xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision e8e0929d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
28 
29 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 {
31 	if (entry->file_offset + entry->len < entry->file_offset)
32 		return (u64)-1;
33 	return entry->file_offset + entry->len;
34 }
35 
36 /* returns NULL if the insertion worked, or it returns the node it did find
37  * in the tree
38  */
39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 				   struct rb_node *node)
41 {
42 	struct rb_node **p = &root->rb_node;
43 	struct rb_node *parent = NULL;
44 	struct btrfs_ordered_extent *entry;
45 
46 	while (*p) {
47 		parent = *p;
48 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 
50 		if (file_offset < entry->file_offset)
51 			p = &(*p)->rb_left;
52 		else if (file_offset >= entry_end(entry))
53 			p = &(*p)->rb_right;
54 		else
55 			return parent;
56 	}
57 
58 	rb_link_node(node, parent, p);
59 	rb_insert_color(node, root);
60 	return NULL;
61 }
62 
63 /*
64  * look for a given offset in the tree, and if it can't be found return the
65  * first lesser offset
66  */
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 				     struct rb_node **prev_ret)
69 {
70 	struct rb_node *n = root->rb_node;
71 	struct rb_node *prev = NULL;
72 	struct rb_node *test;
73 	struct btrfs_ordered_extent *entry;
74 	struct btrfs_ordered_extent *prev_entry = NULL;
75 
76 	while (n) {
77 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 		prev = n;
79 		prev_entry = entry;
80 
81 		if (file_offset < entry->file_offset)
82 			n = n->rb_left;
83 		else if (file_offset >= entry_end(entry))
84 			n = n->rb_right;
85 		else
86 			return n;
87 	}
88 	if (!prev_ret)
89 		return NULL;
90 
91 	while (prev && file_offset >= entry_end(prev_entry)) {
92 		test = rb_next(prev);
93 		if (!test)
94 			break;
95 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 				      rb_node);
97 		if (file_offset < entry_end(prev_entry))
98 			break;
99 
100 		prev = test;
101 	}
102 	if (prev)
103 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 				      rb_node);
105 	while (prev && file_offset < entry_end(prev_entry)) {
106 		test = rb_prev(prev);
107 		if (!test)
108 			break;
109 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 				      rb_node);
111 		prev = test;
112 	}
113 	*prev_ret = prev;
114 	return NULL;
115 }
116 
117 /*
118  * helper to check if a given offset is inside a given entry
119  */
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 	if (file_offset < entry->file_offset ||
123 	    entry->file_offset + entry->len <= file_offset)
124 		return 0;
125 	return 1;
126 }
127 
128 /*
129  * look find the first ordered struct that has this offset, otherwise
130  * the first one less than this offset
131  */
132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 					  u64 file_offset)
134 {
135 	struct rb_root *root = &tree->tree;
136 	struct rb_node *prev;
137 	struct rb_node *ret;
138 	struct btrfs_ordered_extent *entry;
139 
140 	if (tree->last) {
141 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 				 rb_node);
143 		if (offset_in_entry(entry, file_offset))
144 			return tree->last;
145 	}
146 	ret = __tree_search(root, file_offset, &prev);
147 	if (!ret)
148 		ret = prev;
149 	if (ret)
150 		tree->last = ret;
151 	return ret;
152 }
153 
154 /* allocate and add a new ordered_extent into the per-inode tree.
155  * file_offset is the logical offset in the file
156  *
157  * start is the disk block number of an extent already reserved in the
158  * extent allocation tree
159  *
160  * len is the length of the extent
161  *
162  * The tree is given a single reference on the ordered extent that was
163  * inserted.
164  */
165 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
166 			     u64 start, u64 len, u64 disk_len, int type)
167 {
168 	struct btrfs_ordered_inode_tree *tree;
169 	struct rb_node *node;
170 	struct btrfs_ordered_extent *entry;
171 
172 	tree = &BTRFS_I(inode)->ordered_tree;
173 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
174 	if (!entry)
175 		return -ENOMEM;
176 
177 	mutex_lock(&tree->mutex);
178 	entry->file_offset = file_offset;
179 	entry->start = start;
180 	entry->len = len;
181 	entry->disk_len = disk_len;
182 	entry->bytes_left = len;
183 	entry->inode = inode;
184 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
185 		set_bit(type, &entry->flags);
186 
187 	/* one ref for the tree */
188 	atomic_set(&entry->refs, 1);
189 	init_waitqueue_head(&entry->wait);
190 	INIT_LIST_HEAD(&entry->list);
191 	INIT_LIST_HEAD(&entry->root_extent_list);
192 
193 	node = tree_insert(&tree->tree, file_offset,
194 			   &entry->rb_node);
195 	BUG_ON(node);
196 
197 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 	list_add_tail(&entry->root_extent_list,
199 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201 
202 	mutex_unlock(&tree->mutex);
203 	BUG_ON(node);
204 	return 0;
205 }
206 
207 /*
208  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
209  * when an ordered extent is finished.  If the list covers more than one
210  * ordered extent, it is split across multiples.
