xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision e1a3e724)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	entry->disk_len = disk_len;
202 	entry->bytes_left = len;
203 	entry->inode = igrab(inode);
204 	entry->compress_type = compress_type;
205 	entry->truncated_len = (u64)-1;
206 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 		set_bit(type, &entry->flags);
208 
209 	if (dio)
210 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 
212 	/* one ref for the tree */
213 	atomic_set(&entry->refs, 1);
214 	init_waitqueue_head(&entry->wait);
215 	INIT_LIST_HEAD(&entry->list);
216 	INIT_LIST_HEAD(&entry->root_extent_list);
217 	INIT_LIST_HEAD(&entry->work_list);
218 	init_completion(&entry->completion);
219 	INIT_LIST_HEAD(&entry->log_list);
220 	INIT_LIST_HEAD(&entry->trans_list);
221 
222 	trace_btrfs_ordered_extent_add(inode, entry);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, file_offset,
226 			   &entry->rb_node);
227 	if (node)
228 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 	spin_unlock_irq(&tree->lock);
230 
231 	spin_lock(&root->ordered_extent_lock);
232 	list_add_tail(&entry->root_extent_list,
233 		      &root->ordered_extents);
234 	root->nr_ordered_extents++;
235 	if (root->nr_ordered_extents == 1) {
236 		spin_lock(&root->fs_info->ordered_root_lock);
237 		BUG_ON(!list_empty(&root->ordered_root));
238 		list_add_tail(&root->ordered_root,
239 			      &root->fs_info->ordered_roots);
240 		spin_unlock(&root->fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 
244 	return 0;
245 }
246 
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 			     u64 start, u64 len, u64 disk_len, int type)
249 {
250 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 					  disk_len, type, 0,
252 					  BTRFS_COMPRESS_NONE);
253 }
254 
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 				 u64 start, u64 len, u64 disk_len, int type)
257 {
258 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 					  disk_len, type, 1,
260 					  BTRFS_COMPRESS_NONE);
261 }
262 
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 				      u64 start, u64 len, u64 disk_len,
265 				      int type, int compress_type)
266 {
267 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 					  disk_len, type, 0,
269 					  compress_type);
270 }
271 
272 /*
273  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274  * when an ordered extent is finished.  If the list covers more than one
275  * ordered extent, it is split across multiples.
276  */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 			   struct btrfs_ordered_extent *entry,
279 			   struct btrfs_ordered_sum *sum)
280 {
281 	struct btrfs_ordered_inode_tree *tree;
282 
283 	tree = &BTRFS_I(inode)->ordered_tree;
284 	spin_lock_irq(&tree->lock);
285 	list_add_tail(&sum->list, &entry->list);
286 	spin_unlock_irq(&tree->lock);
287 }
288 
289 /*
290  * this is used to account for finished IO across a given range
291  * of the file.  The IO may span ordered extents.  If
292  * a given ordered_extent is completely done, 1 is returned, otherwise
293  * 0.
294  *
295  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296  * to make sure this function only returns 1 once for a given ordered extent.
297  *
298  * file_offset is updated to one byte past the range that is recorded as
299  * complete.  This allows you to walk forward in the file.
