xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision ced7c287)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20 
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22 
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 		return (u64)-1;
27 	return entry->file_offset + entry->num_bytes;
28 }
29 
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 				   struct rb_node *node)
35 {
36 	struct rb_node **p = &root->rb_node;
37 	struct rb_node *parent = NULL;
38 	struct btrfs_ordered_extent *entry;
39 
40 	while (*p) {
41 		parent = *p;
42 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43 
44 		if (file_offset < entry->file_offset)
45 			p = &(*p)->rb_left;
46 		else if (file_offset >= entry_end(entry))
47 			p = &(*p)->rb_right;
48 		else
49 			return parent;
50 	}
51 
52 	rb_link_node(node, parent, p);
53 	rb_insert_color(node, root);
54 	return NULL;
55 }
56 
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 				     struct rb_node **prev_ret)
63 {
64 	struct rb_node *n = root->rb_node;
65 	struct rb_node *prev = NULL;
66 	struct rb_node *test;
67 	struct btrfs_ordered_extent *entry;
68 	struct btrfs_ordered_extent *prev_entry = NULL;
69 
70 	while (n) {
71 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 		prev = n;
73 		prev_entry = entry;
74 
75 		if (file_offset < entry->file_offset)
76 			n = n->rb_left;
77 		else if (file_offset >= entry_end(entry))
78 			n = n->rb_right;
79 		else
80 			return n;
81 	}
82 	if (!prev_ret)
83 		return NULL;
84 
85 	while (prev && file_offset >= entry_end(prev_entry)) {
86 		test = rb_next(prev);
87 		if (!test)
88 			break;
89 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 				      rb_node);
91 		if (file_offset < entry_end(prev_entry))
92 			break;
93 
94 		prev = test;
95 	}
96 	if (prev)
97 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 				      rb_node);
99 	while (prev && file_offset < entry_end(prev_entry)) {
100 		test = rb_prev(prev);
101 		if (!test)
102 			break;
103 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 				      rb_node);
105 		prev = test;
106 	}
107 	*prev_ret = prev;
108 	return NULL;
109 }
110 
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 			  u64 len)
113 {
114 	if (file_offset + len <= entry->file_offset ||
115 	    entry->file_offset + entry->num_bytes <= file_offset)
116 		return 0;
117 	return 1;
118 }
119 
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 					  u64 file_offset)
126 {
127 	struct rb_root *root = &tree->tree;
128 	struct rb_node *prev = NULL;
129 	struct rb_node *ret;
130 	struct btrfs_ordered_extent *entry;
131 
132 	if (tree->last) {
133 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 				 rb_node);
135 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 			return tree->last;
137 	}
138 	ret = __tree_search(root, file_offset, &prev);
139 	if (!ret)
140 		ret = prev;
141 	if (ret)
142 		tree->last = ret;
143 	return ret;
144 }
145 
146 /*
147  * Allocate and add a new ordered_extent into the per-inode tree.
148  *
149  * The tree is given a single reference on the ordered extent that was
150  * inserted.
151  */
152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153 				      u64 disk_bytenr, u64 num_bytes,
154 				      u64 disk_num_bytes, int type, int dio,
155 				      int compress_type)
156 {
157 	struct btrfs_root *root = inode->root;
158 	struct btrfs_fs_info *fs_info = root->fs_info;
159 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160 	struct rb_node *node;
161 	struct btrfs_ordered_extent *entry;
162 	int ret;
163 
164 	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165 		/* For nocow write, we can release the qgroup rsv right now */
166 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167 		if (ret < 0)
168 			return ret;
169 		ret = 0;
170 	} else {
171 		/*
172 		 * The ordered extent has reserved qgroup space, release now
173 		 * and pass the reserved number for qgroup_record to free.
