1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static u64 entry_end(struct btrfs_ordered_extent *entry) 29 { 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33 } 34 35 /* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40 { 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60 } 61 62 /* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68 { 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114 } 115 116 /* 117 * helper to check if a given offset is inside a given entry 118 */ 119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120 { 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125 } 126 127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 128 u64 len) 129 { 130 if (file_offset + len <= entry->file_offset || 131 entry->file_offset + entry->len <= file_offset) 132 return 0; 133 return 1; 134 } 135 136 /* 137 * look find the first ordered struct that has this offset, otherwise 138 * the first one less than this offset 139 */ 140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 141 u64 file_offset) 142 { 143 struct rb_root *root = &tree->tree; 144 struct rb_node *prev; 145 struct rb_node *ret; 146 struct btrfs_ordered_extent *entry; 147 148 if (tree->last) { 149 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 150 rb_node); 151 if (offset_in_entry(entry, file_offset)) 152 return tree->last; 153 } 154 ret = __tree_search(root, file_offset, &prev); 155 if (!ret) 156 ret = prev; 157 if (ret) 158 tree->last = ret; 159 return ret; 160 } 161 162 /* allocate and add a new ordered_extent into the per-inode tree. 163 * file_offset is the logical offset in the file 164 * 165 * start is the disk block number of an extent already reserved in the 166 * extent allocation tree 167 * 168 * len is the length of the extent 169 * 170 * The tree is given a single reference on the ordered extent that was 171 * inserted. 172 */ 173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 174 u64 start, u64 len, u64 disk_len, 175 int type, int dio) 176 { 177 struct btrfs_ordered_inode_tree *tree; 178 struct rb_node *node; 179 struct btrfs_ordered_extent *entry; 180 181 tree = &BTRFS_I(inode)->ordered_tree; 182 entry = kzalloc(sizeof(*entry), GFP_NOFS); 183 if (!entry) 184 return -ENOMEM; 185 186 entry->file_offset = file_offset; 187 entry->start = start; 188 entry->len = len; 189 entry->disk_len = disk_len; 190 entry->bytes_left = len; 191 entry->inode = inode; 192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 193 set_bit(type, &entry->flags); 194 195 if (dio) 196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 197 198 /* one ref for the tree */ 199 atomic_set(&entry->refs, 1); 200 init_waitqueue_head(&entry->wait); 201 INIT_LIST_HEAD(&entry->list); 202 INIT_LIST_HEAD(&entry->root_extent_list); 203 204 spin_lock(&tree->lock); 205 node = tree_insert(&tree->tree, file_offset, 206 &entry->rb_node); 207 BUG_ON(node); 208 spin_unlock(&tree->lock); 209 210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 211 list_add_tail(&entry->root_extent_list, 212 &BTRFS_I(inode)->root->fs_info->ordered_extents); 213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 214 215 BUG_ON(node); 216 return 0; 217 } 218 219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 220 u64 start, u64 len, u64 disk_len, int type) 221 { 222 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 223 disk_len, type, 0); 224 } 225 226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 227 u64 start, u64 len, u64 disk_len, int type) 228 { 229 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 230 disk_len, type, 1); 231 } 232 233 /* 234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 235 * when an ordered extent is finished. If the list covers more than one 236 * ordered extent, it is split across multiples. 237 */ 238 int btrfs_add_ordered_sum(struct inode *inode, 239 struct btrfs_ordered_extent *entry, 240 struct btrfs_ordered_sum *sum) 241 { 242 struct btrfs_ordered_inode_tree *tree; 243 244 tree = &BTRFS_I(inode)->ordered_tree; 245 spin_lock(&tree->lock); 246 list_add_tail(&sum->list, &entry->list); 247 spin_unlock(&tree->lock); 248 return 0; 249 } 250 251 /* 252 * this is used to account for finished IO across a given range 253 * of the file. The IO may span ordered extents. If 254 * a given ordered_extent is completely done, 1 is returned, otherwise 255 * 0. 