1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "ctree.h" 11 #include "transaction.h" 12 #include "btrfs_inode.h" 13 #include "extent_io.h" 14 #include "disk-io.h" 15 #include "compression.h" 16 #include "delalloc-space.h" 17 18 static struct kmem_cache *btrfs_ordered_extent_cache; 19 20 static u64 entry_end(struct btrfs_ordered_extent *entry) 21 { 22 if (entry->file_offset + entry->len < entry->file_offset) 23 return (u64)-1; 24 return entry->file_offset + entry->len; 25 } 26 27 /* returns NULL if the insertion worked, or it returns the node it did find 28 * in the tree 29 */ 30 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 31 struct rb_node *node) 32 { 33 struct rb_node **p = &root->rb_node; 34 struct rb_node *parent = NULL; 35 struct btrfs_ordered_extent *entry; 36 37 while (*p) { 38 parent = *p; 39 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 40 41 if (file_offset < entry->file_offset) 42 p = &(*p)->rb_left; 43 else if (file_offset >= entry_end(entry)) 44 p = &(*p)->rb_right; 45 else 46 return parent; 47 } 48 49 rb_link_node(node, parent, p); 50 rb_insert_color(node, root); 51 return NULL; 52 } 53 54 static void ordered_data_tree_panic(struct inode *inode, int errno, 55 u64 offset) 56 { 57 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 58 btrfs_panic(fs_info, errno, 59 "Inconsistency in ordered tree at offset %llu", offset); 60 } 61 62 /* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68 { 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114 } 115 116 /* 117 * helper to check if a given offset is inside a given entry 118 */ 119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120 { 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125 } 126 127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 128 u64 len) 129 { 130 if (file_offset + len <= entry->file_offset || 131 entry->file_offset + entry->len <= file_offset) 132 return 0; 133 return 1; 134 } 135 136 /* 137 * look find the first ordered struct that has this offset, otherwise 138 * the first one less than this offset 139 */ 140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 141 u64 file_offset) 142 { 143 struct rb_root *root = &tree->tree; 144 struct rb_node *prev = NULL; 145 struct rb_node *ret; 146 struct btrfs_ordered_extent *entry; 147 148 if (tree->last) { 149 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 150 rb_node); 151 if (offset_in_entry(entry, file_offset)) 152 return tree->last; 153 } 154 ret = __tree_search(root, file_offset, &prev); 155 if (!ret) 156 ret = prev; 157 if (ret) 158 tree->last = ret; 159 return ret; 160 } 161 162 /* allocate and add a new ordered_extent into the per-inode tree. 163 * file_offset is the logical offset in the file 164 * 165 * start is the disk block number of an extent already reserved in the 166 * extent allocation tree 167 * 168 * len is the length of the extent 169 * 170 * The tree is given a single reference on the ordered extent that was 171 * inserted. 172 */ 173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 174 u64 start, u64 len, u64 disk_len, 175 int type, int dio, int compress_type) 176 { 177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 178 struct btrfs_root *root = BTRFS_I(inode)->root; 179 struct btrfs_ordered_inode_tree *tree; 180 struct rb_node *node; 181 struct btrfs_ordered_extent *entry; 182 183 tree = &BTRFS_I(inode)->ordered_tree; 184 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 185 if (!entry) 186 return -ENOMEM; 187 188 entry->file_offset = file_offset; 189 entry->start = start; 190 entry->len = len; 191 entry->disk_len = disk_len; 192 entry->bytes_left = len; 193 entry->inode = igrab(inode); 194 entry->compress_type = compress_type; 195 entry->truncated_len = (u64)-1; 196 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 197 set_bit(type, &entry->flags); 198 199 if (dio) { 200 percpu_counter_add_batch(&fs_info->dio_bytes, len, 201 fs_info->delalloc_batch); 202 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 203 } 204 205 /* one ref for the tree */ 206 refcount_set(&entry->refs, 1); 207 init_waitqueue_head(&entry->wait); 208 INIT_LIST_HEAD(&entry->list); 209 