1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static struct kmem_cache *btrfs_ordered_extent_cache; 29 30 static u64 entry_end(struct btrfs_ordered_extent *entry) 31 { 32 if (entry->file_offset + entry->len < entry->file_offset) 33 return (u64)-1; 34 return entry->file_offset + entry->len; 35 } 36 37 /* returns NULL if the insertion worked, or it returns the node it did find 38 * in the tree 39 */ 40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 41 struct rb_node *node) 42 { 43 struct rb_node **p = &root->rb_node; 44 struct rb_node *parent = NULL; 45 struct btrfs_ordered_extent *entry; 46 47 while (*p) { 48 parent = *p; 49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 50 51 if (file_offset < entry->file_offset) 52 p = &(*p)->rb_left; 53 else if (file_offset >= entry_end(entry)) 54 p = &(*p)->rb_right; 55 else 56 return parent; 57 } 58 59 rb_link_node(node, parent, p); 60 rb_insert_color(node, root); 61 return NULL; 62 } 63 64 static void ordered_data_tree_panic(struct inode *inode, int errno, 65 u64 offset) 66 { 67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 69 "%llu\n", (unsigned long long)offset); 70 } 71 72 /* 73 * look for a given offset in the tree, and if it can't be found return the 74 * first lesser offset 75 */ 76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 77 struct rb_node **prev_ret) 78 { 79 struct rb_node *n = root->rb_node; 80 struct rb_node *prev = NULL; 81 struct rb_node *test; 82 struct btrfs_ordered_extent *entry; 83 struct btrfs_ordered_extent *prev_entry = NULL; 84 85 while (n) { 86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 87 prev = n; 88 prev_entry = entry; 89 90 if (file_offset < entry->file_offset) 91 n = n->rb_left; 92 else if (file_offset >= entry_end(entry)) 93 n = n->rb_right; 94 else 95 return n; 96 } 97 if (!prev_ret) 98 return NULL; 99 100 while (prev && file_offset >= entry_end(prev_entry)) { 101 test = rb_next(prev); 102 if (!test) 103 break; 104 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 105 rb_node); 106 if (file_offset < entry_end(prev_entry)) 107 break; 108 109 prev = test; 110 } 111 if (prev) 112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 113 rb_node); 114 while (prev && file_offset < entry_end(prev_entry)) { 115 test = rb_prev(prev); 116 if (!test) 117 break; 118 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 119 rb_node); 120 prev = test; 121 } 122 *prev_ret = prev; 123 return NULL; 124 } 125 126 /* 127 * helper to check if a given offset is inside a given entry 128 */ 129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 130 { 131 if (file_offset < entry->file_offset || 132 entry->file_offset + entry->len <= file_offset) 133 return 0; 134 return 1; 135 } 136 137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 138 u64 len) 139 { 140 if (file_offset + len <= entry->file_offset || 141 entry->file_offset + entry->len <= file_offset) 142 return 0; 143 return 1; 144 } 145 146 /* 147 * look find the first ordered struct that has this offset, otherwise 148 * the first one less than this offset 149 */ 150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 151 u64 file_offset) 152 { 153 struct rb_root *root = &tree->tree; 154 struct rb_node *prev = NULL; 155 struct rb_node *ret; 156 struct btrfs_ordered_extent *entry; 157 158 if (tree->last) { 159 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 160 rb_node); 161 if (offset_in_entry(entry, file_offset)) 162 return tree->last; 163 } 164 ret = __tree_search(root, file_offset, &prev); 165 if (!ret) 166 ret = prev; 167 if (ret) 168 tree->last = ret; 169 return ret; 170 } 171 172 /* allocate and add a new ordered_extent into the per-inode tree. 173 * file_offset is the logical offset in the file 174 * 175 * start is the disk block number of an extent already reserved in the 176 * extent allocation tree 177 * 178 * len is the length of the extent 179 * 180 * The tree is given a single reference on the ordered extent that was 181 * inserted. 