1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/gfp.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/writeback.h> 23 #include <linux/pagevec.h> 24 #include "ctree.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "extent_io.h" 28 29 static u64 entry_end(struct btrfs_ordered_extent *entry) 30 { 31 if (entry->file_offset + entry->len < entry->file_offset) 32 return (u64)-1; 33 return entry->file_offset + entry->len; 34 } 35 36 /* returns NULL if the insertion worked, or it returns the node it did find 37 * in the tree 38 */ 39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 40 struct rb_node *node) 41 { 42 struct rb_node **p = &root->rb_node; 43 struct rb_node *parent = NULL; 44 struct btrfs_ordered_extent *entry; 45 46 while (*p) { 47 parent = *p; 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 49 50 if (file_offset < entry->file_offset) 51 p = &(*p)->rb_left; 52 else if (file_offset >= entry_end(entry)) 53 p = &(*p)->rb_right; 54 else 55 return parent; 56 } 57 58 rb_link_node(node, parent, p); 59 rb_insert_color(node, root); 60 return NULL; 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 /* 129 * look find the first ordered struct that has this offset, otherwise 130 * the first one less than this offset 131 */ 132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 133 u64 file_offset) 134 { 135 struct rb_root *root = &tree->tree; 136 struct rb_node *prev; 137 struct rb_node *ret; 138 struct btrfs_ordered_extent *entry; 139 140 if (tree->last) { 141 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 142 rb_node); 143 if (offset_in_entry(entry, file_offset)) 144 return tree->last; 145 } 146 ret = __tree_search(root, file_offset, &prev); 147 if (!ret) 148 ret = prev; 149 if (ret) 150 tree->last = ret; 151 return ret; 152 } 153 154 /* allocate and add a new ordered_extent into the per-inode tree. 155 * file_offset is the logical offset in the file 156 * 157 * start is the disk block number of an extent already reserved in the 158 * extent allocation tree 159 * 160 * len is the length of the extent 161 * 162 * The tree is given a single reference on the ordered extent that was 163 * inserted. 164 */ 165 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 166 u64 start, u64 len, u64 disk_len, int type) 167 { 168 struct btrfs_ordered_inode_tree *tree; 169 struct rb_node *node; 170 struct btrfs_ordered_extent *entry; 171 172 tree = &BTRFS_I(inode)->ordered_tree; 173 entry = kzalloc(sizeof(*entry), GFP_NOFS); 174 if (!entry) 175 return -ENOMEM; 176 177 mutex_lock(&tree->mutex); 178 entry->file_offset = file_offset; 179 entry->start = start; 180 entry->len = len; 181 entry->disk_len = disk_len; 182 entry->bytes_left = len; 183 entry->inode = inode; 184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 185 set_bit(type, &entry->flags); 186 187 /* one ref for the tree */ 188 atomic_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->root_extent_list); 192 193 node = tree_insert(&tree->tree, file_offset, 194 &entry->rb_node); 195 BUG_ON(node); 196 197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 198 list_add_tail(&entry->root_extent_list, 199 &BTRFS_I(inode)->root->fs_info->ordered_extents); 200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 201 202 mutex_unlock(&tree->mutex); 203 BUG_ON(node); 204 return 0; 205 } 206 207 /* 208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 209 * when an ordered extent is finished. If the list covers more than one 210 * ordered extent, it is split across multiples. 211 */ 212 int btrfs_add_ordered_sum(struct inode *inode, 213 struct btrfs_ordered_extent *entry, 214 struct btrfs_ordered_sum *sum) 215 { 216 struct btrfs_ordered_inode_tree *tree; 217 218 tree = &BTRFS_I(inode)->ordered_tree; 219 mutex_lock(&tree->mutex); 220 list_add_tail(&sum->list, &entry->list); 221 mutex_unlock(&tree->mutex); 222 return 0; 223 } 224 225 /* 226 * this is used to account for finished IO across a given range 227 * of the file. The IO should not span ordered extents. If 228 * a given ordered_extent is completely done, 1 is returned, otherwise 229 * 0. 