INIT_LIST_HEAD(&entry->root_extent_list); 210 INIT_LIST_HEAD(&entry->work_list); 211 init_completion(&entry->completion); 212 INIT_LIST_HEAD(&entry->log_list); 213 INIT_LIST_HEAD(&entry->trans_list); 214 215 trace_btrfs_ordered_extent_add(inode, entry); 216 217 spin_lock_irq(&tree->lock); 218 node = tree_insert(&tree->tree, file_offset, 219 &entry->rb_node); 220 if (node) 221 ordered_data_tree_panic(inode, -EEXIST, file_offset); 222 spin_unlock_irq(&tree->lock); 223 224 spin_lock(&root->ordered_extent_lock); 225 list_add_tail(&entry->root_extent_list, 226 &root->ordered_extents); 227 root->nr_ordered_extents++; 228 if (root->nr_ordered_extents == 1) { 229 spin_lock(&fs_info->ordered_root_lock); 230 BUG_ON(!list_empty(&root->ordered_root)); 231 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 232 spin_unlock(&fs_info->ordered_root_lock); 233 } 234 spin_unlock(&root->ordered_extent_lock); 235 236 /* 237 * We don't need the count_max_extents here, we can assume that all of 238 * that work has been done at higher layers, so this is truly the 239 * smallest the extent is going to get. 240 */ 241 spin_lock(&BTRFS_I(inode)->lock); 242 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 243 spin_unlock(&BTRFS_I(inode)->lock); 244 245 return 0; 246 } 247 248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 249 u64 start, u64 len, u64 disk_len, int type) 250 { 251 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 252 disk_len, type, 0, 253 BTRFS_COMPRESS_NONE); 254 } 255 256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 257 u64 start, u64 len, u64 disk_len, int type) 258 { 259 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 260 disk_len, type, 1, 261 BTRFS_COMPRESS_NONE); 262 } 263 264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 265 u64 start, u64 len, u64 disk_len, 266 int type, int compress_type) 267 { 268 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 269 disk_len, type, 0, 270 compress_type); 271 } 272 273 /* 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 275 * when an ordered extent is finished. If the list covers more than one 276 * ordered extent, it is split across multiples. 277 */ 278 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 279 struct btrfs_ordered_sum *sum) 280 { 281 struct btrfs_ordered_inode_tree *tree; 282 283 tree = &BTRFS_I(entry->inode)->ordered_tree; 284 spin_lock_irq(&tree->lock); 285 list_add_tail(&sum->list, &entry->list); 286 spin_unlock_irq(&tree->lock); 287 } 288 289 /* 290 * this is used to account for finished IO across a given range 291 * of the file. The IO may span ordered extents. If 292 * a given ordered_extent is completely done, 1 is returned, otherwise 293 * 0. 294 * 295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 296 * to make sure this function only returns 1 once for a given ordered extent. 297 * 298 * file_offset is updated to one byte past the range that is recorded as 299 * complete. This allows you to walk forward in the file. 300 */ 301 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 302 struct btrfs_ordered_extent **cached, 303 u64 *file_offset, u64 io_size, int uptodate) 304 { 305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 306 struct btrfs_ordered_inode_tree *tree; 307 struct rb_node *node; 308 struct btrfs_ordered_extent *entry = NULL; 309 int ret; 310 unsigned long flags; 311 u64 dec_end; 312 u64 dec_start; 313 u64 to_dec; 314 315 tree = &BTRFS_I(inode)->ordered_tree; 316 spin_lock_irqsave(&tree->lock, flags); 317 node = tree_search(tree, *file_offset); 318 if (!node) { 319 ret = 1; 320 goto out; 321 } 322 323 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 324 if (!offset_in_entry(entry, *file_offset)) { 325 ret = 1; 326 goto out; 327 } 328 329 dec_start = max(*file_offset, entry->file_offset); 330 dec_end = min(*file_offset + io_size, entry->file_offset + 331 entry->len); 332 *file_offset = dec_end; 333 if (dec_start > dec_end) { 334 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 335 dec_start, dec_end); 336 } 337 to_dec = dec_end - dec_start; 338 if (to_dec > entry->bytes_left) { 339 btrfs_crit(fs_info, 340 "bad ordered accounting left %llu size %llu", 341 entry->bytes_left, to_dec); 342 } 343 entry->bytes_left -= to_dec; 344 if (!uptodate) 345 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 346 347 if (entry->bytes_left == 0) { 348 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 349 /* test_and_set_bit implies a barrier */ 350 cond_wake_up_nomb(&entry->wait); 351 } else { 352 ret = 1; 353 } 354 out: 355 if (!ret && cached && entry) { 356 *cached = entry; 357 refcount_inc(&entry->refs); 358 } 359 spin_unlock_irqrestore(&tree->lock, flags); 360 return ret == 0; 361 } 362 363 /* 364 * this is used to account for finished IO across a given range 365 * of the file. The IO should not span ordered extents. If 366 * a given ordered_extent is completely done, 1 is returned, otherwise 367 * 0. 368 * 369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 370 * to make sure this function only returns 1 once for a given ordered extent. 371 */ 372 int btrfs_dec_test_ordered_pending(struct inode *inode, 373 struct btrfs_ordered_extent **cached, 374 u64 file_offset, u64 io_size, int uptodate) 375 { 376 struct btrfs_ordered_inode_tree *tree; 377 struct rb_node *node; 378 struct btrfs_ordered_extent *entry = NULL; 379 unsigned long flags; 380 int ret; 381 382 tree = &BTRFS_I(inode)->ordered_tree; 383 spin_lock_irqsave(&tree->lock, flags); 384 if (cached && *cached) { 385 entry = *cached; 386 goto have_entry; 387 } 388 389 node = tree_search(tree, file_offset); 390 if (!node) { 391 ret = 1; 392 goto out; 393 } 394 395 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 396 have_entry: 397 if (!offset_in_entry(entry, file_offset)) { 398 ret = 1; 399 goto out; 400 } 401 402 if (io_size > entry->bytes_left) { 403 btrfs_crit(BTRFS_I(inode)->root->fs_info, 404 "bad ordered accounting left %llu size %llu", 405 entry->bytes_left, io_size); 406 } 407 entry->bytes_left -= io_size; 408 if (!uptodate) 409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 410 411 if (entry->bytes_left == 0) { 412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 413 /* test_and_set_bit implies a barrier */ 414 cond_wake_up_nomb(&entry->wait); 415 } else { 416 ret = 1; 417 } 418 out: 419 if (!ret && cached && entry) { 420 *cached = entry; 421 refcount_inc(&entry->refs); 422 } 423 spin_unlock_irqrestore(&tree->lock, flags); 424 return ret == 0; 425 } 426 427 /* 428 * used to drop a reference on an ordered extent. This will free 429 * the extent if the last reference is dropped 430 */ 431 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 432 { 433 struct list_head *cur; 434 struct btrfs_ordered_sum *sum; 435 436 trace_btrfs_ordered_extent_put(entry->inode, entry); 437 438 if (refcount_dec_and_test(&entry->refs)) { 439 ASSERT(list_empty(&entry->log_list)); 440 ASSERT(list_empty(&entry->trans_list)); 441 ASSERT(list_empty(&entry->root_extent_list)); 442 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 443 if (entry->inode) 444 btrfs_add_delayed_iput(entry->inode); 445 while (!list_empty(&entry->list)) { 446 cur = entry->list.next; 447 sum = list_entry(cur, struct btrfs_ordered_sum, list); 448 list_del(&sum->list); 449 kvfree(sum); 450 } 451 kmem_cache_free(btrfs_ordered_extent_cache, entry); 452 } 453 } 454 455 /* 456 * remove an ordered extent from the tree. No references are dropped 457 * and waiters are woken up. 458 */ 459 void btrfs_remove_ordered_extent(struct inode *inode, 460 struct btrfs_ordered_extent *entry) 461 { 462 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 463 struct btrfs_ordered_inode_tree *tree; 464 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 465 struct btrfs_root *root = btrfs_inode->root; 466 struct rb_node *node; 467 468 /* This is paired with btrfs_add_ordered_extent. */ 469 spin_lock(&btrfs_inode->lock); 470 btrfs_mod_outstanding_extents(btrfs_inode, -1); 471 spin_unlock(&btrfs_inode->lock); 472 if (root != fs_info->tree_root) 473 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); 474 475 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 476 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len, 477 fs_info->delalloc_batch); 478 479 tree = &btrfs_inode->ordered_tree; 480 spin_lock_irq(&tree->lock); 