182 */ 183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 184 u64 start, u64 len, u64 disk_len, 185 int type, int dio, int compress_type) 186 { 187 struct btrfs_ordered_inode_tree *tree; 188 struct rb_node *node; 189 struct btrfs_ordered_extent *entry; 190 191 tree = &BTRFS_I(inode)->ordered_tree; 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 193 if (!entry) 194 return -ENOMEM; 195 196 entry->file_offset = file_offset; 197 entry->start = start; 198 entry->len = len; 199 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 200 !(type == BTRFS_ORDERED_NOCOW)) 201 entry->csum_bytes_left = disk_len; 202 entry->disk_len = disk_len; 203 entry->bytes_left = len; 204 entry->inode = igrab(inode); 205 entry->compress_type = compress_type; 206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 207 set_bit(type, &entry->flags); 208 209 if (dio) 210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 211 212 /* one ref for the tree */ 213 atomic_set(&entry->refs, 1); 214 init_waitqueue_head(&entry->wait); 215 INIT_LIST_HEAD(&entry->list); 216 INIT_LIST_HEAD(&entry->root_extent_list); 217 INIT_LIST_HEAD(&entry->work_list); 218 init_completion(&entry->completion); 219 INIT_LIST_HEAD(&entry->log_list); 220 221 trace_btrfs_ordered_extent_add(inode, entry); 222 223 spin_lock_irq(&tree->lock); 224 node = tree_insert(&tree->tree, file_offset, 225 &entry->rb_node); 226 if (node) 227 ordered_data_tree_panic(inode, -EEXIST, file_offset); 228 spin_unlock_irq(&tree->lock); 229 230 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 231 list_add_tail(&entry->root_extent_list, 232 &BTRFS_I(inode)->root->fs_info->ordered_extents); 233 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 234 235 return 0; 236 } 237 238 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 239 u64 start, u64 len, u64 disk_len, int type) 240 { 241 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 242 disk_len, type, 0, 243 BTRFS_COMPRESS_NONE); 244 } 245 246 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 247 u64 start, u64 len, u64 disk_len, int type) 248 { 249 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 250 disk_len, type, 1, 251 BTRFS_COMPRESS_NONE); 252 } 253 254 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 255 u64 start, u64 len, u64 disk_len, 256 int type, int compress_type) 257 { 258 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 259 disk_len, type, 0, 260 compress_type); 261 } 262 263 /* 264 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 265 * when an ordered extent is finished. If the list covers more than one 266 * ordered extent, it is split across multiples. 267 */ 268 void btrfs_add_ordered_sum(struct inode *inode, 269 struct btrfs_ordered_extent *entry, 270 struct btrfs_ordered_sum *sum) 271 { 272 struct btrfs_ordered_inode_tree *tree; 273 274 tree = &BTRFS_I(inode)->ordered_tree; 275 spin_lock_irq(&tree->lock); 276 list_add_tail(&sum->list, &entry->list); 277 WARN_ON(entry->csum_bytes_left < sum->len); 278 entry->csum_bytes_left -= sum->len; 279 if (entry->csum_bytes_left == 0) 280 wake_up(&entry->wait); 281 spin_unlock_irq(&tree->lock); 282 } 283 284 /* 285 * this is used to account for finished IO across a given range 286 * of the file. The IO may span ordered extents. If 287 * a given ordered_extent is completely done, 1 is returned, otherwise 288 * 0. 289 * 290 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 291 * to make sure this function only returns 1 once for a given ordered extent. 