xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/pagevec.h>
10 #include "ctree.h"
11 #include "transaction.h"
12 #include "btrfs_inode.h"
13 #include "extent_io.h"
14 #include "disk-io.h"
15 #include "compression.h"
16 
17 static struct kmem_cache *btrfs_ordered_extent_cache;
18 
19 static u64 entry_end(struct btrfs_ordered_extent *entry)
20 {
21 	if (entry->file_offset + entry->len < entry->file_offset)
22 		return (u64)-1;
23 	return entry->file_offset + entry->len;
24 }
25 
26 /* returns NULL if the insertion worked, or it returns the node it did find
27  * in the tree
28  */
29 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 				   struct rb_node *node)
31 {
32 	struct rb_node **p = &root->rb_node;
33 	struct rb_node *parent = NULL;
34 	struct btrfs_ordered_extent *entry;
35 
36 	while (*p) {
37 		parent = *p;
38 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39 
40 		if (file_offset < entry->file_offset)
41 			p = &(*p)->rb_left;
42 		else if (file_offset >= entry_end(entry))
43 			p = &(*p)->rb_right;
44 		else
45 			return parent;
46 	}
47 
48 	rb_link_node(node, parent, p);
49 	rb_insert_color(node, root);
50 	return NULL;
51 }
52 
53 static void ordered_data_tree_panic(struct inode *inode, int errno,
54 					       u64 offset)
55 {
56 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 	btrfs_panic(fs_info, errno,
58 		    "Inconsistency in ordered tree at offset %llu", offset);
59 }
60 
61 /*
62  * look for a given offset in the tree, and if it can't be found return the
63  * first lesser offset
64  */
65 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 				     struct rb_node **prev_ret)
67 {
68 	struct rb_node *n = root->rb_node;
69 	struct rb_node *prev = NULL;
70 	struct rb_node *test;
71 	struct btrfs_ordered_extent *entry;
72 	struct btrfs_ordered_extent *prev_entry = NULL;
73 
74 	while (n) {
75 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 		prev = n;
77 		prev_entry = entry;
78 
79 		if (file_offset < entry->file_offset)
80 			n = n->rb_left;
81 		else if (file_offset >= entry_end(entry))
82 			n = n->rb_right;
83 		else
84 			return n;
85 	}
86 	if (!prev_ret)
87 		return NULL;
88 
89 	while (prev && file_offset >= entry_end(prev_entry)) {
90 		test = rb_next(prev);
91 		if (!test)
92 			break;
93 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 				      rb_node);
95 		if (file_offset < entry_end(prev_entry))
96 			break;
97 
98 		prev = test;
99 	}
100 	if (prev)
101 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 				      rb_node);
103 	while (prev && file_offset < entry_end(prev_entry)) {
104 		test = rb_prev(prev);
105 		if (!test)
106 			break;
107 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 				      rb_node);
109 		prev = test;
110 	}
111 	*prev_ret = prev;
112 	return NULL;
113 }
114 
115 /*
116  * helper to check if a given offset is inside a given entry
117  */
118 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119 {
120 	if (file_offset < entry->file_offset ||
121 	    entry->file_offset + entry->len <= file_offset)
122 		return 0;
123 	return 1;
124 }
125 
126 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 			  u64 len)
128 {
129 	if (file_offset + len <= entry->file_offset ||
130 	    entry->file_offset + entry->len <= file_offset)
131 		return 0;
132 	return 1;
133 }
134 
135 /*
136  * look find the first ordered struct that has this offset, otherwise
137  * the first one less than this offset
138  */
139 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 					  u64 file_offset)
141 {
142 	struct rb_root *root = &tree->tree;
143 	struct rb_node *prev = NULL;
144 	struct rb_node *ret;
145 	struct btrfs_ordered_extent *entry;
146 
147 	if (tree->last) {
148 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 				 rb_node);
150 		if (offset_in_entry(entry, file_offset))
151 			return tree->last;
152 	}
153 	ret = __tree_search(root, file_offset, &prev);
154 	if (!ret)
155 		ret = prev;
156 	if (ret)
157 		tree->last = ret;
158 	return ret;
159 }
160 
161 /* allocate and add a new ordered_extent into the per-inode tree.
162  * file_offset is the logical offset in the file
163  *
164  * start is the disk block number of an extent already reserved in the
165  * extent allocation tree
166  *
167  * len is the length of the extent
168  *
169  * The tree is given a single reference on the ordered extent that was
170  * inserted.
