 struct btrfs_raid_bio *cache_drop = NULL;
657 int ret = 0;
658
659 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
660
661 spin_lock(&h->lock);
662 list_for_each_entry(cur, &h->hash_list, hash_list) {
663 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
664 continue;
665
666 spin_lock(&cur->bio_list_lock);
667
668 /* Can we steal this cached rbio's pages? */
669 if (bio_list_empty(&cur->bio_list) &&
670 list_empty(&cur->plug_list) &&
671 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
672 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
673 list_del_init(&cur->hash_list);
674 refcount_dec(&cur->refs);
675
676 steal_rbio(cur, rbio);
677 cache_drop = cur;
678 spin_unlock(&cur->bio_list_lock);
679
680 goto lockit;
681 }
682
683 /* Can we merge into the lock owner? */
684 if (rbio_can_merge(cur, rbio)) {
685 merge_rbio(cur, rbio);
686 spin_unlock(&cur->bio_list_lock);
687 freeit = rbio;
688 ret = 1;
689 goto out;
690 }
691
692
693 /*
694 * We couldn't merge with the running rbio, see if we can merge
695 * with the pending ones. We don't have to check for rmw_locked
696 * because there is no way they are inside finish_rmw right now
697 */
698 list_for_each_entry(pending, &cur->plug_list, plug_list) {
699 if (rbio_can_merge(pending, rbio)) {
700 merge_rbio(pending, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706 }
707
708 /*
709 * No merging, put us on the tail of the plug list, our rbio
710 * will be started with the currently running rbio unlocks
711 */
712 list_add_tail(&rbio->plug_list, &cur->plug_list);
713 spin_unlock(&cur->bio_list_lock);
714 ret = 1;
715 goto out;
716 }
717 lockit:
718 refcount_inc(&rbio->refs);
719 list_add(&rbio->hash_list, &h->hash_list);
720 out:
721 spin_unlock(&h->lock);
722 if (cache_drop)
723 remove_rbio_from_cache(cache_drop);
724 if (freeit)
725 free_raid_bio(freeit);
726 return ret;
727 }
728
729 static void recover_rbio_work_locked(struct work_struct *work);
730
731 /*
732 * called as rmw or parity rebuild is completed. If the plug list has more
733 * rbios waiting for this stripe, the next one on the list will be started
734 */
unlock_stripe(struct btrfs_raid_bio * rbio)735 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
736 {
737 int bucket;
738 struct btrfs_stripe_hash *h;
739 int keep_cache = 0;
740
741 bucket = rbio_bucket(rbio);
742 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
743
744 if (list_empty(&rbio->plug_list))
745 cache_rbio(rbio);
746
747 spin_lock(&h->lock);
748 spin_lock(&rbio->bio_list_lock);
749
750 if (!list_empty(&rbio->hash_list)) {
751 /*
752 * if we're still cached and there is no other IO
753 * to perform, just leave this rbio here for others
754 * to steal from later
755 */
756 if (list_empty(&rbio->plug_list) &&
757 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
758 keep_cache = 1;
759 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
760 BUG_ON(!bio_list_empty(&rbio->bio_list));
761 goto done;
762 }
763
764 list_del_init(&rbio->hash_list);
765 refcount_dec(&rbio->refs);
766
767 /*
768 * we use the plug list to hold all the rbios
769 * waiting for the chance to lock this stripe.
770 * hand the lock over to one of them.
771 */
772 if (!list_empty(&rbio->plug_list)) {
773 struct btrfs_raid_bio *next;
774 struct list_head *head = rbio->plug_list.next;
775
776 next = list_entry(head, struct btrfs_raid_bio,
777 plug_list);
778
779 list_del_init(&rbio->plug_list);
780
781 list_add(&next->hash_list, &h->hash_list);
782 refcount_inc(&next->refs);
783 spin_unlock(&rbio->bio_list_lock);
784 spin_unlock(&h->lock);
785
786 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
787 start_async_work(next, recover_rbio_work_locked);
788 } else if (next->operation == BTRFS_RBIO_WRITE) {
789 steal_rbio(rbio, next);
790 start_async_work(next, rmw_rbio_work_locked);
791 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
792 steal_rbio(rbio, next);
793 start_async_work(next, scrub_rbio_work_locked);
794 }
795
796 goto done_nolock;
797 }
798 }
799 done:
800 spin_unlock(&rbio->bio_list_lock);
801 spin_unlock(&h->lock);
802
803 done_nolock:
804 if (!keep_cache)
805 remove_rbio_from_cache(rbio);
806 }
807
rbio_endio_bio_list(struct bio * cur,blk_status_t err)808 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
809 {
810 struct bio *next;
811
812 while (cur) {
813 next = cur->bi_next;
814 cur->bi_next = NULL;
815 cur->bi_status = err;
816 bio_endio(cur);
817 cur = next;
818 }
819 }
820
821 /*
822 * this frees the rbio and runs through all the bios in the
823 * bio_list and calls end_io on them
824 */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t err)825 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
826 {
827 struct bio *cur = bio_list_get(&rbio->bio_list);
828 struct bio *extra;
829
830 kfree(rbio->csum_buf);
831 bitmap_free(rbio->csum_bitmap);
832 rbio->csum_buf = NULL;
833 rbio->csum_bitmap = NULL;
834
835 /*
836 * Clear the data bitmap, as the rbio may be cached for later usage.
837 * do this before before unlock_stripe() so there will be no new bio
838 * for this bio.
839 */
840 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
841
842 /*
843 * At this moment, rbio->bio_list is empty, however since rbio does not
844 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
845 * hash list, rbio may be merged with others so that rbio->bio_list
846 * becomes non-empty.
847 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
848 * more and we can call bio_endio() on all queued bios.
849 */
850 unlock_stripe(rbio);
851 extra = bio_list_get(&rbio->bio_list);
852 free_raid_bio(rbio);
853
854 rbio_endio_bio_list(cur, err);
855 if (extra)
856 rbio_endio_bio_list(extra, err);
857 }
858
859 /*
860 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
861 *
862 * @rbio: The raid bio
863 * @stripe_nr: Stripe number, valid range [0, real_stripe)
864 * @sector_nr: Sector number inside the stripe,
865 * valid range [0, stripe_nsectors)
866 * @bio_list_only: Whether to use sectors inside the bio list only.
867 *
868 * The read/modify/write code wants to reuse the original bio page as much
869 * as possible, and only use stripe_sectors as fallback.
870 */
sector_in_rbio(struct btrfs_raid_bio * rbio,int stripe_nr,int sector_nr,bool bio_list_only)871 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
872 int stripe_nr, int sector_nr,
873 bool bio_list_only)
874 {
875 struct sector_ptr *sector;
876 int index;
877
878 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
879 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
880
881 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
882 ASSERT(index >= 0 && index < rbio->nr_sectors);
883
884 spin_lock(&rbio->bio_list_lock);
885 sector = &rbio->bio_sectors[index];
886 if (sector->page || bio_list_only) {
887 /* Don't return sector without a valid page pointer */
888 if (!sector->page)
889 sector = NULL;
890 spin_unlock(&rbio->bio_list_lock);
891 return sector;
892 }
893 spin_unlock(&rbio->bio_list_lock);
894
895 return &rbio->stripe_sectors[index];
896 }
897
898 /*
899 * allocation and initial setup for the btrfs_raid_bio. Not
900 * this does not allocate any pages for rbio->pages.
901 */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_io_context * bioc)902 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
903 struct btrfs_io_context *bioc)
904 {
905 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
906 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
907 const unsigned int num_pages = stripe_npages * real_stripes;
908 const unsigned int stripe_nsectors =
909 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
910 const unsigned int num_sectors = stripe_nsectors * real_stripes;
911 struct btrfs_raid_bio *rbio;
912
913 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
914 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
915 /*
916 * Our current stripe len should be fixed to 64k thus stripe_nsectors
917 * (at most 16) should be no larger than BITS_PER_LONG.
