xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision e6dec923)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 #include "compression.h"
29 
30 static struct kmem_cache *btrfs_ordered_extent_cache;
31 
32 static u64 entry_end(struct btrfs_ordered_extent *entry)
33 {
34 	if (entry->file_offset + entry->len < entry->file_offset)
35 		return (u64)-1;
36 	return entry->file_offset + entry->len;
37 }
38 
39 /* returns NULL if the insertion worked, or it returns the node it did find
40  * in the tree
41  */
42 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
43 				   struct rb_node *node)
44 {
45 	struct rb_node **p = &root->rb_node;
46 	struct rb_node *parent = NULL;
47 	struct btrfs_ordered_extent *entry;
48 
49 	while (*p) {
50 		parent = *p;
51 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
52 
53 		if (file_offset < entry->file_offset)
54 			p = &(*p)->rb_left;
55 		else if (file_offset >= entry_end(entry))
56 			p = &(*p)->rb_right;
57 		else
58 			return parent;
59 	}
60 
61 	rb_link_node(node, parent, p);
62 	rb_insert_color(node, root);
63 	return NULL;
64 }
65 
66 static void ordered_data_tree_panic(struct inode *inode, int errno,
67 					       u64 offset)
68 {
69 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
70 	btrfs_panic(fs_info, errno,
71 		    "Inconsistency in ordered tree at offset %llu", offset);
72 }
73 
74 /*
75  * look for a given offset in the tree, and if it can't be found return the
76  * first lesser offset
77  */
78 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
79 				     struct rb_node **prev_ret)
80 {
81 	struct rb_node *n = root->rb_node;
82 	struct rb_node *prev = NULL;
83 	struct rb_node *test;
84 	struct btrfs_ordered_extent *entry;
85 	struct btrfs_ordered_extent *prev_entry = NULL;
86 
87 	while (n) {
88 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
89 		prev = n;
90 		prev_entry = entry;
91 
92 		if (file_offset < entry->file_offset)
93 			n = n->rb_left;
94 		else if (file_offset >= entry_end(entry))
95 			n = n->rb_right;
96 		else
97 			return n;
98 	}
99 	if (!prev_ret)
100 		return NULL;
101 
102 	while (prev && file_offset >= entry_end(prev_entry)) {
103 		test = rb_next(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		if (file_offset < entry_end(prev_entry))
109 			break;
110 
111 		prev = test;
112 	}
113 	if (prev)
114 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
115 				      rb_node);
116 	while (prev && file_offset < entry_end(prev_entry)) {
117 		test = rb_prev(prev);
118 		if (!test)
119 			break;
120 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
121 				      rb_node);
122 		prev = test;
123 	}
124 	*prev_ret = prev;
125 	return NULL;
126 }
127 
128 /*
129  * helper to check if a given offset is inside a given entry
130  */
131 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
132 {
133 	if (file_offset < entry->file_offset ||
134 	    entry->file_offset + entry->len <= file_offset)
135 		return 0;
136 	return 1;
137 }
138 
139 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
140 			  u64 len)
141 {
142 	if (file_offset + len <= entry->file_offset ||
143 	    entry->file_offset + entry->len <= file_offset)
144 		return 0;
145 	return 1;
146 }
147 
148 /*
149  * look find the first ordered struct that has this offset, otherwise
150  * the first one less than this offset
151  */
152 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
153 					  u64 file_offset)
154 {
155 	struct rb_root *root = &tree->tree;
156 	struct rb_node *prev = NULL;
157 	struct rb_node *ret;
158 	struct btrfs_ordered_extent *entry;
159 
160 	if (tree->last) {
161 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
162 				 rb_node);
163 		if (offset_in_entry(entry, file_offset))
164 			return tree->last;
165 	}
166 	ret = __tree_search(root, file_offset, &prev);
167 	if (!ret)
168 		ret = prev;
169 	if (ret)
170 		tree->last = ret;
171 	return ret;
172 }
173 
174 /* allocate and add a new ordered_extent into the per-inode tree.
175  * file_offset is the logical offset in the file
176  *
177  * start is the disk block number of an extent already reserved in the
178  * extent allocation tree
179  *
180  * len is the length of the extent
181  *
182  * The tree is given a single reference on the ordered extent that was
183  * inserted.
