xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision da097dcc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 					  u64 file_offset)
129 {
130 	struct rb_root *root = &tree->tree;
131 	struct rb_node *prev = NULL;
132 	struct rb_node *ret;
133 	struct btrfs_ordered_extent *entry;
134 
135 	if (tree->last) {
136 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 				 rb_node);
138 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 			return tree->last;
140 	}
141 	ret = __tree_search(root, file_offset, &prev);
142 	if (!ret)
143 		ret = prev;
144 	if (ret)
145 		tree->last = ret;
146 	return ret;
147 }
148 
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 			u64 offset, unsigned long flags, int compress_type)
153 {
154 	struct btrfs_ordered_extent *entry;
155 	int ret;
156 	u64 qgroup_rsv = 0;
157 
158 	if (flags &
159 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
160 		/* For nocow write, we can release the qgroup rsv right now */
161 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162 		if (ret < 0)
163 			return ERR_PTR(ret);
164 	} else {
165 		/*
166 		 * The ordered extent has reserved qgroup space, release now
167 		 * and pass the reserved number for qgroup_record to free.
168 		 */
169 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170 		if (ret < 0)
171 			return ERR_PTR(ret);
172 	}
173 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174 	if (!entry)
175 		return ERR_PTR(-ENOMEM);
176 
177 	entry->file_offset = file_offset;
178 	entry->num_bytes = num_bytes;
179 	entry->ram_bytes = ram_bytes;
180 	entry->disk_bytenr = disk_bytenr;
181 	entry->disk_num_bytes = disk_num_bytes;
182 	entry->offset = offset;
183 	entry->bytes_left = num_bytes;
184 	entry->inode = igrab(&inode->vfs_inode);
185 	entry->compress_type = compress_type;
186 	entry->truncated_len = (u64)-1;
187 	entry->qgroup_rsv = qgroup_rsv;
188 	entry->flags = flags;
189 	refcount_set(&entry->refs, 1);
190 	init_waitqueue_head(&entry->wait);
191 	INIT_LIST_HEAD(&entry->list);
192 	INIT_LIST_HEAD(&entry->log_list);
193 	INIT_LIST_HEAD(&entry->root_extent_list);
194 	INIT_LIST_HEAD(&entry->work_list);
195 	init_completion(&entry->completion);
196 
197 	/*
198 	 * We don't need the count_max_extents here, we can assume that all of
199 	 * that work has been done at higher layers, so this is truly the
200 	 * smallest the extent is going to get.
201 	 */
202 	spin_lock(&inode->lock);
203 	btrfs_mod_outstanding_extents(inode, 1);
204 	spin_unlock(&inode->lock);
205 
206 	return entry;
207 }
208 
209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
212 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
213 	struct btrfs_root *root = inode->root;
214 	struct btrfs_fs_info *fs_info = root->fs_info;
215 	struct rb_node *node;
216 
217 	trace_btrfs_ordered_extent_add(inode, entry);
218 
219 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
220 				 fs_info->delalloc_batch);
221 
222 	/* One ref for the tree. */
223 	refcount_inc(&entry->refs);
224 
225 	spin_lock_irq(&tree->lock);
226 	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
227 	if (node)
228 		btrfs_panic(fs_info, -EEXIST,
229 				"inconsistency in ordered tree at offset %llu",
230 				entry->file_offset);
231 	spin_unlock_irq(&tree->lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 		spin_unlock(&fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 }
245 
246 /*
247  * Add an ordered extent to the per-inode tree.
248  *
249  * @inode:           Inode that this extent is for.
250  * @file_offset:     Logical offset in file where the extent starts.
251  * @num_bytes:       Logical length of extent in file.
252  * @ram_bytes:       Full length of unencoded data.
253  * @disk_bytenr:     Offset of extent on disk.
254  * @disk_num_bytes:  Size of extent on disk.
255  * @offset:          Offset into unencoded data where file data starts.
256  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257  * @compress_type:   Compression algorithm used for data.
258  *
259  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260  * tree is given a single reference on the ordered extent that was inserted, and
261  * the returned pointer is given a second reference.
262  *
263  * Return: the new ordered extent or error pointer.