300  */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 				   struct btrfs_ordered_extent **cached,
303 				   u64 *file_offset, u64 io_size, int uptodate)
304 {
305 	struct btrfs_ordered_inode_tree *tree;
306 	struct rb_node *node;
307 	struct btrfs_ordered_extent *entry = NULL;
308 	int ret;
309 	unsigned long flags;
310 	u64 dec_end;
311 	u64 dec_start;
312 	u64 to_dec;
313 
314 	tree = &BTRFS_I(inode)->ordered_tree;
315 	spin_lock_irqsave(&tree->lock, flags);
316 	node = tree_search(tree, *file_offset);
317 	if (!node) {
318 		ret = 1;
319 		goto out;
320 	}
321 
322 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 	if (!offset_in_entry(entry, *file_offset)) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	dec_start = max(*file_offset, entry->file_offset);
329 	dec_end = min(*file_offset + io_size, entry->file_offset +
330 		      entry->len);
331 	*file_offset = dec_end;
332 	if (dec_start > dec_end) {
333 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 	}
336 	to_dec = dec_end - dec_start;
337 	if (to_dec > entry->bytes_left) {
338 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 			"bad ordered accounting left %llu size %llu",
340 			entry->bytes_left, to_dec);
341 	}
342 	entry->bytes_left -= to_dec;
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345 
346 	if (entry->bytes_left == 0) {
347 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 		if (waitqueue_active(&entry->wait))
349 			wake_up(&entry->wait);
350 	} else {
351 		ret = 1;
352 	}
353 out:
354 	if (!ret && cached && entry) {
355 		*cached = entry;
356 		atomic_inc(&entry->refs);
357 	}
358 	spin_unlock_irqrestore(&tree->lock, flags);
359 	return ret == 0;
360 }
361 
362 /*
363  * this is used to account for finished IO across a given range
364  * of the file.  The IO should not span ordered extents.  If
365  * a given ordered_extent is completely done, 1 is returned, otherwise
366  * 0.
367  *
368  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
369  * to make sure this function only returns 1 once for a given ordered extent.
370  */
371 int btrfs_dec_test_ordered_pending(struct inode *inode,
372 				   struct btrfs_ordered_extent **cached,
373 				   u64 file_offset, u64 io_size, int uptodate)
374 {
375 	struct btrfs_ordered_inode_tree *tree;
376 	struct rb_node *node;
377 	struct btrfs_ordered_extent *entry = NULL;
378 	unsigned long flags;
379 	int ret;
380 
381 	tree = &BTRFS_I(inode)->ordered_tree;
382 	spin_lock_irqsave(&tree->lock, flags);
383 	if (cached && *cached) {
384 		entry = *cached;
385 		goto have_entry;
386 	}
387 
388 	node = tree_search(tree, file_offset);
389 	if (!node) {
390 		ret = 1;
391 		goto out;
392 	}
393 
394 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
395 have_entry:
396 	if (!offset_in_entry(entry, file_offset)) {
397 		ret = 1;
398 		goto out;
399 	}
400 
401 	if (io_size > entry->bytes_left) {
402 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
403 			   "bad ordered accounting left %llu size %llu",
404 		       entry->bytes_left, io_size);
405 	}
406 	entry->bytes_left -= io_size;
407 	if (!uptodate)
408 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409 
410 	if (entry->bytes_left == 0) {
411 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 		if (waitqueue_active(&entry->wait))
413 			wake_up(&entry->wait);
414 	} else {
415 		ret = 1;
416 	}
417 out:
418 	if (!ret && cached && entry) {
419 		*cached = entry;
420 		atomic_inc(&entry->refs);
421 	}
422 	spin_unlock_irqrestore(&tree->lock, flags);
423 	return ret == 0;
424 }
425 
426 /* Needs to either be called under a log transaction or the log_mutex */
427 void btrfs_get_logged_extents(struct inode *inode,
428 			      struct list_head *logged_list,
429 			      const loff_t start,
430 			      const loff_t end)
431 {
432 	struct btrfs_ordered_inode_tree *tree;
433 	struct btrfs_ordered_extent *ordered;
434 	struct rb_node *n;
435 	struct rb_node *prev;
436 
437 	tree = &BTRFS_I(inode)->ordered_tree;
438 	spin_lock_irq(&tree->lock);
439 	n = __tree_search(&tree->tree, end, &prev);
440 	if (!n)
441 		n = prev;
442 	for (; n; n = rb_prev(n)) {
443 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 		if (ordered->file_offset > end)
445 			continue;
446 		if (entry_end(ordered) <= start)
447 			break;