918 */
919 ASSERT(stripe_nsectors <= BITS_PER_LONG);
920
921 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
922 if (!rbio)
923 return ERR_PTR(-ENOMEM);
924 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
925 GFP_NOFS);
926 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
927 GFP_NOFS);
928 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
929 GFP_NOFS);
930 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
931 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
932
933 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
934 !rbio->finish_pointers || !rbio->error_bitmap) {
935 free_raid_bio_pointers(rbio);
936 kfree(rbio);
937 return ERR_PTR(-ENOMEM);
938 }
939
940 bio_list_init(&rbio->bio_list);
941 init_waitqueue_head(&rbio->io_wait);
942 INIT_LIST_HEAD(&rbio->plug_list);
943 spin_lock_init(&rbio->bio_list_lock);
944 INIT_LIST_HEAD(&rbio->stripe_cache);
945 INIT_LIST_HEAD(&rbio->hash_list);
946 btrfs_get_bioc(bioc);
947 rbio->bioc = bioc;
948 rbio->nr_pages = num_pages;
949 rbio->nr_sectors = num_sectors;
950 rbio->real_stripes = real_stripes;
951 rbio->stripe_npages = stripe_npages;
952 rbio->stripe_nsectors = stripe_nsectors;
953 refcount_set(&rbio->refs, 1);
954 atomic_set(&rbio->stripes_pending, 0);
955
956 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
957 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
958
959 return rbio;
960 }
961
962 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)963 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
964 {
965 int ret;
966
967 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
968 if (ret < 0)
969 return ret;
970 /* Mapping all sectors */
971 index_stripe_sectors(rbio);
972 return 0;
973 }
974
975 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)976 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
977 {
978 const int data_pages = rbio->nr_data * rbio->stripe_npages;
979 int ret;
980
981 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
982 rbio->stripe_pages + data_pages);
983 if (ret < 0)
984 return ret;
985
986 index_stripe_sectors(rbio);
987 return 0;
988 }
989
990 /*
991 * Return the total number of errors found in the vertical stripe of @sector_nr.
992 *
993 * @faila and @failb will also be updated to the first and second stripe
994 * number of the errors.
995 */
get_rbio_veritical_errors(struct btrfs_raid_bio * rbio,int sector_nr,int * faila,int * failb)996 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
997 int *faila, int *failb)
998 {
999 int stripe_nr;
1000 int found_errors = 0;
1001
1002 if (faila || failb) {
1003 /*
1004 * Both @faila and @failb should be valid pointers if any of
1005 * them is specified.
1006 */
1007 ASSERT(faila && failb);
1008 *faila = -1;
1009 *failb = -1;
1010 }
1011
1012 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1013 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1014
1015 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1016 found_errors++;
1017 if (faila) {
1018 /* Update faila and failb. */
1019 if (*faila < 0)
1020 *faila = stripe_nr;
1021 else if (*failb < 0)
1022 *failb = stripe_nr;
1023 }
1024 }
1025 }
1026 return found_errors;
1027 }
1028
1029 /*
1030 * Add a single sector @sector into our list of bios for IO.
1031 *
1032 * Return 0 if everything went well.
1033 * Return <0 for error.
1034 */
rbio_add_io_sector(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,struct sector_ptr * sector,unsigned int stripe_nr,unsigned int sector_nr,enum req_op op)1035 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1036 struct bio_list *bio_list,
1037 struct sector_ptr *sector,
1038 unsigned int stripe_nr,
1039 unsigned int sector_nr,
1040 enum req_op op)
1041 {
1042 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1043 struct bio *last = bio_list->tail;
1044 int ret;
1045 struct bio *bio;
1046 struct btrfs_io_stripe *stripe;
1047 u64 disk_start;
1048
1049 /*
1050 * Note: here stripe_nr has taken device replace into consideration,
1051 * thus it can be larger than rbio->real_stripe.
1052 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1053 */
1054 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1055 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1056 ASSERT(sector->page);
1057
1058 stripe = &rbio->bioc->stripes[stripe_nr];
1059 disk_start = stripe->physical + sector_nr * sectorsize;
1060
1061 /* if the device is missing, just fail this stripe */
1062 if (!stripe->dev->bdev) {
1063 int found_errors;
1064
1065 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1066 rbio->error_bitmap);
1067
1068 /* Check if we have reached tolerance early. */
1069 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1070 NULL, NULL);
1071 if (found_errors > rbio->bioc->max_errors)
1072 return -EIO;
1073 return 0;
1074 }
1075
1076 /* see if we can add this page onto our existing bio */
1077 if (last) {
1078 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1079 last_end += last->bi_iter.bi_size;
1080
1081 /*
1082 * we can't merge these if they are from different
1083 * devices or if they are not contiguous
1084 */
1085 if (last_end == disk_start && !last->bi_status &&
1086 last->bi_bdev == stripe->dev->bdev) {
1087 ret = bio_add_page(last, sector->page, sectorsize,
1088 sector->pgoff);
1089 if (ret == sectorsize)
1090 return 0;
1091 }
1092 }
1093
1094 /* put a new bio on the list */
1095 bio = bio_alloc(stripe->dev->bdev,
1096 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1097 op, GFP_NOFS);
1098 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1099 bio->bi_private = rbio;
1100
1101 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1102 bio_list_add(bio_list, bio);
1103 return 0;
1104 }
1105
index_one_bio(struct btrfs_raid_bio * rbio,struct bio * bio)1106 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1107 {
1108 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1109 struct bio_vec bvec;
1110 struct bvec_iter iter;
1111 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1112 rbio->bioc->full_stripe_logical;
1113
1114 bio_for_each_segment(bvec, bio, iter) {
1115 u32 bvec_offset;
1116
1117 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1118 bvec_offset += sectorsize, offset += sectorsize) {
1119 int index = offset / sectorsize;
1120 struct sector_ptr *sector = &rbio->bio_sectors[index];
1121
1122 sector->page = bvec.bv_page;
1123 sector->pgoff = bvec.bv_offset + bvec_offset;
1124 ASSERT(sector->pgoff < PAGE_SIZE);
1125 }
1126 }
1127 }
1128
1129 /*
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result. This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
index_rbio_pages(struct btrfs_raid_bio * rbio)1137 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138 {
1139 struct bio *bio;
1140
1141 spin_lock(&rbio->bio_list_lock);
1142 bio_list_for_each(bio, &rbio->bio_list)
1143 index_one_bio(rbio, bio);
1144
1145 spin_unlock(&rbio->bio_list_lock);
1146 }
1147
bio_get_trace_info(struct btrfs_raid_bio * rbio,struct bio * bio,struct raid56_bio_trace_info * trace_info)1148 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1149 struct raid56_bio_trace_info *trace_info)
1150 {
1151 const struct btrfs_io_context *bioc = rbio->bioc;
1152 int i;
1153
1154 ASSERT(bioc);
1155
1156 /* We rely on bio->bi_bdev to find the stripe number. */
1157 if (!bio->bi_bdev)
1158 goto not_found;
1159
1160 for (i = 0; i < bioc->num_stripes; i++) {
1161 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1162 continue;
1163 trace_info->stripe_nr = i;
1164 trace_info->devid = bioc->stripes[i].dev->devid;
1165 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1166 bioc->stripes[i].physical;
1167 return;
1168 }
1169
1170 not_found:
1171 trace_info->devid = -1;
1172 trace_info->offset = -1;
1173 trace_info->stripe_nr = -1;
1174 }
1175
bio_list_put(struct bio_list * bio_list)1176 static inline void bio_list_put(struct bio_list *bio_list)
1177 {
1178 struct bio *bio;
1179
1180 while ((bio = bio_list_pop(bio_list)))
1181 bio_put(bio);
1182 }
1183
1184 /* Generate PQ for one vertical stripe. */
generate_pq_vertical(struct btrfs_raid_bio * rbio,int sectornr)1185 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1186 {
1187 void **pointers = rbio->finish_pointers;
1188 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1189 struct sector_ptr *sector;
1190 int stripe;
1191 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1192
1193 /* First collect one sector from each data stripe */
1194 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1195 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1196 pointers[stripe] = kmap_local_page(sector->page) +
1197 sector->pgoff;
1198 }
1199
1200 /* Then add the parity stripe */
1201 sector = rbio_pstripe_sector(rbio, sectornr);
1202 sector->uptodate = 1;
1203 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1204
1205 if (has_qstripe) {
1206 /*
1207 * RAID6, add the qstripe and call the library function
1208 * to fill in our p/q
1209 */
1210 sector = rbio_qstripe_sector(rbio, sectornr);
1211 sector->uptodate = 1;
1212 pointers[stripe++] = kmap_local_page(sector->page) +
1213 sector->pgoff;
1214
1215 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1216 pointers);
1217 } else {
1218 /* raid5 */
1219 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1220 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1221 }
1222 for (stripe = stripe - 1; stripe >= 0; stripe--)
1223 kunmap_local(pointers[stripe]);
1224 }
1225
rmw_assemble_write_bios(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)1226 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1227 struct bio_list *bio_list)
1228 {
1229 /* The total sector number inside the full stripe. */
1230 int total_sector_nr;
1231 int sectornr;
1232 int stripe;
1233 int ret;
1234
1235 ASSERT(bio_list_size(bio_list) == 0);
1236
1237 /* We should have at least one data sector. */
1238 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1239
1240 /*
1241 * Reset errors, as we may have errors inherited from from degraded
1242 * write.