184  */
185 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
186 				      u64 start, u64 len, u64 disk_len,
187 				      int type, int dio, int compress_type)
188 {
189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190 	struct btrfs_root *root = BTRFS_I(inode)->root;
191 	struct btrfs_ordered_inode_tree *tree;
192 	struct rb_node *node;
193 	struct btrfs_ordered_extent *entry;
194 
195 	tree = &BTRFS_I(inode)->ordered_tree;
196 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
197 	if (!entry)
198 		return -ENOMEM;
199 
200 	entry->file_offset = file_offset;
201 	entry->start = start;
202 	entry->len = len;
203 	entry->disk_len = disk_len;
204 	entry->bytes_left = len;
205 	entry->inode = igrab(inode);
206 	entry->compress_type = compress_type;
207 	entry->truncated_len = (u64)-1;
208 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 		set_bit(type, &entry->flags);
210 
211 	if (dio)
212 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213 
214 	/* one ref for the tree */
215 	refcount_set(&entry->refs, 1);
216 	init_waitqueue_head(&entry->wait);
217 	INIT_LIST_HEAD(&entry->list);
218 	INIT_LIST_HEAD(&entry->root_extent_list);
219 	INIT_LIST_HEAD(&entry->work_list);
220 	init_completion(&entry->completion);
221 	INIT_LIST_HEAD(&entry->log_list);
222 	INIT_LIST_HEAD(&entry->trans_list);
223 
224 	trace_btrfs_ordered_extent_add(inode, entry);
225 
226 	spin_lock_irq(&tree->lock);
227 	node = tree_insert(&tree->tree, file_offset,
228 			   &entry->rb_node);
229 	if (node)
230 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 	spin_unlock_irq(&tree->lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 		spin_unlock(&fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 
245 	return 0;
246 }
247 
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 			     u64 start, u64 len, u64 disk_len, int type)
250 {
251 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252 					  disk_len, type, 0,
253 					  BTRFS_COMPRESS_NONE);
254 }
255 
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 				 u64 start, u64 len, u64 disk_len, int type)
258 {
259 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260 					  disk_len, type, 1,
261 					  BTRFS_COMPRESS_NONE);
262 }
263 
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 				      u64 start, u64 len, u64 disk_len,
266 				      int type, int compress_type)
267 {
268 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 					  disk_len, type, 0,
270 					  compress_type);
271 }
272 
273 /*
274  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275  * when an ordered extent is finished.  If the list covers more than one
276  * ordered extent, it is split across multiples.
277  */
278 void btrfs_add_ordered_sum(struct inode *inode,
279 			   struct btrfs_ordered_extent *entry,
280 			   struct btrfs_ordered_sum *sum)
281 {
282 	struct btrfs_ordered_inode_tree *tree;
283 
284 	tree = &BTRFS_I(inode)->ordered_tree;
285 	spin_lock_irq(&tree->lock);
286 	list_add_tail(&sum->list, &entry->list);
287 	spin_unlock_irq(&tree->lock);
288 }
289 
290 /*
291  * this is used to account for finished IO across a given range
292  * of the file.  The IO may span ordered extents.  If
293  * a given ordered_extent is completely done, 1 is returned, otherwise
294  * 0.
295  *
296  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297  * to make sure this function only returns 1 once for a given ordered extent.
298  *
299  * file_offset is updated to one byte past the range that is recorded as
300  * complete.  This allows you to walk forward in the file.
301  */
302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303 				   struct btrfs_ordered_extent **cached,
304 				   u64 *file_offset, u64 io_size, int uptodate)
305 {
306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307 	struct btrfs_ordered_inode_tree *tree;
308 	struct rb_node *node;
309 	struct btrfs_ordered_extent *entry = NULL;
310 	int ret;
311 	unsigned long flags;
312 	u64 dec_end;
313 	u64 dec_start;
314 	u64 to_dec;
315 
316 	tree = &BTRFS_I(inode)->ordered_tree;
317 	spin_lock_irqsave(&tree->lock, flags);
318 	node = tree_search(tree, *file_offset);
319 	if (!node) {
320 		ret = 1;
321 		goto out;
322 	}
323 
324 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325 	if (!offset_in_entry(entry, *file_offset)) {
326 		ret = 1;
327 		goto out;
328 	}
329 
330 	dec_start = max(*file_offset, entry->file_offset);
331 	dec_end = min(*file_offset + io_size, entry->file_offset +
332 		      entry->len);
333 	*file_offset = dec_end;
334 	if (dec_start > dec_end) {
335 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336 			   dec_start, dec_end);
337 	}
338 	to_dec = dec_end - dec_start;
339 	if (to_dec > entry->bytes_left) {
340 		btrfs_crit(fs_info,
341 			   "bad ordered accounting left %llu size %llu",
342 			   entry->bytes_left, to_dec);
343 	}
344 	entry->bytes_left -= to_dec;
345 	if (!uptodate)
346 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
347 
348 	if (entry->bytes_left == 0) {
349 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350 		/*
351 		 * Implicit memory barrier after test_and_set_bit
352 		 */
353 		if (waitqueue_active(&entry->wait))
354 			wake_up(&entry->wait);
355 	} else {
356 		ret = 1;
357 	}
358 out:
359 	if (!ret && cached && entry) {
360 		*cached = entry;
361 		refcount_inc(&entry->refs);
362 	}
363 	spin_unlock_irqrestore(&tree->lock, flags);
364 	return ret == 0;
365 }
366 
367 /*
368  * this is used to account for finished IO across a given range
369  * of the file.  The IO should not span ordered extents.  If
370  * a given ordered_extent is completely done, 1 is returned, otherwise
371  * 0.