211  */
212 int btrfs_add_ordered_sum(struct inode *inode,
213 			  struct btrfs_ordered_extent *entry,
214 			  struct btrfs_ordered_sum *sum)
215 {
216 	struct btrfs_ordered_inode_tree *tree;
217 
218 	tree = &BTRFS_I(inode)->ordered_tree;
219 	mutex_lock(&tree->mutex);
220 	list_add_tail(&sum->list, &entry->list);
221 	mutex_unlock(&tree->mutex);
222 	return 0;
223 }
224 
225 /*
226  * this is used to account for finished IO across a given range
227  * of the file.  The IO should not span ordered extents.  If
228  * a given ordered_extent is completely done, 1 is returned, otherwise
229  * 0.
230  *
231  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232  * to make sure this function only returns 1 once for a given ordered extent.
233  */
234 int btrfs_dec_test_ordered_pending(struct inode *inode,
235 				   u64 file_offset, u64 io_size)
236 {
237 	struct btrfs_ordered_inode_tree *tree;
238 	struct rb_node *node;
239 	struct btrfs_ordered_extent *entry;
240 	int ret;
241 
242 	tree = &BTRFS_I(inode)->ordered_tree;
243 	mutex_lock(&tree->mutex);
244 	node = tree_search(tree, file_offset);
245 	if (!node) {
246 		ret = 1;
247 		goto out;
248 	}
249 
250 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 	if (!offset_in_entry(entry, file_offset)) {
252 		ret = 1;
253 		goto out;
254 	}
255 
256 	if (io_size > entry->bytes_left) {
257 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 		       (unsigned long long)entry->bytes_left,
259 		       (unsigned long long)io_size);
260 	}
261 	entry->bytes_left -= io_size;
262 	if (entry->bytes_left == 0)
263 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
264 	else
265 		ret = 1;
266 out:
267 	mutex_unlock(&tree->mutex);
268 	return ret == 0;
269 }
270 
271 /*
272  * used to drop a reference on an ordered extent.  This will free
273  * the extent if the last reference is dropped
274  */
275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
276 {
277 	struct list_head *cur;
278 	struct btrfs_ordered_sum *sum;
279 
280 	if (atomic_dec_and_test(&entry->refs)) {
281 		while (!list_empty(&entry->list)) {
282 			cur = entry->list.next;
283 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
284 			list_del(&sum->list);
285 			kfree(sum);
286 		}
287 		kfree(entry);
288 	}
289 	return 0;
290 }
291 
292 /*
293  * remove an ordered extent from the tree.  No references are dropped
294  * but, anyone waiting on this extent is woken up.
295  */
296 int btrfs_remove_ordered_extent(struct inode *inode,
297 				struct btrfs_ordered_extent *entry)
298 {
299 	struct btrfs_ordered_inode_tree *tree;
300 	struct rb_node *node;
301 
302 	tree = &BTRFS_I(inode)->ordered_tree;
303 	mutex_lock(&tree->mutex);
304 	node = &entry->rb_node;
305 	rb_erase(node, &tree->tree);
306 	tree->last = NULL;
307 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
308 
309 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
310 	list_del_init(&entry->root_extent_list);
311 
312 	/*
313 	 * we have no more ordered extents for this inode and
314 	 * no dirty pages.  We can safely remove it from the
315 	 * list of ordered extents
316 	 */
317 	if (RB_EMPTY_ROOT(&tree->tree) &&
318 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
319 		list_del_init(&BTRFS_I(inode)->ordered_operations);
320 	}
321 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
322 
323 	mutex_unlock(&tree->mutex);
324 	wake_up(&entry->wait);
325 	return 0;
326 }
327 
328 /*
329  * wait for all the ordered extents in a root.  This is done when balancing
330  * space between drives.