448 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
449 			continue;
450 		list_add(&ordered->log_list, logged_list);
451 		atomic_inc(&ordered->refs);
452 	}
453 	spin_unlock_irq(&tree->lock);
454 }
455 
456 void btrfs_put_logged_extents(struct list_head *logged_list)
457 {
458 	struct btrfs_ordered_extent *ordered;
459 
460 	while (!list_empty(logged_list)) {
461 		ordered = list_first_entry(logged_list,
462 					   struct btrfs_ordered_extent,
463 					   log_list);
464 		list_del_init(&ordered->log_list);
465 		btrfs_put_ordered_extent(ordered);
466 	}
467 }
468 
469 void btrfs_submit_logged_extents(struct list_head *logged_list,
470 				 struct btrfs_root *log)
471 {
472 	int index = log->log_transid % 2;
473 
474 	spin_lock_irq(&log->log_extents_lock[index]);
475 	list_splice_tail(logged_list, &log->logged_list[index]);
476 	spin_unlock_irq(&log->log_extents_lock[index]);
477 }
478 
479 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
480 			       struct btrfs_root *log, u64 transid)
481 {
482 	struct btrfs_ordered_extent *ordered;
483 	int index = transid % 2;
484 
485 	spin_lock_irq(&log->log_extents_lock[index]);
486 	while (!list_empty(&log->logged_list[index])) {
487 		ordered = list_first_entry(&log->logged_list[index],
488 					   struct btrfs_ordered_extent,
489 					   log_list);
490 		list_del_init(&ordered->log_list);
491 		spin_unlock_irq(&log->log_extents_lock[index]);
492 
493 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
494 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
495 			struct inode *inode = ordered->inode;
496 			u64 start = ordered->file_offset;
497 			u64 end = ordered->file_offset + ordered->len - 1;
498 
499 			WARN_ON(!inode);
500 			filemap_fdatawrite_range(inode->i_mapping, start, end);
501 		}
502 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
503 						   &ordered->flags));
504 
505 		/*
506 		 * If our ordered extent completed it means it updated the
507 		 * fs/subvol and csum trees already, so no need to make the
508 		 * current transaction's commit wait for it, as we end up
509 		 * holding memory unnecessarily and delaying the inode's iput
510 		 * until the transaction commit (we schedule an iput for the
511 		 * inode when the ordered extent's refcount drops to 0), which
512 		 * prevents it from being evictable until the transaction
513 		 * commits.
514 		 */
515 		if (test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags))
516 			btrfs_put_ordered_extent(ordered);
517 		else
518 			list_add_tail(&ordered->trans_list, &trans->ordered);
519 
520 		spin_lock_irq(&log->log_extents_lock[index]);
521 	}
522 	spin_unlock_irq(&log->log_extents_lock[index]);
523 }
524 
525 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
526 {
527 	struct btrfs_ordered_extent *ordered;
528 	int index = transid % 2;
529 
530 	spin_lock_irq(&log->log_extents_lock[index]);
531 	while (!list_empty(&log->logged_list[index])) {
532 		ordered = list_first_entry(&log->logged_list[index],
533 					   struct btrfs_ordered_extent,
534 					   log_list);
535 		list_del_init(&ordered->log_list);
536 		spin_unlock_irq(&log->log_extents_lock[index]);
537 		btrfs_put_ordered_extent(ordered);
538 		spin_lock_irq(&log->log_extents_lock[index]);
539 	}
540 	spin_unlock_irq(&log->log_extents_lock[index]);
541 }
542 
543 /*
544  * used to drop a reference on an ordered extent.  This will free
545  * the extent if the last reference is dropped
546  */
547 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
548 {
549 	struct list_head *cur;
550 	struct btrfs_ordered_sum *sum;
551 
552 	trace_btrfs_ordered_extent_put(entry->inode, entry);
553 
554 	if (atomic_dec_and_test(&entry->refs)) {
555 		ASSERT(list_empty(&entry->log_list));
556 		ASSERT(list_empty(&entry->trans_list));
557 		ASSERT(list_empty(&entry->root_extent_list));
558 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
559 		if (entry->inode)
560 			btrfs_add_delayed_iput(entry->inode);
561 		while (!list_empty(&entry->list)) {
562 			cur = entry->list.next;
563 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
564 			list_del(&sum->list);
565 			kfree(sum);
566 		}
567 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
568 	}
569 }
570 
571 /*
572  * remove an ordered extent from the tree.  No references are dropped
573  * and waiters are woken up.