264  */
265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266 			struct btrfs_inode *inode, u64 file_offset,
267 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268 			u64 disk_num_bytes, u64 offset, unsigned long flags,
269 			int compress_type)
270 {
271 	struct btrfs_ordered_extent *entry;
272 
273 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274 
275 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276 				     disk_bytenr, disk_num_bytes, offset, flags,
277 				     compress_type);
278 	if (!IS_ERR(entry))
279 		insert_ordered_extent(entry);
280 	return entry;
281 }
282 
283 /*
284  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285  * when an ordered extent is finished.  If the list covers more than one
286  * ordered extent, it is split across multiples.
287  */
288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289 			   struct btrfs_ordered_sum *sum)
290 {
291 	struct btrfs_ordered_inode_tree *tree;
292 
293 	tree = &BTRFS_I(entry->inode)->ordered_tree;
294 	spin_lock_irq(&tree->lock);
295 	list_add_tail(&sum->list, &entry->list);
296 	spin_unlock_irq(&tree->lock);
297 }
298 
299 static void finish_ordered_fn(struct btrfs_work *work)
300 {
301 	struct btrfs_ordered_extent *ordered_extent;
302 
303 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
304 	btrfs_finish_ordered_io(ordered_extent);
305 }
306 
307 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
308 				      struct page *page, u64 file_offset,
309 				      u64 len, bool uptodate)
310 {
311 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
312 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
313 
314 	lockdep_assert_held(&inode->ordered_tree.lock);
315 
316 	if (page) {
317 		ASSERT(page->mapping);
318 		ASSERT(page_offset(page) <= file_offset);
319 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
320 
321 		/*
322 		 * Ordered (Private2) bit indicates whether we still have
323 		 * pending io unfinished for the ordered extent.
324 		 *
325 		 * If there's no such bit, we need to skip to next range.
326 		 */
327 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
328 			return false;
329 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
330 	}
331 
332 	/* Now we're fine to update the accounting. */
333 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334 		btrfs_crit(fs_info,
335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336 			   inode->root->root_key.objectid, btrfs_ino(inode),
337 			   ordered->file_offset, ordered->num_bytes,
338 			   len, ordered->bytes_left);
339 		ordered->bytes_left = 0;
340 	} else {
341 		ordered->bytes_left -= len;
342 	}
343 
344 	if (!uptodate)
345 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346 
347 	if (ordered->bytes_left)
348 		return false;
349 
350 	/*
351 	 * All the IO of the ordered extent is finished, we need to queue
352 	 * the finish_func to be executed.
353 	 */
354 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355 	cond_wake_up(&ordered->wait);
356 	refcount_inc(&ordered->refs);
357 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358 	return true;
359 }
360 
361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362 {
363 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
365 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367 
368 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
369 	btrfs_queue_work(wq, &ordered->work);
370 }
371 
372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373 				 struct page *page, u64 file_offset, u64 len,
374 				 bool uptodate)
375 {
376 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377 	unsigned long flags;
378 	bool ret;
379 
380 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381 
382 	spin_lock_irqsave(&inode->ordered_tree.lock, flags);
383 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384 	spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
385 
386 	if (ret)
387 		btrfs_queue_ordered_fn(ordered);
388 	return ret;
389 }
390 
391 /*
392  * Mark all ordered extents io inside the specified range finished.
393  *
394  * @page:	 The involved page for the operation.
395  *		 For uncompressed buffered IO, the page status also needs to be
396  *		 updated to indicate whether the pending ordered io is finished.
397  *		 Can be NULL for direct IO and compressed write.
398  *		 For these cases, callers are ensured they won't execute the
399  *		 endio function twice.
400  *
401  * This function is called for endio, thus the range must have ordered
402  * extent(s) covering it.
403  */
404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405 				    struct page *page, u64 file_offset,
406 				    u64 num_bytes, bool uptodate)
407 {
408 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
409 	struct rb_node *node;
410 	struct btrfs_ordered_extent *entry = NULL;
411 	unsigned long flags;
412 	u64 cur = file_offset;
413 
414 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
415 					  file_offset + num_bytes - 1,
416 					  uptodate);
417 
418 	spin_lock_irqsave(&tree->lock, flags);
419 	while (cur < file_offset + num_bytes) {
420 		u64 entry_end;
421 		u64 end;
422 		u32 len;
423 
424 		node = tree_search(tree, cur);
425 		/* No ordered extents at all */
426 		if (!node)
427 			break;
428 
429 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430 		entry_end = entry->file_offset + entry->num_bytes;
431 		/*
432 		 * |<-- OE --->|  |
433 		 *		  cur
434 		 * Go to next OE.