372  *
373  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
374  * to make sure this function only returns 1 once for a given ordered extent.
375  */
376 int btrfs_dec_test_ordered_pending(struct inode *inode,
377 				   struct btrfs_ordered_extent **cached,
378 				   u64 file_offset, u64 io_size, int uptodate)
379 {
380 	struct btrfs_ordered_inode_tree *tree;
381 	struct rb_node *node;
382 	struct btrfs_ordered_extent *entry = NULL;
383 	unsigned long flags;
384 	int ret;
385 
386 	tree = &BTRFS_I(inode)->ordered_tree;
387 	spin_lock_irqsave(&tree->lock, flags);
388 	if (cached && *cached) {
389 		entry = *cached;
390 		goto have_entry;
391 	}
392 
393 	node = tree_search(tree, file_offset);
394 	if (!node) {
395 		ret = 1;
396 		goto out;
397 	}
398 
399 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
400 have_entry:
401 	if (!offset_in_entry(entry, file_offset)) {
402 		ret = 1;
403 		goto out;
404 	}
405 
406 	if (io_size > entry->bytes_left) {
407 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
408 			   "bad ordered accounting left %llu size %llu",
409 		       entry->bytes_left, io_size);
410 	}
411 	entry->bytes_left -= io_size;
412 	if (!uptodate)
413 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
414 
415 	if (entry->bytes_left == 0) {
416 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
417 		/*
418 		 * Implicit memory barrier after test_and_set_bit
419 		 */
420 		if (waitqueue_active(&entry->wait))
421 			wake_up(&entry->wait);
422 	} else {
423 		ret = 1;
424 	}
425 out:
426 	if (!ret && cached && entry) {
427 		*cached = entry;
428 		refcount_inc(&entry->refs);
429 	}
430 	spin_unlock_irqrestore(&tree->lock, flags);
431 	return ret == 0;
432 }
433 
434 /* Needs to either be called under a log transaction or the log_mutex */
435 void btrfs_get_logged_extents(struct btrfs_inode *inode,
436 			      struct list_head *logged_list,
437 			      const loff_t start,
438 			      const loff_t end)
439 {
440 	struct btrfs_ordered_inode_tree *tree;
441 	struct btrfs_ordered_extent *ordered;
442 	struct rb_node *n;
443 	struct rb_node *prev;
444 
445 	tree = &inode->ordered_tree;
446 	spin_lock_irq(&tree->lock);
447 	n = __tree_search(&tree->tree, end, &prev);
448 	if (!n)
449 		n = prev;
450 	for (; n; n = rb_prev(n)) {
451 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
452 		if (ordered->file_offset > end)
453 			continue;
454 		if (entry_end(ordered) <= start)
455 			break;
456 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
457 			continue;
458 		list_add(&ordered->log_list, logged_list);
459 		refcount_inc(&ordered->refs);
460 	}
461 	spin_unlock_irq(&tree->lock);
462 }
463 
464 void btrfs_put_logged_extents(struct list_head *logged_list)
465 {
466 	struct btrfs_ordered_extent *ordered;
467 
468 	while (!list_empty(logged_list)) {
469 		ordered = list_first_entry(logged_list,
470 					   struct btrfs_ordered_extent,
471 					   log_list);
472 		list_del_init(&ordered->log_list);
473 		btrfs_put_ordered_extent(ordered);
474 	}
475 }
476 
477 void btrfs_submit_logged_extents(struct list_head *logged_list,
478 				 struct btrfs_root *log)
479 {
480 	int index = log->log_transid % 2;
481 
482 	spin_lock_irq(&log->log_extents_lock[index]);
483 	list_splice_tail(logged_list, &log->logged_list[index]);
484 	spin_unlock_irq(&log->log_extents_lock[index]);
485 }
486 
487 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
488 			       struct btrfs_root *log, u64 transid)
489 {
490 	struct btrfs_ordered_extent *ordered;
491 	int index = transid % 2;
492 
493 	spin_lock_irq(&log->log_extents_lock[index]);
494 	while (!list_empty(&log->logged_list[index])) {
495 		struct inode *inode;
496 		ordered = list_first_entry(&log->logged_list[index],
497 					   struct btrfs_ordered_extent,
498 					   log_list);
499 		list_del_init(&ordered->log_list);
500 		inode = ordered->inode;
501 		spin_unlock_irq(&log->log_extents_lock[index]);
