xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision d3597236)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	entry->disk_len = disk_len;
202 	entry->bytes_left = len;
203 	entry->inode = igrab(inode);
204 	entry->compress_type = compress_type;
205 	entry->truncated_len = (u64)-1;
206 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 		set_bit(type, &entry->flags);
208 
209 	if (dio)
210 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 
212 	/* one ref for the tree */
213 	atomic_set(&entry->refs, 1);
214 	init_waitqueue_head(&entry->wait);
215 	INIT_LIST_HEAD(&entry->list);
216 	INIT_LIST_HEAD(&entry->root_extent_list);
217 	INIT_LIST_HEAD(&entry->work_list);
218 	init_completion(&entry->completion);
219 	INIT_LIST_HEAD(&entry->log_list);
220 	INIT_LIST_HEAD(&entry->trans_list);
221 
222 	trace_btrfs_ordered_extent_add(inode, entry);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, file_offset,
226 			   &entry->rb_node);
227 	if (node)
228 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 	spin_unlock_irq(&tree->lock);
230 
231 	spin_lock(&root->ordered_extent_lock);
232 	list_add_tail(&entry->root_extent_list,
233 		      &root->ordered_extents);
234 	root->nr_ordered_extents++;
235 	if (root->nr_ordered_extents == 1) {
236 		spin_lock(&root->fs_info->ordered_root_lock);
237 		BUG_ON(!list_empty(&root->ordered_root));
238 		list_add_tail(&root->ordered_root,
239 			      &root->fs_info->ordered_roots);
240 		spin_unlock(&root->fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 
244 	return 0;
245 }
246 
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 			     u64 start, u64 len, u64 disk_len, int type)
249 {
250 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 					  disk_len, type, 0,
252 					  BTRFS_COMPRESS_NONE);
253 }
254 
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 				 u64 start, u64 len, u64 disk_len, int type)
257 {
258 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 					  disk_len, type, 1,
260 					  BTRFS_COMPRESS_NONE);
261 }
262 
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 				      u64 start, u64 len, u64 disk_len,
265 				      int type, int compress_type)
266 {
267 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 					  disk_len, type, 0,
269 					  compress_type);
270 }
271 
272 /*
273  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274  * when an ordered extent is finished.  If the list covers more than one
275  * ordered extent, it is split across multiples.
276  */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 			   struct btrfs_ordered_extent *entry,
279 			   struct btrfs_ordered_sum *sum)
280 {
281 	struct btrfs_ordered_inode_tree *tree;
282 
283 	tree = &BTRFS_I(inode)->ordered_tree;
284 	spin_lock_irq(&tree->lock);
285 	list_add_tail(&sum->list, &entry->list);
286 	spin_unlock_irq(&tree->lock);
287 }
288 
289 /*
290  * this is used to account for finished IO across a given range
291  * of the file.  The IO may span ordered extents.  If
292  * a given ordered_extent is completely done, 1 is returned, otherwise
293  * 0.
294  *
295  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296  * to make sure this function only returns 1 once for a given ordered extent.
297  *
298  * file_offset is updated to one byte past the range that is recorded as
299  * complete.  This allows you to walk forward in the file.