230 * 231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 232 * to make sure this function only returns 1 once for a given ordered extent. 233 */ 234 int btrfs_dec_test_ordered_pending(struct inode *inode, 235 u64 file_offset, u64 io_size) 236 { 237 struct btrfs_ordered_inode_tree *tree; 238 struct rb_node *node; 239 struct btrfs_ordered_extent *entry; 240 int ret; 241 242 tree = &BTRFS_I(inode)->ordered_tree; 243 mutex_lock(&tree->mutex); 244 node = tree_search(tree, file_offset); 245 if (!node) { 246 ret = 1; 247 goto out; 248 } 249 250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 251 if (!offset_in_entry(entry, file_offset)) { 252 ret = 1; 253 goto out; 254 } 255 256 if (io_size > entry->bytes_left) { 257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 258 (unsigned long long)entry->bytes_left, 259 (unsigned long long)io_size); 260 } 261 entry->bytes_left -= io_size; 262 if (entry->bytes_left == 0) 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 264 else 265 ret = 1; 266 out: 267 mutex_unlock(&tree->mutex); 268 return ret == 0; 269 } 270 271 /* 272 * used to drop a reference on an ordered extent. This will free 273 * the extent if the last reference is dropped 274 */ 275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 276 { 277 struct list_head *cur; 278 struct btrfs_ordered_sum *sum; 279 280 if (atomic_dec_and_test(&entry->refs)) { 281 while (!list_empty(&entry->list)) { 282 cur = entry->list.next; 283 sum = list_entry(cur, struct btrfs_ordered_sum, list); 284 list_del(&sum->list); 285 kfree(sum); 286 } 287 kfree(entry); 288 } 289 return 0; 290 } 291 292 /* 293 * remove an ordered extent from the tree. No references are dropped 294 * but, anyone waiting on this extent is woken up. 295 */ 296 int btrfs_remove_ordered_extent(struct inode *inode, 297 struct btrfs_ordered_extent *entry) 298 { 299 struct btrfs_ordered_inode_tree *tree; 300 struct rb_node *node; 301 302 tree = &BTRFS_I(inode)->ordered_tree; 303 mutex_lock(&tree->mutex); 304 node = &entry->rb_node; 305 rb_erase(node, &tree->tree); 306 tree->last = NULL; 307 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 308 309 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 310 list_del_init(&entry->root_extent_list); 311 312 /* 313 * we have no more ordered extents for this inode and 314 * no dirty pages. We can safely remove it from the 315 * list of ordered extents 316 */ 317 if (RB_EMPTY_ROOT(&tree->tree) && 318 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 319 list_del_init(&BTRFS_I(inode)->ordered_operations); 320 } 321 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 322 323 mutex_unlock(&tree->mutex); 324 wake_up(&entry->wait); 325 return 0; 326 } 327 328 /* 329 * wait for all the ordered extents in a root. This is done when balancing 330 * space between drives. 331 */ 332 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) 333 { 334 struct list_head splice; 335 struct list_head *cur; 336 struct btrfs_ordered_extent *ordered; 337 struct inode *inode; 338 339 INIT_LIST_HEAD(&splice); 340 341 spin_lock(&root->fs_info->ordered_extent_lock); 342 list_splice_init(&root->fs_info->ordered_extents, &splice); 343 while (!list_empty(&splice)) { 344 cur = splice.next; 345 ordered = list_entry(cur, struct btrfs_ordered_extent, 346 root_extent_list); 347 if (nocow_only && 348 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 349 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 350 list_move(&ordered->root_extent_list, 351 &root->fs_info->ordered_extents); 352 cond_resched_lock(&root->fs_info->ordered_extent_lock); 353 continue; 354 } 355 356 list_del_init(&ordered->root_extent_list); 357 atomic_inc(&ordered->refs); 358 359 /* 360 * the inode may be getting freed (in sys_unlink path). 