292 * 293 * file_offset is updated to one byte past the range that is recorded as 294 * complete. This allows you to walk forward in the file. 295 */ 296 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 297 struct btrfs_ordered_extent **cached, 298 u64 *file_offset, u64 io_size, int uptodate) 299 { 300 struct btrfs_ordered_inode_tree *tree; 301 struct rb_node *node; 302 struct btrfs_ordered_extent *entry = NULL; 303 int ret; 304 unsigned long flags; 305 u64 dec_end; 306 u64 dec_start; 307 u64 to_dec; 308 309 tree = &BTRFS_I(inode)->ordered_tree; 310 spin_lock_irqsave(&tree->lock, flags); 311 node = tree_search(tree, *file_offset); 312 if (!node) { 313 ret = 1; 314 goto out; 315 } 316 317 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 318 if (!offset_in_entry(entry, *file_offset)) { 319 ret = 1; 320 goto out; 321 } 322 323 dec_start = max(*file_offset, entry->file_offset); 324 dec_end = min(*file_offset + io_size, entry->file_offset + 325 entry->len); 326 *file_offset = dec_end; 327 if (dec_start > dec_end) { 328 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 329 (unsigned long long)dec_start, 330 (unsigned long long)dec_end); 331 } 332 to_dec = dec_end - dec_start; 333 if (to_dec > entry->bytes_left) { 334 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 335 (unsigned long long)entry->bytes_left, 336 (unsigned long long)to_dec); 337 } 338 entry->bytes_left -= to_dec; 339 if (!uptodate) 340 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 341 342 if (entry->bytes_left == 0) 343 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 344 else 345 ret = 1; 346 out: 347 if (!ret && cached && entry) { 348 *cached = entry; 349 atomic_inc(&entry->refs); 350 } 351 spin_unlock_irqrestore(&tree->lock, flags); 352 return ret == 0; 353 } 354 355 /* 356 * this is used to account for finished IO across a given range 357 * of the file. The IO should not span ordered extents. If 358 * a given ordered_extent is completely done, 1 is returned, otherwise 359 * 0. 360 * 361 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 362 * to make sure this function only returns 1 once for a given ordered extent. 363 */ 364 int btrfs_dec_test_ordered_pending(struct inode *inode, 365 struct btrfs_ordered_extent **cached, 366 u64 file_offset, u64 io_size, int uptodate) 367 { 368 struct btrfs_ordered_inode_tree *tree; 369 struct rb_node *node; 370 struct btrfs_ordered_extent *entry = NULL; 371 unsigned long flags; 372 int ret; 373 374 tree = &BTRFS_I(inode)->ordered_tree; 375 spin_lock_irqsave(&tree->lock, flags); 376 if (cached && *cached) { 377 entry = *cached; 378 goto have_entry; 379 } 380 381 node = tree_search(tree, file_offset); 382 if (!node) { 383 ret = 1; 384 goto out; 385 } 386 387 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 388 have_entry: 389 if (!offset_in_entry(entry, file_offset)) { 390 ret = 1; 391 goto out; 392 } 393 394 if (io_size > entry->bytes_left) { 395 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 396 (unsigned long long)entry->bytes_left, 397 (unsigned long long)io_size); 398 } 399 entry->bytes_left -= io_size; 400 if (!uptodate) 401 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 402 403 if (entry->bytes_left == 0) 404 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 405 else 406 ret = 1; 407 out: 408 if (!ret && cached && entry) { 409 *cached = entry; 410 atomic_inc(&entry->refs); 411 } 412 spin_unlock_irqrestore(&tree->lock, flags); 413 return ret == 0; 414 } 415 416 /* Needs to either be called under a log transaction or the log_mutex */ 417 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode) 418 { 419 struct btrfs_ordered_inode_tree *tree; 420 struct btrfs_ordered_extent *ordered; 421 struct rb_node *n; 422 int index = log->log_transid % 2; 423 424 tree = &BTRFS_I(inode)->ordered_tree; 425 spin_lock_irq(&tree->lock); 426 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 427 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 428 spin_lock(&log->log_extents_lock[index]); 429 if (list_empty(&ordered->log_list)) { 430 list_add_tail(&ordered->log_list, &log->logged_list[index]); 431 atomic_inc(&ordered->refs); 432 } 433 spin_unlock(&log->log_extents_lock[index]); 434 } 435 spin_unlock_irq(&tree->lock); 436 } 437 438 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid) 439 { 440 struct btrfs_ordered_extent *ordered; 441 int index = transid % 2; 442 443 spin_lock_irq(&log->log_extents_lock[index]); 444 while (!list_empty(&log->logged_list[index])) { 445 ordered = list_first_entry(&log->logged_list[index], 446 struct btrfs_ordered_extent, 447 log_list); 448 list_del_init(&ordered->log_list); 449 spin_unlock_irq(&log->log_extents_lock[index]); 450 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 451 &ordered->flags)); 452 btrfs_put_ordered_extent(ordered); 453 spin_lock_irq(&log->log_extents_lock[index]); 454 } 455 spin_unlock_irq(&log->log_extents_lock[index]); 456 } 457 458 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 459 { 460 struct btrfs_ordered_extent *ordered; 461 int index = transid % 2; 462 463 spin_lock_irq(&log->log_extents_lock[index]); 464 while (!list_empty(&log->logged_list[index])) { 465 ordered = list_first_entry(&log->logged_list[index], 466 struct btrfs_ordered_extent, 467 log_list); 468 list_del_init(&ordered->log_list); 469 spin_unlock_irq(&log->log_extents_lock[index]); 470 btrfs_put_ordered_extent(ordered); 471 spin_lock_irq(&log->log_extents_lock[index]); 472 } 473 spin_unlock_irq(&log->log_extents_lock[index]); 474 } 475 476 /* 477 * used to drop a reference on an ordered extent. This will free 478 * the extent if the last reference is dropped 479 */ 480 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 481 { 482 struct list_head *cur; 483 struct btrfs_ordered_sum *sum; 484 485 trace_btrfs_ordered_extent_put(entry->inode, entry); 486 487 if (atomic_dec_and_test(&entry->refs)) { 488 if (entry->inode) 489 btrfs_add_delayed_iput(entry->inode); 490 while (!list_empty(&entry->list)) { 491 cur = entry->list.next; 492 sum = list_entry(cur, struct btrfs_ordered_sum, list); 493 list_del(&sum->list); 494 kfree(sum); 495 } 496 kmem_cache_free(btrfs_ordered_extent_cache, entry); 497 } 498 } 499 500 /* 501 * remove an ordered extent from the tree. No references are dropped 502 * and waiters are woken up. 503 */ 504 void btrfs_remove_ordered_extent(struct inode *inode, 505 struct btrfs_ordered_extent *entry) 506 { 507 struct btrfs_ordered_inode_tree *tree; 508 struct btrfs_root *root = BTRFS_I(inode)->root; 509 struct rb_node *node; 510 511 tree = &BTRFS_I(inode)->ordered_tree; 512 spin_lock_irq(&tree->lock); 513 node = &entry->rb_node; 514 rb_erase(node, &tree->tree); 515 tree->last = NULL; 516 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 517 spin_unlock_irq(&tree->lock); 518 519 spin_lock(&root->fs_info->ordered_extent_lock); 520 list_del_init(&entry->root_extent_list); 521 522 trace_btrfs_ordered_extent_remove(inode, entry); 523 524 /* 525 * we have no more ordered extents for this inode and 526 * no dirty pages. We can safely remove it from the 527 * list of ordered extents 528 */ 529 if (RB_EMPTY_ROOT(&tree->tree) && 530 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 531 list_del_init(&BTRFS_I(inode)->ordered_operations); 532 } 533 spin_unlock(&root->fs_info->ordered_extent_lock); 534 wake_up(&entry->wait); 535 } 536 537 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 538 { 539 struct btrfs_ordered_extent *ordered; 540 541 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 542 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 543 complete(&ordered->completion); 544 } 545 546 /* 547 * wait for all the ordered extents in a root. This is done when balancing 548 * space between drives. 549 */ 550 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput) 551 { 552 struct list_head splice, works; 553 struct list_head *cur; 554 struct btrfs_ordered_extent *ordered, *next; 555 struct inode *inode; 556 557 INIT_LIST_HEAD(&splice); 558 INIT_LIST_HEAD(&works); 559 560 mutex_lock(&root->fs_info->ordered_operations_mutex); 561 spin_lock(&root->fs_info->ordered_extent_lock); 562 list_splice_init(&root->fs_info->ordered_extents, &splice); 563 while (!list_empty(&splice)) { 564 cur = splice.next; 565 ordered = list_entry(cur, struct btrfs_ordered_extent, 566 root_extent_list); 567 list_del_init(&ordered->root_extent_list); 568 atomic_inc(&ordered->refs); 569 570 /* 571 * the inode may be getting freed (in sys_unlink path). 