331  */
332 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
333 {
334 	struct list_head splice;
335 	struct list_head *cur;
336 	struct btrfs_ordered_extent *ordered;
337 	struct inode *inode;
338 
339 	INIT_LIST_HEAD(&splice);
340 
341 	spin_lock(&root->fs_info->ordered_extent_lock);
342 	list_splice_init(&root->fs_info->ordered_extents, &splice);
343 	while (!list_empty(&splice)) {
344 		cur = splice.next;
345 		ordered = list_entry(cur, struct btrfs_ordered_extent,
346 				     root_extent_list);
347 		if (nocow_only &&
348 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
349 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
350 			list_move(&ordered->root_extent_list,
351 				  &root->fs_info->ordered_extents);
352 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
353 			continue;
354 		}
355 
356 		list_del_init(&ordered->root_extent_list);
357 		atomic_inc(&ordered->refs);
358 
359 		/*
360 		 * the inode may be getting freed (in sys_unlink path).
361 		 */
362 		inode = igrab(ordered->inode);
363 
364 		spin_unlock(&root->fs_info->ordered_extent_lock);
365 
366 		if (inode) {
367 			btrfs_start_ordered_extent(inode, ordered, 1);
368 			btrfs_put_ordered_extent(ordered);
369 			iput(inode);
370 		} else {
371 			btrfs_put_ordered_extent(ordered);
372 		}
373 
374 		spin_lock(&root->fs_info->ordered_extent_lock);
375 	}
376 	spin_unlock(&root->fs_info->ordered_extent_lock);
377 	return 0;
378 }
379 
380 /*
381  * this is used during transaction commit to write all the inodes
382  * added to the ordered operation list.  These files must be fully on
383  * disk before the transaction commits.
384  *
385  * we have two modes here, one is to just start the IO via filemap_flush
386  * and the other is to wait for all the io.  When we wait, we have an
387  * extra check to make sure the ordered operation list really is empty
388  * before we return
389  */
390 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
391 {
392 	struct btrfs_inode *btrfs_inode;
393 	struct inode *inode;
394 	struct list_head splice;
395 
396 	INIT_LIST_HEAD(&splice);
397 
398 	mutex_lock(&root->fs_info->ordered_operations_mutex);
399 	spin_lock(&root->fs_info->ordered_extent_lock);
400 again:
401 	list_splice_init(&root->fs_info->ordered_operations, &splice);
402 
403 	while (!list_empty(&splice)) {
404 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
405 				   ordered_operations);
406 
407 		inode = &btrfs_inode->vfs_inode;
408 
409 		list_del_init(&btrfs_inode->ordered_operations);
410 
411 		/*
412 		 * the inode may be getting freed (in sys_unlink path).
413 		 */
414 		inode = igrab(inode);
415 
416 		if (!wait && inode) {
417 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
418 			      &root->fs_info->ordered_operations);
419 		}
420 		spin_unlock(&root->fs_info->ordered_extent_lock);
421 
422 		if (inode) {
423 			if (wait)
424 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
425 			else
426 				filemap_flush(inode->i_mapping);
427 			iput(inode);
428 		}
429 
430 		cond_resched();
431 		spin_lock(&root->fs_info->ordered_extent_lock);
432 	}
433 	if (wait && !list_empty(&root->fs_info->ordered_operations))
434 		goto again;
435 
436 	spin_unlock(&root->fs_info->ordered_extent_lock);
437 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
438 
439 	return 0;
440 }
441 
442 /*
443  * Used to start IO or wait for a given ordered extent to finish.
444  *
445  * If wait is one, this effectively waits on page writeback for all the pages
446  * in the extent, and it waits on the io completion code to insert
447  * metadata into the btree corresponding to the extent
448  */
449 void btrfs_start_ordered_extent(struct inode *inode,
450 				       struct btrfs_ordered_extent *entry,
451 				       int wait)
452 {
453 	u64 start = entry->file_offset;
454 	u64 end = start + entry->len - 1;
455 
456 	/*
457 	 * pages in the range can be dirty, clean or writeback.  We
458 	 * start IO on any dirty ones so the wait doesn't stall waiting
459 	 * for pdflush to find them
460 	 */
461 	filemap_fdatawrite_range(inode->i_mapping, start, end);
462 	if (wait) {
463 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
464 						 &entry->flags));
465 	}
466 }
467 
468 /*
469  * Used to wait on ordered extents across a large range of bytes.