361 */ 362 inode = igrab(ordered->inode); 363 364 spin_unlock(&root->fs_info->ordered_extent_lock); 365 366 if (inode) { 367 btrfs_start_ordered_extent(inode, ordered, 1); 368 btrfs_put_ordered_extent(ordered); 369 iput(inode); 370 } else { 371 btrfs_put_ordered_extent(ordered); 372 } 373 374 spin_lock(&root->fs_info->ordered_extent_lock); 375 } 376 spin_unlock(&root->fs_info->ordered_extent_lock); 377 return 0; 378 } 379 380 /* 381 * this is used during transaction commit to write all the inodes 382 * added to the ordered operation list. These files must be fully on 383 * disk before the transaction commits. 384 * 385 * we have two modes here, one is to just start the IO via filemap_flush 386 * and the other is to wait for all the io. When we wait, we have an 387 * extra check to make sure the ordered operation list really is empty 388 * before we return 389 */ 390 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 391 { 392 struct btrfs_inode *btrfs_inode; 393 struct inode *inode; 394 struct list_head splice; 395 396 INIT_LIST_HEAD(&splice); 397 398 mutex_lock(&root->fs_info->ordered_operations_mutex); 399 spin_lock(&root->fs_info->ordered_extent_lock); 400 again: 401 list_splice_init(&root->fs_info->ordered_operations, &splice); 402 403 while (!list_empty(&splice)) { 404 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 405 ordered_operations); 406 407 inode = &btrfs_inode->vfs_inode; 408 409 list_del_init(&btrfs_inode->ordered_operations); 410 411 /* 412 * the inode may be getting freed (in sys_unlink path). 413 */ 414 inode = igrab(inode); 415 416 if (!wait && inode) { 417 list_add_tail(&BTRFS_I(inode)->ordered_operations, 418 &root->fs_info->ordered_operations); 419 } 420 spin_unlock(&root->fs_info->ordered_extent_lock); 421 422 if (inode) { 423 if (wait) 424 btrfs_wait_ordered_range(inode, 0, (u64)-1); 425 else 426 filemap_flush(inode->i_mapping); 427 iput(inode); 428 } 429 430 cond_resched(); 431 spin_lock(&root->fs_info->ordered_extent_lock); 432 } 433 if (wait && !list_empty(&root->fs_info->ordered_operations)) 434 goto again; 435 436 spin_unlock(&root->fs_info->ordered_extent_lock); 437 mutex_unlock(&root->fs_info->ordered_operations_mutex); 438 439 return 0; 440 } 441 442 /* 443 * Used to start IO or wait for a given ordered extent to finish. 444 * 445 * If wait is one, this effectively waits on page writeback for all the pages 446 * in the extent, and it waits on the io completion code to insert 447 * metadata into the btree corresponding to the extent 448 */ 449 void btrfs_start_ordered_extent(struct inode *inode, 450 struct btrfs_ordered_extent *entry, 451 int wait) 452 { 453 u64 start = entry->file_offset; 454 u64 end = start + entry->len - 1; 455 456 /* 457 * pages in the range can be dirty, clean or writeback. We 458 * start IO on any dirty ones so the wait doesn't stall waiting 459 * for pdflush to find them 460 */ 461 filemap_fdatawrite_range(inode->i_mapping, start, end); 462 if (wait) { 463 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 464 &entry->flags)); 465 } 466 } 467 468 /* 469 * Used to wait on ordered extents across a large range of bytes. 470 */ 471 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 472 { 473 u64 end; 474 u64 orig_end; 475 u64 wait_end; 476 struct btrfs_ordered_extent *ordered; 477 int found; 478 479 if (start + len < start) { 480 orig_end = INT_LIMIT(loff_t); 481 } else { 482 orig_end = start + len - 1; 483 if (orig_end > INT_LIMIT(loff_t)) 484 orig_end = INT_LIMIT(loff_t); 485 } 486 wait_end = orig_end; 487 again: 488 /* start IO across the range first to instantiate any delalloc 489 * extents 490 */ 491 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 492 493 /* The compression code will leave pages locked but return from 494 * writepage without setting the page writeback. Starting again 495 