435 		 */
436 		if (cur >= entry_end) {
437 			node = rb_next(node);
438 			/* No more ordered extents, exit */
439 			if (!node)
440 				break;
441 			entry = rb_entry(node, struct btrfs_ordered_extent,
442 					 rb_node);
443 
444 			/* Go to next ordered extent and continue */
445 			cur = entry->file_offset;
446 			continue;
447 		}
448 		/*
449 		 * |	|<--- OE --->|
450 		 * cur
451 		 * Go to the start of OE.
452 		 */
453 		if (cur < entry->file_offset) {
454 			cur = entry->file_offset;
455 			continue;
456 		}
457 
458 		/*
459 		 * Now we are definitely inside one ordered extent.
460 		 *
461 		 * |<--- OE --->|
462 		 *	|
463 		 *	cur
464 		 */
465 		end = min(entry->file_offset + entry->num_bytes,
466 			  file_offset + num_bytes) - 1;
467 		ASSERT(end + 1 - cur < U32_MAX);
468 		len = end + 1 - cur;
469 
470 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
471 			spin_unlock_irqrestore(&tree->lock, flags);
472 			btrfs_queue_ordered_fn(entry);
473 			spin_lock_irqsave(&tree->lock, flags);
474 		}
475 		cur += len;
476 	}
477 	spin_unlock_irqrestore(&tree->lock, flags);
478 }
479 
480 /*
481  * Finish IO for one ordered extent across a given range.  The range can only
482  * contain one ordered extent.
483  *
484  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
485  *               search and use the ordered extent directly.
486  * 		 Will be also used to store the finished ordered extent.
487  * @file_offset: File offset for the finished IO
488  * @io_size:	 Length of the finish IO range
489  *
490  * Return true if the ordered extent is finished in the range, and update
491  * @cached.
492  * Return false otherwise.
493  *
494  * NOTE: The range can NOT cross multiple ordered extents.
495  * Thus caller should ensure the range doesn't cross ordered extents.
496  */
497 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
498 				    struct btrfs_ordered_extent **cached,
499 				    u64 file_offset, u64 io_size)
500 {
501 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
502 	struct rb_node *node;
503 	struct btrfs_ordered_extent *entry = NULL;
504 	unsigned long flags;
505 	bool finished = false;
506 
507 	spin_lock_irqsave(&tree->lock, flags);
508 	if (cached && *cached) {
509 		entry = *cached;
510 		goto have_entry;
511 	}
512 
513 	node = tree_search(tree, file_offset);
514 	if (!node)
515 		goto out;
516 
517 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
518 have_entry:
519 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
520 		goto out;
521 
522 	if (io_size > entry->bytes_left)
523 		btrfs_crit(inode->root->fs_info,
524 			   "bad ordered accounting left %llu size %llu",
525 		       entry->bytes_left, io_size);
526 
527 	entry->bytes_left -= io_size;
528 
529 	if (entry->bytes_left == 0) {
530 		/*
531 		 * Ensure only one caller can set the flag and finished_ret
532 		 * accordingly
533 		 */
534 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
535 		/* test_and_set_bit implies a barrier */
536 		cond_wake_up_nomb(&entry->wait);
537 	}
538 out:
539 	if (finished && cached && entry) {
540 		*cached = entry;
541 		refcount_inc(&entry->refs);
542 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
543 	}
544 	spin_unlock_irqrestore(&tree->lock, flags);
545 	return finished;
546 }
547 
548 /*
549  * used to drop a reference on an ordered extent.  This will free
550  * the extent if the last reference is dropped
551  */
552 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
553 {
554 	struct list_head *cur;
555 	struct btrfs_ordered_sum *sum;
556 
557 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
558 
559 	if (refcount_dec_and_test(&entry->refs)) {
560 		ASSERT(list_empty(&entry->root_extent_list));
561 		ASSERT(list_empty(&entry->log_list));
562 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563 		if (entry->inode)
564 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
565 		while (!list_empty(&entry->list)) {
566 			cur = entry->list.next;
567 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
568 			list_del(&sum->list);
569 			kvfree(sum);
570 		}
571 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
572 	}
573 }
574 
575 /*
576  * remove an ordered extent from the tree.  No references are dropped
577  * and waiters are woken up.
