xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/pagevec.h>
10 #include "ctree.h"
11 #include "transaction.h"
12 #include "btrfs_inode.h"
13 #include "extent_io.h"
14 #include "disk-io.h"
15 #include "compression.h"
16 
17 static struct kmem_cache *btrfs_ordered_extent_cache;
18 
19 static u64 entry_end(struct btrfs_ordered_extent *entry)
20 {
21 	if (entry->file_offset + entry->len < entry->file_offset)
22 		return (u64)-1;
23 	return entry->file_offset + entry->len;
24 }
25 
26 /* returns NULL if the insertion worked, or it returns the node it did find
27  * in the tree
28  */
29 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 				   struct rb_node *node)
31 {
32 	struct rb_node **p = &root->rb_node;
33 	struct rb_node *parent = NULL;
34 	struct btrfs_ordered_extent *entry;
35 
36 	while (*p) {
37 		parent = *p;
38 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39 
40 		if (file_offset < entry->file_offset)
41 			p = &(*p)->rb_left;
42 		else if (file_offset >= entry_end(entry))
43 			p = &(*p)->rb_right;
44 		else
45 			return parent;
46 	}
47 
48 	rb_link_node(node, parent, p);
49 	rb_insert_color(node, root);
50 	return NULL;
51 }
52 
53 static void ordered_data_tree_panic(struct inode *inode, int errno,
54 					       u64 offset)
55 {
56 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 	btrfs_panic(fs_info, errno,
58 		    "Inconsistency in ordered tree at offset %llu", offset);
59 }
60 
61 /*
62  * look for a given offset in the tree, and if it can't be found return the
63  * first lesser offset
64  */
65 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 				     struct rb_node **prev_ret)
67 {
68 	struct rb_node *n = root->rb_node;
69 	struct rb_node *prev = NULL;
70 	struct rb_node *test;
71 	struct btrfs_ordered_extent *entry;
72 	struct btrfs_ordered_extent *prev_entry = NULL;
73 
74 	while (n) {
75 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 		prev = n;
77 		prev_entry = entry;
78 
79 		if (file_offset < entry->file_offset)
80 			n = n->rb_left;
81 		else if (file_offset >= entry_end(entry))
82 			n = n->rb_right;
83 		else
84 			return n;
85 	}
86 	if (!prev_ret)
87 		return NULL;
88 
89 	while (prev && file_offset >= entry_end(prev_entry)) {
90 		test = rb_next(prev);
91 		if (!test)
92 			break;
93 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 				      rb_node);
95 		if (file_offset < entry_end(prev_entry))
96 			break;
97 
98 		prev = test;
99 	}
100 	if (prev)
101 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 				      rb_node);
103 	while (prev && file_offset < entry_end(prev_entry)) {
104 		test = rb_prev(prev);
105 		if (!test)
106 			break;
107 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 				      rb_node);
109 		prev = test;
110 	}
111 	*prev_ret = prev;
112 	return NULL;
113 }
114 
115 /*
116  * helper to check if a given offset is inside a given entry
117  */
118 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119 {
120 	if (file_offset < entry->file_offset ||
121 	    entry->file_offset + entry->len <= file_offset)
122 		return 0;
123 	return 1;
124 }
125 
126 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 			  u64 len)
128 {
129 	if (file_offset + len <= entry->file_offset ||
130 	    entry->file_offset + entry->len <= file_offset)
131 		return 0;
132 	return 1;
133 }
134 
135 /*
136  * look find the first ordered struct that has this offset, otherwise
137  * the first one less than this offset
138  */
139 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 					  u64 file_offset)
141 {
142 	struct rb_root *root = &tree->tree;
143 	struct rb_node *prev = NULL;
144 	struct rb_node *ret;
145 	struct btrfs_ordered_extent *entry;
146 
147 	if (tree->last) {
148 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 				 rb_node);
150 		if (offset_in_entry(entry, file_offset))
151 			return tree->last;
152 	}
153 	ret = __tree_search(root, file_offset, &prev);
154 	if (!ret)
155 		ret = prev;
156 	if (ret)
157 		tree->last = ret;
158 	return ret;
159 }
160 
161 /* allocate and add a new ordered_extent into the per-inode tree.
162  * file_offset is the logical offset in the file
163  *
164  * start is the disk block number of an extent already reserved in the
165  * extent allocation tree
166  *
167  * len is the length of the extent
168  *
169  * The tree is given a single reference on the ordered extent that was
170  * inserted.