174 		 */
175 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176 		if (ret < 0)
177 			return ret;
178 	}
179 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180 	if (!entry)
181 		return -ENOMEM;
182 
183 	entry->file_offset = file_offset;
184 	entry->disk_bytenr = disk_bytenr;
185 	entry->num_bytes = num_bytes;
186 	entry->disk_num_bytes = disk_num_bytes;
187 	entry->bytes_left = num_bytes;
188 	entry->inode = igrab(&inode->vfs_inode);
189 	entry->compress_type = compress_type;
190 	entry->truncated_len = (u64)-1;
191 	entry->qgroup_rsv = ret;
192 	entry->physical = (u64)-1;
193 	entry->disk = NULL;
194 	entry->partno = (u8)-1;
195 
196 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
197 	       type == BTRFS_ORDERED_NOCOW ||
198 	       type == BTRFS_ORDERED_PREALLOC ||
199 	       type == BTRFS_ORDERED_COMPRESSED);
200 	set_bit(type, &entry->flags);
201 
202 	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
203 				 fs_info->delalloc_batch);
204 
205 	if (dio)
206 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
207 
208 	/* one ref for the tree */
209 	refcount_set(&entry->refs, 1);
210 	init_waitqueue_head(&entry->wait);
211 	INIT_LIST_HEAD(&entry->list);
212 	INIT_LIST_HEAD(&entry->log_list);
213 	INIT_LIST_HEAD(&entry->root_extent_list);
214 	INIT_LIST_HEAD(&entry->work_list);
215 	init_completion(&entry->completion);
216 
217 	trace_btrfs_ordered_extent_add(inode, entry);
218 
219 	spin_lock_irq(&tree->lock);
220 	node = tree_insert(&tree->tree, file_offset,
221 			   &entry->rb_node);
222 	if (node)
223 		btrfs_panic(fs_info, -EEXIST,
224 				"inconsistency in ordered tree at offset %llu",
225 				file_offset);
226 	spin_unlock_irq(&tree->lock);
227 
228 	spin_lock(&root->ordered_extent_lock);
229 	list_add_tail(&entry->root_extent_list,
230 		      &root->ordered_extents);
231 	root->nr_ordered_extents++;
232 	if (root->nr_ordered_extents == 1) {
233 		spin_lock(&fs_info->ordered_root_lock);
234 		BUG_ON(!list_empty(&root->ordered_root));
235 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
236 		spin_unlock(&fs_info->ordered_root_lock);
237 	}
238 	spin_unlock(&root->ordered_extent_lock);
239 
240 	/*
241 	 * We don't need the count_max_extents here, we can assume that all of
242 	 * that work has been done at higher layers, so this is truly the
243 	 * smallest the extent is going to get.
244 	 */
245 	spin_lock(&inode->lock);
246 	btrfs_mod_outstanding_extents(inode, 1);
247 	spin_unlock(&inode->lock);
248 
249 	return 0;
250 }
251 
252 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
253 			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
254 			     int type)
255 {
256 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
257 	       type == BTRFS_ORDERED_NOCOW ||
258 	       type == BTRFS_ORDERED_PREALLOC);
259 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
260 					  num_bytes, disk_num_bytes, type, 0,
261 					  BTRFS_COMPRESS_NONE);
262 }
263 
264 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
265 				 u64 disk_bytenr, u64 num_bytes,
266 				 u64 disk_num_bytes, int type)
267 {
268 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
269 	       type == BTRFS_ORDERED_NOCOW ||
270 	       type == BTRFS_ORDERED_PREALLOC);
271 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
272 					  num_bytes, disk_num_bytes, type, 1,
273 					  BTRFS_COMPRESS_NONE);
274 }
275 
276 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
277 				      u64 disk_bytenr, u64 num_bytes,
278 				      u64 disk_num_bytes, int compress_type)
279 {
280 	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
281 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
282 					  num_bytes, disk_num_bytes,
283 					  BTRFS_ORDERED_COMPRESSED, 0,
284 					  compress_type);
285 }
286 
287 /*
288  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
289  * when an ordered extent is finished.  If the list covers more than one
290  * ordered extent, it is split across multiples.
291  */
292 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
293 			   struct btrfs_ordered_sum *sum)
294 {
295 	struct btrfs_ordered_inode_tree *tree;
296 
297 	tree = &BTRFS_I(entry->inode)->ordered_tree;
298 	spin_lock_irq(&tree->lock);
299 	list_add_tail(&sum->list, &entry->list);
300 	spin_unlock_irq(&tree->lock);
301 }
302 
303 /*
304  * Mark all ordered extents io inside the specified range finished.
305  *
306  * @page:	 The invovled page for the opeartion.
307  *		 For uncompressed buffered IO, the page status also needs to be
308  *		 updated to indicate whether the pending ordered io is finished.
309  *		 Can be NULL for direct IO and compressed write.
310  *		 For these cases, callers are ensured they won't execute the
311  *		 endio function twice.
312  * @finish_func: The function to be executed when all the IO of an ordered
313  *		 extent are finished.
