xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision ed98b56a)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
28 
29 
30 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 {
32 	if (entry->file_offset + entry->len < entry->file_offset)
33 		return (u64)-1;
34 	return entry->file_offset + entry->len;
35 }
36 
37 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
38 				   struct rb_node *node)
39 {
40 	struct rb_node ** p = &root->rb_node;
41 	struct rb_node * parent = NULL;
42 	struct btrfs_ordered_extent *entry;
43 
44 	while(*p) {
45 		parent = *p;
46 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
47 
48 		if (file_offset < entry->file_offset)
49 			p = &(*p)->rb_left;
50 		else if (file_offset >= entry_end(entry))
51 			p = &(*p)->rb_right;
52 		else
53 			return parent;
54 	}
55 
56 	rb_link_node(node, parent, p);
57 	rb_insert_color(node, root);
58 	return NULL;
59 }
60 
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 				     struct rb_node **prev_ret)
63 {
64 	struct rb_node * n = root->rb_node;
65 	struct rb_node *prev = NULL;
66 	struct rb_node *test;
67 	struct btrfs_ordered_extent *entry;
68 	struct btrfs_ordered_extent *prev_entry = NULL;
69 
70 	while(n) {
71 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 		prev = n;
73 		prev_entry = entry;
74 
75 		if (file_offset < entry->file_offset)
76 			n = n->rb_left;
77 		else if (file_offset >= entry_end(entry))
78 			n = n->rb_right;
79 		else
80 			return n;
81 	}
82 	if (!prev_ret)
83 		return NULL;
84 
85 	while(prev && file_offset >= entry_end(prev_entry)) {
86 		test = rb_next(prev);
87 		if (!test)
88 			break;
89 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 				      rb_node);
91 		if (file_offset < entry_end(prev_entry))
92 			break;
93 
94 		prev = test;
95 	}
96 	if (prev)
97 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 				      rb_node);
99 	while(prev && file_offset < entry_end(prev_entry)) {
100 		test = rb_prev(prev);
101 		if (!test)
102 			break;
103 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 				      rb_node);
105 		prev = test;
106 	}
107 	*prev_ret = prev;
108 	return NULL;
109 }
110 
111 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
112 {
113 	if (file_offset < entry->file_offset ||
114 	    entry->file_offset + entry->len <= file_offset)
115 		return 0;
116 	return 1;
117 }
118 
119 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
120 					  u64 file_offset)
121 {
122 	struct rb_root *root = &tree->tree;
123 	struct rb_node *prev;
124 	struct rb_node *ret;
125 	struct btrfs_ordered_extent *entry;
126 
127 	if (tree->last) {
128 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
129 				 rb_node);
130 		if (offset_in_entry(entry, file_offset))
131 			return tree->last;
132 	}
133 	ret = __tree_search(root, file_offset, &prev);
134 	if (!ret)
135 		ret = prev;
136 	if (ret)
137 		tree->last = ret;
138 	return ret;
139 }
140 
141 /* allocate and add a new ordered_extent into the per-inode tree.
142  * file_offset is the logical offset in the file
143  *
144  * start is the disk block number of an extent already reserved in the
145  * extent allocation tree
146  *
147  * len is the length of the extent
148  *
149  * This also sets the EXTENT_ORDERED bit on the range in the inode.
150  *
151  * The tree is given a single reference on the ordered extent that was
152  * inserted.
153  */
154 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
155 			     u64 start, u64 len)
156 {
157 	struct btrfs_ordered_inode_tree *tree;
158 	struct rb_node *node;
159 	struct btrfs_ordered_extent *entry;
160 
161 	tree = &BTRFS_I(inode)->ordered_tree;
162 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
163 	if (!entry)
164 		return -ENOMEM;
165 
166 	mutex_lock(&tree->mutex);
167 	entry->file_offset = file_offset;
168 	entry->start = start;
169 	entry->len = len;
170 	/* one ref for the tree */
171 	atomic_set(&entry->refs, 1);
172 	init_waitqueue_head(&entry->wait);
173 	INIT_LIST_HEAD(&entry->list);
174 
175 	node = tree_insert(&tree->tree, file_offset,
176 			   &entry->rb_node);
177 	if (node) {
178 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
179 		atomic_inc(&entry->refs);
180 	}
181 	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
182 			   entry_end(entry) - 1, GFP_NOFS);
183 
184 	mutex_unlock(&tree->mutex);
185 	BUG_ON(node);
186 	return 0;
187 }
188 
189 /*
190  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
191  * when an ordered extent is finished.  If the list covers more than one
192  * ordered extent, it is split across multiples.