1243 */
1244 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1245
1246 /*
1247 * Start assembly. Make bios for everything from the higher layers (the
1248 * bio_list in our rbio) and our P/Q. Ignore everything else.
1249 */
1250 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1251 total_sector_nr++) {
1252 struct sector_ptr *sector;
1253
1254 stripe = total_sector_nr / rbio->stripe_nsectors;
1255 sectornr = total_sector_nr % rbio->stripe_nsectors;
1256
1257 /* This vertical stripe has no data, skip it. */
1258 if (!test_bit(sectornr, &rbio->dbitmap))
1259 continue;
1260
1261 if (stripe < rbio->nr_data) {
1262 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1263 if (!sector)
1264 continue;
1265 } else {
1266 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1267 }
1268
1269 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1270 sectornr, REQ_OP_WRITE);
1271 if (ret)
1272 goto error;
1273 }
1274
1275 if (likely(!rbio->bioc->replace_nr_stripes))
1276 return 0;
1277
1278 /*
1279 * Make a copy for the replace target device.
1280 *
1281 * Thus the source stripe number (in replace_stripe_src) should be valid.
1282 */
1283 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1284
1285 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1286 total_sector_nr++) {
1287 struct sector_ptr *sector;
1288
1289 stripe = total_sector_nr / rbio->stripe_nsectors;
1290 sectornr = total_sector_nr % rbio->stripe_nsectors;
1291
1292 /*
1293 * For RAID56, there is only one device that can be replaced,
1294 * and replace_stripe_src[0] indicates the stripe number we
1295 * need to copy from.
1296 */
1297 if (stripe != rbio->bioc->replace_stripe_src) {
1298 /*
1299 * We can skip the whole stripe completely, note
1300 * total_sector_nr will be increased by one anyway.
1301 */
1302 ASSERT(sectornr == 0);
1303 total_sector_nr += rbio->stripe_nsectors - 1;
1304 continue;
1305 }
1306
1307 /* This vertical stripe has no data, skip it. */
1308 if (!test_bit(sectornr, &rbio->dbitmap))
1309 continue;
1310
1311 if (stripe < rbio->nr_data) {
1312 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1313 if (!sector)
1314 continue;
1315 } else {
1316 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1317 }
1318
1319 ret = rbio_add_io_sector(rbio, bio_list, sector,
1320 rbio->real_stripes,
1321 sectornr, REQ_OP_WRITE);
1322 if (ret)
1323 goto error;
1324 }
1325
1326 return 0;
1327 error:
1328 bio_list_put(bio_list);
1329 return -EIO;
1330 }
1331
set_rbio_range_error(struct btrfs_raid_bio * rbio,struct bio * bio)1332 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1333 {
1334 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1335 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1336 rbio->bioc->full_stripe_logical;
1337 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1338
1339 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1340
1341 bitmap_set(rbio->error_bitmap, total_nr_sector,
1342 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1343
1344 /*
1345 * Special handling for raid56_alloc_missing_rbio() used by
1346 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1347 * pass an empty bio here. Thus we have to find out the missing device
1348 * and mark the stripe error instead.
1349 */
1350 if (bio->bi_iter.bi_size == 0) {
1351 bool found_missing = false;
1352 int stripe_nr;
1353
1354 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1355 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1356 found_missing = true;
1357 bitmap_set(rbio->error_bitmap,
1358 stripe_nr * rbio->stripe_nsectors,
1359 rbio->stripe_nsectors);
1360 }
1361 }
1362 ASSERT(found_missing);
1363 }
1364 }
1365
1366 /*
1367 * For subpage case, we can no longer set page Up-to-date directly for
1368 * stripe_pages[], thus we need to locate the sector.
1369 */
find_stripe_sector(struct btrfs_raid_bio * rbio,struct page * page,unsigned int pgoff)1370 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1371 struct page *page,
1372 unsigned int pgoff)
1373 {
1374 int i;
1375
1376 for (i = 0; i < rbio->nr_sectors; i++) {
1377 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1378
1379 if (sector->page == page && sector->pgoff == pgoff)
1380 return sector;
1381 }
1382 return NULL;
1383 }
1384
1385 /*
1386 * this sets each page in the bio uptodate. It should only be used on private
1387 * rbio pages, nothing that comes in from the higher layers
1388 */
set_bio_pages_uptodate(struct btrfs_raid_bio * rbio,struct bio * bio)1389 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1390 {
1391 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1392 struct bio_vec *bvec;
1393 struct bvec_iter_all iter_all;
1394
1395 ASSERT(!bio_flagged(bio, BIO_CLONED));
1396
1397 bio_for_each_segment_all(bvec, bio, iter_all) {
1398 struct sector_ptr *sector;
1399 int pgoff;
1400
1401 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1402 pgoff += sectorsize) {
1403 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1404 ASSERT(sector);
1405 if (sector)
1406 sector->uptodate = 1;
1407 }
1408 }
1409 }
1410
get_bio_sector_nr(struct btrfs_raid_bio * rbio,struct bio * bio)1411 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1412 {
1413 struct bio_vec *bv = bio_first_bvec_all(bio);
1414 int i;
1415
1416 for (i = 0; i < rbio->nr_sectors; i++) {
1417 struct sector_ptr *sector;
1418
1419 sector = &rbio->stripe_sectors[i];
1420 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1421 break;
1422 sector = &rbio->bio_sectors[i];
1423 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1424 break;
1425 }
1426 ASSERT(i < rbio->nr_sectors);
1427 return i;
1428 }
1429
rbio_update_error_bitmap(struct btrfs_raid_bio * rbio,struct bio * bio)1430 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1431 {
1432 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1433 u32 bio_size = 0;
1434 struct bio_vec *bvec;
1435 int i;
1436
1437 bio_for_each_bvec_all(bvec, bio, i)
1438 bio_size += bvec->bv_len;
1439
1440 /*
1441 * Since we can have multiple bios touching the error_bitmap, we cannot
1442 * call bitmap_set() without protection.