502 
503 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
504 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
505 			u64 start = ordered->file_offset;
506 			u64 end = ordered->file_offset + ordered->len - 1;
507 
508 			WARN_ON(!inode);
509 			filemap_fdatawrite_range(inode->i_mapping, start, end);
510 		}
511 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
512 						   &ordered->flags));
513 
514 		/*
515 		 * In order to keep us from losing our ordered extent
516 		 * information when committing the transaction we have to make
517 		 * sure that any logged extents are completed when we go to
518 		 * commit the transaction.  To do this we simply increase the
519 		 * current transactions pending_ordered counter and decrement it
520 		 * when the ordered extent completes.
521 		 */
522 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
523 			struct btrfs_ordered_inode_tree *tree;
524 
525 			tree = &BTRFS_I(inode)->ordered_tree;
526 			spin_lock_irq(&tree->lock);
527 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
528 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
529 				atomic_inc(&trans->transaction->pending_ordered);
530 			}
531 			spin_unlock_irq(&tree->lock);
532 		}
533 		btrfs_put_ordered_extent(ordered);
534 		spin_lock_irq(&log->log_extents_lock[index]);
535 	}
536 	spin_unlock_irq(&log->log_extents_lock[index]);
537 }
538 
539 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
540 {
541 	struct btrfs_ordered_extent *ordered;
542 	int index = transid % 2;
543 
544 	spin_lock_irq(&log->log_extents_lock[index]);
545 	while (!list_empty(&log->logged_list[index])) {
546 		ordered = list_first_entry(&log->logged_list[index],
547 					   struct btrfs_ordered_extent,
548 					   log_list);
549 		list_del_init(&ordered->log_list);
550 		spin_unlock_irq(&log->log_extents_lock[index]);
551 		btrfs_put_ordered_extent(ordered);
552 		spin_lock_irq(&log->log_extents_lock[index]);
553 	}
554 	spin_unlock_irq(&log->log_extents_lock[index]);
555 }
556 
557 /*
558  * used to drop a reference on an ordered extent.  This will free
559  * the extent if the last reference is dropped
560  */
561 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
562 {
563 	struct list_head *cur;
564 	struct btrfs_ordered_sum *sum;
565 
566 	trace_btrfs_ordered_extent_put(entry->inode, entry);
567 
568 	if (refcount_dec_and_test(&entry->refs)) {
569 		ASSERT(list_empty(&entry->log_list));
570 		ASSERT(list_empty(&entry->trans_list));
571 		ASSERT(list_empty(&entry->root_extent_list));
572 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
573 		if (entry->inode)
574 			btrfs_add_delayed_iput(entry->inode);
575 		while (!list_empty(&entry->list)) {
576 			cur = entry->list.next;
577 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
578 			list_del(&sum->list);
579 			kfree(sum);
580 		}
581 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
582 	}
583 }
584 
585 /*
586  * remove an ordered extent from the tree.  No references are dropped
587  * and waiters are woken up.
588  */
589 void btrfs_remove_ordered_extent(struct inode *inode,
590 				 struct btrfs_ordered_extent *entry)
591 {
592 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
593 	struct btrfs_ordered_inode_tree *tree;
594 	struct btrfs_root *root = BTRFS_I(inode)->root;
595 	struct rb_node *node;
596 	bool dec_pending_ordered = false;
597 
598 	tree = &BTRFS_I(inode)->ordered_tree;
599 	spin_lock_irq(&tree->lock);
600 	node = &entry->rb_node;
601 	rb_erase(node, &tree->tree);
602 	RB_CLEAR_NODE(node);
603 	if (tree->last == node)
604 		tree->last = NULL;
605 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
606 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
607 		dec_pending_ordered = true;
608 	spin_unlock_irq(&tree->lock);
609 
610 	/*
611 	 * The current running transaction is waiting on us, we need to let it
612 	 * know that we're complete and wake it up.