193  */
194 int btrfs_add_ordered_sum(struct inode *inode,
195 			  struct btrfs_ordered_extent *entry,
196 			  struct btrfs_ordered_sum *sum)
197 {
198 	struct btrfs_ordered_inode_tree *tree;
199 
200 	tree = &BTRFS_I(inode)->ordered_tree;
201 	mutex_lock(&tree->mutex);
202 	list_add_tail(&sum->list, &entry->list);
203 	mutex_unlock(&tree->mutex);
204 	return 0;
205 }
206 
207 /*
208  * this is used to account for finished IO across a given range
209  * of the file.  The IO should not span ordered extents.  If
210  * a given ordered_extent is completely done, 1 is returned, otherwise
211  * 0.
212  *
213  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
214  * to make sure this function only returns 1 once for a given ordered extent.
215  */
216 int btrfs_dec_test_ordered_pending(struct inode *inode,
217 				   u64 file_offset, u64 io_size)
218 {
219 	struct btrfs_ordered_inode_tree *tree;
220 	struct rb_node *node;
221 	struct btrfs_ordered_extent *entry;
222 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
223 	int ret;
224 
225 	tree = &BTRFS_I(inode)->ordered_tree;
226 	mutex_lock(&tree->mutex);
227 	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
228 			     GFP_NOFS);
229 	node = tree_search(tree, file_offset);
230 	if (!node) {
231 		ret = 1;
232 		goto out;
233 	}
234 
235 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
236 	if (!offset_in_entry(entry, file_offset)) {
237 		ret = 1;
238 		goto out;
239 	}
240 
241 	ret = test_range_bit(io_tree, entry->file_offset,
242 			     entry->file_offset + entry->len - 1,
243 			     EXTENT_ORDERED, 0);
244 	if (ret == 0)
245 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
246 out:
247 	mutex_unlock(&tree->mutex);
248 	return ret == 0;
249 }
250 
251 /*
252  * used to drop a reference on an ordered extent.  This will free
253  * the extent if the last reference is dropped
254  */
255 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
256 {
257 	struct list_head *cur;
258 	struct btrfs_ordered_sum *sum;
259 
260 	if (atomic_dec_and_test(&entry->refs)) {
261 		while(!list_empty(&entry->list)) {
262 			cur = entry->list.next;
263 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
264 			list_del(&sum->list);
265 			kfree(sum);
266 		}
267 		kfree(entry);
268 	}
269 	return 0;
270 }
271 
272 /*
273  * remove an ordered extent from the tree.  No references are dropped
274  * but, anyone waiting on this extent is woken up.
275  */
276 int btrfs_remove_ordered_extent(struct inode *inode,
277 				struct btrfs_ordered_extent *entry)
278 {
279 	struct btrfs_ordered_inode_tree *tree;
280 	struct rb_node *node;
281 
282 	tree = &BTRFS_I(inode)->ordered_tree;
283 	mutex_lock(&tree->mutex);
284 	node = &entry->rb_node;
285 	rb_erase(node, &tree->tree);
286 	tree->last = NULL;
287 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
288 	mutex_unlock(&tree->mutex);
289 	wake_up(&entry->wait);
290 	return 0;
291 }
292 
293 /*
294  * Used to start IO or wait for a given ordered extent to finish.
295  *
296  * If wait is one, this effectively waits on page writeback for all the pages
297  * in the extent, and it waits on the io completion code to insert
298  * metadata into the btree corresponding to the extent
299  */
300 void btrfs_start_ordered_extent(struct inode *inode,
301 				       struct btrfs_ordered_extent *entry,
302 				       int wait)
303 {
304 	u64 start = entry->file_offset;
305 	u64 end = start + entry->len - 1;
306 
307 	/*
308 	 * pages in the range can be dirty, clean or writeback.  We
309 	 * start IO on any dirty ones so the wait doesn't stall waiting
310 	 * for pdflush to find them
311 	 */
312 	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
313 	if (wait)
314 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
315 						 &entry->flags));
316 }
317 
318 /*
319  * Used to wait on ordered extents across a large range of bytes.