1443 *
1444 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1445 */
1446 for (i = total_sector_nr; i < total_sector_nr +
1447 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1448 set_bit(i, rbio->error_bitmap);
1449 }
1450
1451 /* Verify the data sectors at read time. */
verify_bio_data_sectors(struct btrfs_raid_bio * rbio,struct bio * bio)1452 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1453 struct bio *bio)
1454 {
1455 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1456 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1457 struct bio_vec *bvec;
1458 struct bvec_iter_all iter_all;
1459
1460 /* No data csum for the whole stripe, no need to verify. */
1461 if (!rbio->csum_bitmap || !rbio->csum_buf)
1462 return;
1463
1464 /* P/Q stripes, they have no data csum to verify against. */
1465 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1466 return;
1467
1468 bio_for_each_segment_all(bvec, bio, iter_all) {
1469 int bv_offset;
1470
1471 for (bv_offset = bvec->bv_offset;
1472 bv_offset < bvec->bv_offset + bvec->bv_len;
1473 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1474 u8 csum_buf[BTRFS_CSUM_SIZE];
1475 u8 *expected_csum = rbio->csum_buf +
1476 total_sector_nr * fs_info->csum_size;
1477 int ret;
1478
1479 /* No csum for this sector, skip to the next sector. */
1480 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1481 continue;
1482
1483 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1484 bv_offset, csum_buf, expected_csum);
1485 if (ret < 0)
1486 set_bit(total_sector_nr, rbio->error_bitmap);
1487 }
1488 }
1489 }
1490
raid_wait_read_end_io(struct bio * bio)1491 static void raid_wait_read_end_io(struct bio *bio)
1492 {
1493 struct btrfs_raid_bio *rbio = bio->bi_private;
1494
1495 if (bio->bi_status) {
1496 rbio_update_error_bitmap(rbio, bio);
1497 } else {
1498 set_bio_pages_uptodate(rbio, bio);
1499 verify_bio_data_sectors(rbio, bio);
1500 }
1501
1502 bio_put(bio);
1503 if (atomic_dec_and_test(&rbio->stripes_pending))
1504 wake_up(&rbio->io_wait);
1505 }
1506
submit_read_wait_bio_list(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)1507 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1508 struct bio_list *bio_list)
1509 {
1510 struct bio *bio;
1511
1512 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1513 while ((bio = bio_list_pop(bio_list))) {
1514 bio->bi_end_io = raid_wait_read_end_io;
1515
1516 if (trace_raid56_read_enabled()) {
1517 struct raid56_bio_trace_info trace_info = { 0 };
1518
1519 bio_get_trace_info(rbio, bio, &trace_info);
1520 trace_raid56_read(rbio, bio, &trace_info);
1521 }
1522 submit_bio(bio);
1523 }
1524
1525 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1526 }
1527
alloc_rbio_data_pages(struct btrfs_raid_bio * rbio)1528 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1529 {
1530 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1531 int ret;
1532
1533 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1534 if (ret < 0)
1535 return ret;
1536
1537 index_stripe_sectors(rbio);
1538 return 0;
1539 }
1540
1541 /*
1542 * We use plugging call backs to collect full stripes.
1543 * Any time we get a partial stripe write while plugged
1544 * we collect it into a list. When the unplug comes down,
1545 * we sort the list by logical block number and merge
1546 * everything we can into the same rbios
1547 */
1548 struct btrfs_plug_cb {
1549 struct blk_plug_cb cb;
1550 struct btrfs_fs_info *info;
1551 struct list_head rbio_list;
1552 struct work_struct work;
1553 };
1554
1555 /*
1556 * rbios on the plug list are sorted for easier merging.
1557 */
plug_cmp(void * priv,const struct list_head * a,const struct list_head * b)1558 static int plug_cmp(void *priv, const struct list_head *a,
1559 const struct list_head *b)
1560 {
1561 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1562 plug_list);
1563 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1564 plug_list);
1565 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1566 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1567
1568 if (a_sector < b_sector)
1569 return -1;
1570 if (a_sector > b_sector)
1571 return 1;
1572 return 0;
1573 }
1574
raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1575 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1576 {
1577 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1578 struct btrfs_raid_bio *cur;
1579 struct btrfs_raid_bio *last = NULL;
1580
1581 list_sort(NULL, &plug->rbio_list, plug_cmp);
1582
1583 while (!list_empty(&plug->rbio_list)) {
1584 cur = list_entry(plug->rbio_list.next,
1585 struct btrfs_raid_bio, plug_list);
1586 list_del_init(&cur->plug_list);
1587
1588 if (rbio_is_full(cur)) {
1589 /* We have a full stripe, queue it down. */
1590 start_async_work(cur, rmw_rbio_work);
1591 continue;
1592 }
1593 if (last) {
1594 if (rbio_can_merge(last, cur)) {
1595 merge_rbio(last, cur);
1596 free_raid_bio(cur);
1597 continue;
1598 }
1599 start_async_work(last, rmw_rbio_work);
1600 }
1601 last = cur;
1602 }
1603 if (last)
1604 start_async_work(last, rmw_rbio_work);
1605 kfree(plug);
1606 }
1607
1608 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
rbio_add_bio(struct btrfs_raid_bio * rbio,struct bio * orig_bio)1609 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1610 {
1611 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1612 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1613 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1614 const u32 orig_len = orig_bio->bi_iter.bi_size;
1615 const u32 sectorsize = fs_info->sectorsize;
1616 u64 cur_logical;
1617
1618 ASSERT(orig_logical >= full_stripe_start &&
1619 orig_logical + orig_len <= full_stripe_start +
1620 rbio->nr_data * BTRFS_STRIPE_LEN);
1621
1622 bio_list_add(&rbio->bio_list, orig_bio);
1623 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1624
1625 /* Update the dbitmap. */
1626 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1627 cur_logical += sectorsize) {
1628 int bit = ((u32)(cur_logical - full_stripe_start) >>
1629 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1630
1631 set_bit(bit, &rbio->dbitmap);
1632 }
1633 }
1634
1635 /*
1636 * our main entry point for writes from the rest of the FS.
1637 */
raid56_parity_write(struct bio * bio,struct btrfs_io_context * bioc)1638 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1639 {
1640 struct btrfs_fs_info *fs_info = bioc->fs_info;
1641 struct btrfs_raid_bio *rbio;
1642 struct btrfs_plug_cb *plug = NULL;
1643 struct blk_plug_cb *cb;
1644
1645 rbio = alloc_rbio(fs_info, bioc);
1646 if (IS_ERR(rbio)) {
1647 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1648 bio_endio(bio);
1649 return;
1650 }
1651 rbio->operation = BTRFS_RBIO_WRITE;
1652 rbio_add_bio(rbio, bio);
1653
1654 /*
1655 * Don't plug on full rbios, just get them out the door
1656 * as quickly as we can
1657 */
1658 if (!rbio_is_full(rbio)) {
1659 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1660 if (cb) {
1661 plug = container_of(cb, struct btrfs_plug_cb, cb);
1662 if (!plug->info) {
1663 plug->info = fs_info;
1664 INIT_LIST_HEAD(&plug->rbio_list);
1665 }
1666 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1667 return;
1668 }
1669 }
1670
1671 /*
1672 * Either we don't have any existing plug, or we're doing a full stripe,
1673 * queue the rmw work now.
1674 */
1675 start_async_work(rbio, rmw_rbio_work);
1676 }
1677
verify_one_sector(struct btrfs_raid_bio * rbio,int stripe_nr,int sector_nr)1678 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1679 int stripe_nr, int sector_nr)
1680 {
1681 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1682 struct sector_ptr *sector;
1683 u8 csum_buf[BTRFS_CSUM_SIZE];
1684 u8 *csum_expected;
1685 int ret;
1686
1687 if (!rbio->csum_bitmap || !rbio->csum_buf)
1688 return 0;
1689
1690 /* No way to verify P/Q as they are not covered by data csum. */
1691 if (stripe_nr >= rbio->nr_data)
1692 return 0;
1693 /*
1694 * If we're rebuilding a read, we have to use pages from the
1695 * bio list if possible.
1696 */
1697 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1698 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1699 } else {
1700 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1701 }
1702
1703 ASSERT(sector->page);
1704
1705 csum_expected = rbio->csum_buf +
1706 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1707 fs_info->csum_size;
1708 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1709 csum_buf, csum_expected);
1710 return ret;
1711 }
1712
1713 /*
1714 * Recover a vertical stripe specified by @sector_nr.
1715 * @*pointers are the pre-allocated pointers by the caller, so we don't
1716 * need to allocate/free the pointers again and again.