572 */ 573 inode = igrab(ordered->inode); 574 575 spin_unlock(&root->fs_info->ordered_extent_lock); 576 577 if (inode) { 578 ordered->flush_work.func = btrfs_run_ordered_extent_work; 579 list_add_tail(&ordered->work_list, &works); 580 btrfs_queue_worker(&root->fs_info->flush_workers, 581 &ordered->flush_work); 582 } else { 583 btrfs_put_ordered_extent(ordered); 584 } 585 586 cond_resched(); 587 spin_lock(&root->fs_info->ordered_extent_lock); 588 } 589 spin_unlock(&root->fs_info->ordered_extent_lock); 590 591 list_for_each_entry_safe(ordered, next, &works, work_list) { 592 list_del_init(&ordered->work_list); 593 wait_for_completion(&ordered->completion); 594 595 inode = ordered->inode; 596 btrfs_put_ordered_extent(ordered); 597 if (delay_iput) 598 btrfs_add_delayed_iput(inode); 599 else 600 iput(inode); 601 602 cond_resched(); 603 } 604 mutex_unlock(&root->fs_info->ordered_operations_mutex); 605 } 606 607 /* 608 * this is used during transaction commit to write all the inodes 609 * added to the ordered operation list. These files must be fully on 610 * disk before the transaction commits. 611 * 612 * we have two modes here, one is to just start the IO via filemap_flush 613 * and the other is to wait for all the io. When we wait, we have an 614 * extra check to make sure the ordered operation list really is empty 615 * before we return 616 */ 617 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans, 618 struct btrfs_root *root, int wait) 619 { 620 struct btrfs_inode *btrfs_inode; 621 struct inode *inode; 622 struct btrfs_transaction *cur_trans = trans->transaction; 623 struct list_head splice; 624 struct list_head works; 625 struct btrfs_delalloc_work *work, *next; 626 int ret = 0; 627 628 INIT_LIST_HEAD(&splice); 629 INIT_LIST_HEAD(&works); 630 631 mutex_lock(&root->fs_info->ordered_operations_mutex); 632 spin_lock(&root->fs_info->ordered_extent_lock); 633 list_splice_init(&cur_trans->ordered_operations, &splice); 634 while (!list_empty(&splice)) { 635 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 636 ordered_operations); 637 inode = &btrfs_inode->vfs_inode; 638 639 list_del_init(&btrfs_inode->ordered_operations); 640 641 /* 642 * the inode may be getting freed (in sys_unlink path). 643 */ 644 inode = igrab(inode); 645 if (!inode) 646 continue; 647 648 if (!wait) 649 list_add_tail(&BTRFS_I(inode)->ordered_operations, 650 &cur_trans->ordered_operations); 651 spin_unlock(&root->fs_info->ordered_extent_lock); 652 653 work = btrfs_alloc_delalloc_work(inode, wait, 1); 654 if (!work) { 655 spin_lock(&root->fs_info->ordered_extent_lock); 656 if (list_empty(&BTRFS_I(inode)->ordered_operations)) 657 list_add_tail(&btrfs_inode->ordered_operations, 658 &splice); 659 list_splice_tail(&splice, 660 &cur_trans->ordered_operations); 661 spin_unlock(&root->fs_info->ordered_extent_lock); 662 ret = -ENOMEM; 663 goto out; 664 } 665 list_add_tail(&work->list, &works); 666 btrfs_queue_worker(&root->fs_info->flush_workers, 667 &work->work); 668 669 cond_resched(); 670 spin_lock(&root->fs_info->ordered_extent_lock); 671 } 672 spin_unlock(&root->fs_info->ordered_extent_lock); 673 out: 674 list_for_each_entry_safe(work, next, &works, list) { 675 list_del_init(&work->list); 676 btrfs_wait_and_free_delalloc_work(work); 677 } 678 mutex_unlock(&root->fs_info->ordered_operations_mutex); 679 return ret; 680 } 681 682 /* 683 * Used to start IO or wait for a given ordered extent to finish. 