314  *
315  * This function is called for endio, thus the range must have ordered
316  * extent(s) coveri it.
317  */
318 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
319 				struct page *page, u64 file_offset,
320 				u64 num_bytes, btrfs_func_t finish_func,
321 				bool uptodate)
322 {
323 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
324 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
325 	struct btrfs_workqueue *wq;
326 	struct rb_node *node;
327 	struct btrfs_ordered_extent *entry = NULL;
328 	unsigned long flags;
329 	u64 cur = file_offset;
330 
331 	if (btrfs_is_free_space_inode(inode))
332 		wq = fs_info->endio_freespace_worker;
333 	else
334 		wq = fs_info->endio_write_workers;
335 
336 	if (page)
337 		ASSERT(page->mapping && page_offset(page) <= file_offset &&
338 		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
339 
340 	spin_lock_irqsave(&tree->lock, flags);
341 	while (cur < file_offset + num_bytes) {
342 		u64 entry_end;
343 		u64 end;
344 		u32 len;
345 
346 		node = tree_search(tree, cur);
347 		/* No ordered extents at all */
348 		if (!node)
349 			break;
350 
351 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
352 		entry_end = entry->file_offset + entry->num_bytes;
353 		/*
354 		 * |<-- OE --->|  |
355 		 *		  cur
356 		 * Go to next OE.
357 		 */
358 		if (cur >= entry_end) {
359 			node = rb_next(node);
360 			/* No more ordered extents, exit */
361 			if (!node)
362 				break;
363 			entry = rb_entry(node, struct btrfs_ordered_extent,
364 					 rb_node);
365 
366 			/* Go to next ordered extent and continue */
367 			cur = entry->file_offset;
368 			continue;
369 		}
370 		/*
371 		 * |	|<--- OE --->|
372 		 * cur
373 		 * Go to the start of OE.
374 		 */
375 		if (cur < entry->file_offset) {
376 			cur = entry->file_offset;
377 			continue;
378 		}
379 
380 		/*
381 		 * Now we are definitely inside one ordered extent.
382 		 *
383 		 * |<--- OE --->|
384 		 *	|
385 		 *	cur
386 		 */
387 		end = min(entry->file_offset + entry->num_bytes,
388 			  file_offset + num_bytes) - 1;
389 		ASSERT(end + 1 - cur < U32_MAX);
390 		len = end + 1 - cur;
391 
392 		if (page) {
393 			/*
394 			 * Ordered (Private2) bit indicates whether we still
395 			 * have pending io unfinished for the ordered extent.
396 			 *
397 			 * If there's no such bit, we need to skip to next range.
398 			 */
399 			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
400 				cur += len;
401 				continue;
402 			}
403 			btrfs_page_clear_ordered(fs_info, page, cur, len);
404 		}
405 
406 		/* Now we're fine to update the accounting */
407 		if (unlikely(len > entry->bytes_left)) {
408 			WARN_ON(1);
409 			btrfs_crit(fs_info,
410 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
411 				   inode->root->root_key.objectid,
412 				   btrfs_ino(inode),
413 				   entry->file_offset,
414 				   entry->num_bytes,
415 				   len, entry->bytes_left);
416 			entry->bytes_left = 0;
417 		} else {
418 			entry->bytes_left -= len;
419 		}
420 
421 		if (!uptodate)
422 			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
423 
424 		/*
425 		 * All the IO of the ordered extent is finished, we need to queue
426 		 * the finish_func to be executed.
427 		 */
428 		if (entry->bytes_left == 0) {
429 			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
430 			cond_wake_up(&entry->wait);
431 			refcount_inc(&entry->refs);
432 			spin_unlock_irqrestore(&tree->lock, flags);
433 			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
434 			btrfs_queue_work(wq, &entry->work);
435 			spin_lock_irqsave(&tree->lock, flags);
436 		}
437 		cur += len;
438 	}
439 	spin_unlock_irqrestore(&tree->lock, flags);
440 }
441 
442 /*
443  * Finish IO for one ordered extent across a given range.  The range can only
444  * contain one ordered extent.
445  *
446  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
447  *               search and use the ordered extent directly.
448  * 		 Will be also used to store the finished ordered extent.
449  * @file_offset: File offset for the finished IO
450  * @io_size:	 Length of the finish IO range
451  * @uptodate:	 If the IO finishes without problem
452  *
453  * Return true if the ordered extent is finished in the range, and update
454  * @cached.