256 * 257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 258 * to make sure this function only returns 1 once for a given ordered extent. 259 * 260 * file_offset is updated to one byte past the range that is recorded as 261 * complete. This allows you to walk forward in the file. 262 */ 263 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 264 struct btrfs_ordered_extent **cached, 265 u64 *file_offset, u64 io_size) 266 { 267 struct btrfs_ordered_inode_tree *tree; 268 struct rb_node *node; 269 struct btrfs_ordered_extent *entry = NULL; 270 int ret; 271 u64 dec_end; 272 u64 dec_start; 273 u64 to_dec; 274 275 tree = &BTRFS_I(inode)->ordered_tree; 276 spin_lock(&tree->lock); 277 node = tree_search(tree, *file_offset); 278 if (!node) { 279 ret = 1; 280 goto out; 281 } 282 283 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 284 if (!offset_in_entry(entry, *file_offset)) { 285 ret = 1; 286 goto out; 287 } 288 289 dec_start = max(*file_offset, entry->file_offset); 290 dec_end = min(*file_offset + io_size, entry->file_offset + 291 entry->len); 292 *file_offset = dec_end; 293 if (dec_start > dec_end) { 294 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 295 (unsigned long long)dec_start, 296 (unsigned long long)dec_end); 297 } 298 to_dec = dec_end - dec_start; 299 if (to_dec > entry->bytes_left) { 300 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 301 (unsigned long long)entry->bytes_left, 302 (unsigned long long)to_dec); 303 } 304 entry->bytes_left -= to_dec; 305 if (entry->bytes_left == 0) 306 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 307 else 308 ret = 1; 309 out: 310 if (!ret && cached && entry) { 311 *cached = entry; 312 atomic_inc(&entry->refs); 313 } 314 spin_unlock(&tree->lock); 315 return ret == 0; 316 } 317 318 /* 319 * this is used to account for finished IO across a given range 320 * of the file. The IO should not span ordered extents. If 321 * a given ordered_extent is completely done, 1 is returned, otherwise 322 * 0. 323 * 324 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 325 * to make sure this function only returns 1 once for a given ordered extent. 326 */ 327 int btrfs_dec_test_ordered_pending(struct inode *inode, 328 struct btrfs_ordered_extent **cached, 329 u64 file_offset, u64 io_size) 330 { 331 struct btrfs_ordered_inode_tree *tree; 332 struct rb_node *node; 333 struct btrfs_ordered_extent *entry = NULL; 334 int ret; 335 336 tree = &BTRFS_I(inode)->ordered_tree; 337 spin_lock(&tree->lock); 338 node = tree_search(tree, file_offset); 339 if (!node) { 340 ret = 1; 341 goto out; 342 } 343 344 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 345 if (!offset_in_entry(entry, file_offset)) { 346 ret = 1; 347 goto out; 348 } 349 350 if (io_size > entry->bytes_left) { 351 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 352 (unsigned long long)entry->bytes_left, 353 (unsigned long long)io_size); 354 } 355 entry->bytes_left -= io_size; 356 if (entry->bytes_left == 0) 357 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 358 else 359 ret = 1; 360 out: 361 if (!ret && cached && entry) { 362 *cached = entry; 363 atomic_inc(&entry->refs); 364 } 365 spin_unlock(&tree->lock); 366 return ret == 0; 367 } 368 369 /* 370 * used to drop a reference on an ordered extent. This will free 371 * the extent if the last reference is dropped 372 */ 373 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 374 { 375 struct list_head *cur; 376 struct btrfs_ordered_sum *sum; 377 378 if (atomic_dec_and_test(&entry->refs)) { 379 while (!list_empty(&entry->list)) { 380 cur = entry->list.next; 381 sum = list_entry(cur, struct btrfs_ordered_sum, list); 382 list_del(&sum->list); 383 kfree(sum); 384 } 385 kfree(entry); 386 } 387 return 0; 388 } 389 390 /* 391 * remove an ordered extent from the tree. No references are dropped 392 * and you must wake_up entry->wait. You must hold the tree lock 393 * while you call this function. 