171  */
172 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 				      u64 start, u64 len, u64 disk_len,
174 				      int type, int dio, int compress_type)
175 {
176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 	struct btrfs_root *root = BTRFS_I(inode)->root;
178 	struct btrfs_ordered_inode_tree *tree;
179 	struct rb_node *node;
180 	struct btrfs_ordered_extent *entry;
181 
182 	tree = &BTRFS_I(inode)->ordered_tree;
183 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 	if (!entry)
185 		return -ENOMEM;
186 
187 	entry->file_offset = file_offset;
188 	entry->start = start;
189 	entry->len = len;
190 	entry->disk_len = disk_len;
191 	entry->bytes_left = len;
192 	entry->inode = igrab(inode);
193 	entry->compress_type = compress_type;
194 	entry->truncated_len = (u64)-1;
195 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 		set_bit(type, &entry->flags);
197 
198 	if (dio)
199 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200 
201 	/* one ref for the tree */
202 	refcount_set(&entry->refs, 1);
203 	init_waitqueue_head(&entry->wait);
204 	INIT_LIST_HEAD(&entry->list);
205 	INIT_LIST_HEAD(&entry->root_extent_list);
206 	INIT_LIST_HEAD(&entry->work_list);
207 	init_completion(&entry->completion);
208 	INIT_LIST_HEAD(&entry->log_list);
209 	INIT_LIST_HEAD(&entry->trans_list);
210 
211 	trace_btrfs_ordered_extent_add(inode, entry);
212 
213 	spin_lock_irq(&tree->lock);
214 	node = tree_insert(&tree->tree, file_offset,
215 			   &entry->rb_node);
216 	if (node)
217 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 	spin_unlock_irq(&tree->lock);
219 
220 	spin_lock(&root->ordered_extent_lock);
221 	list_add_tail(&entry->root_extent_list,
222 		      &root->ordered_extents);
223 	root->nr_ordered_extents++;
224 	if (root->nr_ordered_extents == 1) {
225 		spin_lock(&fs_info->ordered_root_lock);
226 		BUG_ON(!list_empty(&root->ordered_root));
227 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 		spin_unlock(&fs_info->ordered_root_lock);
229 	}
230 	spin_unlock(&root->ordered_extent_lock);
231 
232 	/*
233 	 * We don't need the count_max_extents here, we can assume that all of
234 	 * that work has been done at higher layers, so this is truly the
235 	 * smallest the extent is going to get.
236 	 */
237 	spin_lock(&BTRFS_I(inode)->lock);
238 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 	spin_unlock(&BTRFS_I(inode)->lock);
240 
241 	return 0;
242 }
243 
244 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 			     u64 start, u64 len, u64 disk_len, int type)
246 {
247 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 					  disk_len, type, 0,
249 					  BTRFS_COMPRESS_NONE);
250 }
251 
252 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 				 u64 start, u64 len, u64 disk_len, int type)
254 {
255 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 					  disk_len, type, 1,
257 					  BTRFS_COMPRESS_NONE);
258 }
259 
260 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 				      u64 start, u64 len, u64 disk_len,
262 				      int type, int compress_type)
263 {
264 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 					  disk_len, type, 0,
266 					  compress_type);
267 }
268 
269 /*
270  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271  * when an ordered extent is finished.  If the list covers more than one
272  * ordered extent, it is split across multiples.
273  */
274 void btrfs_add_ordered_sum(struct inode *inode,
275 			   struct btrfs_ordered_extent *entry,
276 			   struct btrfs_ordered_sum *sum)
277 {
278 	struct btrfs_ordered_inode_tree *tree;
279 
280 	tree = &BTRFS_I(inode)->ordered_tree;
281 	spin_lock_irq(&tree->lock);
282 	list_add_tail(&sum->list, &entry->list);
283 	spin_unlock_irq(&tree->lock);
284 }
285 
286 /*
287  * this is used to account for finished IO across a given range
288  * of the file.  The IO may span ordered extents.  If
289  * a given ordered_extent is completely done, 1 is returned, otherwise
290  * 0.
291  *
292  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293  * to make sure this function only returns 1 once for a given ordered extent.
294  *
295  * file_offset is updated to one byte past the range that is recorded as
296  * complete.  This allows you to walk forward in the file.