574  */
575 void btrfs_remove_ordered_extent(struct inode *inode,
576 				 struct btrfs_ordered_extent *entry)
577 {
578 	struct btrfs_ordered_inode_tree *tree;
579 	struct btrfs_root *root = BTRFS_I(inode)->root;
580 	struct rb_node *node;
581 
582 	tree = &BTRFS_I(inode)->ordered_tree;
583 	spin_lock_irq(&tree->lock);
584 	node = &entry->rb_node;
585 	rb_erase(node, &tree->tree);
586 	RB_CLEAR_NODE(node);
587 	if (tree->last == node)
588 		tree->last = NULL;
589 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
590 	spin_unlock_irq(&tree->lock);
591 
592 	spin_lock(&root->ordered_extent_lock);
593 	list_del_init(&entry->root_extent_list);
594 	root->nr_ordered_extents--;
595 
596 	trace_btrfs_ordered_extent_remove(inode, entry);
597 
598 	if (!root->nr_ordered_extents) {
599 		spin_lock(&root->fs_info->ordered_root_lock);
600 		BUG_ON(list_empty(&root->ordered_root));
601 		list_del_init(&root->ordered_root);
602 		spin_unlock(&root->fs_info->ordered_root_lock);
603 	}
604 	spin_unlock(&root->ordered_extent_lock);
605 	wake_up(&entry->wait);
606 }
607 
608 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
609 {
610 	struct btrfs_ordered_extent *ordered;
611 
612 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
613 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
614 	complete(&ordered->completion);
615 }
616 
617 /*
618  * wait for all the ordered extents in a root.  This is done when balancing
619  * space between drives.
620  */
621 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
622 {
623 	struct list_head splice, works;
624 	struct btrfs_ordered_extent *ordered, *next;
625 	int count = 0;
626 
627 	INIT_LIST_HEAD(&splice);
628 	INIT_LIST_HEAD(&works);
629 
630 	mutex_lock(&root->ordered_extent_mutex);
631 	spin_lock(&root->ordered_extent_lock);
632 	list_splice_init(&root->ordered_extents, &splice);
633 	while (!list_empty(&splice) && nr) {
634 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
635 					   root_extent_list);
636 		list_move_tail(&ordered->root_extent_list,
637 			       &root->ordered_extents);
638 		atomic_inc(&ordered->refs);
639 		spin_unlock(&root->ordered_extent_lock);
640 
641 		btrfs_init_work(&ordered->flush_work,
642 				btrfs_flush_delalloc_helper,
643 				btrfs_run_ordered_extent_work, NULL, NULL);
644 		list_add_tail(&ordered->work_list, &works);
645 		btrfs_queue_work(root->fs_info->flush_workers,
646 				 &ordered->flush_work);
647 
648 		cond_resched();
649 		spin_lock(&root->ordered_extent_lock);
650 		if (nr != -1)
651 			nr--;
652 		count++;
653 	}
654 	list_splice_tail(&splice, &root->ordered_extents);
655 	spin_unlock(&root->ordered_extent_lock);
656 
657 	list_for_each_entry_safe(ordered, next, &works, work_list) {
658 		list_del_init(&ordered->work_list);
659 		wait_for_completion(&ordered->completion);
660 		btrfs_put_ordered_extent(ordered);
661 		cond_resched();
662 	}
663 	mutex_unlock(&root->ordered_extent_mutex);
664 
665 	return count;
666 }
667 
668 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
669 {
670 	struct btrfs_root *root;
671 	struct list_head splice;
672 	int done;
673 
674 	INIT_LIST_HEAD(&splice);
675 
676 	mutex_lock(&fs_info->ordered_operations_mutex);
677 	spin_lock(&fs_info->ordered_root_lock);
678 	list_splice_init(&fs_info->ordered_roots, &splice);
679 	while (!list_empty(&splice) && nr) {
680 		root = list_first_entry(&splice, struct btrfs_root,
681 					ordered_root);
682 		root = btrfs_grab_fs_root(root);
683 		BUG_ON(!root);
684 		list_move_tail(&root->ordered_root,
685 			       &fs_info->ordered_roots);
686 		spin_unlock(&fs_info->ordered_root_lock);
687 
688 		done = btrfs_wait_ordered_extents(root, nr);
689 		btrfs_put_fs_root(root);
690 
691 		spin_lock(&fs_info->ordered_root_lock);
692 		if (nr != -1) {
693 			nr -= done;
694 			WARN_ON(nr < 0);
695 		}
696 	}
697 	list_splice_tail(&splice, &fs_info->ordered_roots);
698 	spin_unlock(&fs_info->ordered_root_lock);
699 	mutex_unlock(&fs_info->ordered_operations_mutex);
700 }
701 
702 /*
703  * Used to start IO or wait for a given ordered extent to finish.