171  */
172 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 				      u64 start, u64 len, u64 disk_len,
174 				      int type, int dio, int compress_type)
175 {
176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 	struct btrfs_root *root = BTRFS_I(inode)->root;
178 	struct btrfs_ordered_inode_tree *tree;
179 	struct rb_node *node;
180 	struct btrfs_ordered_extent *entry;
181 
182 	tree = &BTRFS_I(inode)->ordered_tree;
183 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 	if (!entry)
185 		return -ENOMEM;
186 
187 	entry->file_offset = file_offset;
188 	entry->start = start;
189 	entry->len = len;
190 	entry->disk_len = disk_len;
191 	entry->bytes_left = len;
192 	entry->inode = igrab(inode);
193 	entry->compress_type = compress_type;
194 	entry->truncated_len = (u64)-1;
195 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 		set_bit(type, &entry->flags);
197 
198 	if (dio)
199 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200 
201 	/* one ref for the tree */
202 	refcount_set(&entry->refs, 1);
203 	init_waitqueue_head(&entry->wait);
204 	INIT_LIST_HEAD(&entry->list);
205 	INIT_LIST_HEAD(&entry->root_extent_list);
206 	INIT_LIST_HEAD(&entry->work_list);
207 	init_completion(&entry->completion);
208 	INIT_LIST_HEAD(&entry->log_list);
209 	INIT_LIST_HEAD(&entry->trans_list);
210 
211 	trace_btrfs_ordered_extent_add(inode, entry);
212 
213 	spin_lock_irq(&tree->lock);
214 	node = tree_insert(&tree->tree, file_offset,
215 			   &entry->rb_node);
216 	if (node)
217 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 	spin_unlock_irq(&tree->lock);
219 
220 	spin_lock(&root->ordered_extent_lock);
221 	list_add_tail(&entry->root_extent_list,
222 		      &root->ordered_extents);
223 	root->nr_ordered_extents++;
224 	if (root->nr_ordered_extents == 1) {
225 		spin_lock(&fs_info->ordered_root_lock);
226 		BUG_ON(!list_empty(&root->ordered_root));
227 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 		spin_unlock(&fs_info->ordered_root_lock);
229 	}
230 	spin_unlock(&root->ordered_extent_lock);
231 
232 	/*
233 	 * We don't need the count_max_extents here, we can assume that all of
234 	 * that work has been done at higher layers, so this is truly the
235 	 * smallest the extent is going to get.
236 	 */
237 	spin_lock(&BTRFS_I(inode)->lock);
238 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 	spin_unlock(&BTRFS_I(inode)->lock);
240 
241 	return 0;
242 }
243 
244 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 			     u64 start, u64 len, u64 disk_len, int type)
246 {
247 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 					  disk_len, type, 0,
249 					  BTRFS_COMPRESS_NONE);
250 }
251 
252 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 				 u64 start, u64 len, u64 disk_len, int type)
254 {
255 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 					  disk_len, type, 1,
257 					  BTRFS_COMPRESS_NONE);
258 }
259 
260 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 				      u64 start, u64 len, u64 disk_len,
262 				      int type, int compress_type)
263 {
264 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 					  disk_len, type, 0,
266 					  compress_type);
267 }
268 
269 /*
270  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271  * when an ordered extent is finished.  If the list covers more than one
272  * ordered extent, it is split across multiples.
273  */
274 void btrfs_add_ordered_sum(struct inode *inode,
275 			   struct btrfs_ordered_extent *entry,
276 			   struct btrfs_ordered_sum *sum)
277 {
278 	struct btrfs_ordered_inode_tree *tree;
279 
280 	tree = &BTRFS_I(inode)->ordered_tree;
281 	spin_lock_irq(&tree->lock);
282 	list_add_tail(&sum->list, &entry->list);
283 	spin_unlock_irq(&tree->lock);
284 }
285 
286 /*
287  * this is used to account for finished IO across a given range
288  * of the file.  The IO may span ordered extents.  If
289  * a given ordered_extent is completely done, 1 is returned, otherwise
290  * 0.
291  *
292  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293  * to make sure this function only returns 1 once for a given ordered extent.
294  *
295  * file_offset is updated to one byte past the range that is recorded as
296  * complete.  This allows you to walk forward in the file.