455  * Return false otherwise.
456  *
457  * NOTE: The range can NOT cross multiple ordered extents.
458  * Thus caller should ensure the range doesn't cross ordered extents.
459  */
460 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
461 				    struct btrfs_ordered_extent **cached,
462 				    u64 file_offset, u64 io_size, int uptodate)
463 {
464 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
465 	struct rb_node *node;
466 	struct btrfs_ordered_extent *entry = NULL;
467 	unsigned long flags;
468 	bool finished = false;
469 
470 	spin_lock_irqsave(&tree->lock, flags);
471 	if (cached && *cached) {
472 		entry = *cached;
473 		goto have_entry;
474 	}
475 
476 	node = tree_search(tree, file_offset);
477 	if (!node)
478 		goto out;
479 
480 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
481 have_entry:
482 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
483 		goto out;
484 
485 	if (io_size > entry->bytes_left)
486 		btrfs_crit(inode->root->fs_info,
487 			   "bad ordered accounting left %llu size %llu",
488 		       entry->bytes_left, io_size);
489 
490 	entry->bytes_left -= io_size;
491 	if (!uptodate)
492 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
493 
494 	if (entry->bytes_left == 0) {
495 		/*
496 		 * Ensure only one caller can set the flag and finished_ret
497 		 * accordingly
498 		 */
499 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
500 		/* test_and_set_bit implies a barrier */
501 		cond_wake_up_nomb(&entry->wait);
502 	}
503 out:
504 	if (finished && cached && entry) {
505 		*cached = entry;
506 		refcount_inc(&entry->refs);
507 	}
508 	spin_unlock_irqrestore(&tree->lock, flags);
509 	return finished;
510 }
511 
512 /*
513  * used to drop a reference on an ordered extent.  This will free
514  * the extent if the last reference is dropped
515  */
516 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
517 {
518 	struct list_head *cur;
519 	struct btrfs_ordered_sum *sum;
520 
521 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
522 
523 	if (refcount_dec_and_test(&entry->refs)) {
524 		ASSERT(list_empty(&entry->root_extent_list));
525 		ASSERT(list_empty(&entry->log_list));
526 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
527 		if (entry->inode)
528 			btrfs_add_delayed_iput(entry->inode);
529 		while (!list_empty(&entry->list)) {
530 			cur = entry->list.next;
531 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
532 			list_del(&sum->list);
533 			kvfree(sum);
534 		}
535 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
536 	}
537 }
538 
539 /*
540  * remove an ordered extent from the tree.  No references are dropped
541  * and waiters are woken up.
542  */
543 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
544 				 struct btrfs_ordered_extent *entry)
545 {
546 	struct btrfs_ordered_inode_tree *tree;
547 	struct btrfs_root *root = btrfs_inode->root;
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 	struct rb_node *node;
550 	bool pending;
551 
552 	/* This is paired with btrfs_add_ordered_extent. */
553 	spin_lock(&btrfs_inode->lock);
554 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
555 	spin_unlock(&btrfs_inode->lock);
556 	if (root != fs_info->tree_root)
557 		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
558 						false);
559 
560 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
561 				 fs_info->delalloc_batch);
562 
563 	tree = &btrfs_inode->ordered_tree;
564 	spin_lock_irq(&tree->lock);
565 	node = &entry->rb_node;
566 	rb_erase(node, &tree->tree);
567 	RB_CLEAR_NODE(node);
568 	if (tree->last == node)
569 		tree->last = NULL;
570 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
571 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
572 	spin_unlock_irq(&tree->lock);
573 
574 	/*
575 	 * The current running transaction is waiting on us, we need to let it
576 	 * know that we're complete and wake it up.
577 	 */
578 	if (pending) {
579 		struct btrfs_transaction *trans;
580 
581 		/*
582 		 * The checks for trans are just a formality, it should be set,
583 		 * but if it isn't we don't want to deref/assert under the spin
584 		 * lock, so be nice and check if trans is set, but ASSERT() so
585 		 * if it isn't set a developer will notice.