300  */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 				   struct btrfs_ordered_extent **cached,
303 				   u64 *file_offset, u64 io_size, int uptodate)
304 {
305 	struct btrfs_ordered_inode_tree *tree;
306 	struct rb_node *node;
307 	struct btrfs_ordered_extent *entry = NULL;
308 	int ret;
309 	unsigned long flags;
310 	u64 dec_end;
311 	u64 dec_start;
312 	u64 to_dec;
313 
314 	tree = &BTRFS_I(inode)->ordered_tree;
315 	spin_lock_irqsave(&tree->lock, flags);
316 	node = tree_search(tree, *file_offset);
317 	if (!node) {
318 		ret = 1;
319 		goto out;
320 	}
321 
322 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 	if (!offset_in_entry(entry, *file_offset)) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	dec_start = max(*file_offset, entry->file_offset);
329 	dec_end = min(*file_offset + io_size, entry->file_offset +
330 		      entry->len);
331 	*file_offset = dec_end;
332 	if (dec_start > dec_end) {
333 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 	}
336 	to_dec = dec_end - dec_start;
337 	if (to_dec > entry->bytes_left) {
338 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 			"bad ordered accounting left %llu size %llu",
340 			entry->bytes_left, to_dec);
341 	}
342 	entry->bytes_left -= to_dec;
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345 
346 	if (entry->bytes_left == 0) {
347 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 		if (waitqueue_active(&entry->wait))
349 			wake_up(&entry->wait);
350 	} else {
351 		ret = 1;
352 	}
353 out:
354 	if (!ret && cached && entry) {
355 		*cached = entry;
356 		atomic_inc(&entry->refs);
357 	}
358 	spin_unlock_irqrestore(&tree->lock, flags);
359 	return ret == 0;
360 }
361 
362 /*
363  * this is used to account for finished IO across a given range
364  * of the file.  The IO should not span ordered extents.  If
365  * a given ordered_extent is completely done, 1 is returned, otherwise
366  * 0.
367  *
368  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
369  * to make sure this function only returns 1 once for a given ordered extent.
370  */
371 int btrfs_dec_test_ordered_pending(struct inode *inode,
372 				   struct btrfs_ordered_extent **cached,
373 				   u64 file_offset, u64 io_size, int uptodate)
374 {
375 	struct btrfs_ordered_inode_tree *tree;
376 	struct rb_node *node;
377 	struct btrfs_ordered_extent *entry = NULL;
378 	unsigned long flags;
379 	int ret;
380 
381 	tree = &BTRFS_I(inode)->ordered_tree;
382 	spin_lock_irqsave(&tree->lock, flags);
383 	if (cached && *cached) {
384 		entry = *cached;
385 		goto have_entry;
386 	}
387 
388 	node = tree_search(tree, file_offset);
389 	if (!node) {
390 		ret = 1;
391 		goto out;
392 	}
393 
394 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
395 have_entry:
396 	if (!offset_in_entry(entry, file_offset)) {
397 		ret = 1;
398 		goto out;
399 	}
400 
401 	if (io_size > entry->bytes_left) {
402 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
403 			   "bad ordered accounting left %llu size %llu",
404 		       entry->bytes_left, io_size);
405 	}
406 	entry->bytes_left -= io_size;
407 	if (!uptodate)
408 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409 
410 	if (entry->bytes_left == 0) {
411 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 		if (waitqueue_active(&entry->wait))
413 			wake_up(&entry->wait);
414 	} else {
415 		ret = 1;
416 	}
417 out:
418 	if (!ret && cached && entry) {
419 		*cached = entry;
420 		atomic_inc(&entry->refs);
421 	}
422 	spin_unlock_irqrestore(&tree->lock, flags);
423 	return ret == 0;
424 }
425 
426 /* Needs to either be called under a log transaction or the log_mutex */
427 void btrfs_get_logged_extents(struct inode *inode,
428 			      struct list_head *logged_list,
429 			      const loff_t start,
430 			      const loff_t end)
431 {
432 	struct btrfs_ordered_inode_tree *tree;
433 	struct btrfs_ordered_extent *ordered;
434 	struct rb_node *n;
435 	struct rb_node *prev;
436 
437 	tree = &BTRFS_I(inode)->ordered_tree;
438 	spin_lock_irq(&tree->lock);
439 	n = __tree_search(&tree->tree, end, &prev);
440 	if (!n)
441 		n = prev;
442 	for (; n; n = rb_prev(n)) {
443 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 		if (ordered->file_offset > end)