297  */
298 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 				   struct btrfs_ordered_extent **cached,
300 				   u64 *file_offset, u64 io_size, int uptodate)
301 {
302 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 	struct btrfs_ordered_inode_tree *tree;
304 	struct rb_node *node;
305 	struct btrfs_ordered_extent *entry = NULL;
306 	int ret;
307 	unsigned long flags;
308 	u64 dec_end;
309 	u64 dec_start;
310 	u64 to_dec;
311 
312 	tree = &BTRFS_I(inode)->ordered_tree;
313 	spin_lock_irqsave(&tree->lock, flags);
314 	node = tree_search(tree, *file_offset);
315 	if (!node) {
316 		ret = 1;
317 		goto out;
318 	}
319 
320 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 	if (!offset_in_entry(entry, *file_offset)) {
322 		ret = 1;
323 		goto out;
324 	}
325 
326 	dec_start = max(*file_offset, entry->file_offset);
327 	dec_end = min(*file_offset + io_size, entry->file_offset +
328 		      entry->len);
329 	*file_offset = dec_end;
330 	if (dec_start > dec_end) {
331 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 			   dec_start, dec_end);
333 	}
334 	to_dec = dec_end - dec_start;
335 	if (to_dec > entry->bytes_left) {
336 		btrfs_crit(fs_info,
337 			   "bad ordered accounting left %llu size %llu",
338 			   entry->bytes_left, to_dec);
339 	}
340 	entry->bytes_left -= to_dec;
341 	if (!uptodate)
342 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343 
344 	if (entry->bytes_left == 0) {
345 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 		/*
347 		 * Implicit memory barrier after test_and_set_bit
348 		 */
349 		if (waitqueue_active(&entry->wait))
350 			wake_up(&entry->wait);
351 	} else {
352 		ret = 1;
353 	}
354 out:
355 	if (!ret && cached && entry) {
356 		*cached = entry;
357 		refcount_inc(&entry->refs);
358 	}
359 	spin_unlock_irqrestore(&tree->lock, flags);
360 	return ret == 0;
361 }
362 
363 /*
364  * this is used to account for finished IO across a given range
365  * of the file.  The IO should not span ordered extents.  If
366  * a given ordered_extent is completely done, 1 is returned, otherwise
367  * 0.
368  *
369  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370  * to make sure this function only returns 1 once for a given ordered extent.
371  */
372 int btrfs_dec_test_ordered_pending(struct inode *inode,
373 				   struct btrfs_ordered_extent **cached,
374 				   u64 file_offset, u64 io_size, int uptodate)
375 {
376 	struct btrfs_ordered_inode_tree *tree;
377 	struct rb_node *node;
378 	struct btrfs_ordered_extent *entry = NULL;
379 	unsigned long flags;
380 	int ret;
381 
382 	tree = &BTRFS_I(inode)->ordered_tree;
383 	spin_lock_irqsave(&tree->lock, flags);
384 	if (cached && *cached) {
385 		entry = *cached;
386 		goto have_entry;
387 	}
388 
389 	node = tree_search(tree, file_offset);
390 	if (!node) {
391 		ret = 1;
392 		goto out;
393 	}
394 
395 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396 have_entry:
397 	if (!offset_in_entry(entry, file_offset)) {
398 		ret = 1;
399 		goto out;
400 	}
401 
402 	if (io_size > entry->bytes_left) {
403 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
404 			   "bad ordered accounting left %llu size %llu",
405 		       entry->bytes_left, io_size);
406 	}
407 	entry->bytes_left -= io_size;
408 	if (!uptodate)
409 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410 
411 	if (entry->bytes_left == 0) {
412 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 		/*
414 		 * Implicit memory barrier after test_and_set_bit
415 		 */
416 		if (waitqueue_active(&entry->wait))
417 			wake_up(&entry->wait);
418 	} else {
419 		ret = 1;
420 	}
421 out:
422 	if (!ret && cached && entry) {
423 		*cached = entry;
424 		refcount_inc(&entry->refs);
425 	}
426 	spin_unlock_irqrestore(&tree->lock, flags);
427 	return ret == 0;
428 }
429 
430 /* Needs to either be called under a log transaction or the log_mutex */
431 void btrfs_get_logged_extents(struct btrfs_inode *inode,
432 			      struct list_head *logged_list,
433 			      const loff_t start,
434 			      const loff_t end)
435 {
436 	struct btrfs_ordered_inode_tree *tree;
437 	struct btrfs_ordered_extent *ordered;
438 	struct rb_node *n;
439 	struct rb_node *prev;
440 
441 	tree = &inode->ordered_tree;
442 	spin_lock_irq(&tree->lock);
443 	n = __tree_search(&tree->tree, end, &prev);
444 	if (!n)
445 		n = prev;
446 	for (; n; n = rb_prev(n)) {
447 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
448 		if (ordered->file_offset > end)
449 			continue;