586 		 */
587 		spin_lock(&fs_info->trans_lock);
588 		trans = fs_info->running_transaction;
589 		if (trans)
590 			refcount_inc(&trans->use_count);
591 		spin_unlock(&fs_info->trans_lock);
592 
593 		ASSERT(trans);
594 		if (trans) {
595 			if (atomic_dec_and_test(&trans->pending_ordered))
596 				wake_up(&trans->pending_wait);
597 			btrfs_put_transaction(trans);
598 		}
599 	}
600 
601 	spin_lock(&root->ordered_extent_lock);
602 	list_del_init(&entry->root_extent_list);
603 	root->nr_ordered_extents--;
604 
605 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
606 
607 	if (!root->nr_ordered_extents) {
608 		spin_lock(&fs_info->ordered_root_lock);
609 		BUG_ON(list_empty(&root->ordered_root));
610 		list_del_init(&root->ordered_root);
611 		spin_unlock(&fs_info->ordered_root_lock);
612 	}
613 	spin_unlock(&root->ordered_extent_lock);
614 	wake_up(&entry->wait);
615 }
616 
617 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
618 {
619 	struct btrfs_ordered_extent *ordered;
620 
621 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
622 	btrfs_start_ordered_extent(ordered, 1);
623 	complete(&ordered->completion);
624 }
625 
626 /*
627  * wait for all the ordered extents in a root.  This is done when balancing
628  * space between drives.
629  */
630 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
631 			       const u64 range_start, const u64 range_len)
632 {
633 	struct btrfs_fs_info *fs_info = root->fs_info;
634 	LIST_HEAD(splice);
635 	LIST_HEAD(skipped);
636 	LIST_HEAD(works);
637 	struct btrfs_ordered_extent *ordered, *next;
638 	u64 count = 0;
639 	const u64 range_end = range_start + range_len;
640 
641 	mutex_lock(&root->ordered_extent_mutex);
642 	spin_lock(&root->ordered_extent_lock);
643 	list_splice_init(&root->ordered_extents, &splice);
644 	while (!list_empty(&splice) && nr) {
645 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
646 					   root_extent_list);
647 
648 		if (range_end <= ordered->disk_bytenr ||
649 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
650 			list_move_tail(&ordered->root_extent_list, &skipped);
651 			cond_resched_lock(&root->ordered_extent_lock);
652 			continue;
653 		}
654 
655 		list_move_tail(&ordered->root_extent_list,
656 			       &root->ordered_extents);
657 		refcount_inc(&ordered->refs);
658 		spin_unlock(&root->ordered_extent_lock);
659 
660 		btrfs_init_work(&ordered->flush_work,
661 				btrfs_run_ordered_extent_work, NULL, NULL);
662 		list_add_tail(&ordered->work_list, &works);
663 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
664 
665 		cond_resched();
666 		spin_lock(&root->ordered_extent_lock);
667 		if (nr != U64_MAX)
668 			nr--;
669 		count++;
670 	}
671 	list_splice_tail(&skipped, &root->ordered_extents);
672 	list_splice_tail(&splice, &root->ordered_extents);
673 	spin_unlock(&root->ordered_extent_lock);
674 
675 	list_for_each_entry_safe(ordered, next, &works, work_list) {
676 		list_del_init(&ordered->work_list);
677 		wait_for_completion(&ordered->completion);
678 		btrfs_put_ordered_extent(ordered);
679 		cond_resched();
680 	}
681 	mutex_unlock(&root->ordered_extent_mutex);
682 
683 	return count;
684 }
685 
686 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
687 			     const u64 range_start, const u64 range_len)
688 {
689 	struct btrfs_root *root;
690 	struct list_head splice;
691 	u64 done;
692 
693 	INIT_LIST_HEAD(&splice);
694 
695 	mutex_lock(&fs_info->ordered_operations_mutex);
696 	spin_lock(&fs_info->ordered_root_lock);
697 	list_splice_init(&fs_info->ordered_roots, &splice);
698 	while (!list_empty(&splice) && nr) {
699 		root = list_first_entry(&splice, struct btrfs_root,
700 					ordered_root);
701 		root = btrfs_grab_root(root);
702 		BUG_ON(!root);
703 		list_move_tail(&root->ordered_root,
704 			       &fs_info->ordered_roots);
705 		spin_unlock(&fs_info->ordered_root_lock);
706 
707 		done = btrfs_wait_ordered_extents(root, nr,
708 						  range_start, range_len);
709 		btrfs_put_root(root);
710 
711 		spin_lock(&fs_info->ordered_root_lock);
712 		if (nr != U64_MAX) {
713 			nr -= done;
714 		}
715 	}
716 	list_splice_tail(&splice, &fs_info->ordered_roots);
717 	spin_unlock(&fs_info->ordered_root_lock);
718 	mutex_unlock(&fs_info->ordered_operations_mutex);
719 }
720 
721 /*
722  * Used to start IO or wait for a given ordered extent to finish.