445 			continue;
446 		if (entry_end(ordered) <= start)
447 			break;
448 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
449 			continue;
450 		list_add(&ordered->log_list, logged_list);
451 		atomic_inc(&ordered->refs);
452 	}
453 	spin_unlock_irq(&tree->lock);
454 }
455 
456 void btrfs_put_logged_extents(struct list_head *logged_list)
457 {
458 	struct btrfs_ordered_extent *ordered;
459 
460 	while (!list_empty(logged_list)) {
461 		ordered = list_first_entry(logged_list,
462 					   struct btrfs_ordered_extent,
463 					   log_list);
464 		list_del_init(&ordered->log_list);
465 		btrfs_put_ordered_extent(ordered);
466 	}
467 }
468 
469 void btrfs_submit_logged_extents(struct list_head *logged_list,
470 				 struct btrfs_root *log)
471 {
472 	int index = log->log_transid % 2;
473 
474 	spin_lock_irq(&log->log_extents_lock[index]);
475 	list_splice_tail(logged_list, &log->logged_list[index]);
476 	spin_unlock_irq(&log->log_extents_lock[index]);
477 }
478 
479 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
480 			       struct btrfs_root *log, u64 transid)
481 {
482 	struct btrfs_ordered_extent *ordered;
483 	int index = transid % 2;
484 
485 	spin_lock_irq(&log->log_extents_lock[index]);
486 	while (!list_empty(&log->logged_list[index])) {
487 		ordered = list_first_entry(&log->logged_list[index],
488 					   struct btrfs_ordered_extent,
489 					   log_list);
490 		list_del_init(&ordered->log_list);
491 		spin_unlock_irq(&log->log_extents_lock[index]);
492 
493 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
494 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
495 			struct inode *inode = ordered->inode;
496 			u64 start = ordered->file_offset;
497 			u64 end = ordered->file_offset + ordered->len - 1;
498 
499 			WARN_ON(!inode);
500 			filemap_fdatawrite_range(inode->i_mapping, start, end);
501 		}
502 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
503 						   &ordered->flags));
504 
505 		/*
506 		 * If our ordered extent completed it means it updated the
507 		 * fs/subvol and csum trees already, so no need to make the
508 		 * current transaction's commit wait for it, as we end up
509 		 * holding memory unnecessarily and delaying the inode's iput
510 		 * until the transaction commit (we schedule an iput for the
511 		 * inode when the ordered extent's refcount drops to 0), which
512 		 * prevents it from being evictable until the transaction
513 		 * commits.
514 		 */
515 		if (test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags))
516 			btrfs_put_ordered_extent(ordered);
517 		else
518 			list_add_tail(&ordered->trans_list, &trans->ordered);
519 
520 		spin_lock_irq(&log->log_extents_lock[index]);
521 	}
522 	spin_unlock_irq(&log->log_extents_lock[index]);
523 }
524 
525 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
526 {
527 	struct btrfs_ordered_extent *ordered;
528 	int index = transid % 2;
529 
530 	spin_lock_irq(&log->log_extents_lock[index]);
531 	while (!list_empty(&log->logged_list[index])) {
532 		ordered = list_first_entry(&log->logged_list[index],
533 					   struct btrfs_ordered_extent,
534 					   log_list);
535 		list_del_init(&ordered->log_list);
536 		spin_unlock_irq(&log->log_extents_lock[index]);
537 		btrfs_put_ordered_extent(ordered);
538 		spin_lock_irq(&log->log_extents_lock[index]);
539 	}
540 	spin_unlock_irq(&log->log_extents_lock[index]);
541 }
542 
543 /*
544  * used to drop a reference on an ordered extent.  This will free
545  * the extent if the last reference is dropped
546  */
547 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
548 {
549 	struct list_head *cur;
550 	struct btrfs_ordered_sum *sum;
551 
552 	trace_btrfs_ordered_extent_put(entry->inode, entry);
553 
554 	if (atomic_dec_and_test(&entry->refs)) {
555 		if (entry->inode)
556 			btrfs_add_delayed_iput(entry->inode);
557 		while (!list_empty(&entry->list)) {
558 			cur = entry->list.next;
559 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
560 			list_del(&sum->list);
561 			kfree(sum);
562 		}
563 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
564 	}
565 }
566 
567 /*
568  * remove an ordered extent from the tree.  No references are dropped
569  * and waiters are woken up.