297  */
298 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 				   struct btrfs_ordered_extent **cached,
300 				   u64 *file_offset, u64 io_size, int uptodate)
301 {
302 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 	struct btrfs_ordered_inode_tree *tree;
304 	struct rb_node *node;
305 	struct btrfs_ordered_extent *entry = NULL;
306 	int ret;
307 	unsigned long flags;
308 	u64 dec_end;
309 	u64 dec_start;
310 	u64 to_dec;
311 
312 	tree = &BTRFS_I(inode)->ordered_tree;
313 	spin_lock_irqsave(&tree->lock, flags);
314 	node = tree_search(tree, *file_offset);
315 	if (!node) {
316 		ret = 1;
317 		goto out;
318 	}
319 
320 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 	if (!offset_in_entry(entry, *file_offset)) {
322 		ret = 1;
323 		goto out;
324 	}
325 
326 	dec_start = max(*file_offset, entry->file_offset);
327 	dec_end = min(*file_offset + io_size, entry->file_offset +
328 		      entry->len);
329 	*file_offset = dec_end;
330 	if (dec_start > dec_end) {
331 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 			   dec_start, dec_end);
333 	}
334 	to_dec = dec_end - dec_start;
335 	if (to_dec > entry->bytes_left) {
336 		btrfs_crit(fs_info,
337 			   "bad ordered accounting left %llu size %llu",
338 			   entry->bytes_left, to_dec);
339 	}
340 	entry->bytes_left -= to_dec;
341 	if (!uptodate)
342 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343 
344 	if (entry->bytes_left == 0) {
345 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 		/* test_and_set_bit implies a barrier */
347 		cond_wake_up_nomb(&entry->wait);
348 	} else {
349 		ret = 1;
350 	}
351 out:
352 	if (!ret && cached && entry) {
353 		*cached = entry;
354 		refcount_inc(&entry->refs);
355 	}
356 	spin_unlock_irqrestore(&tree->lock, flags);
357 	return ret == 0;
358 }
359 
360 /*
361  * this is used to account for finished IO across a given range
362  * of the file.  The IO should not span ordered extents.  If
363  * a given ordered_extent is completely done, 1 is returned, otherwise
364  * 0.
365  *
366  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
367  * to make sure this function only returns 1 once for a given ordered extent.
368  */
369 int btrfs_dec_test_ordered_pending(struct inode *inode,
370 				   struct btrfs_ordered_extent **cached,
371 				   u64 file_offset, u64 io_size, int uptodate)
372 {
373 	struct btrfs_ordered_inode_tree *tree;
374 	struct rb_node *node;
375 	struct btrfs_ordered_extent *entry = NULL;
376 	unsigned long flags;
377 	int ret;
378 
379 	tree = &BTRFS_I(inode)->ordered_tree;
380 	spin_lock_irqsave(&tree->lock, flags);
381 	if (cached && *cached) {
382 		entry = *cached;
383 		goto have_entry;
384 	}
385 
386 	node = tree_search(tree, file_offset);
387 	if (!node) {
388 		ret = 1;
389 		goto out;
390 	}
391 
392 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
393 have_entry:
394 	if (!offset_in_entry(entry, file_offset)) {
395 		ret = 1;
396 		goto out;
397 	}
398 
399 	if (io_size > entry->bytes_left) {
400 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
401 			   "bad ordered accounting left %llu size %llu",
402 		       entry->bytes_left, io_size);
403 	}
404 	entry->bytes_left -= io_size;
405 	if (!uptodate)
406 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
407 
408 	if (entry->bytes_left == 0) {
409 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410 		/* test_and_set_bit implies a barrier */
411 		cond_wake_up_nomb(&entry->wait);
412 	} else {
413 		ret = 1;
414 	}
415 out:
416 	if (!ret && cached && entry) {
417 		*cached = entry;
418 		refcount_inc(&entry->refs);
419 	}
420 	spin_unlock_irqrestore(&tree->lock, flags);
421 	return ret == 0;
422 }
423 
424 /* Needs to either be called under a log transaction or the log_mutex */
425 void btrfs_get_logged_extents(struct btrfs_inode *inode,
426 			      struct list_head *logged_list,
427 			      const loff_t start,
428 			      const loff_t end)
429 {
430 	struct btrfs_ordered_inode_tree *tree;
431 	struct btrfs_ordered_extent *ordered;
432 	struct rb_node *n;
433 	struct rb_node *prev;
434 
435 	tree = &inode->ordered_tree;
436 	spin_lock_irq(&tree->lock);
437 	n = __tree_search(&tree->tree, end, &prev);
438 	if (!n)
439 		n = prev;
440 	for (; n; n = rb_prev(n)) {
441 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
442 		if (ordered->file_offset > end)
443 			continue;
444 		if (entry_end(ordered) <= start)
445 			break;
446 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