1717 */
recover_vertical(struct btrfs_raid_bio * rbio,int sector_nr,void ** pointers,void ** unmap_array)1718 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1719 void **pointers, void **unmap_array)
1720 {
1721 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1722 struct sector_ptr *sector;
1723 const u32 sectorsize = fs_info->sectorsize;
1724 int found_errors;
1725 int faila;
1726 int failb;
1727 int stripe_nr;
1728 int ret = 0;
1729
1730 /*
1731 * Now we just use bitmap to mark the horizontal stripes in
1732 * which we have data when doing parity scrub.
1733 */
1734 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1735 !test_bit(sector_nr, &rbio->dbitmap))
1736 return 0;
1737
1738 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1739 &failb);
1740 /*
1741 * No errors in the vertical stripe, skip it. Can happen for recovery
1742 * which only part of a stripe failed csum check.
1743 */
1744 if (!found_errors)
1745 return 0;
1746
1747 if (found_errors > rbio->bioc->max_errors)
1748 return -EIO;
1749
1750 /*
1751 * Setup our array of pointers with sectors from each stripe
1752 *
1753 * NOTE: store a duplicate array of pointers to preserve the
1754 * pointer order.
1755 */
1756 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1757 /*
1758 * If we're rebuilding a read, we have to use pages from the
1759 * bio list if possible.
1760 */
1761 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1762 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1763 } else {
1764 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1765 }
1766 ASSERT(sector->page);
1767 pointers[stripe_nr] = kmap_local_page(sector->page) +
1768 sector->pgoff;
1769 unmap_array[stripe_nr] = pointers[stripe_nr];
1770 }
1771
1772 /* All raid6 handling here */
1773 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1774 /* Single failure, rebuild from parity raid5 style */
1775 if (failb < 0) {
1776 if (faila == rbio->nr_data)
1777 /*
1778 * Just the P stripe has failed, without
1779 * a bad data or Q stripe.
1780 * We have nothing to do, just skip the
1781 * recovery for this stripe.
1782 */
1783 goto cleanup;
1784 /*
1785 * a single failure in raid6 is rebuilt
1786 * in the pstripe code below
1787 */
1788 goto pstripe;
1789 }
1790
1791 /*
1792 * If the q stripe is failed, do a pstripe reconstruction from
1793 * the xors.
1794 * If both the q stripe and the P stripe are failed, we're
1795 * here due to a crc mismatch and we can't give them the
1796 * data they want.
1797 */
1798 if (failb == rbio->real_stripes - 1) {
1799 if (faila == rbio->real_stripes - 2)
1800 /*
1801 * Only P and Q are corrupted.
1802 * We only care about data stripes recovery,
1803 * can skip this vertical stripe.
1804 */
1805 goto cleanup;
1806 /*
1807 * Otherwise we have one bad data stripe and
1808 * a good P stripe. raid5!
1809 */
1810 goto pstripe;
1811 }
1812
1813 if (failb == rbio->real_stripes - 2) {
1814 raid6_datap_recov(rbio->real_stripes, sectorsize,
1815 faila, pointers);
1816 } else {
1817 raid6_2data_recov(rbio->real_stripes, sectorsize,
1818 faila, failb, pointers);
1819 }
1820 } else {
1821 void *p;
1822
1823 /* Rebuild from P stripe here (raid5 or raid6). */
1824 ASSERT(failb == -1);
1825 pstripe:
1826 /* Copy parity block into failed block to start with */
1827 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1828
1829 /* Rearrange the pointer array */
1830 p = pointers[faila];
1831 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1832 stripe_nr++)
1833 pointers[stripe_nr] = pointers[stripe_nr + 1];
1834 pointers[rbio->nr_data - 1] = p;
1835
1836 /* Xor in the rest */
1837 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1838
1839 }
1840
1841 /*
1842 * No matter if this is a RMW or recovery, we should have all
1843 * failed sectors repaired in the vertical stripe, thus they are now
1844 * uptodate.
1845 * Especially if we determine to cache the rbio, we need to
1846 * have at least all data sectors uptodate.
1847 *
1848 * If possible, also check if the repaired sector matches its data
1849 * checksum.
1850 */
1851 if (faila >= 0) {
1852 ret = verify_one_sector(rbio, faila, sector_nr);
1853 if (ret < 0)
1854 goto cleanup;
1855
1856 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1857 sector->uptodate = 1;
1858 }
1859 if (failb >= 0) {
1860 ret = verify_one_sector(rbio, failb, sector_nr);
1861 if (ret < 0)
1862 goto cleanup;
1863
1864 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1865 sector->uptodate = 1;
1866 }
1867
1868 cleanup:
1869 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1870 kunmap_local(unmap_array[stripe_nr]);
1871 return ret;
1872 }
1873
recover_sectors(struct btrfs_raid_bio * rbio)1874 static int recover_sectors(struct btrfs_raid_bio *rbio)
1875 {
1876 void **pointers = NULL;
1877 void **unmap_array = NULL;
1878 int sectornr;
1879 int ret = 0;
1880
1881 /*
1882 * @pointers array stores the pointer for each sector.
1883 *
1884 * @unmap_array stores copy of pointers that does not get reordered
1885 * during reconstruction so that kunmap_local works.
1886 */
1887 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1888 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1889 if (!pointers || !unmap_array) {
1890 ret = -ENOMEM;
1891 goto out;
1892 }
1893
1894 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1895 spin_lock(&rbio->bio_list_lock);
1896 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1897 spin_unlock(&rbio->bio_list_lock);
1898 }
1899
1900 index_rbio_pages(rbio);
1901
1902 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1903 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1904 if (ret < 0)
1905 break;
1906 }
1907
1908 out:
1909 kfree(pointers);
1910 kfree(unmap_array);
1911 return ret;
1912 }
1913
recover_rbio(struct btrfs_raid_bio * rbio)1914 static void recover_rbio(struct btrfs_raid_bio *rbio)
1915 {
1916 struct bio_list bio_list = BIO_EMPTY_LIST;
1917 int total_sector_nr;
1918 int ret = 0;
1919
1920 /*
1921 * Either we're doing recover for a read failure or degraded write,
1922 * caller should have set error bitmap correctly.
1923 */
1924 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1925
1926 /* For recovery, we need to read all sectors including P/Q. */
1927 ret = alloc_rbio_pages(rbio);
1928 if (ret < 0)
1929 goto out;
1930
1931 index_rbio_pages(rbio);
1932
1933 /*
1934 * Read everything that hasn't failed. However this time we will
1935 * not trust any cached sector.
1936 * As we may read out some stale data but higher layer is not reading
1937 * that stale part.
1938 *
1939 * So here we always re-read everything in recovery path.
1940 */
1941 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1942 total_sector_nr++) {
1943 int stripe = total_sector_nr / rbio->stripe_nsectors;
1944 int sectornr = total_sector_nr % rbio->stripe_nsectors;
1945 struct sector_ptr *sector;
1946
1947 /*
1948 * Skip the range which has error. It can be a range which is
1949 * marked error (for csum mismatch), or it can be a missing
1950 * device.
1951 */
1952 if (!rbio->bioc->stripes[stripe].dev->bdev ||
1953 test_bit(total_sector_nr, rbio->error_bitmap)) {
1954 /*
1955 * Also set the error bit for missing device, which
1956 * may not yet have its error bit set.
1957 */
1958 set_bit(total_sector_nr, rbio->error_bitmap);
1959 continue;
1960 }
1961
1962 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1963 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1964 sectornr, REQ_OP_READ);
1965 if (ret < 0) {
1966 bio_list_put(&bio_list);
1967 goto out;
1968 }
1969 }
1970
1971 submit_read_wait_bio_list(rbio, &bio_list);
1972 ret = recover_sectors(rbio);
1973 out:
1974 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1975 }
1976
recover_rbio_work(struct work_struct * work)1977 static void recover_rbio_work(struct work_struct *work)
1978 {
1979 struct btrfs_raid_bio *rbio;
1980
1981 rbio = container_of(work, struct btrfs_raid_bio, work);
1982 if (!lock_stripe_add(rbio))
1983 recover_rbio(rbio);
1984 }
1985
recover_rbio_work_locked(struct work_struct * work)1986 static void recover_rbio_work_locked(struct work_struct *work)
1987 {
1988 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1989 }
1990
set_rbio_raid6_extra_error(struct btrfs_raid_bio * rbio,int mirror_num)1991 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1992 {
1993 bool found = false;
1994 int sector_nr;
1995
1996 /*
1997 * This is for RAID6 extra recovery tries, thus mirror number should
1998 * be large than 2.