570  */
571 void btrfs_remove_ordered_extent(struct inode *inode,
572 				 struct btrfs_ordered_extent *entry)
573 {
574 	struct btrfs_ordered_inode_tree *tree;
575 	struct btrfs_root *root = BTRFS_I(inode)->root;
576 	struct rb_node *node;
577 
578 	tree = &BTRFS_I(inode)->ordered_tree;
579 	spin_lock_irq(&tree->lock);
580 	node = &entry->rb_node;
581 	rb_erase(node, &tree->tree);
582 	if (tree->last == node)
583 		tree->last = NULL;
584 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
585 	spin_unlock_irq(&tree->lock);
586 
587 	spin_lock(&root->ordered_extent_lock);
588 	list_del_init(&entry->root_extent_list);
589 	root->nr_ordered_extents--;
590 
591 	trace_btrfs_ordered_extent_remove(inode, entry);
592 
593 	if (!root->nr_ordered_extents) {
594 		spin_lock(&root->fs_info->ordered_root_lock);
595 		BUG_ON(list_empty(&root->ordered_root));
596 		list_del_init(&root->ordered_root);
597 		spin_unlock(&root->fs_info->ordered_root_lock);
598 	}
599 	spin_unlock(&root->ordered_extent_lock);
600 	wake_up(&entry->wait);
601 }
602 
603 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
604 {
605 	struct btrfs_ordered_extent *ordered;
606 
607 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
608 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
609 	complete(&ordered->completion);
610 }
611 
612 /*
613  * wait for all the ordered extents in a root.  This is done when balancing
614  * space between drives.
615  */
616 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
617 {
618 	struct list_head splice, works;
619 	struct btrfs_ordered_extent *ordered, *next;
620 	int count = 0;
621 
622 	INIT_LIST_HEAD(&splice);
623 	INIT_LIST_HEAD(&works);
624 
625 	mutex_lock(&root->ordered_extent_mutex);
626 	spin_lock(&root->ordered_extent_lock);
627 	list_splice_init(&root->ordered_extents, &splice);
628 	while (!list_empty(&splice) && nr) {
629 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
630 					   root_extent_list);
631 		list_move_tail(&ordered->root_extent_list,
632 			       &root->ordered_extents);
633 		atomic_inc(&ordered->refs);
634 		spin_unlock(&root->ordered_extent_lock);
635 
636 		btrfs_init_work(&ordered->flush_work,
637 				btrfs_flush_delalloc_helper,
638 				btrfs_run_ordered_extent_work, NULL, NULL);
639 		list_add_tail(&ordered->work_list, &works);
640 		btrfs_queue_work(root->fs_info->flush_workers,
641 				 &ordered->flush_work);
642 
643 		cond_resched();
644 		spin_lock(&root->ordered_extent_lock);
645 		if (nr != -1)
646 			nr--;
647 		count++;
648 	}
649 	list_splice_tail(&splice, &root->ordered_extents);
650 	spin_unlock(&root->ordered_extent_lock);
651 
652 	list_for_each_entry_safe(ordered, next, &works, work_list) {
653 		list_del_init(&ordered->work_list);
654 		wait_for_completion(&ordered->completion);
655 		btrfs_put_ordered_extent(ordered);
656 		cond_resched();
657 	}
658 	mutex_unlock(&root->ordered_extent_mutex);
659 
660 	return count;
661 }
662 
663 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
664 {
665 	struct btrfs_root *root;
666 	struct list_head splice;
667 	int done;
668 
669 	INIT_LIST_HEAD(&splice);
670 
671 	mutex_lock(&fs_info->ordered_operations_mutex);
672 	spin_lock(&fs_info->ordered_root_lock);
673 	list_splice_init(&fs_info->ordered_roots, &splice);
674 	while (!list_empty(&splice) && nr) {
675 		root = list_first_entry(&splice, struct btrfs_root,
676 					ordered_root);
677 		root = btrfs_grab_fs_root(root);
678 		BUG_ON(!root);
679 		list_move_tail(&root->ordered_root,
680 			       &fs_info->ordered_roots);
681 		spin_unlock(&fs_info->ordered_root_lock);
682 
683 		done = btrfs_wait_ordered_extents(root, nr);
684 		btrfs_put_fs_root(root);
685 
686 		spin_lock(&fs_info->ordered_root_lock);
687 		if (nr != -1) {
688 			nr -= done;
689 			WARN_ON(nr < 0);
690 		}
691 	}
692 	list_splice_tail(&splice, &fs_info->ordered_roots);
693 	spin_unlock(&fs_info->ordered_root_lock);
694 	mutex_unlock(&fs_info->ordered_operations_mutex);
695 }
696 
697 /*
698  * Used to start IO or wait for a given ordered extent to finish.