447 			continue;
448 		list_add(&ordered->log_list, logged_list);
449 		refcount_inc(&ordered->refs);
450 	}
451 	spin_unlock_irq(&tree->lock);
452 }
453 
454 void btrfs_put_logged_extents(struct list_head *logged_list)
455 {
456 	struct btrfs_ordered_extent *ordered;
457 
458 	while (!list_empty(logged_list)) {
459 		ordered = list_first_entry(logged_list,
460 					   struct btrfs_ordered_extent,
461 					   log_list);
462 		list_del_init(&ordered->log_list);
463 		btrfs_put_ordered_extent(ordered);
464 	}
465 }
466 
467 void btrfs_submit_logged_extents(struct list_head *logged_list,
468 				 struct btrfs_root *log)
469 {
470 	int index = log->log_transid % 2;
471 
472 	spin_lock_irq(&log->log_extents_lock[index]);
473 	list_splice_tail(logged_list, &log->logged_list[index]);
474 	spin_unlock_irq(&log->log_extents_lock[index]);
475 }
476 
477 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
478 			       struct btrfs_root *log, u64 transid)
479 {
480 	struct btrfs_ordered_extent *ordered;
481 	int index = transid % 2;
482 
483 	spin_lock_irq(&log->log_extents_lock[index]);
484 	while (!list_empty(&log->logged_list[index])) {
485 		struct inode *inode;
486 		ordered = list_first_entry(&log->logged_list[index],
487 					   struct btrfs_ordered_extent,
488 					   log_list);
489 		list_del_init(&ordered->log_list);
490 		inode = ordered->inode;
491 		spin_unlock_irq(&log->log_extents_lock[index]);
492 
493 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
494 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
495 			u64 start = ordered->file_offset;
496 			u64 end = ordered->file_offset + ordered->len - 1;
497 
498 			WARN_ON(!inode);
499 			filemap_fdatawrite_range(inode->i_mapping, start, end);
500 		}
501 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
502 						   &ordered->flags));
503 
504 		/*
505 		 * In order to keep us from losing our ordered extent
506 		 * information when committing the transaction we have to make
507 		 * sure that any logged extents are completed when we go to
508 		 * commit the transaction.  To do this we simply increase the
509 		 * current transactions pending_ordered counter and decrement it
510 		 * when the ordered extent completes.
511 		 */
512 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
513 			struct btrfs_ordered_inode_tree *tree;
514 
515 			tree = &BTRFS_I(inode)->ordered_tree;
516 			spin_lock_irq(&tree->lock);
517 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
518 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
519 				atomic_inc(&trans->transaction->pending_ordered);
520 			}
521 			spin_unlock_irq(&tree->lock);
522 		}
523 		btrfs_put_ordered_extent(ordered);
524 		spin_lock_irq(&log->log_extents_lock[index]);
525 	}
526 	spin_unlock_irq(&log->log_extents_lock[index]);
527 }
528 
529 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
530 {
531 	struct btrfs_ordered_extent *ordered;
532 	int index = transid % 2;
533 
534 	spin_lock_irq(&log->log_extents_lock[index]);
535 	while (!list_empty(&log->logged_list[index])) {
536 		ordered = list_first_entry(&log->logged_list[index],
537 					   struct btrfs_ordered_extent,
538 					   log_list);
539 		list_del_init(&ordered->log_list);
540 		spin_unlock_irq(&log->log_extents_lock[index]);
541 		btrfs_put_ordered_extent(ordered);
542 		spin_lock_irq(&log->log_extents_lock[index]);
543 	}
544 	spin_unlock_irq(&log->log_extents_lock[index]);
545 }
546 
547 /*
548  * used to drop a reference on an ordered extent.  This will free
549  * the extent if the last reference is dropped
550  */
551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
552 {
553 	struct list_head *cur;
554 	struct btrfs_ordered_sum *sum;
555 
556 	trace_btrfs_ordered_extent_put(entry->inode, entry);
557 
558 	if (refcount_dec_and_test(&entry->refs)) {
559 		ASSERT(list_empty(&entry->log_list));
560 		ASSERT(list_empty(&entry->trans_list));
561 		ASSERT(list_empty(&entry->root_extent_list));
562 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563 		if (entry->inode)
564 			btrfs_add_delayed_iput(entry->inode);
565 		while (!list_empty(&entry->list)) {
566 			cur = entry->list.next;
567 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
568 			list_del(&sum->list);
569 			kfree(sum);
570 		}
571 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
572 	}
573 }
574 
575 /*
576  * remove an ordered extent from the tree.  No references are dropped
577  * and waiters are woken up.