450 		if (entry_end(ordered) <= start)
451 			break;
452 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
453 			continue;
454 		list_add(&ordered->log_list, logged_list);
455 		refcount_inc(&ordered->refs);
456 	}
457 	spin_unlock_irq(&tree->lock);
458 }
459 
460 void btrfs_put_logged_extents(struct list_head *logged_list)
461 {
462 	struct btrfs_ordered_extent *ordered;
463 
464 	while (!list_empty(logged_list)) {
465 		ordered = list_first_entry(logged_list,
466 					   struct btrfs_ordered_extent,
467 					   log_list);
468 		list_del_init(&ordered->log_list);
469 		btrfs_put_ordered_extent(ordered);
470 	}
471 }
472 
473 void btrfs_submit_logged_extents(struct list_head *logged_list,
474 				 struct btrfs_root *log)
475 {
476 	int index = log->log_transid % 2;
477 
478 	spin_lock_irq(&log->log_extents_lock[index]);
479 	list_splice_tail(logged_list, &log->logged_list[index]);
480 	spin_unlock_irq(&log->log_extents_lock[index]);
481 }
482 
483 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
484 			       struct btrfs_root *log, u64 transid)
485 {
486 	struct btrfs_ordered_extent *ordered;
487 	int index = transid % 2;
488 
489 	spin_lock_irq(&log->log_extents_lock[index]);
490 	while (!list_empty(&log->logged_list[index])) {
491 		struct inode *inode;
492 		ordered = list_first_entry(&log->logged_list[index],
493 					   struct btrfs_ordered_extent,
494 					   log_list);
495 		list_del_init(&ordered->log_list);
496 		inode = ordered->inode;
497 		spin_unlock_irq(&log->log_extents_lock[index]);
498 
499 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501 			u64 start = ordered->file_offset;
502 			u64 end = ordered->file_offset + ordered->len - 1;
503 
504 			WARN_ON(!inode);
505 			filemap_fdatawrite_range(inode->i_mapping, start, end);
506 		}
507 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
508 						   &ordered->flags));
509 
510 		/*
511 		 * In order to keep us from losing our ordered extent
512 		 * information when committing the transaction we have to make
513 		 * sure that any logged extents are completed when we go to
514 		 * commit the transaction.  To do this we simply increase the
515 		 * current transactions pending_ordered counter and decrement it
516 		 * when the ordered extent completes.
517 		 */
518 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
519 			struct btrfs_ordered_inode_tree *tree;
520 
521 			tree = &BTRFS_I(inode)->ordered_tree;
522 			spin_lock_irq(&tree->lock);
523 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
524 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
525 				atomic_inc(&trans->transaction->pending_ordered);
526 			}
527 			spin_unlock_irq(&tree->lock);
528 		}
529 		btrfs_put_ordered_extent(ordered);
530 		spin_lock_irq(&log->log_extents_lock[index]);
531 	}
532 	spin_unlock_irq(&log->log_extents_lock[index]);
533 }
534 
535 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
536 {
537 	struct btrfs_ordered_extent *ordered;
538 	int index = transid % 2;
539 
540 	spin_lock_irq(&log->log_extents_lock[index]);
541 	while (!list_empty(&log->logged_list[index])) {
542 		ordered = list_first_entry(&log->logged_list[index],
543 					   struct btrfs_ordered_extent,
544 					   log_list);
545 		list_del_init(&ordered->log_list);
546 		spin_unlock_irq(&log->log_extents_lock[index]);
547 		btrfs_put_ordered_extent(ordered);
548 		spin_lock_irq(&log->log_extents_lock[index]);
549 	}
550 	spin_unlock_irq(&log->log_extents_lock[index]);
551 }
552 
553 /*
554  * used to drop a reference on an ordered extent.  This will free
555  * the extent if the last reference is dropped
556  */
557 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
558 {
559 	struct list_head *cur;
560 	struct btrfs_ordered_sum *sum;
561 
562 	trace_btrfs_ordered_extent_put(entry->inode, entry);
563 
564 	if (refcount_dec_and_test(&entry->refs)) {
565 		ASSERT(list_empty(&entry->log_list));
566 		ASSERT(list_empty(&entry->trans_list));
567 		ASSERT(list_empty(&entry->root_extent_list));
568 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
569 		if (entry->inode)
570 			btrfs_add_delayed_iput(entry->inode);
571 		while (!list_empty(&entry->list)) {
572 			cur = entry->list.next;
573 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
574 			list_del(&sum->list);
575 			kfree(sum);
576 		}
577 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
578 	}
579 }
580 
581 /*
582  * remove an ordered extent from the tree.  No references are dropped
583  * and waiters are woken up.