578  */
579 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
580 				 struct btrfs_ordered_extent *entry)
581 {
582 	struct btrfs_ordered_inode_tree *tree;
583 	struct btrfs_root *root = btrfs_inode->root;
584 	struct btrfs_fs_info *fs_info = root->fs_info;
585 	struct rb_node *node;
586 	bool pending;
587 	bool freespace_inode;
588 
589 	/*
590 	 * If this is a free space inode the thread has not acquired the ordered
591 	 * extents lockdep map.
592 	 */
593 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
594 
595 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
596 	/* This is paired with btrfs_alloc_ordered_extent. */
597 	spin_lock(&btrfs_inode->lock);
598 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
599 	spin_unlock(&btrfs_inode->lock);
600 	if (root != fs_info->tree_root) {
601 		u64 release;
602 
603 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
604 			release = entry->disk_num_bytes;
605 		else
606 			release = entry->num_bytes;
607 		btrfs_delalloc_release_metadata(btrfs_inode, release,
608 						test_bit(BTRFS_ORDERED_IOERR,
609 							 &entry->flags));
610 	}
611 
612 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
613 				 fs_info->delalloc_batch);
614 
615 	tree = &btrfs_inode->ordered_tree;
616 	spin_lock_irq(&tree->lock);
617 	node = &entry->rb_node;
618 	rb_erase(node, &tree->tree);
619 	RB_CLEAR_NODE(node);
620 	if (tree->last == node)
621 		tree->last = NULL;
622 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
623 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
624 	spin_unlock_irq(&tree->lock);
625 
626 	/*
627 	 * The current running transaction is waiting on us, we need to let it
628 	 * know that we're complete and wake it up.
629 	 */
630 	if (pending) {
631 		struct btrfs_transaction *trans;
632 
633 		/*
634 		 * The checks for trans are just a formality, it should be set,
635 		 * but if it isn't we don't want to deref/assert under the spin
636 		 * lock, so be nice and check if trans is set, but ASSERT() so
637 		 * if it isn't set a developer will notice.
638 		 */
639 		spin_lock(&fs_info->trans_lock);
640 		trans = fs_info->running_transaction;
641 		if (trans)
642 			refcount_inc(&trans->use_count);
643 		spin_unlock(&fs_info->trans_lock);
644 
645 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
646 		if (trans) {
647 			if (atomic_dec_and_test(&trans->pending_ordered))
648 				wake_up(&trans->pending_wait);
649 			btrfs_put_transaction(trans);
650 		}
651 	}
652 
653 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
654 
655 	spin_lock(&root->ordered_extent_lock);
656 	list_del_init(&entry->root_extent_list);
657 	root->nr_ordered_extents--;
658 
659 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
660 
661 	if (!root->nr_ordered_extents) {
662 		spin_lock(&fs_info->ordered_root_lock);
663 		BUG_ON(list_empty(&root->ordered_root));
664 		list_del_init(&root->ordered_root);
665 		spin_unlock(&fs_info->ordered_root_lock);
666 	}
667 	spin_unlock(&root->ordered_extent_lock);
668 	wake_up(&entry->wait);
669 	if (!freespace_inode)
670 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
671 }
672 
673 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
674 {
675 	struct btrfs_ordered_extent *ordered;
676 
677 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
678 	btrfs_start_ordered_extent(ordered);
679 	complete(&ordered->completion);
680 }
681 
682 /*
683  * wait for all the ordered extents in a root.  This is done when balancing
684  * space between drives.