394 */ 395 static int __btrfs_remove_ordered_extent(struct inode *inode, 396 struct btrfs_ordered_extent *entry) 397 { 398 struct btrfs_ordered_inode_tree *tree; 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 struct rb_node *node; 401 402 tree = &BTRFS_I(inode)->ordered_tree; 403 node = &entry->rb_node; 404 rb_erase(node, &tree->tree); 405 tree->last = NULL; 406 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 407 408 spin_lock(&root->fs_info->ordered_extent_lock); 409 list_del_init(&entry->root_extent_list); 410 411 /* 412 * we have no more ordered extents for this inode and 413 * no dirty pages. We can safely remove it from the 414 * list of ordered extents 415 */ 416 if (RB_EMPTY_ROOT(&tree->tree) && 417 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 418 list_del_init(&BTRFS_I(inode)->ordered_operations); 419 } 420 spin_unlock(&root->fs_info->ordered_extent_lock); 421 422 return 0; 423 } 424 425 /* 426 * remove an ordered extent from the tree. No references are dropped 427 * but any waiters are woken. 428 */ 429 int btrfs_remove_ordered_extent(struct inode *inode, 430 struct btrfs_ordered_extent *entry) 431 { 432 struct btrfs_ordered_inode_tree *tree; 433 int ret; 434 435 tree = &BTRFS_I(inode)->ordered_tree; 436 spin_lock(&tree->lock); 437 ret = __btrfs_remove_ordered_extent(inode, entry); 438 spin_unlock(&tree->lock); 439 wake_up(&entry->wait); 440 441 return ret; 442 } 443 444 /* 445 * wait for all the ordered extents in a root. This is done when balancing 446 * space between drives. 447 */ 448 int btrfs_wait_ordered_extents(struct btrfs_root *root, 449 int nocow_only, int delay_iput) 450 { 451 struct list_head splice; 452 struct list_head *cur; 453 struct btrfs_ordered_extent *ordered; 454 struct inode *inode; 455 456 INIT_LIST_HEAD(&splice); 457 458 spin_lock(&root->fs_info->ordered_extent_lock); 459 list_splice_init(&root->fs_info->ordered_extents, &splice); 460 while (!list_empty(&splice)) { 461 cur = splice.next; 462 ordered = list_entry(cur, struct btrfs_ordered_extent, 463 root_extent_list); 464 if (nocow_only && 465 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 466 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 467 list_move(&ordered->root_extent_list, 468 &root->fs_info->ordered_extents); 469 cond_resched_lock(&root->fs_info->ordered_extent_lock); 470 continue; 471 } 472 473 list_del_init(&ordered->root_extent_list); 474 atomic_inc(&ordered->refs); 475 476 /* 477 * the inode may be getting freed (in sys_unlink path). 478 */ 479 inode = igrab(ordered->inode); 480 481 spin_unlock(&root->fs_info->ordered_extent_lock); 482 483 if (inode) { 484 btrfs_start_ordered_extent(inode, ordered, 1); 485 btrfs_put_ordered_extent(ordered); 486 if (delay_iput) 487 btrfs_add_delayed_iput(inode); 488 else 489 iput(inode); 490 } else { 491 btrfs_put_ordered_extent(ordered); 492 } 493 494 spin_lock(&root->fs_info->ordered_extent_lock); 495 } 496 spin_unlock(&root->fs_info->ordered_extent_lock); 497 return 0; 498 } 499 500 /* 501 * this is used during transaction commit to write all the inodes 502 * added to the ordered operation list. These files must be fully on 503 * disk before the transaction commits. 504 * 505 * we have two modes here, one is to just start the IO via filemap_flush 506 * and the other is to wait for all the io. When we wait, we have an 507 * extra check to make sure the ordered operation list really is empty 508 * before we return 509 */ 510 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 511 { 512 struct btrfs_inode *btrfs_inode; 513 struct inode *inode; 514 struct list_head splice; 515 516 INIT_LIST_HEAD(&splice); 517 518 mutex_lock(&root->fs_info->ordered_operations_mutex); 519 spin_lock(&root->fs_info->ordered_extent_lock); 520 again: 521 list_splice_init(&root->fs_info->ordered_operations, &splice); 522 523 while (!list_empty(&splice)) { 524 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 525 ordered_operations); 526 527 inode = &btrfs_inode->vfs_inode; 528 529 list_del_init(&btrfs_inode->ordered_operations); 530 531 /* 532 * the inode may be getting freed (in sys_unlink path). 