481 node = &entry->rb_node; 482 rb_erase(node, &tree->tree); 483 RB_CLEAR_NODE(node); 484 if (tree->last == node) 485 tree->last = NULL; 486 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 487 spin_unlock_irq(&tree->lock); 488 489 spin_lock(&root->ordered_extent_lock); 490 list_del_init(&entry->root_extent_list); 491 root->nr_ordered_extents--; 492 493 trace_btrfs_ordered_extent_remove(inode, entry); 494 495 if (!root->nr_ordered_extents) { 496 spin_lock(&fs_info->ordered_root_lock); 497 BUG_ON(list_empty(&root->ordered_root)); 498 list_del_init(&root->ordered_root); 499 spin_unlock(&fs_info->ordered_root_lock); 500 } 501 spin_unlock(&root->ordered_extent_lock); 502 wake_up(&entry->wait); 503 } 504 505 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 506 { 507 struct btrfs_ordered_extent *ordered; 508 509 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 510 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 511 complete(&ordered->completion); 512 } 513 514 /* 515 * wait for all the ordered extents in a root. This is done when balancing 516 * space between drives. 517 */ 518 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 519 const u64 range_start, const u64 range_len) 520 { 521 struct btrfs_fs_info *fs_info = root->fs_info; 522 LIST_HEAD(splice); 523 LIST_HEAD(skipped); 524 LIST_HEAD(works); 525 struct btrfs_ordered_extent *ordered, *next; 526 u64 count = 0; 527 const u64 range_end = range_start + range_len; 528 529 mutex_lock(&root->ordered_extent_mutex); 530 spin_lock(&root->ordered_extent_lock); 531 list_splice_init(&root->ordered_extents, &splice); 532 while (!list_empty(&splice) && nr) { 533 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 534 root_extent_list); 535 536 if (range_end <= ordered->start || 537 ordered->start + ordered->disk_len <= range_start) { 538 list_move_tail(&ordered->root_extent_list, &skipped); 539 cond_resched_lock(&root->ordered_extent_lock); 540 continue; 541 } 542 543 list_move_tail(&ordered->root_extent_list, 544 &root->ordered_extents); 545 refcount_inc(&ordered->refs); 546 spin_unlock(&root->ordered_extent_lock); 547 548 btrfs_init_work(&ordered->flush_work, 549 btrfs_flush_delalloc_helper, 550 btrfs_run_ordered_extent_work, NULL, NULL); 551 list_add_tail(&ordered->work_list, &works); 552 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 553 554 cond_resched(); 555 spin_lock(&root->ordered_extent_lock); 556 if (nr != U64_MAX) 557 nr--; 558 count++; 559 } 560 list_splice_tail(&skipped, &root->ordered_extents); 561 list_splice_tail(&splice, &root->ordered_extents); 562 spin_unlock(&root->ordered_extent_lock); 563 564 list_for_each_entry_safe(ordered, next, &works, work_list) { 565 list_del_init(&ordered->work_list); 566 wait_for_completion(&ordered->completion); 567 btrfs_put_ordered_extent(ordered); 568 cond_resched(); 569 } 570 mutex_unlock(&root->ordered_extent_mutex); 571 572 return count; 573 } 574 575 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 576 const u64 range_start, const u64 range_len) 577 { 578 struct btrfs_root *root; 579 struct list_head splice; 580 u64 total_done = 0; 581 u64 done; 582 583 INIT_LIST_HEAD(&splice); 584 585 mutex_lock(&fs_info->ordered_operations_mutex); 586 spin_lock(&fs_info->ordered_root_lock); 587 list_splice_init(&fs_info->ordered_roots, &splice); 588 while (!list_empty(&splice) && nr) { 589 root = list_first_entry(&splice, struct btrfs_root, 590 ordered_root); 591 root = btrfs_grab_fs_root(root); 592 BUG_ON(!root); 593 list_move_tail(&root->ordered_root, 594 &fs_info->ordered_roots); 595 spin_unlock(&fs_info->ordered_root_lock); 596 597 done = btrfs_wait_ordered_extents(root, nr, 598 range_start, range_len); 599 btrfs_put_fs_root(root); 600 total_done += done; 601 602 spin_lock(&fs_info->ordered_root_lock); 603 if (nr != U64_MAX) { 604 nr -= done; 605 } 606 } 607 list_splice_tail(&splice, &fs_info->ordered_roots); 608 spin_unlock(&fs_info->ordered_root_lock); 609 mutex_unlock(&fs_info->ordered_operations_mutex); 610 611 return total_done; 612 } 613 614 /* 615 * Used to start IO or wait for a given ordered extent to finish. 