699  *
700  * If wait is one, this effectively waits on page writeback for all the pages
701  * in the extent, and it waits on the io completion code to insert
702  * metadata into the btree corresponding to the extent
703  */
704 void btrfs_start_ordered_extent(struct inode *inode,
705 				       struct btrfs_ordered_extent *entry,
706 				       int wait)
707 {
708 	u64 start = entry->file_offset;
709 	u64 end = start + entry->len - 1;
710 
711 	trace_btrfs_ordered_extent_start(inode, entry);
712 
713 	/*
714 	 * pages in the range can be dirty, clean or writeback.  We
715 	 * start IO on any dirty ones so the wait doesn't stall waiting
716 	 * for the flusher thread to find them
717 	 */
718 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
719 		filemap_fdatawrite_range(inode->i_mapping, start, end);
720 	if (wait) {
721 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
722 						 &entry->flags));
723 	}
724 }
725 
726 /*
727  * Used to wait on ordered extents across a large range of bytes.
728  */
729 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
730 {
731 	int ret = 0;
732 	int ret_wb = 0;
733 	u64 end;
734 	u64 orig_end;
735 	struct btrfs_ordered_extent *ordered;
736 
737 	if (start + len < start) {
738 		orig_end = INT_LIMIT(loff_t);
739 	} else {
740 		orig_end = start + len - 1;
741 		if (orig_end > INT_LIMIT(loff_t))
742 			orig_end = INT_LIMIT(loff_t);
743 	}
744 
745 	/* start IO across the range first to instantiate any delalloc
746 	 * extents
747 	 */
748 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
749 	if (ret)
750 		return ret;
751 
752 	/*
753 	 * If we have a writeback error don't return immediately. Wait first
754 	 * for any ordered extents that haven't completed yet. This is to make
755 	 * sure no one can dirty the same page ranges and call writepages()
756 	 * before the ordered extents complete - to avoid failures (-EEXIST)
757 	 * when adding the new ordered extents to the ordered tree.
758 	 */
759 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
760 
761 	end = orig_end;
762 	while (1) {
763 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
764 		if (!ordered)
765 			break;
766 		if (ordered->file_offset > orig_end) {
767 			btrfs_put_ordered_extent(ordered);
768 			break;
769 		}
770 		if (ordered->file_offset + ordered->len <= start) {
771 			btrfs_put_ordered_extent(ordered);
772 			break;
773 		}
774 		btrfs_start_ordered_extent(inode, ordered, 1);
775 		end = ordered->file_offset;
776 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
777 			ret = -EIO;
778 		btrfs_put_ordered_extent(ordered);
779 		if (ret || end == 0 || end == start)
780 			break;
781 		end--;
782 	}
783 	return ret_wb ? ret_wb : ret;
784 }
785 
786 /*
787  * find an ordered extent corresponding to file_offset.  return NULL if
788  * nothing is found, otherwise take a reference on the extent and return it
789  */
790 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
791 							 u64 file_offset)
792 {
793 	struct btrfs_ordered_inode_tree *tree;
794 	struct rb_node *node;
795 	struct btrfs_ordered_extent *entry = NULL;
796 
797 	tree = &BTRFS_I(inode)->ordered_tree;
798 	spin_lock_irq(&tree->lock);
799 	node = tree_search(tree, file_offset);
800 	if (!node)
801 		goto out;
802 
803 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
804 	if (!offset_in_entry(entry, file_offset))
805 		entry = NULL;
806 	if (entry)
807 		atomic_inc(&entry->refs);
808 out:
809 	spin_unlock_irq(&tree->lock);
810 	return entry;
811 }
812 
813 /* Since the DIO code tries to lock a wide area we need to look for any ordered
814  * extents that exist in the range, rather than just the start of the range.