685  */
686 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
687 			       const u64 range_start, const u64 range_len)
688 {
689 	struct btrfs_fs_info *fs_info = root->fs_info;
690 	LIST_HEAD(splice);
691 	LIST_HEAD(skipped);
692 	LIST_HEAD(works);
693 	struct btrfs_ordered_extent *ordered, *next;
694 	u64 count = 0;
695 	const u64 range_end = range_start + range_len;
696 
697 	mutex_lock(&root->ordered_extent_mutex);
698 	spin_lock(&root->ordered_extent_lock);
699 	list_splice_init(&root->ordered_extents, &splice);
700 	while (!list_empty(&splice) && nr) {
701 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
702 					   root_extent_list);
703 
704 		if (range_end <= ordered->disk_bytenr ||
705 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
706 			list_move_tail(&ordered->root_extent_list, &skipped);
707 			cond_resched_lock(&root->ordered_extent_lock);
708 			continue;
709 		}
710 
711 		list_move_tail(&ordered->root_extent_list,
712 			       &root->ordered_extents);
713 		refcount_inc(&ordered->refs);
714 		spin_unlock(&root->ordered_extent_lock);
715 
716 		btrfs_init_work(&ordered->flush_work,
717 				btrfs_run_ordered_extent_work, NULL, NULL);
718 		list_add_tail(&ordered->work_list, &works);
719 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
720 
721 		cond_resched();
722 		spin_lock(&root->ordered_extent_lock);
723 		if (nr != U64_MAX)
724 			nr--;
725 		count++;
726 	}
727 	list_splice_tail(&skipped, &root->ordered_extents);
728 	list_splice_tail(&splice, &root->ordered_extents);
729 	spin_unlock(&root->ordered_extent_lock);
730 
731 	list_for_each_entry_safe(ordered, next, &works, work_list) {
732 		list_del_init(&ordered->work_list);
733 		wait_for_completion(&ordered->completion);
734 		btrfs_put_ordered_extent(ordered);
735 		cond_resched();
736 	}
737 	mutex_unlock(&root->ordered_extent_mutex);
738 
739 	return count;
740 }
741 
742 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
743 			     const u64 range_start, const u64 range_len)
744 {
745 	struct btrfs_root *root;
746 	LIST_HEAD(splice);
747 	u64 done;
748 
749 	mutex_lock(&fs_info->ordered_operations_mutex);
750 	spin_lock(&fs_info->ordered_root_lock);
751 	list_splice_init(&fs_info->ordered_roots, &splice);
752 	while (!list_empty(&splice) && nr) {
753 		root = list_first_entry(&splice, struct btrfs_root,
754 					ordered_root);
755 		root = btrfs_grab_root(root);
756 		BUG_ON(!root);
757 		list_move_tail(&root->ordered_root,
758 			       &fs_info->ordered_roots);
759 		spin_unlock(&fs_info->ordered_root_lock);
760 
761 		done = btrfs_wait_ordered_extents(root, nr,
762 						  range_start, range_len);
763 		btrfs_put_root(root);
764 
765 		spin_lock(&fs_info->ordered_root_lock);
766 		if (nr != U64_MAX) {
767 			nr -= done;
768 		}
769 	}
770 	list_splice_tail(&splice, &fs_info->ordered_roots);
771 	spin_unlock(&fs_info->ordered_root_lock);
772 	mutex_unlock(&fs_info->ordered_operations_mutex);
773 }
774 
775 /*
776  * Start IO and wait for a given ordered extent to finish.
777  *
778  * Wait on page writeback for all the pages in the extent and the IO completion
779  * code to insert metadata into the btree corresponding to the extent.
780  */
781 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
782 {
783 	u64 start = entry->file_offset;
784 	u64 end = start + entry->num_bytes - 1;
785 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
786 	bool freespace_inode;
787 
788 	trace_btrfs_ordered_extent_start(inode, entry);
789 
790 	/*
791 	 * If this is a free space inode do not take the ordered extents lockdep
792 	 * map.
793 	 */
794 	freespace_inode = btrfs_is_free_space_inode(inode);
795 
796 	/*
797 	 * pages in the range can be dirty, clean or writeback.  We
798 	 * start IO on any dirty ones so the wait doesn't stall waiting
799 	 * for the flusher thread to find them
800 	 */
801 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
802 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
803 
804 	if (!freespace_inode)
805 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
806 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
807 }
808 
809 /*
810  * Used to wait on ordered extents across a large range of bytes.
811  */
812 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
813 {
814 	int ret = 0;
815 	int ret_wb = 0;
816 	u64 end;
817 	u64 orig_end;
818 	struct btrfs_ordered_extent *ordered;
819 
820 	if (start + len < start) {
821 		orig_end = OFFSET_MAX;
822 	} else {
823 		orig_end = start + len - 1;
824 		if (orig_end > OFFSET_MAX)
825 			orig_end = OFFSET_MAX;
826 	}
827 
828 	/* start IO across the range first to instantiate any delalloc
829 	 * extents
830 	 */
831 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
832 	if (ret)
833 		return ret;
834 
835 	/*
836 	 * If we have a writeback error don't return immediately. Wait first
837 	 * for any ordered extents that haven't completed yet. This is to make
838 	 * sure no one can dirty the same page ranges and call writepages()
839 	 * before the ordered extents complete - to avoid failures (-EEXIST)
840 	 * when adding the new ordered extents to the ordered tree.