1999 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2000 * RAID5 methods.
2001 */
2002 ASSERT(mirror_num > 2);
2003 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2004 int found_errors;
2005 int faila;
2006 int failb;
2007
2008 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2009 &faila, &failb);
2010 /* This vertical stripe doesn't have errors. */
2011 if (!found_errors)
2012 continue;
2013
2014 /*
2015 * If we found errors, there should be only one error marked
2016 * by previous set_rbio_range_error().
2017 */
2018 ASSERT(found_errors == 1);
2019 found = true;
2020
2021 /* Now select another stripe to mark as error. */
2022 failb = rbio->real_stripes - (mirror_num - 1);
2023 if (failb <= faila)
2024 failb--;
2025
2026 /* Set the extra bit in error bitmap. */
2027 if (failb >= 0)
2028 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2029 rbio->error_bitmap);
2030 }
2031
2032 /* We should found at least one vertical stripe with error.*/
2033 ASSERT(found);
2034 }
2035
2036 /*
2037 * the main entry point for reads from the higher layers. This
2038 * is really only called when the normal read path had a failure,
2039 * so we assume the bio they send down corresponds to a failed part
2040 * of the drive.
2041 */
raid56_parity_recover(struct bio * bio,struct btrfs_io_context * bioc,int mirror_num)2042 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2043 int mirror_num)
2044 {
2045 struct btrfs_fs_info *fs_info = bioc->fs_info;
2046 struct btrfs_raid_bio *rbio;
2047
2048 rbio = alloc_rbio(fs_info, bioc);
2049 if (IS_ERR(rbio)) {
2050 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2051 bio_endio(bio);
2052 return;
2053 }
2054
2055 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2056 rbio_add_bio(rbio, bio);
2057
2058 set_rbio_range_error(rbio, bio);
2059
2060 /*
2061 * Loop retry:
2062 * for 'mirror == 2', reconstruct from all other stripes.
2063 * for 'mirror_num > 2', select a stripe to fail on every retry.
2064 */
2065 if (mirror_num > 2)
2066 set_rbio_raid6_extra_error(rbio, mirror_num);
2067
2068 start_async_work(rbio, recover_rbio_work);
2069 }
2070
fill_data_csums(struct btrfs_raid_bio * rbio)2071 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2072 {
2073 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2074 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2075 rbio->bioc->full_stripe_logical);
2076 const u64 start = rbio->bioc->full_stripe_logical;
2077 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2078 fs_info->sectorsize_bits;
2079 int ret;
2080
2081 /* The rbio should not have its csum buffer initialized. */
2082 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2083
2084 /*
2085 * Skip the csum search if:
2086 *
2087 * - The rbio doesn't belong to data block groups
2088 * Then we are doing IO for tree blocks, no need to search csums.
2089 *
2090 * - The rbio belongs to mixed block groups
2091 * This is to avoid deadlock, as we're already holding the full
2092 * stripe lock, if we trigger a metadata read, and it needs to do
2093 * raid56 recovery, we will deadlock.
2094 */
2095 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2096 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2097 return;
2098
2099 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2100 fs_info->csum_size, GFP_NOFS);
2101 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2102 GFP_NOFS);
2103 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2104 ret = -ENOMEM;
2105 goto error;
2106 }
2107
2108 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2109 rbio->csum_buf, rbio->csum_bitmap);
2110 if (ret < 0)
2111 goto error;
2112 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2113 goto no_csum;
2114 return;
2115
2116 error:
2117 /*
2118 * We failed to allocate memory or grab the csum, but it's not fatal,
2119 * we can still continue. But better to warn users that RMW is no
2120 * longer safe for this particular sub-stripe write.
2121 */
2122 btrfs_warn_rl(fs_info,
2123 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2124 rbio->bioc->full_stripe_logical, ret);
2125 no_csum:
2126 kfree(rbio->csum_buf);
2127 bitmap_free(rbio->csum_bitmap);
2128 rbio->csum_buf = NULL;
2129 rbio->csum_bitmap = NULL;
2130 }
2131
rmw_read_wait_recover(struct btrfs_raid_bio * rbio)2132 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2133 {
2134 struct bio_list bio_list = BIO_EMPTY_LIST;
2135 int total_sector_nr;
2136 int ret = 0;
2137
2138 /*
2139 * Fill the data csums we need for data verification. We need to fill
2140 * the csum_bitmap/csum_buf first, as our endio function will try to
2141 * verify the data sectors.
2142 */
2143 fill_data_csums(rbio);
2144
2145 /*
2146 * Build a list of bios to read all sectors (including data and P/Q).
2147 *
2148 * This behavior is to compensate the later csum verification and recovery.
2149 */
2150 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2151 total_sector_nr++) {
2152 struct sector_ptr *sector;
2153 int stripe = total_sector_nr / rbio->stripe_nsectors;
2154 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2155
2156 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2157 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2158 stripe, sectornr, REQ_OP_READ);
2159 if (ret) {
2160 bio_list_put(&bio_list);
2161 return ret;
2162 }
2163 }
2164
2165 /*
2166 * We may or may not have any corrupted sectors (including missing dev
2167 * and csum mismatch), just let recover_sectors() to handle them all.
2168 */
2169 submit_read_wait_bio_list(rbio, &bio_list);
2170 return recover_sectors(rbio);
2171 }
2172
raid_wait_write_end_io(struct bio * bio)2173 static void raid_wait_write_end_io(struct bio *bio)
2174 {
2175 struct btrfs_raid_bio *rbio = bio->bi_private;
2176 blk_status_t err = bio->bi_status;
2177
2178 if (err)
2179 rbio_update_error_bitmap(rbio, bio);
2180 bio_put(bio);
2181 if (atomic_dec_and_test(&rbio->stripes_pending))
2182 wake_up(&rbio->io_wait);
2183 }
2184
submit_write_bios(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)2185 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2186 struct bio_list *bio_list)
2187 {
2188 struct bio *bio;
2189
2190 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2191 while ((bio = bio_list_pop(bio_list))) {
2192 bio->bi_end_io = raid_wait_write_end_io;
2193
2194 if (trace_raid56_write_enabled()) {
2195 struct raid56_bio_trace_info trace_info = { 0 };
2196
2197 bio_get_trace_info(rbio, bio, &trace_info);
2198 trace_raid56_write(rbio, bio, &trace_info);
2199 }
2200 submit_bio(bio);
2201 }
2202 }
2203
2204 /*
2205 * To determine if we need to read any sector from the disk.
2206 * Should only be utilized in RMW path, to skip cached rbio.
2207 */
need_read_stripe_sectors(struct btrfs_raid_bio * rbio)2208 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2209 {
2210 int i;
2211
2212 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2213 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2214
2215 /*
2216 * We have a sector which doesn't have page nor uptodate,
2217 * thus this rbio can not be cached one, as cached one must
2218 * have all its data sectors present and uptodate.
2219 */
2220 if (!sector->page || !sector->uptodate)
2221 return true;
2222 }
2223 return false;
2224 }
2225
rmw_rbio(struct btrfs_raid_bio * rbio)2226 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2227 {
2228 struct bio_list bio_list;
2229 int sectornr;
2230 int ret = 0;
2231
2232 /*
2233 * Allocate the pages for parity first, as P/Q pages will always be
2234 * needed for both full-stripe and sub-stripe writes.
2235 */
2236 ret = alloc_rbio_parity_pages(rbio);
2237 if (ret < 0)
2238 goto out;
2239
2240 /*
2241 * Either full stripe write, or we have every data sector already
2242 * cached, can go to write path immediately.