815  */
816 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
817 							u64 file_offset,
818 							u64 len)
819 {
820 	struct btrfs_ordered_inode_tree *tree;
821 	struct rb_node *node;
822 	struct btrfs_ordered_extent *entry = NULL;
823 
824 	tree = &BTRFS_I(inode)->ordered_tree;
825 	spin_lock_irq(&tree->lock);
826 	node = tree_search(tree, file_offset);
827 	if (!node) {
828 		node = tree_search(tree, file_offset + len);
829 		if (!node)
830 			goto out;
831 	}
832 
833 	while (1) {
834 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
835 		if (range_overlaps(entry, file_offset, len))
836 			break;
837 
838 		if (entry->file_offset >= file_offset + len) {
839 			entry = NULL;
840 			break;
841 		}
842 		entry = NULL;
843 		node = rb_next(node);
844 		if (!node)
845 			break;
846 	}
847 out:
848 	if (entry)
849 		atomic_inc(&entry->refs);
850 	spin_unlock_irq(&tree->lock);
851 	return entry;
852 }
853 
854 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
855 					 u64 file_offset,
856 					 u64 len)
857 {
858 	struct btrfs_ordered_extent *oe;
859 
860 	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
861 	if (oe) {
862 		btrfs_put_ordered_extent(oe);
863 		return true;
864 	}
865 	return false;
866 }
867 
868 /*
869  * lookup and return any extent before 'file_offset'.  NULL is returned
870  * if none is found
871  */
872 struct btrfs_ordered_extent *
873 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
874 {
875 	struct btrfs_ordered_inode_tree *tree;
876 	struct rb_node *node;
877 	struct btrfs_ordered_extent *entry = NULL;
878 
879 	tree = &BTRFS_I(inode)->ordered_tree;
880 	spin_lock_irq(&tree->lock);
881 	node = tree_search(tree, file_offset);
882 	if (!node)
883 		goto out;
884 
885 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
886 	atomic_inc(&entry->refs);
887 out:
888 	spin_unlock_irq(&tree->lock);
889 	return entry;
890 }
891 
892 /*
893  * After an extent is done, call this to conditionally update the on disk
894  * i_size.  i_size is updated to cover any fully written part of the file.
895  */
896 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
897 				struct btrfs_ordered_extent *ordered)
898 {
899 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
900 	u64 disk_i_size;
901 	u64 new_i_size;
902 	u64 i_size = i_size_read(inode);
903 	struct rb_node *node;
904 	struct rb_node *prev = NULL;
905 	struct btrfs_ordered_extent *test;
906 	int ret = 1;
907 
908 	spin_lock_irq(&tree->lock);
909 	if (ordered) {
910 		offset = entry_end(ordered);
911 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
912 			offset = min(offset,
913 				     ordered->file_offset +
914 				     ordered->truncated_len);
915 	} else {
916 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
917 	}
918 	disk_i_size = BTRFS_I(inode)->disk_i_size;
919 
920 	/* truncate file */
921 	if (disk_i_size > i_size) {
922 		BTRFS_I(inode)->disk_i_size = i_size;
923 		ret = 0;
924 		goto out;
925 	}
926 
927 	/*
928 	 * if the disk i_size is already at the inode->i_size, or
929 	 * this ordered extent is inside the disk i_size, we're done
930 	 */
931 	if (disk_i_size == i_size)
932 		goto out;
933 
934 	/*
935 	 * We still need to update disk_i_size if outstanding_isize is greater
936 	 * than disk_i_size.
937 	 */
938 	if (offset <= disk_i_size &&
939 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
940 		goto out;
941 
942 	/*
943 	 * walk backward from this ordered extent to disk_i_size.