533 */ 534 inode = igrab(inode); 535 536 if (!wait && inode) { 537 list_add_tail(&BTRFS_I(inode)->ordered_operations, 538 &root->fs_info->ordered_operations); 539 } 540 spin_unlock(&root->fs_info->ordered_extent_lock); 541 542 if (inode) { 543 if (wait) 544 btrfs_wait_ordered_range(inode, 0, (u64)-1); 545 else 546 filemap_flush(inode->i_mapping); 547 btrfs_add_delayed_iput(inode); 548 } 549 550 cond_resched(); 551 spin_lock(&root->fs_info->ordered_extent_lock); 552 } 553 if (wait && !list_empty(&root->fs_info->ordered_operations)) 554 goto again; 555 556 spin_unlock(&root->fs_info->ordered_extent_lock); 557 mutex_unlock(&root->fs_info->ordered_operations_mutex); 558 559 return 0; 560 } 561 562 /* 563 * Used to start IO or wait for a given ordered extent to finish. 564 * 565 * If wait is one, this effectively waits on page writeback for all the pages 566 * in the extent, and it waits on the io completion code to insert 567 * metadata into the btree corresponding to the extent 568 */ 569 void btrfs_start_ordered_extent(struct inode *inode, 570 struct btrfs_ordered_extent *entry, 571 int wait) 572 { 573 u64 start = entry->file_offset; 574 u64 end = start + entry->len - 1; 575 576 /* 577 * pages in the range can be dirty, clean or writeback. We 578 * start IO on any dirty ones so the wait doesn't stall waiting 579 * for pdflush to find them 580 */ 581 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 582 filemap_fdatawrite_range(inode->i_mapping, start, end); 583 if (wait) { 584 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 585 &entry->flags)); 586 } 587 } 588 589 /* 590 * Used to wait on ordered extents across a large range of bytes. 591 */ 592 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 593 { 594 u64 end; 595 u64 orig_end; 596 struct btrfs_ordered_extent *ordered; 597 int found; 598 599 if (start + len < start) { 600 orig_end = INT_LIMIT(loff_t); 601 } else { 602 orig_end = start + len - 1; 603 if (orig_end > INT_LIMIT(loff_t)) 604 orig_end = INT_LIMIT(loff_t); 605 } 606 again: 607 /* start IO across the range first to instantiate any delalloc 608 * extents 609 */ 610 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 611 612 /* The compression code will leave pages locked but return from 613 * writepage without setting the page writeback. Starting again 614 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 615 */ 616 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 617 618 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 619 620 end = orig_end; 621 found = 0; 622 while (1) { 623 ordered = btrfs_lookup_first_ordered_extent(inode, end); 624 if (!ordered) 625 break; 626 if (ordered->file_offset > orig_end) { 627 btrfs_put_ordered_extent(ordered); 628 break; 629 } 630 if (ordered->file_offset + ordered->len < start) { 631 btrfs_put_ordered_extent(ordered); 632 break; 633 } 634 found++; 635 btrfs_start_ordered_extent(inode, ordered, 1); 636 end = ordered->file_offset; 637 btrfs_put_ordered_extent(ordered); 638 if (end == 0 || end == start) 639 break; 640 end--; 641 } 642 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 643 EXTENT_DELALLOC, 0, NULL)) { 644 schedule_timeout(1); 645 goto again; 646 } 647 return 0; 648 } 649 650 /* 651 * find an ordered extent corresponding to file_offset. return NULL if 652 * nothing is found, otherwise take a reference on the extent and return it 653 */ 654 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 655 u64 file_offset) 656 { 657 struct btrfs_ordered_inode_tree *tree; 658 struct rb_node *node; 659 struct btrfs_ordered_extent *entry = NULL; 660 661 tree = &BTRFS_I(inode)->ordered_tree; 662 spin_lock(&tree->lock); 663 node = tree_search(tree, file_offset); 664 if (!node) 665 goto out; 666 667 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 668 if (!offset_in_entry(entry, file_offset)) 669 entry = NULL; 670 if (entry) 671 atomic_inc(&entry->refs); 672 out: 673 spin_unlock(&tree->lock); 674 return entry; 675 } 676 677 /* Since the DIO code tries to lock a wide area we need to look for any ordered 678 * extents that exist in the range, rather than just the start of the range. 