584  */
585 void btrfs_remove_ordered_extent(struct inode *inode,
586 				 struct btrfs_ordered_extent *entry)
587 {
588 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
589 	struct btrfs_ordered_inode_tree *tree;
590 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
591 	struct btrfs_root *root = btrfs_inode->root;
592 	struct rb_node *node;
593 	bool dec_pending_ordered = false;
594 
595 	/* This is paired with btrfs_add_ordered_extent. */
596 	spin_lock(&btrfs_inode->lock);
597 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
598 	spin_unlock(&btrfs_inode->lock);
599 	if (root != fs_info->tree_root)
600 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
601 
602 	tree = &btrfs_inode->ordered_tree;
603 	spin_lock_irq(&tree->lock);
604 	node = &entry->rb_node;
605 	rb_erase(node, &tree->tree);
606 	RB_CLEAR_NODE(node);
607 	if (tree->last == node)
608 		tree->last = NULL;
609 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
610 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
611 		dec_pending_ordered = true;
612 	spin_unlock_irq(&tree->lock);
613 
614 	/*
615 	 * The current running transaction is waiting on us, we need to let it
616 	 * know that we're complete and wake it up.
617 	 */
618 	if (dec_pending_ordered) {
619 		struct btrfs_transaction *trans;
620 
621 		/*
622 		 * The checks for trans are just a formality, it should be set,
623 		 * but if it isn't we don't want to deref/assert under the spin
624 		 * lock, so be nice and check if trans is set, but ASSERT() so
625 		 * if it isn't set a developer will notice.
626 		 */
627 		spin_lock(&fs_info->trans_lock);
628 		trans = fs_info->running_transaction;
629 		if (trans)
630 			refcount_inc(&trans->use_count);
631 		spin_unlock(&fs_info->trans_lock);
632 
633 		ASSERT(trans);
634 		if (trans) {
635 			if (atomic_dec_and_test(&trans->pending_ordered))
636 				wake_up(&trans->pending_wait);
637 			btrfs_put_transaction(trans);
638 		}
639 	}
640 
641 	spin_lock(&root->ordered_extent_lock);
642 	list_del_init(&entry->root_extent_list);
643 	root->nr_ordered_extents--;
644 
645 	trace_btrfs_ordered_extent_remove(inode, entry);
646 
647 	if (!root->nr_ordered_extents) {
648 		spin_lock(&fs_info->ordered_root_lock);
649 		BUG_ON(list_empty(&root->ordered_root));
650 		list_del_init(&root->ordered_root);
651 		spin_unlock(&fs_info->ordered_root_lock);
652 	}
653 	spin_unlock(&root->ordered_extent_lock);
654 	wake_up(&entry->wait);
655 }
656 
657 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
658 {
659 	struct btrfs_ordered_extent *ordered;
660 
661 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
662 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
663 	complete(&ordered->completion);
664 }
665 
666 /*
667  * wait for all the ordered extents in a root.  This is done when balancing
668  * space between drives.
669  */
670 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
671 			       const u64 range_start, const u64 range_len)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	LIST_HEAD(splice);
675 	LIST_HEAD(skipped);
676 	LIST_HEAD(works);
677 	struct btrfs_ordered_extent *ordered, *next;
678 	u64 count = 0;
679 	const u64 range_end = range_start + range_len;
680 
681 	mutex_lock(&root->ordered_extent_mutex);
682 	spin_lock(&root->ordered_extent_lock);
683 	list_splice_init(&root->ordered_extents, &splice);
684 	while (!list_empty(&splice) && nr) {
685 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
686 					   root_extent_list);
687 
688 		if (range_end <= ordered->start ||
689 		    ordered->start + ordered->disk_len <= range_start) {
690 			list_move_tail(&ordered->root_extent_list, &skipped);
691 			cond_resched_lock(&root->ordered_extent_lock);
692 			continue;
693 		}
694 
695 		list_move_tail(&ordered->root_extent_list,
696 			       &root->ordered_extents);
697 		refcount_inc(&ordered->refs);
698 		spin_unlock(&root->ordered_extent_lock);
699 
700 		btrfs_init_work(&ordered->flush_work,
701 				btrfs_flush_delalloc_helper,
702 				btrfs_run_ordered_extent_work, NULL, NULL);
703 		list_add_tail(&ordered->work_list, &works);
704 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
705 
706 		cond_resched();
707 		spin_lock(&root->ordered_extent_lock);
708 		if (nr != U64_MAX)
709 			nr--;
710 		count++;
711 	}
712 	list_splice_tail(&skipped, &root->ordered_extents);
713 	list_splice_tail(&splice, &root->ordered_extents);
714 	spin_unlock(&root->ordered_extent_lock);
715 
716 	list_for_each_entry_safe(ordered, next, &works, work_list) {
717 		list_del_init(&ordered->work_list);
718 		wait_for_completion(&ordered->completion);
719 		btrfs_put_ordered_extent(ordered);
720 		cond_resched();
721 	}
722 	mutex_unlock(&root->ordered_extent_mutex);
723 
724 	return count;
725 }
726 
727 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
728 			     const u64 range_start, const u64 range_len)