841 	 */
842 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
843 
844 	end = orig_end;
845 	while (1) {
846 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
847 		if (!ordered)
848 			break;
849 		if (ordered->file_offset > orig_end) {
850 			btrfs_put_ordered_extent(ordered);
851 			break;
852 		}
853 		if (ordered->file_offset + ordered->num_bytes <= start) {
854 			btrfs_put_ordered_extent(ordered);
855 			break;
856 		}
857 		btrfs_start_ordered_extent(ordered);
858 		end = ordered->file_offset;
859 		/*
860 		 * If the ordered extent had an error save the error but don't
861 		 * exit without waiting first for all other ordered extents in
862 		 * the range to complete.
863 		 */
864 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
865 			ret = -EIO;
866 		btrfs_put_ordered_extent(ordered);
867 		if (end == 0 || end == start)
868 			break;
869 		end--;
870 	}
871 	return ret_wb ? ret_wb : ret;
872 }
873 
874 /*
875  * find an ordered extent corresponding to file_offset.  return NULL if
876  * nothing is found, otherwise take a reference on the extent and return it
877  */
878 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
879 							 u64 file_offset)
880 {
881 	struct btrfs_ordered_inode_tree *tree;
882 	struct rb_node *node;
883 	struct btrfs_ordered_extent *entry = NULL;
884 	unsigned long flags;
885 
886 	tree = &inode->ordered_tree;
887 	spin_lock_irqsave(&tree->lock, flags);
888 	node = tree_search(tree, file_offset);
889 	if (!node)
890 		goto out;
891 
892 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
893 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
894 		entry = NULL;
895 	if (entry) {
896 		refcount_inc(&entry->refs);
897 		trace_btrfs_ordered_extent_lookup(inode, entry);
898 	}
899 out:
900 	spin_unlock_irqrestore(&tree->lock, flags);
901 	return entry;
902 }
903 
904 /* Since the DIO code tries to lock a wide area we need to look for any ordered
905  * extents that exist in the range, rather than just the start of the range.
906  */
907 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
908 		struct btrfs_inode *inode, u64 file_offset, u64 len)
909 {
910 	struct btrfs_ordered_inode_tree *tree;
911 	struct rb_node *node;
912 	struct btrfs_ordered_extent *entry = NULL;
913 
914 	tree = &inode->ordered_tree;
915 	spin_lock_irq(&tree->lock);
916 	node = tree_search(tree, file_offset);
917 	if (!node) {
918 		node = tree_search(tree, file_offset + len);
919 		if (!node)
920 			goto out;
921 	}
922 
923 	while (1) {
924 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
925 		if (range_overlaps(entry, file_offset, len))
926 			break;
927 
928 		if (entry->file_offset >= file_offset + len) {
929 			entry = NULL;
930 			break;
931 		}
932 		entry = NULL;
933 		node = rb_next(node);
934 		if (!node)
935 			break;
936 	}
937 out:
938 	if (entry) {
939 		refcount_inc(&entry->refs);
940 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
941 	}
942 	spin_unlock_irq(&tree->lock);
943 	return entry;
944 }
945 
946 /*
947  * Adds all ordered extents to the given list. The list ends up sorted by the
948  * file_offset of the ordered extents.
949  */
950 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
951 					   struct list_head *list)
952 {
953 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
954 	struct rb_node *n;
955 
956 	ASSERT(inode_is_locked(&inode->vfs_inode));
957 
958 	spin_lock_irq(&tree->lock);
959 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
960 		struct btrfs_ordered_extent *ordered;
961 
962 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
963 
964 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
965 			continue;
966 
967 		ASSERT(list_empty(&ordered->log_list));
968 		list_add_tail(&ordered->log_list, list);
969 		refcount_inc(&ordered->refs);
970 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
971 	}
972 	spin_unlock_irq(&tree->lock);
973 }
974 
975 /*
976  * lookup and return any extent before 'file_offset'.  NULL is returned
977  * if none is found
978  */
979 struct btrfs_ordered_extent *
980 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
981 {
982 	struct btrfs_ordered_inode_tree *tree;
983 	struct rb_node *node;
984 	struct btrfs_ordered_extent *entry = NULL;
985 
986 	tree = &inode->ordered_tree;
987 	spin_lock_irq(&tree->lock);
988 	node = tree_search(tree, file_offset);
989 	if (!node)
990 		goto out;
991 
992 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
993 	refcount_inc(&entry->refs);
994 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
995 out:
996 	spin_unlock_irq(&tree->lock);
997 	return entry;
998 }
999 
1000 /*
1001  * Lookup the first ordered extent that overlaps the range
1002  * [@file_offset, @file_offset + @len).