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 496 */ 497 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 498 499 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 500 501 end = orig_end; 502 found = 0; 503 while (1) { 504 ordered = btrfs_lookup_first_ordered_extent(inode, end); 505 if (!ordered) 506 break; 507 if (ordered->file_offset > orig_end) { 508 btrfs_put_ordered_extent(ordered); 509 break; 510 } 511 if (ordered->file_offset + ordered->len < start) { 512 btrfs_put_ordered_extent(ordered); 513 break; 514 } 515 found++; 516 btrfs_start_ordered_extent(inode, ordered, 1); 517 end = ordered->file_offset; 518 btrfs_put_ordered_extent(ordered); 519 if (end == 0 || end == start) 520 break; 521 end--; 522 } 523 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 524 EXTENT_DELALLOC, 0, NULL)) { 525 schedule_timeout(1); 526 goto again; 527 } 528 return 0; 529 } 530 531 /* 532 * find an ordered extent corresponding to file_offset. return NULL if 533 * nothing is found, otherwise take a reference on the extent and return it 534 */ 535 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 536 u64 file_offset) 537 { 538 struct btrfs_ordered_inode_tree *tree; 539 struct rb_node *node; 540 struct btrfs_ordered_extent *entry = NULL; 541 542 tree = &BTRFS_I(inode)->ordered_tree; 543 mutex_lock(&tree->mutex); 544 node = tree_search(tree, file_offset); 545 if (!node) 546 goto out; 547 548 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 549 if (!offset_in_entry(entry, file_offset)) 550 entry = NULL; 551 if (entry) 552 atomic_inc(&entry->refs); 553 out: 554 mutex_unlock(&tree->mutex); 555 return entry; 556 } 557 558 /* 559 * lookup and return any extent before 'file_offset'. NULL is returned 560 * if none is found 561 */ 562 struct btrfs_ordered_extent * 563 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 564 { 565 struct btrfs_ordered_inode_tree *tree; 566 struct rb_node *node; 567 struct btrfs_ordered_extent *entry = NULL; 568 569 tree = &BTRFS_I(inode)->ordered_tree; 570 mutex_lock(&tree->mutex); 571 node = tree_search(tree, file_offset); 572 if (!node) 573 goto out; 574 575 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 576 atomic_inc(&entry->refs); 577 out: 578 mutex_unlock(&tree->mutex); 579 return entry; 580 } 581 582 /* 583 * After an extent is done, call this to conditionally update the on disk 584 * i_size. i_size is updated to cover any fully written part of the file. 585 */ 586 int btrfs_ordered_update_i_size(struct inode *inode, 587 struct btrfs_ordered_extent *ordered) 588 { 589 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 590 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 591 u64 disk_i_size; 592 u64 new_i_size; 593 u64 i_size_test; 594 struct rb_node *node; 595 struct btrfs_ordered_extent *test; 596 597 mutex_lock(&tree->mutex); 598 disk_i_size = BTRFS_I(inode)->disk_i_size; 599 600 /* 601 * if the disk i_size is already at the inode->i_size, or 602 * this ordered extent is inside the disk i_size, we're done 603 */ 604 if (disk_i_size >= inode->i_size || 605 ordered->file_offset + ordered->len <= disk_i_size) { 606 goto out; 607 } 608 609 /* 610 * we can't update the disk_isize if there are delalloc bytes 611 * between disk_i_size and this ordered extent 612 */ 613 if (test_range_bit(io_tree, disk_i_size, 614 ordered->file_offset + ordered->len - 1, 615 EXTENT_DELALLOC, 0, NULL)) { 616 goto out; 617 } 618 /* 619 * walk backward from this ordered extent to disk_i_size. 620 * if we find an ordered extent then we can't update disk i_size 621 * yet 622 */ 623 node = &ordered->rb_node; 624 while (1) { 625 node = rb_prev(node); 626 if (!node) 627 break; 628 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 629 if (test->file_offset + test->len <= disk_i_size) 630 break; 631 if (test->file_offset >= inode->i_size) 632 break; 633 if (test->file_offset >= disk_i_size) 634 goto out; 635 } 636 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); 637 638 /* 639 * at this point, we know we can safely update i_size to at least 640 * the offset from this ordered extent. But, we need to 641 * walk forward and see if ios from higher up in the file have 642 * finished. 