729 {
730 	struct btrfs_root *root;
731 	struct list_head splice;
732 	u64 total_done = 0;
733 	u64 done;
734 
735 	INIT_LIST_HEAD(&splice);
736 
737 	mutex_lock(&fs_info->ordered_operations_mutex);
738 	spin_lock(&fs_info->ordered_root_lock);
739 	list_splice_init(&fs_info->ordered_roots, &splice);
740 	while (!list_empty(&splice) && nr) {
741 		root = list_first_entry(&splice, struct btrfs_root,
742 					ordered_root);
743 		root = btrfs_grab_fs_root(root);
744 		BUG_ON(!root);
745 		list_move_tail(&root->ordered_root,
746 			       &fs_info->ordered_roots);
747 		spin_unlock(&fs_info->ordered_root_lock);
748 
749 		done = btrfs_wait_ordered_extents(root, nr,
750 						  range_start, range_len);
751 		btrfs_put_fs_root(root);
752 		total_done += done;
753 
754 		spin_lock(&fs_info->ordered_root_lock);
755 		if (nr != U64_MAX) {
756 			nr -= done;
757 		}
758 	}
759 	list_splice_tail(&splice, &fs_info->ordered_roots);
760 	spin_unlock(&fs_info->ordered_root_lock);
761 	mutex_unlock(&fs_info->ordered_operations_mutex);
762 
763 	return total_done;
764 }
765 
766 /*
767  * Used to start IO or wait for a given ordered extent to finish.
768  *
769  * If wait is one, this effectively waits on page writeback for all the pages
770  * in the extent, and it waits on the io completion code to insert
771  * metadata into the btree corresponding to the extent
772  */
773 void btrfs_start_ordered_extent(struct inode *inode,
774 				       struct btrfs_ordered_extent *entry,
775 				       int wait)
776 {
777 	u64 start = entry->file_offset;
778 	u64 end = start + entry->len - 1;
779 
780 	trace_btrfs_ordered_extent_start(inode, entry);
781 
782 	/*
783 	 * pages in the range can be dirty, clean or writeback.  We
784 	 * start IO on any dirty ones so the wait doesn't stall waiting
785 	 * for the flusher thread to find them
786 	 */
787 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
788 		filemap_fdatawrite_range(inode->i_mapping, start, end);
789 	if (wait) {
790 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
791 						 &entry->flags));
792 	}
793 }
794 
795 /*
796  * Used to wait on ordered extents across a large range of bytes.
797  */
798 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
799 {
800 	int ret = 0;
801 	int ret_wb = 0;
802 	u64 end;
803 	u64 orig_end;
804 	struct btrfs_ordered_extent *ordered;
805 
806 	if (start + len < start) {
807 		orig_end = INT_LIMIT(loff_t);
808 	} else {
809 		orig_end = start + len - 1;
810 		if (orig_end > INT_LIMIT(loff_t))
811 			orig_end = INT_LIMIT(loff_t);
812 	}
813 
814 	/* start IO across the range first to instantiate any delalloc
815 	 * extents
816 	 */
817 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
818 	if (ret)
819 		return ret;
820 
821 	/*
822 	 * If we have a writeback error don't return immediately. Wait first
823 	 * for any ordered extents that haven't completed yet. This is to make
824 	 * sure no one can dirty the same page ranges and call writepages()
825 	 * before the ordered extents complete - to avoid failures (-EEXIST)
826 	 * when adding the new ordered extents to the ordered tree.
827 	 */
828 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
829 
830 	end = orig_end;
831 	while (1) {
832 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
833 		if (!ordered)
834 			break;
835 		if (ordered->file_offset > orig_end) {
836 			btrfs_put_ordered_extent(ordered);
837 			break;
838 		}
839 		if (ordered->file_offset + ordered->len <= start) {
840 			btrfs_put_ordered_extent(ordered);
841 			break;
842 		}
843 		btrfs_start_ordered_extent(inode, ordered, 1);
844 		end = ordered->file_offset;
845 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
846 			ret = -EIO;
847 		btrfs_put_ordered_extent(ordered);
848 		if (ret || end == 0 || end == start)
849 			break;
850 		end--;
851 	}
852 	return ret_wb ? ret_wb : ret;
853 }
854 
855 /*
856  * find an ordered extent corresponding to file_offset.  return NULL if
857  * nothing is found, otherwise take a reference on the extent and return it
858  */
859 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
860 							 u64 file_offset)
861 {
862 	struct btrfs_ordered_inode_tree *tree;
863 	struct rb_node *node;
864 	struct btrfs_ordered_extent *entry = NULL;
865 
866 	tree = &BTRFS_I(inode)->ordered_tree;
867 	spin_lock_irq(&tree->lock);
868 	node = tree_search(tree, file_offset);
869 	if (!node)
870 		goto out;
871 
872 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
873 	if (!offset_in_entry(entry, file_offset))
874 		entry = NULL;
875 	if (entry)
876 		refcount_inc(&entry->refs);
877 out:
878 	spin_unlock_irq(&tree->lock);
879 	return entry;
880 }
881 
882 /* Since the DIO code tries to lock a wide area we need to look for any ordered
883  * extents that exist in the range, rather than just the start of the range.