704  *
705  * If wait is one, this effectively waits on page writeback for all the pages
706  * in the extent, and it waits on the io completion code to insert
707  * metadata into the btree corresponding to the extent
708  */
709 void btrfs_start_ordered_extent(struct inode *inode,
710 				       struct btrfs_ordered_extent *entry,
711 				       int wait)
712 {
713 	u64 start = entry->file_offset;
714 	u64 end = start + entry->len - 1;
715 
716 	trace_btrfs_ordered_extent_start(inode, entry);
717 
718 	/*
719 	 * pages in the range can be dirty, clean or writeback.  We
720 	 * start IO on any dirty ones so the wait doesn't stall waiting
721 	 * for the flusher thread to find them
722 	 */
723 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
724 		filemap_fdatawrite_range(inode->i_mapping, start, end);
725 	if (wait) {
726 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
727 						 &entry->flags));
728 	}
729 }
730 
731 /*
732  * Used to wait on ordered extents across a large range of bytes.
733  */
734 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
735 {
736 	int ret = 0;
737 	int ret_wb = 0;
738 	u64 end;
739 	u64 orig_end;
740 	struct btrfs_ordered_extent *ordered;
741 
742 	if (start + len < start) {
743 		orig_end = INT_LIMIT(loff_t);
744 	} else {
745 		orig_end = start + len - 1;
746 		if (orig_end > INT_LIMIT(loff_t))
747 			orig_end = INT_LIMIT(loff_t);
748 	}
749 
750 	/* start IO across the range first to instantiate any delalloc
751 	 * extents
752 	 */
753 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
754 	if (ret)
755 		return ret;
756 
757 	/*
758 	 * If we have a writeback error don't return immediately. Wait first
759 	 * for any ordered extents that haven't completed yet. This is to make
760 	 * sure no one can dirty the same page ranges and call writepages()
761 	 * before the ordered extents complete - to avoid failures (-EEXIST)
762 	 * when adding the new ordered extents to the ordered tree.
763 	 */
764 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
765 
766 	end = orig_end;
767 	while (1) {
768 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
769 		if (!ordered)
770 			break;
771 		if (ordered->file_offset > orig_end) {
772 			btrfs_put_ordered_extent(ordered);
773 			break;
774 		}
775 		if (ordered->file_offset + ordered->len <= start) {
776 			btrfs_put_ordered_extent(ordered);
777 			break;
778 		}
779 		btrfs_start_ordered_extent(inode, ordered, 1);
780 		end = ordered->file_offset;
781 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
782 			ret = -EIO;
783 		btrfs_put_ordered_extent(ordered);
784 		if (ret || end == 0 || end == start)
785 			break;
786 		end--;
787 	}
788 	return ret_wb ? ret_wb : ret;
789 }
790 
791 /*
792  * find an ordered extent corresponding to file_offset.  return NULL if
793  * nothing is found, otherwise take a reference on the extent and return it
794  */
795 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
796 							 u64 file_offset)
797 {
798 	struct btrfs_ordered_inode_tree *tree;
799 	struct rb_node *node;
800 	struct btrfs_ordered_extent *entry = NULL;
801 
802 	tree = &BTRFS_I(inode)->ordered_tree;
803 	spin_lock_irq(&tree->lock);
804 	node = tree_search(tree, file_offset);
805 	if (!node)
806 		goto out;
807 
808 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
809 	if (!offset_in_entry(entry, file_offset))
810 		entry = NULL;
811 	if (entry)
812 		atomic_inc(&entry->refs);
813 out:
814 	spin_unlock_irq(&tree->lock);
815 	return entry;
816 }
817 
818 /* Since the DIO code tries to lock a wide area we need to look for any ordered
819  * extents that exist in the range, rather than just the start of the range.