613 	 */
614 	if (dec_pending_ordered) {
615 		struct btrfs_transaction *trans;
616 
617 		/*
618 		 * The checks for trans are just a formality, it should be set,
619 		 * but if it isn't we don't want to deref/assert under the spin
620 		 * lock, so be nice and check if trans is set, but ASSERT() so
621 		 * if it isn't set a developer will notice.
622 		 */
623 		spin_lock(&fs_info->trans_lock);
624 		trans = fs_info->running_transaction;
625 		if (trans)
626 			refcount_inc(&trans->use_count);
627 		spin_unlock(&fs_info->trans_lock);
628 
629 		ASSERT(trans);
630 		if (trans) {
631 			if (atomic_dec_and_test(&trans->pending_ordered))
632 				wake_up(&trans->pending_wait);
633 			btrfs_put_transaction(trans);
634 		}
635 	}
636 
637 	spin_lock(&root->ordered_extent_lock);
638 	list_del_init(&entry->root_extent_list);
639 	root->nr_ordered_extents--;
640 
641 	trace_btrfs_ordered_extent_remove(inode, entry);
642 
643 	if (!root->nr_ordered_extents) {
644 		spin_lock(&fs_info->ordered_root_lock);
645 		BUG_ON(list_empty(&root->ordered_root));
646 		list_del_init(&root->ordered_root);
647 		spin_unlock(&fs_info->ordered_root_lock);
648 	}
649 	spin_unlock(&root->ordered_extent_lock);
650 	wake_up(&entry->wait);
651 }
652 
653 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
654 {
655 	struct btrfs_ordered_extent *ordered;
656 
657 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
658 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
659 	complete(&ordered->completion);
660 }
661 
662 /*
663  * wait for all the ordered extents in a root.  This is done when balancing
664  * space between drives.
665  */
666 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
667 			       const u64 range_start, const u64 range_len)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	LIST_HEAD(splice);
671 	LIST_HEAD(skipped);
672 	LIST_HEAD(works);
673 	struct btrfs_ordered_extent *ordered, *next;
674 	u64 count = 0;
675 	const u64 range_end = range_start + range_len;
676 
677 	mutex_lock(&root->ordered_extent_mutex);
678 	spin_lock(&root->ordered_extent_lock);
679 	list_splice_init(&root->ordered_extents, &splice);
680 	while (!list_empty(&splice) && nr) {
681 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
682 					   root_extent_list);
683 
684 		if (range_end <= ordered->start ||
685 		    ordered->start + ordered->disk_len <= range_start) {
686 			list_move_tail(&ordered->root_extent_list, &skipped);
687 			cond_resched_lock(&root->ordered_extent_lock);
688 			continue;
689 		}
690 
691 		list_move_tail(&ordered->root_extent_list,
692 			       &root->ordered_extents);
693 		refcount_inc(&ordered->refs);
694 		spin_unlock(&root->ordered_extent_lock);
695 
696 		btrfs_init_work(&ordered->flush_work,
697 				btrfs_flush_delalloc_helper,
698 				btrfs_run_ordered_extent_work, NULL, NULL);
699 		list_add_tail(&ordered->work_list, &works);
700 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
701 
702 		cond_resched();
703 		spin_lock(&root->ordered_extent_lock);
704 		if (nr != U64_MAX)
705 			nr--;
706 		count++;
707 	}
708 	list_splice_tail(&skipped, &root->ordered_extents);
709 	list_splice_tail(&splice, &root->ordered_extents);
710 	spin_unlock(&root->ordered_extent_lock);
711 
712 	list_for_each_entry_safe(ordered, next, &works, work_list) {
713 		list_del_init(&ordered->work_list);
714 		wait_for_completion(&ordered->completion);
715 		btrfs_put_ordered_extent(ordered);
716 		cond_resched();
717 	}
718 	mutex_unlock(&root->ordered_extent_mutex);
719 
720 	return count;
721 }
722 
723 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
724 			     const u64 range_start, const u64 range_len)
725 {
726 	struct btrfs_root *root;
727 	struct list_head splice;
728 	u64 total_done = 0;
729 	u64 done;
730 
731 	INIT_LIST_HEAD(&splice);
732 
733 	mutex_lock(&fs_info->ordered_operations_mutex);
734 	spin_lock(&fs_info->ordered_root_lock);
735 	list_splice_init(&fs_info->ordered_roots, &splice);
736 	while (!list_empty(&splice) && nr) {
737 		root = list_first_entry(&splice, struct btrfs_root,
738 					ordered_root);
739 		root = btrfs_grab_fs_root(root);
740 		BUG_ON(!root);
741 		list_move_tail(&root->ordered_root,
742 			       &fs_info->ordered_roots);
743 		spin_unlock(&fs_info->ordered_root_lock);
744 
745 		done = btrfs_wait_ordered_extents(root, nr,
746 						  range_start, range_len);
747 		btrfs_put_fs_root(root);
748 		total_done += done;
749 
750 		spin_lock(&fs_info->ordered_root_lock);
751 		if (nr != U64_MAX) {
752 			nr -= done;
753 		}
754 	}
755 	list_splice_tail(&splice, &fs_info->ordered_roots);
756 	spin_unlock(&fs_info->ordered_root_lock);
757 	mutex_unlock(&fs_info->ordered_operations_mutex);
758 
759 	return total_done;
760 }
761 
762 /*
763  * Used to start IO or wait for a given ordered extent to finish.