2243 */
2244 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2245 /*
2246 * Now we're doing sub-stripe write, also need all data stripes
2247 * to do the full RMW.
2248 */
2249 ret = alloc_rbio_data_pages(rbio);
2250 if (ret < 0)
2251 goto out;
2252
2253 index_rbio_pages(rbio);
2254
2255 ret = rmw_read_wait_recover(rbio);
2256 if (ret < 0)
2257 goto out;
2258 }
2259
2260 /*
2261 * At this stage we're not allowed to add any new bios to the
2262 * bio list any more, anyone else that wants to change this stripe
2263 * needs to do their own rmw.
2264 */
2265 spin_lock(&rbio->bio_list_lock);
2266 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2267 spin_unlock(&rbio->bio_list_lock);
2268
2269 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2270
2271 index_rbio_pages(rbio);
2272
2273 /*
2274 * We don't cache full rbios because we're assuming
2275 * the higher layers are unlikely to use this area of
2276 * the disk again soon. If they do use it again,
2277 * hopefully they will send another full bio.
2278 */
2279 if (!rbio_is_full(rbio))
2280 cache_rbio_pages(rbio);
2281 else
2282 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2283
2284 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2285 generate_pq_vertical(rbio, sectornr);
2286
2287 bio_list_init(&bio_list);
2288 ret = rmw_assemble_write_bios(rbio, &bio_list);
2289 if (ret < 0)
2290 goto out;
2291
2292 /* We should have at least one bio assembled. */
2293 ASSERT(bio_list_size(&bio_list));
2294 submit_write_bios(rbio, &bio_list);
2295 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2296
2297 /* We may have more errors than our tolerance during the read. */
2298 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2299 int found_errors;
2300
2301 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2302 if (found_errors > rbio->bioc->max_errors) {
2303 ret = -EIO;
2304 break;
2305 }
2306 }
2307 out:
2308 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2309 }
2310
rmw_rbio_work(struct work_struct * work)2311 static void rmw_rbio_work(struct work_struct *work)
2312 {
2313 struct btrfs_raid_bio *rbio;
2314
2315 rbio = container_of(work, struct btrfs_raid_bio, work);
2316 if (lock_stripe_add(rbio) == 0)
2317 rmw_rbio(rbio);
2318 }
2319
rmw_rbio_work_locked(struct work_struct * work)2320 static void rmw_rbio_work_locked(struct work_struct *work)
2321 {
2322 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2323 }
2324
2325 /*
2326 * The following code is used to scrub/replace the parity stripe
2327 *
2328 * Caller must have already increased bio_counter for getting @bioc.
2329 *
2330 * Note: We need make sure all the pages that add into the scrub/replace
2331 * raid bio are correct and not be changed during the scrub/replace. That
2332 * is those pages just hold metadata or file data with checksum.
2333 */
2334
raid56_parity_alloc_scrub_rbio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2335 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2336 struct btrfs_io_context *bioc,
2337 struct btrfs_device *scrub_dev,
2338 unsigned long *dbitmap, int stripe_nsectors)
2339 {
2340 struct btrfs_fs_info *fs_info = bioc->fs_info;
2341 struct btrfs_raid_bio *rbio;
2342 int i;
2343
2344 rbio = alloc_rbio(fs_info, bioc);
2345 if (IS_ERR(rbio))
2346 return NULL;
2347 bio_list_add(&rbio->bio_list, bio);
2348 /*
2349 * This is a special bio which is used to hold the completion handler
2350 * and make the scrub rbio is similar to the other types
2351 */
2352 ASSERT(!bio->bi_iter.bi_size);
2353 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2354
2355 /*
2356 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2357 * to the end position, so this search can start from the first parity
2358 * stripe.
2359 */
2360 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2361 if (bioc->stripes[i].dev == scrub_dev) {
2362 rbio->scrubp = i;
2363 break;
2364 }
2365 }
2366 ASSERT(i < rbio->real_stripes);
2367
2368 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2369 return rbio;
2370 }
2371
2372 /*
2373 * We just scrub the parity that we have correct data on the same horizontal,
2374 * so we needn't allocate all pages for all the stripes.
2375 */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2376 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2377 {
2378 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2379 int total_sector_nr;
2380
2381 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2382 total_sector_nr++) {
2383 struct page *page;
2384 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2385 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2386
2387 if (!test_bit(sectornr, &rbio->dbitmap))
2388 continue;
2389 if (rbio->stripe_pages[index])
2390 continue;
2391 page = alloc_page(GFP_NOFS);
2392 if (!page)
2393 return -ENOMEM;
2394 rbio->stripe_pages[index] = page;
2395 }
2396 index_stripe_sectors(rbio);
2397 return 0;
2398 }
2399
finish_parity_scrub(struct btrfs_raid_bio * rbio)2400 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2401 {
2402 struct btrfs_io_context *bioc = rbio->bioc;
2403 const u32 sectorsize = bioc->fs_info->sectorsize;
2404 void **pointers = rbio->finish_pointers;
2405 unsigned long *pbitmap = &rbio->finish_pbitmap;
2406 int nr_data = rbio->nr_data;
2407 int stripe;
2408 int sectornr;
2409 bool has_qstripe;
2410 struct sector_ptr p_sector = { 0 };
2411 struct sector_ptr q_sector = { 0 };
2412 struct bio_list bio_list;
2413 int is_replace = 0;
2414 int ret;
2415
2416 bio_list_init(&bio_list);
2417
2418 if (rbio->real_stripes - rbio->nr_data == 1)
2419 has_qstripe = false;
2420 else if (rbio->real_stripes - rbio->nr_data == 2)
2421 has_qstripe = true;
2422 else
2423 BUG();
2424
2425 /*
2426 * Replace is running and our P/Q stripe is being replaced, then we
2427 * need to duplicate the final write to replace target.
2428 */
2429 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2430 is_replace = 1;
2431 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2432 }
2433
2434 /*
2435 * Because the higher layers(scrubber) are unlikely to
2436 * use this area of the disk again soon, so don't cache
2437 * it.
2438 */
2439 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2440
2441 p_sector.page = alloc_page(GFP_NOFS);
2442 if (!p_sector.page)
2443 return -ENOMEM;
2444 p_sector.pgoff = 0;
2445 p_sector.uptodate = 1;
2446
2447 if (has_qstripe) {
2448 /* RAID6, allocate and map temp space for the Q stripe */
2449 q_sector.page = alloc_page(GFP_NOFS);
2450 if (!q_sector.page) {
2451 __free_page(p_sector.page);
2452 p_sector.page = NULL;
2453 return -ENOMEM;
2454 }
2455 q_sector.pgoff = 0;
2456 q_sector.uptodate = 1;
2457 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2458 }
2459
2460 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2461
2462 /* Map the parity stripe just once */
2463 pointers[nr_data] = kmap_local_page(p_sector.page);
2464
2465 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2466 struct sector_ptr *sector;
2467 void *parity;
2468
2469 /* first collect one page from each data stripe */
2470 for (stripe = 0; stripe < nr_data; stripe++) {
2471 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2472 pointers[stripe] = kmap_local_page(sector->page) +
2473 sector->pgoff;
2474 }
2475
2476 if (has_qstripe) {
2477 /* RAID6, call the library function to fill in our P/Q */
2478 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2479 pointers);
2480 } else {
2481 /* raid5 */
2482 memcpy(pointers[nr_data], pointers[0], sectorsize);
2483 run_xor(pointers + 1, nr_data - 1, sectorsize);
2484 }
2485
2486 /* Check scrubbing parity and repair it */
2487 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2488 parity = kmap_local_page(sector->page) + sector->pgoff;
2489 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2490 memcpy(parity, pointers[rbio->scrubp], sectorsize);
2491 else
2492 /* Parity is right, needn't writeback */
2493 bitmap_clear(&rbio->dbitmap, sectornr, 1);
2494 kunmap_local(parity);
2495
2496 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2497 kunmap_local(pointers[stripe]);
2498 }
2499
2500 kunmap_local(pointers[nr_data]);
2501 __free_page(p_sector.page);
2502 p_sector.page = NULL;
2503 if (q_sector.page) {
2504 kunmap_local(pointers[rbio->real_stripes - 1]);
2505 __free_page(q_sector.page);
2506 q_sector.page = NULL;
2507 }
2508
2509 /*
2510 * time to start writing. Make bios for everything from the
2511 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2512 * everything else.