578  */
579 void btrfs_remove_ordered_extent(struct inode *inode,
580 				 struct btrfs_ordered_extent *entry)
581 {
582 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
583 	struct btrfs_ordered_inode_tree *tree;
584 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
585 	struct btrfs_root *root = btrfs_inode->root;
586 	struct rb_node *node;
587 	bool dec_pending_ordered = false;
588 
589 	/* This is paired with btrfs_add_ordered_extent. */
590 	spin_lock(&btrfs_inode->lock);
591 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
592 	spin_unlock(&btrfs_inode->lock);
593 	if (root != fs_info->tree_root)
594 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
595 
596 	tree = &btrfs_inode->ordered_tree;
597 	spin_lock_irq(&tree->lock);
598 	node = &entry->rb_node;
599 	rb_erase(node, &tree->tree);
600 	RB_CLEAR_NODE(node);
601 	if (tree->last == node)
602 		tree->last = NULL;
603 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
604 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
605 		dec_pending_ordered = true;
606 	spin_unlock_irq(&tree->lock);
607 
608 	/*
609 	 * The current running transaction is waiting on us, we need to let it
610 	 * know that we're complete and wake it up.
611 	 */
612 	if (dec_pending_ordered) {
613 		struct btrfs_transaction *trans;
614 
615 		/*
616 		 * The checks for trans are just a formality, it should be set,
617 		 * but if it isn't we don't want to deref/assert under the spin
618 		 * lock, so be nice and check if trans is set, but ASSERT() so
619 		 * if it isn't set a developer will notice.
620 		 */
621 		spin_lock(&fs_info->trans_lock);
622 		trans = fs_info->running_transaction;
623 		if (trans)
624 			refcount_inc(&trans->use_count);
625 		spin_unlock(&fs_info->trans_lock);
626 
627 		ASSERT(trans);
628 		if (trans) {
629 			if (atomic_dec_and_test(&trans->pending_ordered))
630 				wake_up(&trans->pending_wait);
631 			btrfs_put_transaction(trans);
632 		}
633 	}
634 
635 	spin_lock(&root->ordered_extent_lock);
636 	list_del_init(&entry->root_extent_list);
637 	root->nr_ordered_extents--;
638 
639 	trace_btrfs_ordered_extent_remove(inode, entry);
640 
641 	if (!root->nr_ordered_extents) {
642 		spin_lock(&fs_info->ordered_root_lock);
643 		BUG_ON(list_empty(&root->ordered_root));
644 		list_del_init(&root->ordered_root);
645 		spin_unlock(&fs_info->ordered_root_lock);
646 	}
647 	spin_unlock(&root->ordered_extent_lock);
648 	wake_up(&entry->wait);
649 }
650 
651 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
652 {
653 	struct btrfs_ordered_extent *ordered;
654 
655 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
656 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
657 	complete(&ordered->completion);
658 }
659 
660 /*
661  * wait for all the ordered extents in a root.  This is done when balancing
662  * space between drives.
663  */
664 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
665 			       const u64 range_start, const u64 range_len)
666 {
667 	struct btrfs_fs_info *fs_info = root->fs_info;
668 	LIST_HEAD(splice);
669 	LIST_HEAD(skipped);
670 	LIST_HEAD(works);
671 	struct btrfs_ordered_extent *ordered, *next;
672 	u64 count = 0;
673 	const u64 range_end = range_start + range_len;
674 
675 	mutex_lock(&root->ordered_extent_mutex);
676 	spin_lock(&root->ordered_extent_lock);
677 	list_splice_init(&root->ordered_extents, &splice);
678 	while (!list_empty(&splice) && nr) {
679 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
680 					   root_extent_list);
681 
682 		if (range_end <= ordered->start ||
683 		    ordered->start + ordered->disk_len <= range_start) {
684 			list_move_tail(&ordered->root_extent_list, &skipped);
685 			cond_resched_lock(&root->ordered_extent_lock);
686 			continue;
687 		}
688 
689 		list_move_tail(&ordered->root_extent_list,
690 			       &root->ordered_extents);
691 		refcount_inc(&ordered->refs);
692 		spin_unlock(&root->ordered_extent_lock);
693 
694 		btrfs_init_work(&ordered->flush_work,
695 				btrfs_flush_delalloc_helper,
696 				btrfs_run_ordered_extent_work, NULL, NULL);
697 		list_add_tail(&ordered->work_list, &works);
698 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
699 
700 		cond_resched();
701 		spin_lock(&root->ordered_extent_lock);
702 		if (nr != U64_MAX)
703 			nr--;
704 		count++;
705 	}
706 	list_splice_tail(&skipped, &root->ordered_extents);
707 	list_splice_tail(&splice, &root->ordered_extents);
708 	spin_unlock(&root->ordered_extent_lock);
709 
710 	list_for_each_entry_safe(ordered, next, &works, work_list) {
711 		list_del_init(&ordered->work_list);
712 		wait_for_completion(&ordered->completion);
713 		btrfs_put_ordered_extent(ordered);
714 		cond_resched();
715 	}
716 	mutex_unlock(&root->ordered_extent_mutex);
717 
718 	return count;
719 }
720 
721 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