470  */
471 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
472 {
473 	u64 end;
474 	u64 orig_end;
475 	u64 wait_end;
476 	struct btrfs_ordered_extent *ordered;
477 	int found;
478 
479 	if (start + len < start) {
480 		orig_end = INT_LIMIT(loff_t);
481 	} else {
482 		orig_end = start + len - 1;
483 		if (orig_end > INT_LIMIT(loff_t))
484 			orig_end = INT_LIMIT(loff_t);
485 	}
486 	wait_end = orig_end;
487 again:
488 	/* start IO across the range first to instantiate any delalloc
489 	 * extents
490 	 */
491 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
492 
493 	/* The compression code will leave pages locked but return from
494 	 * writepage without setting the page writeback.  Starting again
495 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
496 	 */
497 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
498 
499 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
500 
501 	end = orig_end;
502 	found = 0;
503 	while (1) {
504 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
505 		if (!ordered)
506 			break;
507 		if (ordered->file_offset > orig_end) {
508 			btrfs_put_ordered_extent(ordered);
509 			break;
510 		}
511 		if (ordered->file_offset + ordered->len < start) {
512 			btrfs_put_ordered_extent(ordered);
513 			break;
514 		}
515 		found++;
516 		btrfs_start_ordered_extent(inode, ordered, 1);
517 		end = ordered->file_offset;
518 		btrfs_put_ordered_extent(ordered);
519 		if (end == 0 || end == start)
520 			break;
521 		end--;
522 	}
523 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
524 			   EXTENT_DELALLOC, 0, NULL)) {
525 		schedule_timeout(1);
526 		goto again;
527 	}
528 	return 0;
529 }
530 
531 /*
532  * find an ordered extent corresponding to file_offset.  return NULL if
533  * nothing is found, otherwise take a reference on the extent and return it
534  */
535 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
536 							 u64 file_offset)
537 {
538 	struct btrfs_ordered_inode_tree *tree;
539 	struct rb_node *node;
540 	struct btrfs_ordered_extent *entry = NULL;
541 
542 	tree = &BTRFS_I(inode)->ordered_tree;
543 	mutex_lock(&tree->mutex);
544 	node = tree_search(tree, file_offset);
545 	if (!node)
546 		goto out;
547 
548 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
549 	if (!offset_in_entry(entry, file_offset))
550 		entry = NULL;
551 	if (entry)
552 		atomic_inc(&entry->refs);
553 out:
554 	mutex_unlock(&tree->mutex);
555 	return entry;
556 }
557 
558 /*
559  * lookup and return any extent before 'file_offset'.  NULL is returned
560  * if none is found
561  */
562 struct btrfs_ordered_extent *
563 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
564 {
565 	struct btrfs_ordered_inode_tree *tree;
566 	struct rb_node *node;
567 	struct btrfs_ordered_extent *entry = NULL;
568 
569 	tree = &BTRFS_I(inode)->ordered_tree;
570 	mutex_lock(&tree->mutex);
571 	node = tree_search(tree, file_offset);
572 	if (!node)
573 		goto out;
574 
575 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
576 	atomic_inc(&entry->refs);
577 out:
578 	mutex_unlock(&tree->mutex);
579 	return entry;
580 }
581 
582 /*
583  * After an extent is done, call this to conditionally update the on disk
584  * i_size.  i_size is updated to cover any fully written part of the file.
585  */
586 int btrfs_ordered_update_i_size(struct inode *inode,
587 				struct btrfs_ordered_extent *ordered)
588 {
589 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
590 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
591 	u64 disk_i_size;
592 	u64 new_i_size;
593 	u64 i_size_test;
594 	struct rb_node *node;
595 	struct btrfs_ordered_extent *test;
596 
597 	mutex_lock(&tree->mutex);
598 	disk_i_size = BTRFS_I(inode)->disk_i_size;
599 
600 	/*
601 	 * if the disk i_size is already at the inode->i_size, or
602 	 * this ordered extent is inside the disk i_size, we're done
603 	 */
604 	if (disk_i_size >= inode->i_size ||
605 	    ordered->file_offset + ordered->len <= disk_i_size) {
606 		goto out;
607 	}
608 
609 	/*
610 	 * we can't update the disk_isize if there are delalloc bytes
611 	 * between disk_i_size and  this ordered extent
612 	 */
613 	if (test_range_bit(io_tree, disk_i_size,
614 			   ordered->file_offset + ordered->len - 1,
615 			   EXTENT_DELALLOC, 0, NULL)) {
616 		goto out;
617 	}
618 	/*
619 	 * walk backward from this ordered extent to disk_i_size.