820  */
821 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
822 							u64 file_offset,
823 							u64 len)
824 {
825 	struct btrfs_ordered_inode_tree *tree;
826 	struct rb_node *node;
827 	struct btrfs_ordered_extent *entry = NULL;
828 
829 	tree = &BTRFS_I(inode)->ordered_tree;
830 	spin_lock_irq(&tree->lock);
831 	node = tree_search(tree, file_offset);
832 	if (!node) {
833 		node = tree_search(tree, file_offset + len);
834 		if (!node)
835 			goto out;
836 	}
837 
838 	while (1) {
839 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
840 		if (range_overlaps(entry, file_offset, len))
841 			break;
842 
843 		if (entry->file_offset >= file_offset + len) {
844 			entry = NULL;
845 			break;
846 		}
847 		entry = NULL;
848 		node = rb_next(node);
849 		if (!node)
850 			break;
851 	}
852 out:
853 	if (entry)
854 		atomic_inc(&entry->refs);
855 	spin_unlock_irq(&tree->lock);
856 	return entry;
857 }
858 
859 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
860 					 u64 file_offset,
861 					 u64 len)
862 {
863 	struct btrfs_ordered_extent *oe;
864 
865 	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
866 	if (oe) {
867 		btrfs_put_ordered_extent(oe);
868 		return true;
869 	}
870 	return false;
871 }
872 
873 /*
874  * lookup and return any extent before 'file_offset'.  NULL is returned
875  * if none is found
876  */
877 struct btrfs_ordered_extent *
878 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
879 {
880 	struct btrfs_ordered_inode_tree *tree;
881 	struct rb_node *node;
882 	struct btrfs_ordered_extent *entry = NULL;
883 
884 	tree = &BTRFS_I(inode)->ordered_tree;
885 	spin_lock_irq(&tree->lock);
886 	node = tree_search(tree, file_offset);
887 	if (!node)
888 		goto out;
889 
890 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
891 	atomic_inc(&entry->refs);
892 out:
893 	spin_unlock_irq(&tree->lock);
894 	return entry;
895 }
896 
897 /*
898  * After an extent is done, call this to conditionally update the on disk
899  * i_size.  i_size is updated to cover any fully written part of the file.
900  */
901 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
902 				struct btrfs_ordered_extent *ordered)
903 {
904 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
905 	u64 disk_i_size;
906 	u64 new_i_size;
907 	u64 i_size = i_size_read(inode);
908 	struct rb_node *node;
909 	struct rb_node *prev = NULL;
910 	struct btrfs_ordered_extent *test;
911 	int ret = 1;
912 
913 	spin_lock_irq(&tree->lock);
914 	if (ordered) {
915 		offset = entry_end(ordered);
916 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
917 			offset = min(offset,
918 				     ordered->file_offset +
919 				     ordered->truncated_len);
920 	} else {
921 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
922 	}
923 	disk_i_size = BTRFS_I(inode)->disk_i_size;
924 
925 	/* truncate file */
926 	if (disk_i_size > i_size) {
927 		BTRFS_I(inode)->disk_i_size = i_size;
928 		ret = 0;
929 		goto out;
930 	}
931 
932 	/*
933 	 * if the disk i_size is already at the inode->i_size, or
934 	 * this ordered extent is inside the disk i_size, we're done
935 	 */
936 	if (disk_i_size == i_size)
937 		goto out;
938 
939 	/*
940 	 * We still need to update disk_i_size if outstanding_isize is greater
941 	 * than disk_i_size.
942 	 */
943 	if (offset <= disk_i_size &&
944 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
945 		goto out;
946 
947 	/*
948 	 * walk backward from this ordered extent to disk_i_size.