722 			     const u64 range_start, const u64 range_len)
723 {
724 	struct btrfs_root *root;
725 	struct list_head splice;
726 	u64 total_done = 0;
727 	u64 done;
728 
729 	INIT_LIST_HEAD(&splice);
730 
731 	mutex_lock(&fs_info->ordered_operations_mutex);
732 	spin_lock(&fs_info->ordered_root_lock);
733 	list_splice_init(&fs_info->ordered_roots, &splice);
734 	while (!list_empty(&splice) && nr) {
735 		root = list_first_entry(&splice, struct btrfs_root,
736 					ordered_root);
737 		root = btrfs_grab_fs_root(root);
738 		BUG_ON(!root);
739 		list_move_tail(&root->ordered_root,
740 			       &fs_info->ordered_roots);
741 		spin_unlock(&fs_info->ordered_root_lock);
742 
743 		done = btrfs_wait_ordered_extents(root, nr,
744 						  range_start, range_len);
745 		btrfs_put_fs_root(root);
746 		total_done += done;
747 
748 		spin_lock(&fs_info->ordered_root_lock);
749 		if (nr != U64_MAX) {
750 			nr -= done;
751 		}
752 	}
753 	list_splice_tail(&splice, &fs_info->ordered_roots);
754 	spin_unlock(&fs_info->ordered_root_lock);
755 	mutex_unlock(&fs_info->ordered_operations_mutex);
756 
757 	return total_done;
758 }
759 
760 /*
761  * Used to start IO or wait for a given ordered extent to finish.
762  *
763  * If wait is one, this effectively waits on page writeback for all the pages
764  * in the extent, and it waits on the io completion code to insert
765  * metadata into the btree corresponding to the extent
766  */
767 void btrfs_start_ordered_extent(struct inode *inode,
768 				       struct btrfs_ordered_extent *entry,
769 				       int wait)
770 {
771 	u64 start = entry->file_offset;
772 	u64 end = start + entry->len - 1;
773 
774 	trace_btrfs_ordered_extent_start(inode, entry);
775 
776 	/*
777 	 * pages in the range can be dirty, clean or writeback.  We
778 	 * start IO on any dirty ones so the wait doesn't stall waiting
779 	 * for the flusher thread to find them
780 	 */
781 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
782 		filemap_fdatawrite_range(inode->i_mapping, start, end);
783 	if (wait) {
784 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
785 						 &entry->flags));
786 	}
787 }
788 
789 /*
790  * Used to wait on ordered extents across a large range of bytes.
791  */
792 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
793 {
794 	int ret = 0;
795 	int ret_wb = 0;
796 	u64 end;
797 	u64 orig_end;
798 	struct btrfs_ordered_extent *ordered;
799 
800 	if (start + len < start) {
801 		orig_end = INT_LIMIT(loff_t);
802 	} else {
803 		orig_end = start + len - 1;
804 		if (orig_end > INT_LIMIT(loff_t))
805 			orig_end = INT_LIMIT(loff_t);
806 	}
807 
808 	/* start IO across the range first to instantiate any delalloc
809 	 * extents
810 	 */
811 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
812 	if (ret)
813 		return ret;
814 
815 	/*
816 	 * If we have a writeback error don't return immediately. Wait first
817 	 * for any ordered extents that haven't completed yet. This is to make
818 	 * sure no one can dirty the same page ranges and call writepages()
819 	 * before the ordered extents complete - to avoid failures (-EEXIST)
820 	 * when adding the new ordered extents to the ordered tree.
821 	 */
822 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
823 
824 	end = orig_end;
825 	while (1) {
826 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
827 		if (!ordered)
828 			break;
829 		if (ordered->file_offset > orig_end) {
830 			btrfs_put_ordered_extent(ordered);
831 			break;
832 		}
833 		if (ordered->file_offset + ordered->len <= start) {
834 			btrfs_put_ordered_extent(ordered);
835 			break;
836 		}
837 		btrfs_start_ordered_extent(inode, ordered, 1);
838 		end = ordered->file_offset;
839 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
840 			ret = -EIO;
841 		btrfs_put_ordered_extent(ordered);
842 		if (ret || end == 0 || end == start)
843 			break;
844 		end--;
845 	}
846 	return ret_wb ? ret_wb : ret;
847 }
848 
849 /*
850  * find an ordered extent corresponding to file_offset.  return NULL if
851  * nothing is found, otherwise take a reference on the extent and return it
852  */
853 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
854 							 u64 file_offset)
855 {
856 	struct btrfs_ordered_inode_tree *tree;
857 	struct rb_node *node;
858 	struct btrfs_ordered_extent *entry = NULL;
859 
860 	tree = &BTRFS_I(inode)->ordered_tree;
861 	spin_lock_irq(&tree->lock);
862 	node = tree_search(tree, file_offset);
863 	if (!node)
864 		goto out;
865 
866 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
867 	if (!offset_in_entry(entry, file_offset))
868 		entry = NULL;
869 	if (entry)
870 		refcount_inc(&entry->refs);
871 out:
872 	spin_unlock_irq(&tree->lock);
873 	return entry;
874 }
875 
876 /* Since the DIO code tries to lock a wide area we need to look for any ordered
877  * extents that exist in the range, rather than just the start of the range.