884  */
885 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
886 		struct btrfs_inode *inode, u64 file_offset, u64 len)
887 {
888 	struct btrfs_ordered_inode_tree *tree;
889 	struct rb_node *node;
890 	struct btrfs_ordered_extent *entry = NULL;
891 
892 	tree = &inode->ordered_tree;
893 	spin_lock_irq(&tree->lock);
894 	node = tree_search(tree, file_offset);
895 	if (!node) {
896 		node = tree_search(tree, file_offset + len);
897 		if (!node)
898 			goto out;
899 	}
900 
901 	while (1) {
902 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
903 		if (range_overlaps(entry, file_offset, len))
904 			break;
905 
906 		if (entry->file_offset >= file_offset + len) {
907 			entry = NULL;
908 			break;
909 		}
910 		entry = NULL;
911 		node = rb_next(node);
912 		if (!node)
913 			break;
914 	}
915 out:
916 	if (entry)
917 		refcount_inc(&entry->refs);
918 	spin_unlock_irq(&tree->lock);
919 	return entry;
920 }
921 
922 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
923 					 u64 file_offset,
924 					 u64 len)
925 {
926 	struct btrfs_ordered_extent *oe;
927 
928 	oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
929 	if (oe) {
930 		btrfs_put_ordered_extent(oe);
931 		return true;
932 	}
933 	return false;
934 }
935 
936 /*
937  * lookup and return any extent before 'file_offset'.  NULL is returned
938  * if none is found
939  */
940 struct btrfs_ordered_extent *
941 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
942 {
943 	struct btrfs_ordered_inode_tree *tree;
944 	struct rb_node *node;
945 	struct btrfs_ordered_extent *entry = NULL;
946 
947 	tree = &BTRFS_I(inode)->ordered_tree;
948 	spin_lock_irq(&tree->lock);
949 	node = tree_search(tree, file_offset);
950 	if (!node)
951 		goto out;
952 
953 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
954 	refcount_inc(&entry->refs);
955 out:
956 	spin_unlock_irq(&tree->lock);
957 	return entry;
958 }
959 
960 /*
961  * After an extent is done, call this to conditionally update the on disk
962  * i_size.  i_size is updated to cover any fully written part of the file.
963  */
964 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
965 				struct btrfs_ordered_extent *ordered)
966 {
967 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
968 	u64 disk_i_size;
969 	u64 new_i_size;
970 	u64 i_size = i_size_read(inode);
971 	struct rb_node *node;
972 	struct rb_node *prev = NULL;
973 	struct btrfs_ordered_extent *test;
974 	int ret = 1;
975 	u64 orig_offset = offset;
976 
977 	spin_lock_irq(&tree->lock);
978 	if (ordered) {
979 		offset = entry_end(ordered);
980 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
981 			offset = min(offset,
982 				     ordered->file_offset +
983 				     ordered->truncated_len);
984 	} else {
985 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
986 	}
987 	disk_i_size = BTRFS_I(inode)->disk_i_size;
988 
989 	/*
990 	 * truncate file.
991 	 * If ordered is not NULL, then this is called from endio and
992 	 * disk_i_size will be updated by either truncate itself or any
993 	 * in-flight IOs which are inside the disk_i_size.
994 	 *
995 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
996 	 * fails somehow, we need to make sure we have a precise disk_i_size by
997 	 * updating it as usual.
998 	 *
999 	 */
1000 	if (!ordered && disk_i_size > i_size) {
1001 		BTRFS_I(inode)->disk_i_size = orig_offset;
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 
1006 	/*
1007 	 * if the disk i_size is already at the inode->i_size, or
1008 	 * this ordered extent is inside the disk i_size, we're done
1009 	 */
1010 	if (disk_i_size == i_size)
1011 		goto out;
1012 
1013 	/*
1014 	 * We still need to update disk_i_size if outstanding_isize is greater
1015 	 * than disk_i_size.