643 */ 644 node = rb_next(&ordered->rb_node); 645 i_size_test = 0; 646 if (node) { 647 /* 648 * do we have an area where IO might have finished 649 * between our ordered extent and the next one. 650 */ 651 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 652 if (test->file_offset > entry_end(ordered)) 653 i_size_test = test->file_offset; 654 } else { 655 i_size_test = i_size_read(inode); 656 } 657 658 /* 659 * i_size_test is the end of a region after this ordered 660 * extent where there are no ordered extents. As long as there 661 * are no delalloc bytes in this area, it is safe to update 662 * disk_i_size to the end of the region. 663 */ 664 if (i_size_test > entry_end(ordered) && 665 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, 666 EXTENT_DELALLOC, 0, NULL)) { 667 new_i_size = min_t(u64, i_size_test, i_size_read(inode)); 668 } 669 BTRFS_I(inode)->disk_i_size = new_i_size; 670 out: 671 mutex_unlock(&tree->mutex); 672 return 0; 673 } 674 675 /* 676 * search the ordered extents for one corresponding to 'offset' and 677 * try to find a checksum. This is used because we allow pages to 678 * be reclaimed before their checksum is actually put into the btree 679 */ 680 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 681 u32 *sum) 682 { 683 struct btrfs_ordered_sum *ordered_sum; 684 struct btrfs_sector_sum *sector_sums; 685 struct btrfs_ordered_extent *ordered; 686 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 687 unsigned long num_sectors; 688 unsigned long i; 689 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 690 int ret = 1; 691 692 ordered = btrfs_lookup_ordered_extent(inode, offset); 693 if (!ordered) 694 return 1; 695 696 mutex_lock(&tree->mutex); 697 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 698 if (disk_bytenr >= ordered_sum->bytenr) { 699 num_sectors = ordered_sum->len / sectorsize; 700 sector_sums = ordered_sum->sums; 701 for (i = 0; i < num_sectors; i++) { 702 if (sector_sums[i].bytenr == disk_bytenr) { 703 *sum = sector_sums[i].sum; 704 ret = 0; 705 goto out; 706 } 707 } 708 } 709 } 710 out: 711 mutex_unlock(&tree->mutex); 712 btrfs_put_ordered_extent(ordered); 713 return ret; 714 } 715 716 717 /* 718 * add a given inode to the list of inodes that must be fully on 719 * disk before a transaction commit finishes. 720 * 721 * This basically gives us the ext3 style data=ordered mode, and it is mostly 722 * used to make sure renamed files are fully on disk. 723 * 724 * It is a noop if the inode is already fully on disk. 725 * 726 * If trans is not null, we'll do a friendly check for a transaction that 727 * is already flushing things and force the IO down ourselves. 728 */ 729 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 730 struct btrfs_root *root, 731 struct inode *inode) 732 { 733 u64 last_mod; 734 735 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 736 737 /* 738 * if this file hasn't been changed since the last transaction 739 * commit, we can safely return without doing anything 740 */ 741 if (last_mod < root->fs_info->last_trans_committed) 742 return 0; 743 744 /* 745 * the transaction is already committing. Just start the IO and 746 * don't bother with all of this list nonsense 747 */ 748 if (trans && root->fs_info->running_transaction->blocked) { 749 btrfs_wait_ordered_range(inode, 0, (u64)-1); 750 return 0; 751 } 752 753 spin_lock(&root->fs_info->ordered_extent_lock); 754 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 755 list_add_tail(&BTRFS_I(inode)->ordered_operations, 756 &root->fs_info->ordered_operations); 757 } 758 spin_unlock(&root->fs_info->ordered_extent_lock); 759 760 return 0; 761 } 762