620 	 * if we find an ordered extent then we can't update disk i_size
621 	 * yet
622 	 */
623 	node = &ordered->rb_node;
624 	while (1) {
625 		node = rb_prev(node);
626 		if (!node)
627 			break;
628 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
629 		if (test->file_offset + test->len <= disk_i_size)
630 			break;
631 		if (test->file_offset >= inode->i_size)
632 			break;
633 		if (test->file_offset >= disk_i_size)
634 			goto out;
635 	}
636 	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
637 
638 	/*
639 	 * at this point, we know we can safely update i_size to at least
640 	 * the offset from this ordered extent.  But, we need to
641 	 * walk forward and see if ios from higher up in the file have
642 	 * finished.
643 	 */
644 	node = rb_next(&ordered->rb_node);
645 	i_size_test = 0;
646 	if (node) {
647 		/*
648 		 * do we have an area where IO might have finished
649 		 * between our ordered extent and the next one.
650 		 */
651 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
652 		if (test->file_offset > entry_end(ordered))
653 			i_size_test = test->file_offset;
654 	} else {
655 		i_size_test = i_size_read(inode);
656 	}
657 
658 	/*
659 	 * i_size_test is the end of a region after this ordered
660 	 * extent where there are no ordered extents.  As long as there
661 	 * are no delalloc bytes in this area, it is safe to update
662 	 * disk_i_size to the end of the region.
663 	 */
664 	if (i_size_test > entry_end(ordered) &&
665 	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
666 			   EXTENT_DELALLOC, 0, NULL)) {
667 		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
668 	}
669 	BTRFS_I(inode)->disk_i_size = new_i_size;
670 out:
671 	mutex_unlock(&tree->mutex);
672 	return 0;
673 }
674 
675 /*
676  * search the ordered extents for one corresponding to 'offset' and
677  * try to find a checksum.  This is used because we allow pages to
678  * be reclaimed before their checksum is actually put into the btree
679  */
680 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
681 			   u32 *sum)
682 {
683 	struct btrfs_ordered_sum *ordered_sum;
684 	struct btrfs_sector_sum *sector_sums;
685 	struct btrfs_ordered_extent *ordered;
686 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
687 	unsigned long num_sectors;
688 	unsigned long i;
689 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
690 	int ret = 1;
691 
692 	ordered = btrfs_lookup_ordered_extent(inode, offset);
693 	if (!ordered)
694 		return 1;
695 
696 	mutex_lock(&tree->mutex);
697 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
698 		if (disk_bytenr >= ordered_sum->bytenr) {
699 			num_sectors = ordered_sum->len / sectorsize;
700 			sector_sums = ordered_sum->sums;
701 			for (i = 0; i < num_sectors; i++) {
702 				if (sector_sums[i].bytenr == disk_bytenr) {
703 					*sum = sector_sums[i].sum;
704 					ret = 0;
705 					goto out;
706 				}
707 			}
708 		}
709 	}
710 out:
711 	mutex_unlock(&tree->mutex);
712 	btrfs_put_ordered_extent(ordered);
713 	return ret;
714 }
715 
716 
717 /*
718  * add a given inode to the list of inodes that must be fully on
719  * disk before a transaction commit finishes.
720  *
721  * This basically gives us the ext3 style data=ordered mode, and it is mostly
722  * used to make sure renamed files are fully on disk.
723  *
724  * It is a noop if the inode is already fully on disk.
725  *
726  * If trans is not null, we'll do a friendly check for a transaction that
727  * is already flushing things and force the IO down ourselves.
728  */
729 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
730 				struct btrfs_root *root,
731 				struct inode *inode)
732 {
733 	u64 last_mod;
734 
735 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
736 
737 	/*
738 	 * if this file hasn't been changed since the last transaction
739 	 * commit, we can safely return without doing anything
740 	 */
741 	if (last_mod < root->fs_info->last_trans_committed)
742 		return 0;
743 
744 	/*
745 	 * the transaction is already committing.  Just start the IO and
746 	 * don't bother with all of this list nonsense
747 	 */
748 	if (trans && root->fs_info->running_transaction->blocked) {
749 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
750 		return 0;
751 	}
752 
753 	spin_lock(&root->fs_info->ordered_extent_lock);
754 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
755 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
756 			      &root->fs_info->ordered_operations);
757 	}
758 	spin_unlock(&root->fs_info->ordered_extent_lock);
759 
760 	return 0;
761 }
762