616 * 617 * If wait is one, this effectively waits on page writeback for all the pages 618 * in the extent, and it waits on the io completion code to insert 619 * metadata into the btree corresponding to the extent 620 */ 621 void btrfs_start_ordered_extent(struct inode *inode, 622 struct btrfs_ordered_extent *entry, 623 int wait) 624 { 625 u64 start = entry->file_offset; 626 u64 end = start + entry->len - 1; 627 628 trace_btrfs_ordered_extent_start(inode, entry); 629 630 /* 631 * pages in the range can be dirty, clean or writeback. We 632 * start IO on any dirty ones so the wait doesn't stall waiting 633 * for the flusher thread to find them 634 */ 635 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 636 filemap_fdatawrite_range(inode->i_mapping, start, end); 637 if (wait) { 638 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 639 &entry->flags)); 640 } 641 } 642 643 /* 644 * Used to wait on ordered extents across a large range of bytes. 645 */ 646 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 647 { 648 int ret = 0; 649 int ret_wb = 0; 650 u64 end; 651 u64 orig_end; 652 struct btrfs_ordered_extent *ordered; 653 654 if (start + len < start) { 655 orig_end = INT_LIMIT(loff_t); 656 } else { 657 orig_end = start + len - 1; 658 if (orig_end > INT_LIMIT(loff_t)) 659 orig_end = INT_LIMIT(loff_t); 660 } 661 662 /* start IO across the range first to instantiate any delalloc 663 * extents 664 */ 665 ret = btrfs_fdatawrite_range(inode, start, orig_end); 666 if (ret) 667 return ret; 668 669 /* 670 * If we have a writeback error don't return immediately. Wait first 671 * for any ordered extents that haven't completed yet. This is to make 672 * sure no one can dirty the same page ranges and call writepages() 673 * before the ordered extents complete - to avoid failures (-EEXIST) 674 * when adding the new ordered extents to the ordered tree. 675 */ 676 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 677 678 end = orig_end; 679 while (1) { 680 ordered = btrfs_lookup_first_ordered_extent(inode, end); 681 if (!ordered) 682 break; 683 if (ordered->file_offset > orig_end) { 684 btrfs_put_ordered_extent(ordered); 685 break; 686 } 687 if (ordered->file_offset + ordered->len <= start) { 688 btrfs_put_ordered_extent(ordered); 689 break; 690 } 691 btrfs_start_ordered_extent(inode, ordered, 1); 692 end = ordered->file_offset; 693 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 694 ret = -EIO; 695 btrfs_put_ordered_extent(ordered); 696 if (ret || end == 0 || end == start) 697 break; 698 end--; 699 } 700 return ret_wb ? ret_wb : ret; 701 } 702 703 /* 704 * find an ordered extent corresponding to file_offset. return NULL if 705 * nothing is found, otherwise take a reference on the extent and return it 706 */ 707 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 708 u64 file_offset) 709 { 710 struct btrfs_ordered_inode_tree *tree; 711 struct rb_node *node; 712 struct btrfs_ordered_extent *entry = NULL; 713 714 tree = &BTRFS_I(inode)->ordered_tree; 715 spin_lock_irq(&tree->lock); 716 node = tree_search(tree, file_offset); 717 if (!node) 718 goto out; 719 720 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 721 if (!offset_in_entry(entry, file_offset)) 722 entry = NULL; 723 if (entry) 724 refcount_inc(&entry->refs); 725 out: 726 spin_unlock_irq(&tree->lock); 727 return entry; 728 } 729 730 /* Since the DIO code tries to lock a wide area we need to look for any ordered 731 * extents that exist in the range, rather than just the start of the range. 732 */ 733 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 734 struct btrfs_inode *inode, u64 file_offset, u64 len) 735 { 736 struct btrfs_ordered_inode_tree *tree; 737 struct rb_node *node; 738 struct btrfs_ordered_extent *entry = NULL; 739 740 tree = &inode->ordered_tree; 741 spin_lock_irq(&tree->lock); 742 node = tree_search(tree, file_offset); 743 if (!node) { 744 node = tree_search(tree, file_offset + len); 745 if (!node) 746 goto out; 747 } 748 749 while (1) { 750 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 751 if (range_overlaps(entry, file_offset, len)) 752 break; 753 754 if (entry->file_offset >= file_offset + len) { 755 entry = NULL; 756 