949 	 * if we find an ordered extent then we can't update disk i_size
950 	 * yet
951 	 */
952 	if (ordered) {
953 		node = rb_prev(&ordered->rb_node);
954 	} else {
955 		prev = tree_search(tree, offset);
956 		/*
957 		 * we insert file extents without involving ordered struct,
958 		 * so there should be no ordered struct cover this offset
959 		 */
960 		if (prev) {
961 			test = rb_entry(prev, struct btrfs_ordered_extent,
962 					rb_node);
963 			BUG_ON(offset_in_entry(test, offset));
964 		}
965 		node = prev;
966 	}
967 	for (; node; node = rb_prev(node)) {
968 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
969 
970 		/* We treat this entry as if it doesnt exist */
971 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
972 			continue;
973 		if (test->file_offset + test->len <= disk_i_size)
974 			break;
975 		if (test->file_offset >= i_size)
976 			break;
977 		if (entry_end(test) > disk_i_size) {
978 			/*
979 			 * we don't update disk_i_size now, so record this
980 			 * undealt i_size. Or we will not know the real
981 			 * i_size.
982 			 */
983 			if (test->outstanding_isize < offset)
984 				test->outstanding_isize = offset;
985 			if (ordered &&
986 			    ordered->outstanding_isize >
987 			    test->outstanding_isize)
988 				test->outstanding_isize =
989 						ordered->outstanding_isize;
990 			goto out;
991 		}
992 	}
993 	new_i_size = min_t(u64, offset, i_size);
994 
995 	/*
996 	 * Some ordered extents may completed before the current one, and
997 	 * we hold the real i_size in ->outstanding_isize.
998 	 */
999 	if (ordered && ordered->outstanding_isize > new_i_size)
1000 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1001 	BTRFS_I(inode)->disk_i_size = new_i_size;
1002 	ret = 0;
1003 out:
1004 	/*
1005 	 * We need to do this because we can't remove ordered extents until
1006 	 * after the i_disk_size has been updated and then the inode has been
1007 	 * updated to reflect the change, so we need to tell anybody who finds
1008 	 * this ordered extent that we've already done all the real work, we
1009 	 * just haven't completed all the other work.
1010 	 */
1011 	if (ordered)
1012 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1013 	spin_unlock_irq(&tree->lock);
1014 	return ret;
1015 }
1016 
1017 /*
1018  * search the ordered extents for one corresponding to 'offset' and
1019  * try to find a checksum.  This is used because we allow pages to
1020  * be reclaimed before their checksum is actually put into the btree
1021  */
1022 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1023 			   u32 *sum, int len)
1024 {
1025 	struct btrfs_ordered_sum *ordered_sum;
1026 	struct btrfs_ordered_extent *ordered;
1027 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1028 	unsigned long num_sectors;
1029 	unsigned long i;
1030 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1031 	int index = 0;
1032 
1033 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1034 	if (!ordered)
1035 		return 0;
1036 
1037 	spin_lock_irq(&tree->lock);
1038 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1039 		if (disk_bytenr >= ordered_sum->bytenr &&
1040 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1041 			i = (disk_bytenr - ordered_sum->bytenr) >>
1042 			    inode->i_sb->s_blocksize_bits;
1043 			num_sectors = ordered_sum->len >>
1044 				      inode->i_sb->s_blocksize_bits;
1045 			num_sectors = min_t(int, len - index, num_sectors - i);
1046 			memcpy(sum + index, ordered_sum->sums + i,
1047 			       num_sectors);
1048 
1049 			index += (int)num_sectors;
1050 			if (index == len)
1051 				goto out;
1052 			disk_bytenr += num_sectors * sectorsize;
1053 		}
1054 	}
1055 out:
1056 	spin_unlock_irq(&tree->lock);
1057 	btrfs_put_ordered_extent(ordered);
1058 	return index;
1059 }
1060 
1061 int __init ordered_data_init(void)
1062 {
1063 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1064 				     sizeof(struct btrfs_ordered_extent), 0,
1065 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1066 				     NULL);
1067 	if (!btrfs_ordered_extent_cache)
1068 		return -ENOMEM;
1069 
1070 	return 0;
1071 }
1072 
1073 void ordered_data_exit(void)
1074 {
1075 	if (btrfs_ordered_extent_cache)
1076 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1077 }
1078