2513 */
2514 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2515 struct sector_ptr *sector;
2516
2517 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2518 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2519 sectornr, REQ_OP_WRITE);
2520 if (ret)
2521 goto cleanup;
2522 }
2523
2524 if (!is_replace)
2525 goto submit_write;
2526
2527 /*
2528 * Replace is running and our parity stripe needs to be duplicated to
2529 * the target device. Check we have a valid source stripe number.
2530 */
2531 ASSERT(rbio->bioc->replace_stripe_src >= 0);
2532 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2533 struct sector_ptr *sector;
2534
2535 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2536 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2537 rbio->real_stripes,
2538 sectornr, REQ_OP_WRITE);
2539 if (ret)
2540 goto cleanup;
2541 }
2542
2543 submit_write:
2544 submit_write_bios(rbio, &bio_list);
2545 return 0;
2546
2547 cleanup:
2548 bio_list_put(&bio_list);
2549 return ret;
2550 }
2551
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2552 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2553 {
2554 if (stripe >= 0 && stripe < rbio->nr_data)
2555 return 1;
2556 return 0;
2557 }
2558
recover_scrub_rbio(struct btrfs_raid_bio * rbio)2559 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2560 {
2561 void **pointers = NULL;
2562 void **unmap_array = NULL;
2563 int sector_nr;
2564 int ret = 0;
2565
2566 /*
2567 * @pointers array stores the pointer for each sector.
2568 *
2569 * @unmap_array stores copy of pointers that does not get reordered
2570 * during reconstruction so that kunmap_local works.
2571 */
2572 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2573 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2574 if (!pointers || !unmap_array) {
2575 ret = -ENOMEM;
2576 goto out;
2577 }
2578
2579 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2580 int dfail = 0, failp = -1;
2581 int faila;
2582 int failb;
2583 int found_errors;
2584
2585 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2586 &faila, &failb);
2587 if (found_errors > rbio->bioc->max_errors) {
2588 ret = -EIO;
2589 goto out;
2590 }
2591 if (found_errors == 0)
2592 continue;
2593
2594 /* We should have at least one error here. */
2595 ASSERT(faila >= 0 || failb >= 0);
2596
2597 if (is_data_stripe(rbio, faila))
2598 dfail++;
2599 else if (is_parity_stripe(faila))
2600 failp = faila;
2601
2602 if (is_data_stripe(rbio, failb))
2603 dfail++;
2604 else if (is_parity_stripe(failb))
2605 failp = failb;
2606 /*
2607 * Because we can not use a scrubbing parity to repair the
2608 * data, so the capability of the repair is declined. (In the
2609 * case of RAID5, we can not repair anything.)
2610 */
2611 if (dfail > rbio->bioc->max_errors - 1) {
2612 ret = -EIO;
2613 goto out;
2614 }
2615 /*
2616 * If all data is good, only parity is correctly, just repair
2617 * the parity, no need to recover data stripes.
2618 */
2619 if (dfail == 0)
2620 continue;
2621
2622 /*
2623 * Here means we got one corrupted data stripe and one
2624 * corrupted parity on RAID6, if the corrupted parity is
2625 * scrubbing parity, luckily, use the other one to repair the
2626 * data, or we can not repair the data stripe.
2627 */
2628 if (failp != rbio->scrubp) {
2629 ret = -EIO;
2630 goto out;
2631 }
2632
2633 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2634 if (ret < 0)
2635 goto out;
2636 }
2637 out:
2638 kfree(pointers);
2639 kfree(unmap_array);
2640 return ret;
2641 }
2642
scrub_assemble_read_bios(struct btrfs_raid_bio * rbio)2643 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2644 {
2645 struct bio_list bio_list = BIO_EMPTY_LIST;
2646 int total_sector_nr;
2647 int ret = 0;
2648
2649 /* Build a list of bios to read all the missing parts. */
2650 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2651 total_sector_nr++) {
2652 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2653 int stripe = total_sector_nr / rbio->stripe_nsectors;
2654 struct sector_ptr *sector;
2655
2656 /* No data in the vertical stripe, no need to read. */
2657 if (!test_bit(sectornr, &rbio->dbitmap))
2658 continue;
2659
2660 /*
2661 * We want to find all the sectors missing from the rbio and
2662 * read them from the disk. If sector_in_rbio() finds a sector
2663 * in the bio list we don't need to read it off the stripe.
2664 */
2665 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2666 if (sector)
2667 continue;
2668
2669 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2670 /*
2671 * The bio cache may have handed us an uptodate sector. If so,
2672 * use it.
2673 */
2674 if (sector->uptodate)
2675 continue;
2676
2677 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2678 sectornr, REQ_OP_READ);
2679 if (ret) {
2680 bio_list_put(&bio_list);
2681 return ret;
2682 }
2683 }
2684
2685 submit_read_wait_bio_list(rbio, &bio_list);
2686 return 0;
2687 }
2688
scrub_rbio(struct btrfs_raid_bio * rbio)2689 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2690 {
2691 int sector_nr;
2692 int ret;
2693
2694 ret = alloc_rbio_essential_pages(rbio);
2695 if (ret)
2696 goto out;
2697
2698 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2699
2700 ret = scrub_assemble_read_bios(rbio);
2701 if (ret < 0)
2702 goto out;
2703
2704 /* We may have some failures, recover the failed sectors first. */
2705 ret = recover_scrub_rbio(rbio);
2706 if (ret < 0)
2707 goto out;
2708
2709 /*
2710 * We have every sector properly prepared. Can finish the scrub
2711 * and writeback the good content.
2712 */
2713 ret = finish_parity_scrub(rbio);
2714 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2715 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2716 int found_errors;
2717
2718 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2719 if (found_errors > rbio->bioc->max_errors) {
2720 ret = -EIO;
2721 break;
2722 }
2723 }
2724 out:
2725 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2726 }
2727
scrub_rbio_work_locked(struct work_struct * work)2728 static void scrub_rbio_work_locked(struct work_struct *work)
2729 {
2730 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2731 }
2732
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2733 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2734 {
2735 if (!lock_stripe_add(rbio))
2736 start_async_work(rbio, scrub_rbio_work_locked);
2737 }
2738
2739 /*
2740 * This is for scrub call sites where we already have correct data contents.
2741 * This allows us to avoid reading data stripes again.
2742 *
2743 * Unfortunately here we have to do page copy, other than reusing the pages.
2744 * This is due to the fact rbio has its own page management for its cache.
2745 */
raid56_parity_cache_data_pages(struct btrfs_raid_bio * rbio,struct page ** data_pages,u64 data_logical)2746 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2747 struct page **data_pages, u64 data_logical)
2748 {
2749 const u64 offset_in_full_stripe = data_logical -
2750 rbio->bioc->full_stripe_logical;
2751 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2752 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2753 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2754 int ret;
2755
2756 /*
2757 * If we hit ENOMEM temporarily, but later at
2758 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2759 * the extra read, not a big deal.
2760 *
2761 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2762 * the bio would got proper error number set.
2763 */
2764 ret = alloc_rbio_data_pages(rbio);
2765 if (ret < 0)
2766 return;
2767
2768 /* data_logical must be at stripe boundary and inside the full stripe. */
2769 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2770 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2771
2772 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2773 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2774 struct page *src = data_pages[page_nr];
2775
2776 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2777 for (int sector_nr = sectors_per_page * page_index;
2778 sector_nr < sectors_per_page * (page_index + 1);
2779 sector_nr++)
2780 rbio->stripe_sectors[sector_nr].uptodate = true;
2781 }
2782 }
2783