723  *
724  * If wait is one, this effectively waits on page writeback for all the pages
725  * in the extent, and it waits on the io completion code to insert
726  * metadata into the btree corresponding to the extent
727  */
728 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
729 {
730 	u64 start = entry->file_offset;
731 	u64 end = start + entry->num_bytes - 1;
732 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
733 
734 	trace_btrfs_ordered_extent_start(inode, entry);
735 
736 	/*
737 	 * pages in the range can be dirty, clean or writeback.  We
738 	 * start IO on any dirty ones so the wait doesn't stall waiting
739 	 * for the flusher thread to find them
740 	 */
741 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
742 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
743 	if (wait) {
744 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
745 						 &entry->flags));
746 	}
747 }
748 
749 /*
750  * Used to wait on ordered extents across a large range of bytes.
751  */
752 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
753 {
754 	int ret = 0;
755 	int ret_wb = 0;
756 	u64 end;
757 	u64 orig_end;
758 	struct btrfs_ordered_extent *ordered;
759 
760 	if (start + len < start) {
761 		orig_end = INT_LIMIT(loff_t);
762 	} else {
763 		orig_end = start + len - 1;
764 		if (orig_end > INT_LIMIT(loff_t))
765 			orig_end = INT_LIMIT(loff_t);
766 	}
767 
768 	/* start IO across the range first to instantiate any delalloc
769 	 * extents
770 	 */
771 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
772 	if (ret)
773 		return ret;
774 
775 	/*
776 	 * If we have a writeback error don't return immediately. Wait first
777 	 * for any ordered extents that haven't completed yet. This is to make
778 	 * sure no one can dirty the same page ranges and call writepages()
779 	 * before the ordered extents complete - to avoid failures (-EEXIST)
780 	 * when adding the new ordered extents to the ordered tree.
781 	 */
782 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
783 
784 	end = orig_end;
785 	while (1) {
786 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
787 		if (!ordered)
788 			break;
789 		if (ordered->file_offset > orig_end) {
790 			btrfs_put_ordered_extent(ordered);
791 			break;
792 		}
793 		if (ordered->file_offset + ordered->num_bytes <= start) {
794 			btrfs_put_ordered_extent(ordered);
795 			break;
796 		}
797 		btrfs_start_ordered_extent(ordered, 1);
798 		end = ordered->file_offset;
799 		/*
800 		 * If the ordered extent had an error save the error but don't
801 		 * exit without waiting first for all other ordered extents in
802 		 * the range to complete.
803 		 */
804 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
805 			ret = -EIO;
806 		btrfs_put_ordered_extent(ordered);
807 		if (end == 0 || end == start)
808 			break;
809 		end--;
810 	}
811 	return ret_wb ? ret_wb : ret;
812 }
813 
814 /*
815  * find an ordered extent corresponding to file_offset.  return NULL if
816  * nothing is found, otherwise take a reference on the extent and return it
817  */
818 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
819 							 u64 file_offset)
820 {
821 	struct btrfs_ordered_inode_tree *tree;
822 	struct rb_node *node;
823 	struct btrfs_ordered_extent *entry = NULL;
824 	unsigned long flags;
825 
826 	tree = &inode->ordered_tree;
827 	spin_lock_irqsave(&tree->lock, flags);
828 	node = tree_search(tree, file_offset);
829 	if (!node)
830 		goto out;
831 
832 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
834 		entry = NULL;
835 	if (entry)
836 		refcount_inc(&entry->refs);
837 out:
838 	spin_unlock_irqrestore(&tree->lock, flags);
839 	return entry;
840 }
841 
842 /* Since the DIO code tries to lock a wide area we need to look for any ordered
843  * extents that exist in the range, rather than just the start of the range.