764  *
765  * If wait is one, this effectively waits on page writeback for all the pages
766  * in the extent, and it waits on the io completion code to insert
767  * metadata into the btree corresponding to the extent
768  */
769 void btrfs_start_ordered_extent(struct inode *inode,
770 				       struct btrfs_ordered_extent *entry,
771 				       int wait)
772 {
773 	u64 start = entry->file_offset;
774 	u64 end = start + entry->len - 1;
775 
776 	trace_btrfs_ordered_extent_start(inode, entry);
777 
778 	/*
779 	 * pages in the range can be dirty, clean or writeback.  We
780 	 * start IO on any dirty ones so the wait doesn't stall waiting
781 	 * for the flusher thread to find them
782 	 */
783 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
784 		filemap_fdatawrite_range(inode->i_mapping, start, end);
785 	if (wait) {
786 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
787 						 &entry->flags));
788 	}
789 }
790 
791 /*
792  * Used to wait on ordered extents across a large range of bytes.
793  */
794 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
795 {
796 	int ret = 0;
797 	int ret_wb = 0;
798 	u64 end;
799 	u64 orig_end;
800 	struct btrfs_ordered_extent *ordered;
801 
802 	if (start + len < start) {
803 		orig_end = INT_LIMIT(loff_t);
804 	} else {
805 		orig_end = start + len - 1;
806 		if (orig_end > INT_LIMIT(loff_t))
807 			orig_end = INT_LIMIT(loff_t);
808 	}
809 
810 	/* start IO across the range first to instantiate any delalloc
811 	 * extents
812 	 */
813 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
814 	if (ret)
815 		return ret;
816 
817 	/*
818 	 * If we have a writeback error don't return immediately. Wait first
819 	 * for any ordered extents that haven't completed yet. This is to make
820 	 * sure no one can dirty the same page ranges and call writepages()
821 	 * before the ordered extents complete - to avoid failures (-EEXIST)
822 	 * when adding the new ordered extents to the ordered tree.
823 	 */
824 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
825 
826 	end = orig_end;
827 	while (1) {
828 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
829 		if (!ordered)
830 			break;
831 		if (ordered->file_offset > orig_end) {
832 			btrfs_put_ordered_extent(ordered);
833 			break;
834 		}
835 		if (ordered->file_offset + ordered->len <= start) {
836 			btrfs_put_ordered_extent(ordered);
837 			break;
838 		}
839 		btrfs_start_ordered_extent(inode, ordered, 1);
840 		end = ordered->file_offset;
841 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
842 			ret = -EIO;
843 		btrfs_put_ordered_extent(ordered);
844 		if (ret || end == 0 || end == start)
845 			break;
846 		end--;
847 	}
848 	return ret_wb ? ret_wb : ret;
849 }
850 
851 /*
852  * find an ordered extent corresponding to file_offset.  return NULL if
853  * nothing is found, otherwise take a reference on the extent and return it
854  */
855 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
856 							 u64 file_offset)
857 {
858 	struct btrfs_ordered_inode_tree *tree;
859 	struct rb_node *node;
860 	struct btrfs_ordered_extent *entry = NULL;
861 
862 	tree = &BTRFS_I(inode)->ordered_tree;
863 	spin_lock_irq(&tree->lock);
864 	node = tree_search(tree, file_offset);
865 	if (!node)
866 		goto out;
867 
868 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
869 	if (!offset_in_entry(entry, file_offset))
870 		entry = NULL;
871 	if (entry)
872 		refcount_inc(&entry->refs);
873 out:
874 	spin_unlock_irq(&tree->lock);
875 	return entry;
876 }
877 
878 /* Since the DIO code tries to lock a wide area we need to look for any ordered
879  * extents that exist in the range, rather than just the start of the range.