679 */ 680 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 681 u64 file_offset, 682 u64 len) 683 { 684 struct btrfs_ordered_inode_tree *tree; 685 struct rb_node *node; 686 struct btrfs_ordered_extent *entry = NULL; 687 688 tree = &BTRFS_I(inode)->ordered_tree; 689 spin_lock(&tree->lock); 690 node = tree_search(tree, file_offset); 691 if (!node) { 692 node = tree_search(tree, file_offset + len); 693 if (!node) 694 goto out; 695 } 696 697 while (1) { 698 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 699 if (range_overlaps(entry, file_offset, len)) 700 break; 701 702 if (entry->file_offset >= file_offset + len) { 703 entry = NULL; 704 break; 705 } 706 entry = NULL; 707 node = rb_next(node); 708 if (!node) 709 break; 710 } 711 out: 712 if (entry) 713 atomic_inc(&entry->refs); 714 spin_unlock(&tree->lock); 715 return entry; 716 } 717 718 /* 719 * lookup and return any extent before 'file_offset'. NULL is returned 720 * if none is found 721 */ 722 struct btrfs_ordered_extent * 723 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 724 { 725 struct btrfs_ordered_inode_tree *tree; 726 struct rb_node *node; 727 struct btrfs_ordered_extent *entry = NULL; 728 729 tree = &BTRFS_I(inode)->ordered_tree; 730 spin_lock(&tree->lock); 731 node = tree_search(tree, file_offset); 732 if (!node) 733 goto out; 734 735 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 736 atomic_inc(&entry->refs); 737 out: 738 spin_unlock(&tree->lock); 739 return entry; 740 } 741 742 /* 743 * After an extent is done, call this to conditionally update the on disk 744 * i_size. i_size is updated to cover any fully written part of the file. 745 */ 746 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 747 struct btrfs_ordered_extent *ordered) 748 { 749 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 751 u64 disk_i_size; 752 u64 new_i_size; 753 u64 i_size_test; 754 u64 i_size = i_size_read(inode); 755 struct rb_node *node; 756 struct rb_node *prev = NULL; 757 struct btrfs_ordered_extent *test; 758 int ret = 1; 759 760 if (ordered) 761 offset = entry_end(ordered); 762 else 763 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 764 765 spin_lock(&tree->lock); 766 disk_i_size = BTRFS_I(inode)->disk_i_size; 767 768 /* truncate file */ 769 if (disk_i_size > i_size) { 770 BTRFS_I(inode)->disk_i_size = i_size; 771 ret = 0; 772 goto out; 773 } 774 775 /* 776 * if the disk i_size is already at the inode->i_size, or 777 * this ordered extent is inside the disk i_size, we're done 778 */ 779 if (disk_i_size == i_size || offset <= disk_i_size) { 780 goto out; 781 } 782 783 /* 784 * we can't update the disk_isize if there are delalloc bytes 785 * between disk_i_size and this ordered extent 786 */ 787 if (test_range_bit(io_tree, disk_i_size, offset - 1, 788 EXTENT_DELALLOC, 0, NULL)) { 789 goto out; 790 } 791 /* 792 * walk backward from this ordered extent to disk_i_size. 793 * if we find an ordered extent then we can't update disk i_size 794 * yet 795 */ 796 if (ordered) { 797 node = rb_prev(&ordered->rb_node); 798 } else { 799 prev = tree_search(tree, offset); 800 /* 801 * we insert file extents without involving ordered struct, 802 * so there should be no ordered struct cover this offset 803 */ 804 if (prev) { 805 test = rb_entry(prev, struct btrfs_ordered_extent, 806 rb_node); 807 BUG_ON(offset_in_entry(test, offset)); 808 } 809 node = prev; 810 } 811 while (node) { 812 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 813 if (test->file_offset + test->len <= disk_i_size) 814 break; 815 if (test->file_offset >= i_size) 816 break; 817 if (test->file_offset >= disk_i_size) 818 goto out; 819 node = rb_prev(node); 820 } 821 new_i_size = min_t(u64, offset, i_size); 822 823 /* 824 * at this point, we know we can safely update i_size to at least 825 * the offset from this ordered extent. But, we need to 826 * walk forward and see if ios from higher up in the file have 827 * finished. 