break; 757 } 758 entry = NULL; 759 node = rb_next(node); 760 if (!node) 761 break; 762 } 763 out: 764 if (entry) 765 refcount_inc(&entry->refs); 766 spin_unlock_irq(&tree->lock); 767 return entry; 768 } 769 770 /* 771 * lookup and return any extent before 'file_offset'. NULL is returned 772 * if none is found 773 */ 774 struct btrfs_ordered_extent * 775 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 776 { 777 struct btrfs_ordered_inode_tree *tree; 778 struct rb_node *node; 779 struct btrfs_ordered_extent *entry = NULL; 780 781 tree = &BTRFS_I(inode)->ordered_tree; 782 spin_lock_irq(&tree->lock); 783 node = tree_search(tree, file_offset); 784 if (!node) 785 goto out; 786 787 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 788 refcount_inc(&entry->refs); 789 out: 790 spin_unlock_irq(&tree->lock); 791 return entry; 792 } 793 794 /* 795 * After an extent is done, call this to conditionally update the on disk 796 * i_size. i_size is updated to cover any fully written part of the file. 797 */ 798 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 799 struct btrfs_ordered_extent *ordered) 800 { 801 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 802 u64 disk_i_size; 803 u64 new_i_size; 804 u64 i_size = i_size_read(inode); 805 struct rb_node *node; 806 struct rb_node *prev = NULL; 807 struct btrfs_ordered_extent *test; 808 int ret = 1; 809 u64 orig_offset = offset; 810 811 spin_lock_irq(&tree->lock); 812 if (ordered) { 813 offset = entry_end(ordered); 814 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 815 offset = min(offset, 816 ordered->file_offset + 817 ordered->truncated_len); 818 } else { 819 offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); 820 } 821 disk_i_size = BTRFS_I(inode)->disk_i_size; 822 823 /* 824 * truncate file. 825 * If ordered is not NULL, then this is called from endio and 826 * disk_i_size will be updated by either truncate itself or any 827 * in-flight IOs which are inside the disk_i_size. 828 * 829 * Because btrfs_setsize() may set i_size with disk_i_size if truncate 830 * fails somehow, we need to make sure we have a precise disk_i_size by 831 * updating it as usual. 832 * 833 */ 834 if (!ordered && disk_i_size > i_size) { 835 BTRFS_I(inode)->disk_i_size = orig_offset; 836 ret = 0; 837 goto out; 838 } 839 840 /* 841 * if the disk i_size is already at the inode->i_size, or 842 * this ordered extent is inside the disk i_size, we're done 843 */ 844 if (disk_i_size == i_size) 845 goto out; 846 847 /* 848 * We still need to update disk_i_size if outstanding_isize is greater 849 * than disk_i_size. 850 */ 851 if (offset <= disk_i_size && 852 (!ordered || ordered->outstanding_isize <= disk_i_size)) 853 goto out; 854 855 /* 856 * walk backward from this ordered extent to disk_i_size. 857 * if we find an ordered extent then we can't update disk i_size 858 * yet 859 */ 860 if (ordered) { 861 node = rb_prev(&ordered->rb_node); 862 } else { 863 prev = tree_search(tree, offset); 864 /* 865 * we insert file extents without involving ordered struct, 866 * so there should be no ordered struct cover this offset 867 */ 868 if (prev) { 869 test = rb_entry(prev, struct btrfs_ordered_extent, 870 rb_node); 871 BUG_ON(offset_in_entry(test, offset)); 872 } 873 node = prev; 874 } 875 for (; node; node = rb_prev(node)) { 876 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 877 878 /* We treat this entry as if it doesn't exist */ 879 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 880 continue; 881 882 if (entry_end(test) <= disk_i_size) 883 break; 884 if (test->file_offset >= i_size) 885 break; 886 887 /* 888 * We don't update disk_i_size now, so record this undealt 889 * i_size. Or we will not know the real i_size. 890 */ 891 if (test->outstanding_isize < offset) 892 test->outstanding_isize = offset; 893 if (ordered && 894 ordered->outstanding_isize > test->outstanding_isize) 895 test->outstanding_isize = ordered->outstanding_isize; 896 goto out; 897 } 898 new_i_size = min_t(u64, offset, i_size); 899 900 /* 901 * Some ordered extents may completed before the current one, and 902 * we hold the real i_size in ->outstanding_isize. 