944 	 * if we find an ordered extent then we can't update disk i_size
945 	 * yet
946 	 */
947 	if (ordered) {
948 		node = rb_prev(&ordered->rb_node);
949 	} else {
950 		prev = tree_search(tree, offset);
951 		/*
952 		 * we insert file extents without involving ordered struct,
953 		 * so there should be no ordered struct cover this offset
954 		 */
955 		if (prev) {
956 			test = rb_entry(prev, struct btrfs_ordered_extent,
957 					rb_node);
958 			BUG_ON(offset_in_entry(test, offset));
959 		}
960 		node = prev;
961 	}
962 	for (; node; node = rb_prev(node)) {
963 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
964 
965 		/* We treat this entry as if it doesnt exist */
966 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
967 			continue;
968 		if (test->file_offset + test->len <= disk_i_size)
969 			break;
970 		if (test->file_offset >= i_size)
971 			break;
972 		if (entry_end(test) > disk_i_size) {
973 			/*
974 			 * we don't update disk_i_size now, so record this
975 			 * undealt i_size. Or we will not know the real
976 			 * i_size.
977 			 */
978 			if (test->outstanding_isize < offset)
979 				test->outstanding_isize = offset;
980 			if (ordered &&
981 			    ordered->outstanding_isize >
982 			    test->outstanding_isize)
983 				test->outstanding_isize =
984 						ordered->outstanding_isize;
985 			goto out;
986 		}
987 	}
988 	new_i_size = min_t(u64, offset, i_size);
989 
990 	/*
991 	 * Some ordered extents may completed before the current one, and
992 	 * we hold the real i_size in ->outstanding_isize.
993 	 */
994 	if (ordered && ordered->outstanding_isize > new_i_size)
995 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
996 	BTRFS_I(inode)->disk_i_size = new_i_size;
997 	ret = 0;
998 out:
999 	/*
1000 	 * We need to do this because we can't remove ordered extents until
1001 	 * after the i_disk_size has been updated and then the inode has been
1002 	 * updated to reflect the change, so we need to tell anybody who finds
1003 	 * this ordered extent that we've already done all the real work, we
1004 	 * just haven't completed all the other work.
1005 	 */
1006 	if (ordered)
1007 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1008 	spin_unlock_irq(&tree->lock);
1009 	return ret;
1010 }
1011 
1012 /*
1013  * search the ordered extents for one corresponding to 'offset' and
1014  * try to find a checksum.  This is used because we allow pages to
1015  * be reclaimed before their checksum is actually put into the btree
1016  */
1017 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1018 			   u32 *sum, int len)
1019 {
1020 	struct btrfs_ordered_sum *ordered_sum;
1021 	struct btrfs_ordered_extent *ordered;
1022 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1023 	unsigned long num_sectors;
1024 	unsigned long i;
1025 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1026 	int index = 0;
1027 
1028 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1029 	if (!ordered)
1030 		return 0;
1031 
1032 	spin_lock_irq(&tree->lock);
1033 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1034 		if (disk_bytenr >= ordered_sum->bytenr &&
1035 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1036 			i = (disk_bytenr - ordered_sum->bytenr) >>
1037 			    inode->i_sb->s_blocksize_bits;
1038 			num_sectors = ordered_sum->len >>
1039 				      inode->i_sb->s_blocksize_bits;
1040 			num_sectors = min_t(int, len - index, num_sectors - i);
1041 			memcpy(sum + index, ordered_sum->sums + i,
1042 			       num_sectors);
1043 
1044 			index += (int)num_sectors;
1045 			if (index == len)
1046 				goto out;
1047 			disk_bytenr += num_sectors * sectorsize;
1048 		}
1049 	}
1050 out:
1051 	spin_unlock_irq(&tree->lock);
1052 	btrfs_put_ordered_extent(ordered);
1053 	return index;
1054 }
1055 
1056 int __init ordered_data_init(void)
1057 {
1058 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1059 				     sizeof(struct btrfs_ordered_extent), 0,
1060 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1061 				     NULL);
1062 	if (!btrfs_ordered_extent_cache)
1063 		return -ENOMEM;
1064 
1065 	return 0;
1066 }
1067 
1068 void ordered_data_exit(void)
1069 {
1070 	if (btrfs_ordered_extent_cache)
1071 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1072 }
1073