880  */
881 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
882 		struct btrfs_inode *inode, u64 file_offset, u64 len)
883 {
884 	struct btrfs_ordered_inode_tree *tree;
885 	struct rb_node *node;
886 	struct btrfs_ordered_extent *entry = NULL;
887 
888 	tree = &inode->ordered_tree;
889 	spin_lock_irq(&tree->lock);
890 	node = tree_search(tree, file_offset);
891 	if (!node) {
892 		node = tree_search(tree, file_offset + len);
893 		if (!node)
894 			goto out;
895 	}
896 
897 	while (1) {
898 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
899 		if (range_overlaps(entry, file_offset, len))
900 			break;
901 
902 		if (entry->file_offset >= file_offset + len) {
903 			entry = NULL;
904 			break;
905 		}
906 		entry = NULL;
907 		node = rb_next(node);
908 		if (!node)
909 			break;
910 	}
911 out:
912 	if (entry)
913 		refcount_inc(&entry->refs);
914 	spin_unlock_irq(&tree->lock);
915 	return entry;
916 }
917 
918 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
919 					 u64 file_offset,
920 					 u64 len)
921 {
922 	struct btrfs_ordered_extent *oe;
923 
924 	oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
925 	if (oe) {
926 		btrfs_put_ordered_extent(oe);
927 		return true;
928 	}
929 	return false;
930 }
931 
932 /*
933  * lookup and return any extent before 'file_offset'.  NULL is returned
934  * if none is found
935  */
936 struct btrfs_ordered_extent *
937 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
938 {
939 	struct btrfs_ordered_inode_tree *tree;
940 	struct rb_node *node;
941 	struct btrfs_ordered_extent *entry = NULL;
942 
943 	tree = &BTRFS_I(inode)->ordered_tree;
944 	spin_lock_irq(&tree->lock);
945 	node = tree_search(tree, file_offset);
946 	if (!node)
947 		goto out;
948 
949 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
950 	refcount_inc(&entry->refs);
951 out:
952 	spin_unlock_irq(&tree->lock);
953 	return entry;
954 }
955 
956 /*
957  * After an extent is done, call this to conditionally update the on disk
958  * i_size.  i_size is updated to cover any fully written part of the file.
959  */
960 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
961 				struct btrfs_ordered_extent *ordered)
962 {
963 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
964 	u64 disk_i_size;
965 	u64 new_i_size;
966 	u64 i_size = i_size_read(inode);
967 	struct rb_node *node;
968 	struct rb_node *prev = NULL;
969 	struct btrfs_ordered_extent *test;
970 	int ret = 1;
971 	u64 orig_offset = offset;
972 
973 	spin_lock_irq(&tree->lock);
974 	if (ordered) {
975 		offset = entry_end(ordered);
976 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
977 			offset = min(offset,
978 				     ordered->file_offset +
979 				     ordered->truncated_len);
980 	} else {
981 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
982 	}
983 	disk_i_size = BTRFS_I(inode)->disk_i_size;
984 
985 	/*
986 	 * truncate file.
987 	 * If ordered is not NULL, then this is called from endio and
988 	 * disk_i_size will be updated by either truncate itself or any
989 	 * in-flight IOs which are inside the disk_i_size.
990 	 *
991 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
992 	 * fails somehow, we need to make sure we have a precise disk_i_size by
993 	 * updating it as usual.
994 	 *
995 	 */
996 	if (!ordered && disk_i_size > i_size) {
997 		BTRFS_I(inode)->disk_i_size = orig_offset;
998 		ret = 0;
999 		goto out;
1000 	}
1001 
1002 	/*
1003 	 * if the disk i_size is already at the inode->i_size, or
1004 	 * this ordered extent is inside the disk i_size, we're done
1005 	 */
1006 	if (disk_i_size == i_size)
1007 		goto out;
1008 
1009 	/*
1010 	 * We still need to update disk_i_size if outstanding_isize is greater
1011 	 * than disk_i_size.