320  */
321 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
322 {
323 	u64 end;
324 	u64 orig_end;
325 	u64 wait_end;
326 	struct btrfs_ordered_extent *ordered;
327 
328 	if (start + len < start) {
329 		orig_end = INT_LIMIT(loff_t);
330 	} else {
331 		orig_end = start + len - 1;
332 		if (orig_end > INT_LIMIT(loff_t))
333 			orig_end = INT_LIMIT(loff_t);
334 	}
335 	wait_end = orig_end;
336 again:
337 	/* start IO across the range first to instantiate any delalloc
338 	 * extents
339 	 */
340 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
341 
342 	btrfs_wait_on_page_writeback_range(inode->i_mapping,
343 					   start >> PAGE_CACHE_SHIFT,
344 					   orig_end >> PAGE_CACHE_SHIFT);
345 
346 	end = orig_end;
347 	while(1) {
348 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
349 		if (!ordered) {
350 			break;
351 		}
352 		if (ordered->file_offset > orig_end) {
353 			btrfs_put_ordered_extent(ordered);
354 			break;
355 		}
356 		if (ordered->file_offset + ordered->len < start) {
357 			btrfs_put_ordered_extent(ordered);
358 			break;
359 		}
360 		btrfs_start_ordered_extent(inode, ordered, 1);
361 		end = ordered->file_offset;
362 		btrfs_put_ordered_extent(ordered);
363 		if (end == 0 || end == start)
364 			break;
365 		end--;
366 	}
367 	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
368 			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
369 		printk("inode %lu still ordered or delalloc after wait "
370 		       "%llu %llu\n", inode->i_ino,
371 		       (unsigned long long)start,
372 		       (unsigned long long)orig_end);
373 		goto again;
374 	}
375 }
376 
377 /*
378  * find an ordered extent corresponding to file_offset.  return NULL if
379  * nothing is found, otherwise take a reference on the extent and return it
380  */
381 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
382 							 u64 file_offset)
383 {
384 	struct btrfs_ordered_inode_tree *tree;
385 	struct rb_node *node;
386 	struct btrfs_ordered_extent *entry = NULL;
387 
388 	tree = &BTRFS_I(inode)->ordered_tree;
389 	mutex_lock(&tree->mutex);
390 	node = tree_search(tree, file_offset);
391 	if (!node)
392 		goto out;
393 
394 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
395 	if (!offset_in_entry(entry, file_offset))
396 		entry = NULL;
397 	if (entry)
398 		atomic_inc(&entry->refs);
399 out:
400 	mutex_unlock(&tree->mutex);
401 	return entry;
402 }
403 
404 /*
405  * lookup and return any extent before 'file_offset'.  NULL is returned
406  * if none is found
407  */
408 struct btrfs_ordered_extent *
409 btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
410 {
411 	struct btrfs_ordered_inode_tree *tree;
412 	struct rb_node *node;
413 	struct btrfs_ordered_extent *entry = NULL;
414 
415 	tree = &BTRFS_I(inode)->ordered_tree;
416 	mutex_lock(&tree->mutex);
417 	node = tree_search(tree, file_offset);
418 	if (!node)
419 		goto out;
420 
421 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
422 	atomic_inc(&entry->refs);
423 out:
424 	mutex_unlock(&tree->mutex);
425 	return entry;
426 }
427 
428 /*
429  * After an extent is done, call this to conditionally update the on disk
430  * i_size.  i_size is updated to cover any fully written part of the file.
431  */
432 int btrfs_ordered_update_i_size(struct inode *inode,
433 				struct btrfs_ordered_extent *ordered)
434 {
435 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
436 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
437 	u64 disk_i_size;
438 	u64 new_i_size;
439 	u64 i_size_test;
440 	struct rb_node *node;
441 	struct btrfs_ordered_extent *test;
442 
443 	mutex_lock(&tree->mutex);
444 	disk_i_size = BTRFS_I(inode)->disk_i_size;
445 
446 	/*
447 	 * if the disk i_size is already at the inode->i_size, or
448 	 * this ordered extent is inside the disk i_size, we're done
449 	 */
450 	if (disk_i_size >= inode->i_size ||
451 	    ordered->file_offset + ordered->len <= disk_i_size) {
452 		goto out;
453 	}
454 
455 	/*
456 	 * we can't update the disk_isize if there are delalloc bytes
457 	 * between disk_i_size and  this ordered extent
458 	 */
459 	if (test_range_bit(io_tree, disk_i_size,
460 			   ordered->file_offset + ordered->len - 1,
461 			   EXTENT_DELALLOC, 0)) {
462 		goto out;
463 	}
464 	/*
465 	 * walk backward from this ordered extent to disk_i_size.
466 	 * if we find an ordered extent then we can't update disk i_size
467 	 * yet
468 	 */
469 	node = &ordered->rb_node;
470 	while(1) {
471 		node = rb_prev(node);
472 		if (!node)
473 			break;
474 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
475 		if (test->file_offset + test->len <= disk_i_size)
476 			break;
477 		if (test->file_offset >= inode->i_size)
478 			break;
479 		if (test->file_offset >= disk_i_size)
480 			goto out;
481 	}
482 	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
483 
484 	/*
485 	 * at this point, we know we can safely update i_size to at least
486 	 * the offset from this ordered extent.  But, we need to
487 	 * walk forward and see if ios from higher up in the file have
488 	 * finished.
489 	 */
490 	node = rb_next(&ordered->rb_node);
491 	i_size_test = 0;
492 	if (node) {
493 		/*
494 		 * do we have an area where IO might have finished
495 		 * between our ordered extent and the next one.