684 * 685 * If wait is one, this effectively waits on page writeback for all the pages 686 * in the extent, and it waits on the io completion code to insert 687 * metadata into the btree corresponding to the extent 688 */ 689 void btrfs_start_ordered_extent(struct inode *inode, 690 struct btrfs_ordered_extent *entry, 691 int wait) 692 { 693 u64 start = entry->file_offset; 694 u64 end = start + entry->len - 1; 695 696 trace_btrfs_ordered_extent_start(inode, entry); 697 698 /* 699 * pages in the range can be dirty, clean or writeback. We 700 * start IO on any dirty ones so the wait doesn't stall waiting 701 * for the flusher thread to find them 702 */ 703 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 704 filemap_fdatawrite_range(inode->i_mapping, start, end); 705 if (wait) { 706 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 707 &entry->flags)); 708 } 709 } 710 711 /* 712 * Used to wait on ordered extents across a large range of bytes. 713 */ 714 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 715 { 716 u64 end; 717 u64 orig_end; 718 struct btrfs_ordered_extent *ordered; 719 720 if (start + len < start) { 721 orig_end = INT_LIMIT(loff_t); 722 } else { 723 orig_end = start + len - 1; 724 if (orig_end > INT_LIMIT(loff_t)) 725 orig_end = INT_LIMIT(loff_t); 726 } 727 728 /* start IO across the range first to instantiate any delalloc 729 * extents 730 */ 731 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 732 733 /* 734 * So with compression we will find and lock a dirty page and clear the 735 * first one as dirty, setup an async extent, and immediately return 736 * with the entire range locked but with nobody actually marked with 737 * writeback. So we can't just filemap_write_and_wait_range() and 738 * expect it to work since it will just kick off a thread to do the 739 * actual work. So we need to call filemap_fdatawrite_range _again_ 740 * since it will wait on the page lock, which won't be unlocked until 741 * after the pages have been marked as writeback and so we're good to go 742 * from there. We have to do this otherwise we'll miss the ordered 743 * extents and that results in badness. Please Josef, do not think you 744 * know better and pull this out at some point in the future, it is 745 * right and you are wrong. 746 */ 747 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 748 &BTRFS_I(inode)->runtime_flags)) 749 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 750 751 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 752 753 end = orig_end; 754 while (1) { 755 ordered = btrfs_lookup_first_ordered_extent(inode, end); 756 if (!ordered) 757 break; 758 if (ordered->file_offset > orig_end) { 759 btrfs_put_ordered_extent(ordered); 760 break; 761 } 762 if (ordered->file_offset + ordered->len < start) { 763 btrfs_put_ordered_extent(ordered); 764 break; 765 } 766 btrfs_start_ordered_extent(inode, ordered, 1); 767 end = ordered->file_offset; 768 btrfs_put_ordered_extent(ordered); 769 if (end == 0 || end == start) 770 break; 771 end--; 772 } 773 } 774 775 /* 776 * find an ordered extent corresponding to file_offset. return NULL if 777 * nothing is found, otherwise take a reference on the extent and return it 778 */ 779 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 780 u64 file_offset) 781 { 782 struct btrfs_ordered_inode_tree *tree; 783 struct rb_node *node; 784 struct btrfs_ordered_extent *entry = NULL; 785 786 tree = &BTRFS_I(inode)->ordered_tree; 787 spin_lock_irq(&tree->lock); 788 node = tree_search(tree, file_offset); 789 if (!node) 790 goto out; 791 792 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 793 if (!offset_in_entry(entry, file_offset)) 794 entry = NULL; 795 if (entry) 796 atomic_inc(&entry->refs); 797 out: 798 spin_unlock_irq(&tree->lock); 799 return entry; 800 } 801 802 /* Since the DIO code tries to lock a wide area we need to look for any ordered 803 * extents that exist in the range, rather than just the start of the range. 