1003  *
1004  * The difference between this and btrfs_lookup_first_ordered_extent() is
1005  * that this one won't return any ordered extent that does not overlap the range.
1006  * And the difference against btrfs_lookup_ordered_extent() is, this function
1007  * ensures the first ordered extent gets returned.
1008  */
1009 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1010 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1011 {
1012 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1013 	struct rb_node *node;
1014 	struct rb_node *cur;
1015 	struct rb_node *prev;
1016 	struct rb_node *next;
1017 	struct btrfs_ordered_extent *entry = NULL;
1018 
1019 	spin_lock_irq(&tree->lock);
1020 	node = tree->tree.rb_node;
1021 	/*
1022 	 * Here we don't want to use tree_search() which will use tree->last
1023 	 * and screw up the search order.
1024 	 * And __tree_search() can't return the adjacent ordered extents
1025 	 * either, thus here we do our own search.
1026 	 */
1027 	while (node) {
1028 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1029 
1030 		if (file_offset < entry->file_offset) {
1031 			node = node->rb_left;
1032 		} else if (file_offset >= entry_end(entry)) {
1033 			node = node->rb_right;
1034 		} else {
1035 			/*
1036 			 * Direct hit, got an ordered extent that starts at
1037 			 * @file_offset
1038 			 */
1039 			goto out;
1040 		}
1041 	}
1042 	if (!entry) {
1043 		/* Empty tree */
1044 		goto out;
1045 	}
1046 
1047 	cur = &entry->rb_node;
1048 	/* We got an entry around @file_offset, check adjacent entries */
1049 	if (entry->file_offset < file_offset) {
1050 		prev = cur;
1051 		next = rb_next(cur);
1052 	} else {
1053 		prev = rb_prev(cur);
1054 		next = cur;
1055 	}
1056 	if (prev) {
1057 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1058 		if (range_overlaps(entry, file_offset, len))
1059 			goto out;
1060 	}
1061 	if (next) {
1062 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1063 		if (range_overlaps(entry, file_offset, len))
1064 			goto out;
1065 	}
1066 	/* No ordered extent in the range */
1067 	entry = NULL;
1068 out:
1069 	if (entry) {
1070 		refcount_inc(&entry->refs);
1071 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1072 	}
1073 
1074 	spin_unlock_irq(&tree->lock);
1075 	return entry;
1076 }
1077 
1078 /*
1079  * Lock the passed range and ensures all pending ordered extents in it are run
1080  * to completion.
1081  *
1082  * @inode:        Inode whose ordered tree is to be searched
1083  * @start:        Beginning of range to flush
1084  * @end:          Last byte of range to lock
1085  * @cached_state: If passed, will return the extent state responsible for the
1086  *                locked range. It's the caller's responsibility to free the
1087  *                cached state.
1088  *
1089  * Always return with the given range locked, ensuring after it's called no
1090  * order extent can be pending.
1091  */
1092 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1093 					u64 end,
1094 					struct extent_state **cached_state)
1095 {
1096 	struct btrfs_ordered_extent *ordered;
1097 	struct extent_state *cache = NULL;
1098 	struct extent_state **cachedp = &cache;
1099 
1100 	if (cached_state)
1101 		cachedp = cached_state;
1102 
1103 	while (1) {
1104 		lock_extent(&inode->io_tree, start, end, cachedp);
1105 		ordered = btrfs_lookup_ordered_range(inode, start,
1106 						     end - start + 1);
1107 		if (!ordered) {
1108 			/*
1109 			 * If no external cached_state has been passed then
1110 			 * decrement the extra ref taken for cachedp since we
1111 			 * aren't exposing it outside of this function
1112 			 */
1113 			if (!cached_state)
1114 				refcount_dec(&cache->refs);
1115 			break;
1116 		}
1117 		unlock_extent(&inode->io_tree, start, end, cachedp);
1118 		btrfs_start_ordered_extent(ordered);
1119 		btrfs_put_ordered_extent(ordered);
1120 	}
1121 }
1122 
1123 /*
1124  * Lock the passed range and ensure all pending ordered extents in it are run
1125  * to completion in nowait mode.