844  */
845 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
846 		struct btrfs_inode *inode, u64 file_offset, u64 len)
847 {
848 	struct btrfs_ordered_inode_tree *tree;
849 	struct rb_node *node;
850 	struct btrfs_ordered_extent *entry = NULL;
851 
852 	tree = &inode->ordered_tree;
853 	spin_lock_irq(&tree->lock);
854 	node = tree_search(tree, file_offset);
855 	if (!node) {
856 		node = tree_search(tree, file_offset + len);
857 		if (!node)
858 			goto out;
859 	}
860 
861 	while (1) {
862 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
863 		if (range_overlaps(entry, file_offset, len))
864 			break;
865 
866 		if (entry->file_offset >= file_offset + len) {
867 			entry = NULL;
868 			break;
869 		}
870 		entry = NULL;
871 		node = rb_next(node);
872 		if (!node)
873 			break;
874 	}
875 out:
876 	if (entry)
877 		refcount_inc(&entry->refs);
878 	spin_unlock_irq(&tree->lock);
879 	return entry;
880 }
881 
882 /*
883  * Adds all ordered extents to the given list. The list ends up sorted by the
884  * file_offset of the ordered extents.
885  */
886 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
887 					   struct list_head *list)
888 {
889 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
890 	struct rb_node *n;
891 
892 	ASSERT(inode_is_locked(&inode->vfs_inode));
893 
894 	spin_lock_irq(&tree->lock);
895 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
896 		struct btrfs_ordered_extent *ordered;
897 
898 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
899 
900 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
901 			continue;
902 
903 		ASSERT(list_empty(&ordered->log_list));
904 		list_add_tail(&ordered->log_list, list);
905 		refcount_inc(&ordered->refs);
906 	}
907 	spin_unlock_irq(&tree->lock);
908 }
909 
910 /*
911  * lookup and return any extent before 'file_offset'.  NULL is returned
912  * if none is found
913  */
914 struct btrfs_ordered_extent *
915 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
916 {
917 	struct btrfs_ordered_inode_tree *tree;
918 	struct rb_node *node;
919 	struct btrfs_ordered_extent *entry = NULL;
920 
921 	tree = &inode->ordered_tree;
922 	spin_lock_irq(&tree->lock);
923 	node = tree_search(tree, file_offset);
924 	if (!node)
925 		goto out;
926 
927 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
928 	refcount_inc(&entry->refs);
929 out:
930 	spin_unlock_irq(&tree->lock);
931 	return entry;
932 }
933 
934 /*
935  * Lookup the first ordered extent that overlaps the range
936  * [@file_offset, @file_offset + @len).
937  *
938  * The difference between this and btrfs_lookup_first_ordered_extent() is
939  * that this one won't return any ordered extent that does not overlap the range.
940  * And the difference against btrfs_lookup_ordered_extent() is, this function
941  * ensures the first ordered extent gets returned.
942  */
943 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
944 			struct btrfs_inode *inode, u64 file_offset, u64 len)
945 {
946 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
947 	struct rb_node *node;
948 	struct rb_node *cur;
949 	struct rb_node *prev;
950 	struct rb_node *next;
951 	struct btrfs_ordered_extent *entry = NULL;
952 
953 	spin_lock_irq(&tree->lock);
954 	node = tree->tree.rb_node;
955 	/*
956 	 * Here we don't want to use tree_search() which will use tree->last
957 	 * and screw up the search order.
958 	 * And __tree_search() can't return the adjacent ordered extents
959 	 * either, thus here we do our own search.
960 	 */
961 	while (node) {
962 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
963 
964 		if (file_offset < entry->file_offset) {
965 			node = node->rb_left;
966 		} else if (file_offset >= entry_end(entry)) {
967 			node = node->rb_right;
968 		} else {
969 			/*
970 			 * Direct hit, got an ordered extent that starts at
971 			 * @file_offset
972 			 */
973 			goto out;
974 		}
975 	}
976 	if (!entry) {
977 		/* Empty tree */
978 		goto out;
979 	}
980 
981 	cur = &entry->rb_node;
982 	/* We got an entry around @file_offset, check adjacent entries */
983 	if (entry->file_offset < file_offset) {
984 		prev = cur;
985 		next = rb_next(cur);
986 	} else {
987 		prev = rb_prev(cur);
988 		next = cur;
989 	}
990 	if (prev) {
991 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
992 		if (range_overlaps(entry, file_offset, len))
993 			goto out;
994 	}
995 	if (next) {
996 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
997 		if (range_overlaps(entry, file_offset, len))
998 			goto out;
999 	}
1000 	/* No ordered extent in the range */
1001 	entry = NULL;
1002 out:
1003 	if (entry)
1004 		refcount_inc(&entry->refs);
1005 	spin_unlock_irq(&tree->lock);
1006 	return entry;
1007 }
1008 
1009 /*
1010  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1011  * ordered extents in it are run to completion.