804 */ 805 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 806 u64 file_offset, 807 u64 len) 808 { 809 struct btrfs_ordered_inode_tree *tree; 810 struct rb_node *node; 811 struct btrfs_ordered_extent *entry = NULL; 812 813 tree = &BTRFS_I(inode)->ordered_tree; 814 spin_lock_irq(&tree->lock); 815 node = tree_search(tree, file_offset); 816 if (!node) { 817 node = tree_search(tree, file_offset + len); 818 if (!node) 819 goto out; 820 } 821 822 while (1) { 823 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 824 if (range_overlaps(entry, file_offset, len)) 825 break; 826 827 if (entry->file_offset >= file_offset + len) { 828 entry = NULL; 829 break; 830 } 831 entry = NULL; 832 node = rb_next(node); 833 if (!node) 834 break; 835 } 836 out: 837 if (entry) 838 atomic_inc(&entry->refs); 839 spin_unlock_irq(&tree->lock); 840 return entry; 841 } 842 843 /* 844 * lookup and return any extent before 'file_offset'. NULL is returned 845 * if none is found 846 */ 847 struct btrfs_ordered_extent * 848 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 849 { 850 struct btrfs_ordered_inode_tree *tree; 851 struct rb_node *node; 852 struct btrfs_ordered_extent *entry = NULL; 853 854 tree = &BTRFS_I(inode)->ordered_tree; 855 spin_lock_irq(&tree->lock); 856 node = tree_search(tree, file_offset); 857 if (!node) 858 goto out; 859 860 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 861 atomic_inc(&entry->refs); 862 out: 863 spin_unlock_irq(&tree->lock); 864 return entry; 865 } 866 867 /* 868 * After an extent is done, call this to conditionally update the on disk 869 * i_size. i_size is updated to cover any fully written part of the file. 870 */ 871 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 872 struct btrfs_ordered_extent *ordered) 873 { 874 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 875 u64 disk_i_size; 876 u64 new_i_size; 877 u64 i_size = i_size_read(inode); 878 struct rb_node *node; 879 struct rb_node *prev = NULL; 880 struct btrfs_ordered_extent *test; 881 int ret = 1; 882 883 if (ordered) 884 offset = entry_end(ordered); 885 else 886 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 887 888 spin_lock_irq(&tree->lock); 889 disk_i_size = BTRFS_I(inode)->disk_i_size; 890 891 /* truncate file */ 892 if (disk_i_size > i_size) { 893 BTRFS_I(inode)->disk_i_size = i_size; 894 ret = 0; 895 goto out; 896 } 897 898 /* 899 * if the disk i_size is already at the inode->i_size, or 900 * this ordered extent is inside the disk i_size, we're done 901 */ 902 if (disk_i_size == i_size) 903 goto out; 904 905 /* 906 * We still need to update disk_i_size if outstanding_isize is greater 907 * than disk_i_size. 908 */ 909 if (offset <= disk_i_size && 910 (!ordered || ordered->outstanding_isize <= disk_i_size)) 911 goto out; 912 913 /* 914 * walk backward from this ordered extent to disk_i_size. 915 * if we find an ordered extent then we can't update disk i_size 916 * yet 917 */ 918 if (ordered) { 919 node = rb_prev(&ordered->rb_node); 920 } else { 921 prev = tree_search(tree, offset); 922 /* 923 * we insert file extents without involving ordered struct, 924 * so there should be no ordered struct cover this offset 925 */ 926 if (prev) { 927 test = rb_entry(prev, struct btrfs_ordered_extent, 928 rb_node); 929 BUG_ON(offset_in_entry(test, offset)); 930 } 931 node = prev; 932 } 933 for (; node; node = rb_prev(node)) { 934 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 935 936 /* We treat this entry as if it doesnt exist */ 937 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 938 continue; 939 if (test->file_offset + test->len <= disk_i_size) 940 break; 941 if (test->file_offset >= i_size) 942 break; 943 if (entry_end(test) > disk_i_size) { 944 /* 945 * we don't update disk_i_size now, so record this 946 * undealt i_size. Or we will not know the real 947 * i_size. 948 */ 949 if (test->outstanding_isize < offset) 950 test->outstanding_isize = offset; 951 if (ordered && 952 ordered->outstanding_isize > 953 test->outstanding_isize) 954 test->outstanding_isize = 955 ordered->outstanding_isize; 956 goto out; 957 } 958 } 959 new_i_size = min_t(u64, offset, i_size); 960 961 /* 962 * Some ordered extents may completed before the current one, and 963 * we hold the real i_size in ->outstanding_isize. 