1016 	 */
1017 	if (offset <= disk_i_size &&
1018 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
1019 		goto out;
1020 
1021 	/*
1022 	 * walk backward from this ordered extent to disk_i_size.
1023 	 * if we find an ordered extent then we can't update disk i_size
1024 	 * yet
1025 	 */
1026 	if (ordered) {
1027 		node = rb_prev(&ordered->rb_node);
1028 	} else {
1029 		prev = tree_search(tree, offset);
1030 		/*
1031 		 * we insert file extents without involving ordered struct,
1032 		 * so there should be no ordered struct cover this offset
1033 		 */
1034 		if (prev) {
1035 			test = rb_entry(prev, struct btrfs_ordered_extent,
1036 					rb_node);
1037 			BUG_ON(offset_in_entry(test, offset));
1038 		}
1039 		node = prev;
1040 	}
1041 	for (; node; node = rb_prev(node)) {
1042 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043 
1044 		/* We treat this entry as if it doesn't exist */
1045 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046 			continue;
1047 
1048 		if (entry_end(test) <= disk_i_size)
1049 			break;
1050 		if (test->file_offset >= i_size)
1051 			break;
1052 
1053 		/*
1054 		 * We don't update disk_i_size now, so record this undealt
1055 		 * i_size. Or we will not know the real i_size.
1056 		 */
1057 		if (test->outstanding_isize < offset)
1058 			test->outstanding_isize = offset;
1059 		if (ordered &&
1060 		    ordered->outstanding_isize > test->outstanding_isize)
1061 			test->outstanding_isize = ordered->outstanding_isize;
1062 		goto out;
1063 	}
1064 	new_i_size = min_t(u64, offset, i_size);
1065 
1066 	/*
1067 	 * Some ordered extents may completed before the current one, and
1068 	 * we hold the real i_size in ->outstanding_isize.
1069 	 */
1070 	if (ordered && ordered->outstanding_isize > new_i_size)
1071 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072 	BTRFS_I(inode)->disk_i_size = new_i_size;
1073 	ret = 0;
1074 out:
1075 	/*
1076 	 * We need to do this because we can't remove ordered extents until
1077 	 * after the i_disk_size has been updated and then the inode has been
1078 	 * updated to reflect the change, so we need to tell anybody who finds
1079 	 * this ordered extent that we've already done all the real work, we
1080 	 * just haven't completed all the other work.
1081 	 */
1082 	if (ordered)
1083 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084 	spin_unlock_irq(&tree->lock);
1085 	return ret;
1086 }
1087 
1088 /*
1089  * search the ordered extents for one corresponding to 'offset' and
1090  * try to find a checksum.  This is used because we allow pages to
1091  * be reclaimed before their checksum is actually put into the btree
1092  */
1093 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094 			   u32 *sum, int len)
1095 {
1096 	struct btrfs_ordered_sum *ordered_sum;
1097 	struct btrfs_ordered_extent *ordered;
1098 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099 	unsigned long num_sectors;
1100 	unsigned long i;
1101 	u32 sectorsize = btrfs_inode_sectorsize(inode);
1102 	int index = 0;
1103 
1104 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1105 	if (!ordered)
1106 		return 0;
1107 
1108 	spin_lock_irq(&tree->lock);
1109 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110 		if (disk_bytenr >= ordered_sum->bytenr &&
1111 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112 			i = (disk_bytenr - ordered_sum->bytenr) >>
1113 			    inode->i_sb->s_blocksize_bits;
1114 			num_sectors = ordered_sum->len >>
1115 				      inode->i_sb->s_blocksize_bits;
1116 			num_sectors = min_t(int, len - index, num_sectors - i);
1117 			memcpy(sum + index, ordered_sum->sums + i,
1118 			       num_sectors);
1119 
1120 			index += (int)num_sectors;
1121 			if (index == len)
1122 				goto out;
1123 			disk_bytenr += num_sectors * sectorsize;
1124 		}
1125 	}
1126 out:
1127 	spin_unlock_irq(&tree->lock);
1128 	btrfs_put_ordered_extent(ordered);
1129 	return index;
1130 }
1131 
1132 int __init ordered_data_init(void)
1133 {
1134 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135 				     sizeof(struct btrfs_ordered_extent), 0,
1136 				     SLAB_MEM_SPREAD,
1137 				     NULL);
1138 	if (!btrfs_ordered_extent_cache)
1139 		return -ENOMEM;
1140 
1141 	return 0;
1142 }
1143 
1144 void __cold ordered_data_exit(void)
1145 {
1146 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1147 }
1148