878  */
879 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
880 		struct btrfs_inode *inode, u64 file_offset, u64 len)
881 {
882 	struct btrfs_ordered_inode_tree *tree;
883 	struct rb_node *node;
884 	struct btrfs_ordered_extent *entry = NULL;
885 
886 	tree = &inode->ordered_tree;
887 	spin_lock_irq(&tree->lock);
888 	node = tree_search(tree, file_offset);
889 	if (!node) {
890 		node = tree_search(tree, file_offset + len);
891 		if (!node)
892 			goto out;
893 	}
894 
895 	while (1) {
896 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897 		if (range_overlaps(entry, file_offset, len))
898 			break;
899 
900 		if (entry->file_offset >= file_offset + len) {
901 			entry = NULL;
902 			break;
903 		}
904 		entry = NULL;
905 		node = rb_next(node);
906 		if (!node)
907 			break;
908 	}
909 out:
910 	if (entry)
911 		refcount_inc(&entry->refs);
912 	spin_unlock_irq(&tree->lock);
913 	return entry;
914 }
915 
916 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
917 					 u64 file_offset,
918 					 u64 len)
919 {
920 	struct btrfs_ordered_extent *oe;
921 
922 	oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
923 	if (oe) {
924 		btrfs_put_ordered_extent(oe);
925 		return true;
926 	}
927 	return false;
928 }
929 
930 /*
931  * lookup and return any extent before 'file_offset'.  NULL is returned
932  * if none is found
933  */
934 struct btrfs_ordered_extent *
935 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
936 {
937 	struct btrfs_ordered_inode_tree *tree;
938 	struct rb_node *node;
939 	struct btrfs_ordered_extent *entry = NULL;
940 
941 	tree = &BTRFS_I(inode)->ordered_tree;
942 	spin_lock_irq(&tree->lock);
943 	node = tree_search(tree, file_offset);
944 	if (!node)
945 		goto out;
946 
947 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
948 	refcount_inc(&entry->refs);
949 out:
950 	spin_unlock_irq(&tree->lock);
951 	return entry;
952 }
953 
954 /*
955  * After an extent is done, call this to conditionally update the on disk
956  * i_size.  i_size is updated to cover any fully written part of the file.
957  */
958 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
959 				struct btrfs_ordered_extent *ordered)
960 {
961 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
962 	u64 disk_i_size;
963 	u64 new_i_size;
964 	u64 i_size = i_size_read(inode);
965 	struct rb_node *node;
966 	struct rb_node *prev = NULL;
967 	struct btrfs_ordered_extent *test;
968 	int ret = 1;
969 	u64 orig_offset = offset;
970 
971 	spin_lock_irq(&tree->lock);
972 	if (ordered) {
973 		offset = entry_end(ordered);
974 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
975 			offset = min(offset,
976 				     ordered->file_offset +
977 				     ordered->truncated_len);
978 	} else {
979 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
980 	}
981 	disk_i_size = BTRFS_I(inode)->disk_i_size;
982 
983 	/*
984 	 * truncate file.
985 	 * If ordered is not NULL, then this is called from endio and
986 	 * disk_i_size will be updated by either truncate itself or any
987 	 * in-flight IOs which are inside the disk_i_size.
988 	 *
989 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
990 	 * fails somehow, we need to make sure we have a precise disk_i_size by
991 	 * updating it as usual.
992 	 *
993 	 */
994 	if (!ordered && disk_i_size > i_size) {
995 		BTRFS_I(inode)->disk_i_size = orig_offset;
996 		ret = 0;
997 		goto out;
998 	}
999 
1000 	/*
1001 	 * if the disk i_size is already at the inode->i_size, or
1002 	 * this ordered extent is inside the disk i_size, we're done
1003 	 */
1004 	if (disk_i_size == i_size)
1005 		goto out;
1006 
1007 	/*
1008 	 * We still need to update disk_i_size if outstanding_isize is greater
1009 	 * than disk_i_size.