964 */ 965 if (ordered && ordered->outstanding_isize > new_i_size) 966 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 967 BTRFS_I(inode)->disk_i_size = new_i_size; 968 ret = 0; 969 out: 970 /* 971 * We need to do this because we can't remove ordered extents until 972 * after the i_disk_size has been updated and then the inode has been 973 * updated to reflect the change, so we need to tell anybody who finds 974 * this ordered extent that we've already done all the real work, we 975 * just haven't completed all the other work. 976 */ 977 if (ordered) 978 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 979 spin_unlock_irq(&tree->lock); 980 return ret; 981 } 982 983 /* 984 * search the ordered extents for one corresponding to 'offset' and 985 * try to find a checksum. This is used because we allow pages to 986 * be reclaimed before their checksum is actually put into the btree 987 */ 988 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 989 u32 *sum, int len) 990 { 991 struct btrfs_ordered_sum *ordered_sum; 992 struct btrfs_sector_sum *sector_sums; 993 struct btrfs_ordered_extent *ordered; 994 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 995 unsigned long num_sectors; 996 unsigned long i; 997 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 998 int index = 0; 999 1000 ordered = btrfs_lookup_ordered_extent(inode, offset); 1001 if (!ordered) 1002 return 0; 1003 1004 spin_lock_irq(&tree->lock); 1005 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1006 if (disk_bytenr >= ordered_sum->bytenr && 1007 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1008 i = (disk_bytenr - ordered_sum->bytenr) >> 1009 inode->i_sb->s_blocksize_bits; 1010 sector_sums = ordered_sum->sums + i; 1011 num_sectors = ordered_sum->len >> 1012 inode->i_sb->s_blocksize_bits; 1013 for (; i < num_sectors; i++) { 1014 if (sector_sums[i].bytenr == disk_bytenr) { 1015 sum[index] = sector_sums[i].sum; 1016 index++; 1017 if (index == len) 1018 goto out; 1019 disk_bytenr += sectorsize; 1020 } 1021 } 1022 } 1023 } 1024 out: 1025 spin_unlock_irq(&tree->lock); 1026 btrfs_put_ordered_extent(ordered); 1027 return index; 1028 } 1029 1030 1031 /* 1032 * add a given inode to the list of inodes that must be fully on 1033 * disk before a transaction commit finishes. 1034 * 1035 * This basically gives us the ext3 style data=ordered mode, and it is mostly 1036 * used to make sure renamed files are fully on disk. 1037 * 1038 * It is a noop if the inode is already fully on disk. 1039 * 1040 * If trans is not null, we'll do a friendly check for a transaction that 1041 * is already flushing things and force the IO down ourselves. 1042 */ 1043 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 1044 struct btrfs_root *root, struct inode *inode) 1045 { 1046 struct btrfs_transaction *cur_trans = trans->transaction; 1047 u64 last_mod; 1048 1049 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 1050 1051 /* 1052 * if this file hasn't been changed since the last transaction 1053 * commit, we can safely return without doing anything 1054 */ 1055 if (last_mod < root->fs_info->last_trans_committed) 1056 return; 1057 1058 spin_lock(&root->fs_info->ordered_extent_lock); 1059 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 1060 list_add_tail(&BTRFS_I(inode)->ordered_operations, 1061 &cur_trans->ordered_operations); 1062 } 1063 spin_unlock(&root->fs_info->ordered_extent_lock); 1064 } 1065 1066 int __init ordered_data_init(void) 1067 { 1068 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1069 sizeof(struct btrfs_ordered_extent), 0, 1070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1071 NULL); 1072 if (!btrfs_ordered_extent_cache) 1073 return -ENOMEM; 1074 1075 return 0; 1076 } 1077 1078 void ordered_data_exit(void) 1079 { 1080 if (btrfs_ordered_extent_cache) 1081 kmem_cache_destroy(btrfs_ordered_extent_cache); 1082 } 1083