1012  *
1013  * @inode:        Inode whose ordered tree is to be searched
1014  * @start:        Beginning of range to flush
1015  * @end:          Last byte of range to lock
1016  * @cached_state: If passed, will return the extent state responsible for the
1017  * locked range. It's the caller's responsibility to free the cached state.
1018  *
1019  * This function always returns with the given range locked, ensuring after it's
1020  * called no order extent can be pending.
1021  */
1022 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1023 					u64 end,
1024 					struct extent_state **cached_state)
1025 {
1026 	struct btrfs_ordered_extent *ordered;
1027 	struct extent_state *cache = NULL;
1028 	struct extent_state **cachedp = &cache;
1029 
1030 	if (cached_state)
1031 		cachedp = cached_state;
1032 
1033 	while (1) {
1034 		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1035 		ordered = btrfs_lookup_ordered_range(inode, start,
1036 						     end - start + 1);
1037 		if (!ordered) {
1038 			/*
1039 			 * If no external cached_state has been passed then
1040 			 * decrement the extra ref taken for cachedp since we
1041 			 * aren't exposing it outside of this function
1042 			 */
1043 			if (!cached_state)
1044 				refcount_dec(&cache->refs);
1045 			break;
1046 		}
1047 		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1048 		btrfs_start_ordered_extent(ordered, 1);
1049 		btrfs_put_ordered_extent(ordered);
1050 	}
1051 }
1052 
1053 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1054 				u64 len)
1055 {
1056 	struct inode *inode = ordered->inode;
1057 	u64 file_offset = ordered->file_offset + pos;
1058 	u64 disk_bytenr = ordered->disk_bytenr + pos;
1059 	u64 num_bytes = len;
1060 	u64 disk_num_bytes = len;
1061 	int type;
1062 	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1063 	int compress_type = ordered->compress_type;
1064 	unsigned long weight;
1065 	int ret;
1066 
1067 	weight = hweight_long(flags_masked);
1068 	WARN_ON_ONCE(weight > 1);
1069 	if (!weight)
1070 		type = 0;
1071 	else
1072 		type = __ffs(flags_masked);
1073 
1074 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1075 		WARN_ON_ONCE(1);
1076 		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1077 				file_offset, disk_bytenr, num_bytes,
1078 				disk_num_bytes, compress_type);
1079 	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1080 		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1081 				disk_bytenr, num_bytes, disk_num_bytes, type);
1082 	} else {
1083 		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1084 				disk_bytenr, num_bytes, disk_num_bytes, type);
1085 	}
1086 
1087 	return ret;
1088 }
1089 
1090 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1091 				u64 post)
1092 {
1093 	struct inode *inode = ordered->inode;
1094 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1095 	struct rb_node *node;
1096 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097 	int ret = 0;
1098 
1099 	spin_lock_irq(&tree->lock);
1100 	/* Remove from tree once */
1101 	node = &ordered->rb_node;
1102 	rb_erase(node, &tree->tree);
1103 	RB_CLEAR_NODE(node);
1104 	if (tree->last == node)
1105 		tree->last = NULL;
1106 
1107 	ordered->file_offset += pre;
1108 	ordered->disk_bytenr += pre;
1109 	ordered->num_bytes -= (pre + post);
1110 	ordered->disk_num_bytes -= (pre + post);
1111 	ordered->bytes_left -= (pre + post);
1112 
1113 	/* Re-insert the node */
1114 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1115 	if (node)
1116 		btrfs_panic(fs_info, -EEXIST,
1117 			"zoned: inconsistency in ordered tree at offset %llu",
1118 			    ordered->file_offset);
1119 
1120 	spin_unlock_irq(&tree->lock);
1121 
1122 	if (pre)
1123 		ret = clone_ordered_extent(ordered, 0, pre);
1124 	if (ret == 0 && post)
1125 		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1126 					   post);
1127 
1128 	return ret;
1129 }
1130 
1131 int __init ordered_data_init(void)
1132 {
1133 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1134 				     sizeof(struct btrfs_ordered_extent), 0,
1135 				     SLAB_MEM_SPREAD,
1136 				     NULL);
1137 	if (!btrfs_ordered_extent_cache)
1138 		return -ENOMEM;
1139 
1140 	return 0;
1141 }
1142 
1143 void __cold ordered_data_exit(void)
1144 {
1145 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1146 }
1147