496 		 */
497 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
498 		if (test->file_offset > entry_end(ordered)) {
499 			i_size_test = test->file_offset - 1;
500 		}
501 	} else {
502 		i_size_test = i_size_read(inode);
503 	}
504 
505 	/*
506 	 * i_size_test is the end of a region after this ordered
507 	 * extent where there are no ordered extents.  As long as there
508 	 * are no delalloc bytes in this area, it is safe to update
509 	 * disk_i_size to the end of the region.
510 	 */
511 	if (i_size_test > entry_end(ordered) &&
512 	    !test_range_bit(io_tree, entry_end(ordered), i_size_test,
513 			   EXTENT_DELALLOC, 0)) {
514 		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
515 	}
516 	BTRFS_I(inode)->disk_i_size = new_i_size;
517 out:
518 	mutex_unlock(&tree->mutex);
519 	return 0;
520 }
521 
522 /*
523  * search the ordered extents for one corresponding to 'offset' and
524  * try to find a checksum.  This is used because we allow pages to
525  * be reclaimed before their checksum is actually put into the btree
526  */
527 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
528 {
529 	struct btrfs_ordered_sum *ordered_sum;
530 	struct btrfs_sector_sum *sector_sums;
531 	struct btrfs_ordered_extent *ordered;
532 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
533 	struct list_head *cur;
534 	unsigned long num_sectors;
535 	unsigned long i;
536 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
537 	int ret = 1;
538 
539 	ordered = btrfs_lookup_ordered_extent(inode, offset);
540 	if (!ordered)
541 		return 1;
542 
543 	mutex_lock(&tree->mutex);
544 	list_for_each_prev(cur, &ordered->list) {
545 		ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
546 		if (offset >= ordered_sum->file_offset) {
547 			num_sectors = ordered_sum->len / sectorsize;
548 			sector_sums = ordered_sum->sums;
549 			for (i = 0; i < num_sectors; i++) {
550 				if (sector_sums[i].offset == offset) {
551 					*sum = sector_sums[i].sum;
552 					ret = 0;
553 					goto out;
554 				}
555 			}
556 		}
557 	}
558 out:
559 	mutex_unlock(&tree->mutex);
560 	return ret;
561 }
562 
563 
564 /**
565  * taken from mm/filemap.c because it isn't exported
566  *
567  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
568  * @mapping:	address space structure to write
569  * @start:	offset in bytes where the range starts
570  * @end:	offset in bytes where the range ends (inclusive)
571  * @sync_mode:	enable synchronous operation
572  *
573  * Start writeback against all of a mapping's dirty pages that lie
574  * within the byte offsets <start, end> inclusive.
575  *
576  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
577  * opposed to a regular memory cleansing writeback.  The difference between
578  * these two operations is that if a dirty page/buffer is encountered, it must
579  * be waited upon, and not just skipped over.
580  */
581 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
582 			   loff_t end, int sync_mode)
583 {
584 	struct writeback_control wbc = {
585 		.sync_mode = sync_mode,
586 		.nr_to_write = mapping->nrpages * 2,
587 		.range_start = start,
588 		.range_end = end,
589 		.for_writepages = 1,
590 	};
591 	return btrfs_writepages(mapping, &wbc);
592 }
593 
594 /**
595  * taken from mm/filemap.c because it isn't exported
596  *
597  * wait_on_page_writeback_range - wait for writeback to complete
598  * @mapping:	target address_space
599  * @start:	beginning page index
600  * @end:	ending page index
601  *
602  * Wait for writeback to complete against pages indexed by start->end
603  * inclusive
604  */
605 int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
606 				       pgoff_t start, pgoff_t end)
607 {
608 	struct pagevec pvec;
609 	int nr_pages;
610 	int ret = 0;
611 	pgoff_t index;
612 
613 	if (end < start)
614 		return 0;
615 
616 	pagevec_init(&pvec, 0);
617 	index = start;
618 	while ((index <= end) &&
619 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
620 			PAGECACHE_TAG_WRITEBACK,
621 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
622 		unsigned i;
623 
624 		for (i = 0; i < nr_pages; i++) {
625 			struct page *page = pvec.pages[i];
626 
627 			/* until radix tree lookup accepts end_index */
628 			if (page->index > end)
629 				continue;
630 
631 			wait_on_page_writeback(page);
632 			if (PageError(page))
633 				ret = -EIO;
634 		}
635 		pagevec_release(&pvec);
636 		cond_resched();
637 	}
638 
639 	/* Check for outstanding write errors */
640 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
641 		ret = -ENOSPC;
642 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
643 		ret = -EIO;
644 
645 	return ret;
646 }
647