1012 	 */
1013 	if (offset <= disk_i_size &&
1014 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
1015 		goto out;
1016 
1017 	/*
1018 	 * walk backward from this ordered extent to disk_i_size.
1019 	 * if we find an ordered extent then we can't update disk i_size
1020 	 * yet
1021 	 */
1022 	if (ordered) {
1023 		node = rb_prev(&ordered->rb_node);
1024 	} else {
1025 		prev = tree_search(tree, offset);
1026 		/*
1027 		 * we insert file extents without involving ordered struct,
1028 		 * so there should be no ordered struct cover this offset
1029 		 */
1030 		if (prev) {
1031 			test = rb_entry(prev, struct btrfs_ordered_extent,
1032 					rb_node);
1033 			BUG_ON(offset_in_entry(test, offset));
1034 		}
1035 		node = prev;
1036 	}
1037 	for (; node; node = rb_prev(node)) {
1038 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1039 
1040 		/* We treat this entry as if it doesn't exist */
1041 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1042 			continue;
1043 
1044 		if (entry_end(test) <= disk_i_size)
1045 			break;
1046 		if (test->file_offset >= i_size)
1047 			break;
1048 
1049 		/*
1050 		 * We don't update disk_i_size now, so record this undealt
1051 		 * i_size. Or we will not know the real i_size.
1052 		 */
1053 		if (test->outstanding_isize < offset)
1054 			test->outstanding_isize = offset;
1055 		if (ordered &&
1056 		    ordered->outstanding_isize > test->outstanding_isize)
1057 			test->outstanding_isize = ordered->outstanding_isize;
1058 		goto out;
1059 	}
1060 	new_i_size = min_t(u64, offset, i_size);
1061 
1062 	/*
1063 	 * Some ordered extents may completed before the current one, and
1064 	 * we hold the real i_size in ->outstanding_isize.
1065 	 */
1066 	if (ordered && ordered->outstanding_isize > new_i_size)
1067 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1068 	BTRFS_I(inode)->disk_i_size = new_i_size;
1069 	ret = 0;
1070 out:
1071 	/*
1072 	 * We need to do this because we can't remove ordered extents until
1073 	 * after the i_disk_size has been updated and then the inode has been
1074 	 * updated to reflect the change, so we need to tell anybody who finds
1075 	 * this ordered extent that we've already done all the real work, we
1076 	 * just haven't completed all the other work.
1077 	 */
1078 	if (ordered)
1079 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1080 	spin_unlock_irq(&tree->lock);
1081 	return ret;
1082 }
1083 
1084 /*
1085  * search the ordered extents for one corresponding to 'offset' and
1086  * try to find a checksum.  This is used because we allow pages to
1087  * be reclaimed before their checksum is actually put into the btree
1088  */
1089 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1090 			   u32 *sum, int len)
1091 {
1092 	struct btrfs_ordered_sum *ordered_sum;
1093 	struct btrfs_ordered_extent *ordered;
1094 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1095 	unsigned long num_sectors;
1096 	unsigned long i;
1097 	u32 sectorsize = btrfs_inode_sectorsize(inode);
1098 	int index = 0;
1099 
1100 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1101 	if (!ordered)
1102 		return 0;
1103 
1104 	spin_lock_irq(&tree->lock);
1105 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1106 		if (disk_bytenr >= ordered_sum->bytenr &&
1107 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1108 			i = (disk_bytenr - ordered_sum->bytenr) >>
1109 			    inode->i_sb->s_blocksize_bits;
1110 			num_sectors = ordered_sum->len >>
1111 				      inode->i_sb->s_blocksize_bits;
1112 			num_sectors = min_t(int, len - index, num_sectors - i);
1113 			memcpy(sum + index, ordered_sum->sums + i,
1114 			       num_sectors);
1115 
1116 			index += (int)num_sectors;
1117 			if (index == len)
1118 				goto out;
1119 			disk_bytenr += num_sectors * sectorsize;
1120 		}
1121 	}
1122 out:
1123 	spin_unlock_irq(&tree->lock);
1124 	btrfs_put_ordered_extent(ordered);
1125 	return index;
1126 }
1127 
1128 int __init ordered_data_init(void)
1129 {
1130 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1131 				     sizeof(struct btrfs_ordered_extent), 0,
1132 				     SLAB_MEM_SPREAD,
1133 				     NULL);
1134 	if (!btrfs_ordered_extent_cache)
1135 		return -ENOMEM;
1136 
1137 	return 0;
1138 }
1139 
1140 void ordered_data_exit(void)
1141 {
1142 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1143 }
1144