1010 	 */
1011 	if (offset <= disk_i_size &&
1012 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
1013 		goto out;
1014 
1015 	/*
1016 	 * walk backward from this ordered extent to disk_i_size.
1017 	 * if we find an ordered extent then we can't update disk i_size
1018 	 * yet
1019 	 */
1020 	if (ordered) {
1021 		node = rb_prev(&ordered->rb_node);
1022 	} else {
1023 		prev = tree_search(tree, offset);
1024 		/*
1025 		 * we insert file extents without involving ordered struct,
1026 		 * so there should be no ordered struct cover this offset
1027 		 */
1028 		if (prev) {
1029 			test = rb_entry(prev, struct btrfs_ordered_extent,
1030 					rb_node);
1031 			BUG_ON(offset_in_entry(test, offset));
1032 		}
1033 		node = prev;
1034 	}
1035 	for (; node; node = rb_prev(node)) {
1036 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1037 
1038 		/* We treat this entry as if it doesn't exist */
1039 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1040 			continue;
1041 
1042 		if (entry_end(test) <= disk_i_size)
1043 			break;
1044 		if (test->file_offset >= i_size)
1045 			break;
1046 
1047 		/*
1048 		 * We don't update disk_i_size now, so record this undealt
1049 		 * i_size. Or we will not know the real i_size.
1050 		 */
1051 		if (test->outstanding_isize < offset)
1052 			test->outstanding_isize = offset;
1053 		if (ordered &&
1054 		    ordered->outstanding_isize > test->outstanding_isize)
1055 			test->outstanding_isize = ordered->outstanding_isize;
1056 		goto out;
1057 	}
1058 	new_i_size = min_t(u64, offset, i_size);
1059 
1060 	/*
1061 	 * Some ordered extents may completed before the current one, and
1062 	 * we hold the real i_size in ->outstanding_isize.
1063 	 */
1064 	if (ordered && ordered->outstanding_isize > new_i_size)
1065 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1066 	BTRFS_I(inode)->disk_i_size = new_i_size;
1067 	ret = 0;
1068 out:
1069 	/*
1070 	 * We need to do this because we can't remove ordered extents until
1071 	 * after the i_disk_size has been updated and then the inode has been
1072 	 * updated to reflect the change, so we need to tell anybody who finds
1073 	 * this ordered extent that we've already done all the real work, we
1074 	 * just haven't completed all the other work.
1075 	 */
1076 	if (ordered)
1077 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1078 	spin_unlock_irq(&tree->lock);
1079 	return ret;
1080 }
1081 
1082 /*
1083  * search the ordered extents for one corresponding to 'offset' and
1084  * try to find a checksum.  This is used because we allow pages to
1085  * be reclaimed before their checksum is actually put into the btree
1086  */
1087 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1088 			   u32 *sum, int len)
1089 {
1090 	struct btrfs_ordered_sum *ordered_sum;
1091 	struct btrfs_ordered_extent *ordered;
1092 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1093 	unsigned long num_sectors;
1094 	unsigned long i;
1095 	u32 sectorsize = btrfs_inode_sectorsize(inode);
1096 	int index = 0;
1097 
1098 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1099 	if (!ordered)
1100 		return 0;
1101 
1102 	spin_lock_irq(&tree->lock);
1103 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1104 		if (disk_bytenr >= ordered_sum->bytenr &&
1105 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1106 			i = (disk_bytenr - ordered_sum->bytenr) >>
1107 			    inode->i_sb->s_blocksize_bits;
1108 			num_sectors = ordered_sum->len >>
1109 				      inode->i_sb->s_blocksize_bits;
1110 			num_sectors = min_t(int, len - index, num_sectors - i);
1111 			memcpy(sum + index, ordered_sum->sums + i,
1112 			       num_sectors);
1113 
1114 			index += (int)num_sectors;
1115 			if (index == len)
1116 				goto out;
1117 			disk_bytenr += num_sectors * sectorsize;
1118 		}
1119 	}
1120 out:
1121 	spin_unlock_irq(&tree->lock);
1122 	btrfs_put_ordered_extent(ordered);
1123 	return index;
1124 }
1125 
1126 int __init ordered_data_init(void)
1127 {
1128 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1129 				     sizeof(struct btrfs_ordered_extent), 0,
1130 				     SLAB_MEM_SPREAD,
1131 				     NULL);
1132 	if (!btrfs_ordered_extent_cache)
1133 		return -ENOMEM;
1134 
1135 	return 0;
1136 }
1137 
1138 void __cold ordered_data_exit(void)
1139 {
1140 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1141 }
1142