828 */ 829 if (ordered) { 830 node = rb_next(&ordered->rb_node); 831 } else { 832 if (prev) 833 node = rb_next(prev); 834 else 835 node = rb_first(&tree->tree); 836 } 837 i_size_test = 0; 838 if (node) { 839 /* 840 * do we have an area where IO might have finished 841 * between our ordered extent and the next one. 842 */ 843 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 844 if (test->file_offset > offset) 845 i_size_test = test->file_offset; 846 } else { 847 i_size_test = i_size; 848 } 849 850 /* 851 * i_size_test is the end of a region after this ordered 852 * extent where there are no ordered extents. As long as there 853 * are no delalloc bytes in this area, it is safe to update 854 * disk_i_size to the end of the region. 855 */ 856 if (i_size_test > offset && 857 !test_range_bit(io_tree, offset, i_size_test - 1, 858 EXTENT_DELALLOC, 0, NULL)) { 859 new_i_size = min_t(u64, i_size_test, i_size); 860 } 861 BTRFS_I(inode)->disk_i_size = new_i_size; 862 ret = 0; 863 out: 864 /* 865 * we need to remove the ordered extent with the tree lock held 866 * so that other people calling this function don't find our fully 867 * processed ordered entry and skip updating the i_size 868 */ 869 if (ordered) 870 __btrfs_remove_ordered_extent(inode, ordered); 871 spin_unlock(&tree->lock); 872 if (ordered) 873 wake_up(&ordered->wait); 874 return ret; 875 } 876 877 /* 878 * search the ordered extents for one corresponding to 'offset' and 879 * try to find a checksum. This is used because we allow pages to 880 * be reclaimed before their checksum is actually put into the btree 881 */ 882 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 883 u32 *sum) 884 { 885 struct btrfs_ordered_sum *ordered_sum; 886 struct btrfs_sector_sum *sector_sums; 887 struct btrfs_ordered_extent *ordered; 888 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 889 unsigned long num_sectors; 890 unsigned long i; 891 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 892 int ret = 1; 893 894 ordered = btrfs_lookup_ordered_extent(inode, offset); 895 if (!ordered) 896 return 1; 897 898 spin_lock(&tree->lock); 899 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 900 if (disk_bytenr >= ordered_sum->bytenr) { 901 num_sectors = ordered_sum->len / sectorsize; 902 sector_sums = ordered_sum->sums; 903 for (i = 0; i < num_sectors; i++) { 904 if (sector_sums[i].bytenr == disk_bytenr) { 905 *sum = sector_sums[i].sum; 906 ret = 0; 907 goto out; 908 } 909 } 910 } 911 } 912 out: 913 spin_unlock(&tree->lock); 914 btrfs_put_ordered_extent(ordered); 915 return ret; 916 } 917 918 919 /* 920 * add a given inode to the list of inodes that must be fully on 921 * disk before a transaction commit finishes. 922 * 923 * This basically gives us the ext3 style data=ordered mode, and it is mostly 924 * used to make sure renamed files are fully on disk. 925 * 926 * It is a noop if the inode is already fully on disk. 927 * 928 * If trans is not null, we'll do a friendly check for a transaction that 929 * is already flushing things and force the IO down ourselves. 930 */ 931 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 932 struct btrfs_root *root, 933 struct inode *inode) 934 { 935 u64 last_mod; 936 937 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 938 939 /* 940 * if this file hasn't been changed since the last transaction 941 * commit, we can safely return without doing anything 942 */ 943 if (last_mod < root->fs_info->last_trans_committed) 944 return 0; 945 946 /* 947 * the transaction is already committing. Just start the IO and 948 * don't bother with all of this list nonsense 949 */ 950 if (trans && root->fs_info->running_transaction->blocked) { 951 btrfs_wait_ordered_range(inode, 0, (u64)-1); 952 return 0; 953 } 954 955 spin_lock(&root->fs_info->ordered_extent_lock); 956 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 957 list_add_tail(&BTRFS_I(inode)->ordered_operations, 958 &root->fs_info->ordered_operations); 959 } 960 spin_unlock(&root->fs_info->ordered_extent_lock); 961 962 return 0; 963 } 964