903 */ 904 if (ordered && ordered->outstanding_isize > new_i_size) 905 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 906 BTRFS_I(inode)->disk_i_size = new_i_size; 907 ret = 0; 908 out: 909 /* 910 * We need to do this because we can't remove ordered extents until 911 * after the i_disk_size has been updated and then the inode has been 912 * updated to reflect the change, so we need to tell anybody who finds 913 * this ordered extent that we've already done all the real work, we 914 * just haven't completed all the other work. 915 */ 916 if (ordered) 917 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 918 spin_unlock_irq(&tree->lock); 919 return ret; 920 } 921 922 /* 923 * search the ordered extents for one corresponding to 'offset' and 924 * try to find a checksum. This is used because we allow pages to 925 * be reclaimed before their checksum is actually put into the btree 926 */ 927 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 928 u8 *sum, int len) 929 { 930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 931 struct btrfs_ordered_sum *ordered_sum; 932 struct btrfs_ordered_extent *ordered; 933 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 934 unsigned long num_sectors; 935 unsigned long i; 936 u32 sectorsize = btrfs_inode_sectorsize(inode); 937 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 938 int index = 0; 939 940 ordered = btrfs_lookup_ordered_extent(inode, offset); 941 if (!ordered) 942 return 0; 943 944 spin_lock_irq(&tree->lock); 945 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 946 if (disk_bytenr >= ordered_sum->bytenr && 947 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 948 i = (disk_bytenr - ordered_sum->bytenr) >> 949 inode->i_sb->s_blocksize_bits; 950 num_sectors = ordered_sum->len >> 951 inode->i_sb->s_blocksize_bits; 952 num_sectors = min_t(int, len - index, num_sectors - i); 953 memcpy(sum + index, ordered_sum->sums + i * csum_size, 954 num_sectors * csum_size); 955 956 index += (int)num_sectors * csum_size; 957 if (index == len) 958 goto out; 959 disk_bytenr += num_sectors * sectorsize; 960 } 961 } 962 out: 963 spin_unlock_irq(&tree->lock); 964 btrfs_put_ordered_extent(ordered); 965 return index; 966 } 967 968 /* 969 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 970 * ordered extents in it are run to completion. 971 * 972 * @tree: IO tree used for locking out other users of the range 973 * @inode: Inode whose ordered tree is to be searched 974 * @start: Beginning of range to flush 975 * @end: Last byte of range to lock 976 * @cached_state: If passed, will return the extent state responsible for the 977 * locked range. It's the caller's responsibility to free the cached state. 978 * 979 * This function always returns with the given range locked, ensuring after it's 980 * called no order extent can be pending. 981 */ 982 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree, 983 struct btrfs_inode *inode, u64 start, 984 u64 end, 985 struct extent_state **cached_state) 986 { 987 struct btrfs_ordered_extent *ordered; 988 struct extent_state *cache = NULL; 989 struct extent_state **cachedp = &cache; 990 991 if (cached_state) 992 cachedp = cached_state; 993 994 while (1) { 995 lock_extent_bits(tree, start, end, cachedp); 996 ordered = btrfs_lookup_ordered_range(inode, start, 997 end - start + 1); 998 if (!ordered) { 999 /* 1000 * If no external cached_state has been passed then 1001 * decrement the extra ref taken for cachedp since we 1002 * aren't exposing it outside of this function 1003 */ 1004 if (!cached_state) 1005 refcount_dec(&cache->refs); 1006 break; 1007 } 1008 unlock_extent_cached(tree, start, end, cachedp); 1009 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1010 btrfs_put_ordered_extent(ordered); 1011 } 1012 } 1013 1014 int __init ordered_data_init(void) 1015 { 1016 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1017 sizeof(struct btrfs_ordered_extent), 0, 1018 SLAB_MEM_SPREAD, 1019 NULL); 1020 if (!btrfs_ordered_extent_cache) 1021 return -ENOMEM; 1022 1023 return 0; 1024 } 1025 1026 void __cold ordered_data_exit(void) 1027 { 1028 kmem_cache_destroy(btrfs_ordered_extent_cache); 1029 } 1030