1126  *
1127  * Return true if btrfs_lock_ordered_range does not return any extents,
1128  * otherwise false.
1129  */
1130 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1131 				  struct extent_state **cached_state)
1132 {
1133 	struct btrfs_ordered_extent *ordered;
1134 
1135 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1136 		return false;
1137 
1138 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1139 	if (!ordered)
1140 		return true;
1141 
1142 	btrfs_put_ordered_extent(ordered);
1143 	unlock_extent(&inode->io_tree, start, end, cached_state);
1144 
1145 	return false;
1146 }
1147 
1148 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1149 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1150 			struct btrfs_ordered_extent *ordered, u64 len)
1151 {
1152 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1153 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1154 	struct btrfs_root *root = inode->root;
1155 	struct btrfs_fs_info *fs_info = root->fs_info;
1156 	u64 file_offset = ordered->file_offset;
1157 	u64 disk_bytenr = ordered->disk_bytenr;
1158 	unsigned long flags = ordered->flags;
1159 	struct btrfs_ordered_sum *sum, *tmpsum;
1160 	struct btrfs_ordered_extent *new;
1161 	struct rb_node *node;
1162 	u64 offset = 0;
1163 
1164 	trace_btrfs_ordered_extent_split(inode, ordered);
1165 
1166 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1167 
1168 	/*
1169 	 * The entire bio must be covered by the ordered extent, but we can't
1170 	 * reduce the original extent to a zero length either.
1171 	 */
1172 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1173 		return ERR_PTR(-EINVAL);
1174 	/* We cannot split partially completed ordered extents. */
1175 	if (ordered->bytes_left) {
1176 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1177 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1178 			return ERR_PTR(-EINVAL);
1179 	}
1180 	/* We cannot split a compressed ordered extent. */
1181 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1185 				   len, 0, flags, ordered->compress_type);
1186 	if (IS_ERR(new))
1187 		return new;
1188 
1189 	/* One ref for the tree. */
1190 	refcount_inc(&new->refs);
1191 
1192 	spin_lock_irq(&root->ordered_extent_lock);
1193 	spin_lock(&tree->lock);
1194 	/* Remove from tree once */
1195 	node = &ordered->rb_node;
1196 	rb_erase(node, &tree->tree);
1197 	RB_CLEAR_NODE(node);
1198 	if (tree->last == node)
1199 		tree->last = NULL;
1200 
1201 	ordered->file_offset += len;
1202 	ordered->disk_bytenr += len;
1203 	ordered->num_bytes -= len;
1204 	ordered->disk_num_bytes -= len;
1205 	ordered->ram_bytes -= len;
1206 
1207 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1208 		ASSERT(ordered->bytes_left == 0);
1209 		new->bytes_left = 0;
1210 	} else {
1211 		ordered->bytes_left -= len;
1212 	}
1213 
1214 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1215 		if (ordered->truncated_len > len) {
1216 			ordered->truncated_len -= len;
1217 		} else {
1218 			new->truncated_len = ordered->truncated_len;
1219 			ordered->truncated_len = 0;
1220 		}
1221 	}
1222 
1223 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1224 		if (offset == len)
1225 			break;
1226 		list_move_tail(&sum->list, &new->list);
1227 		offset += sum->len;
1228 	}
1229 
1230 	/* Re-insert the node */
1231 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1232 	if (node)
1233 		btrfs_panic(fs_info, -EEXIST,
1234 			"zoned: inconsistency in ordered tree at offset %llu",
1235 			ordered->file_offset);
1236 
1237 	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1238 	if (node)
1239 		btrfs_panic(fs_info, -EEXIST,
1240 			"zoned: inconsistency in ordered tree at offset %llu",
1241 			new->file_offset);
1242 	spin_unlock(&tree->lock);
1243 
1244 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1245 	root->nr_ordered_extents++;
1246 	spin_unlock_irq(&root->ordered_extent_lock);
1247 	return new;
1248 }
1249 
1250 int __init ordered_data_init(void)
1251 {
1252 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1253 				     sizeof(struct btrfs_ordered_extent), 0,
1254 				     SLAB_MEM_SPREAD,
1255 				     NULL);
1256 	if (!btrfs_ordered_extent_cache)
1257 		return -ENOMEM;
1258 
1259 	return 0;
1260 }
1261 
1262 void __cold ordered_data_exit(void)
1263 {
1264 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1265 }
1266