1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/pagevec.h> 10 #include "ctree.h" 11 #include "transaction.h" 12 #include "btrfs_inode.h" 13 #include "extent_io.h" 14 #include "disk-io.h" 15 #include "compression.h" 16 17 static struct kmem_cache *btrfs_ordered_extent_cache; 18 19 static u64 entry_end(struct btrfs_ordered_extent *entry) 20 { 21 if (entry->file_offset + entry->len < entry->file_offset) 22 return (u64)-1; 23 return entry->file_offset + entry->len; 24 } 25 26 /* returns NULL if the insertion worked, or it returns the node it did find 27 * in the tree 28 */ 29 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 30 struct rb_node *node) 31 { 32 struct rb_node **p = &root->rb_node; 33 struct rb_node *parent = NULL; 34 struct btrfs_ordered_extent *entry; 35 36 while (*p) { 37 parent = *p; 38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 39 40 if (file_offset < entry->file_offset) 41 p = &(*p)->rb_left; 42 else if (file_offset >= entry_end(entry)) 43 p = &(*p)->rb_right; 44 else 45 return parent; 46 } 47 48 rb_link_node(node, parent, p); 49 rb_insert_color(node, root); 50 return NULL; 51 } 52 53 static void ordered_data_tree_panic(struct inode *inode, int errno, 54 u64 offset) 55 { 56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 57 btrfs_panic(fs_info, errno, 58 "Inconsistency in ordered tree at offset %llu", offset); 59 } 60 61 /* 62 * look for a given offset in the tree, and if it can't be found return the 63 * first lesser offset 64 */ 65 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 66 struct rb_node **prev_ret) 67 { 68 struct rb_node *n = root->rb_node; 69 struct rb_node *prev = NULL; 70 struct rb_node *test; 71 struct btrfs_ordered_extent *entry; 72 struct btrfs_ordered_extent *prev_entry = NULL; 73 74 while (n) { 75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 76 prev = n; 77 prev_entry = entry; 78 79 if (file_offset < entry->file_offset) 80 n = n->rb_left; 81 else if (file_offset >= entry_end(entry)) 82 n = n->rb_right; 83 else 84 return n; 85 } 86 if (!prev_ret) 87 return NULL; 88 89 while (prev && file_offset >= entry_end(prev_entry)) { 90 test = rb_next(prev); 91 if (!test) 92 break; 93 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 94 rb_node); 95 if (file_offset < entry_end(prev_entry)) 96 break; 97 98 prev = test; 99 } 100 if (prev) 101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 102 rb_node); 103 while (prev && file_offset < entry_end(prev_entry)) { 104 test = rb_prev(prev); 105 if (!test) 106 break; 107 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 108 rb_node); 109 prev = test; 110 } 111 *prev_ret = prev; 112 return NULL; 113 } 114 115 /* 116 * helper to check if a given offset is inside a given entry 117 */ 118 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 119 { 120 if (file_offset < entry->file_offset || 121 entry->file_offset + entry->len <= file_offset) 122 return 0; 123 return 1; 124 } 125 126 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 127 u64 len) 128 { 129 if (file_offset + len <= entry->file_offset || 130 entry->file_offset + entry->len <= file_offset) 131 return 0; 132 return 1; 133 } 134 135 /* 136 * look find the first ordered struct that has this offset, otherwise 137 * the first one less than this offset 138 */ 139 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 140 u64 file_offset) 141 { 142 struct rb_root *root = &tree->tree; 143 struct rb_node *prev = NULL; 144 struct rb_node *ret; 145 struct btrfs_ordered_extent *entry; 146 147 if (tree->last) { 148 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 149 rb_node); 150 if (offset_in_entry(entry, file_offset)) 151 return tree->last; 152 } 153 ret = __tree_search(root, file_offset, &prev); 154 if (!ret) 155 ret = prev; 156 if (ret) 157 tree->last = ret; 158 return ret; 159 } 160 161 /* allocate and add a new ordered_extent into the per-inode tree. 162 * file_offset is the logical offset in the file 163 * 164 * start is the disk block number of an extent already reserved in the 165 * extent allocation tree 166 * 167 * len is the length of the extent 168 * 169 * The tree is given a single reference on the ordered extent that was 170 * inserted. 171 */ 172 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 173 u64 start, u64 len, u64 disk_len, 174 int type, int dio, int compress_type) 175 { 176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 177 struct btrfs_root *root = BTRFS_I(inode)->root; 178 struct btrfs_ordered_inode_tree *tree; 179 struct rb_node *node; 180 struct btrfs_ordered_extent *entry; 181 182 tree = &BTRFS_I(inode)->ordered_tree; 183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 184 if (!entry) 185 return -ENOMEM; 186 187 entry->file_offset = file_offset; 188 entry->start = start; 189 entry->len = len; 190 entry->disk_len = disk_len; 191 entry->bytes_left = len; 192 entry->inode = igrab(inode); 193 entry->compress_type = compress_type; 194 entry->truncated_len = (u64)-1; 195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 196 set_bit(type, &entry->flags); 197 198 if (dio) 199 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 200 201 /* one ref for the tree */ 202 refcount_set(&entry->refs, 1); 203 init_waitqueue_head(&entry->wait); 204 INIT_LIST_HEAD(&entry->list); 205 INIT_LIST_HEAD(&entry->root_extent_list); 206 INIT_LIST_HEAD(&entry->work_list); 207 init_completion(&entry->completion); 208 INIT_LIST_HEAD(&entry->log_list); 209 INIT_LIST_HEAD(&entry->trans_list); 210 211 trace_btrfs_ordered_extent_add(inode, entry); 212 213 spin_lock_irq(&tree->lock); 214 node = tree_insert(&tree->tree, file_offset, 215 &entry->rb_node); 216 if (node) 217 ordered_data_tree_panic(inode, -EEXIST, file_offset); 218 spin_unlock_irq(&tree->lock); 219 220 spin_lock(&root->ordered_extent_lock); 221 list_add_tail(&entry->root_extent_list, 222 &root->ordered_extents); 223 root->nr_ordered_extents++; 224 if (root->nr_ordered_extents == 1) { 225 spin_lock(&fs_info->ordered_root_lock); 226 BUG_ON(!list_empty(&root->ordered_root)); 227 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 228 spin_unlock(&fs_info->ordered_root_lock); 229 } 230 spin_unlock(&root->ordered_extent_lock); 231 232 /* 233 * We don't need the count_max_extents here, we can assume that all of 234 * that work has been done at higher layers, so this is truly the 235 * smallest the extent is going to get. 236 */ 237 spin_lock(&BTRFS_I(inode)->lock); 238 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 239 spin_unlock(&BTRFS_I(inode)->lock); 240 241 return 0; 242 } 243 244 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 245 u64 start, u64 len, u64 disk_len, int type) 246 { 247 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 248 disk_len, type, 0, 249 BTRFS_COMPRESS_NONE); 250 } 251 252 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 253 u64 start, u64 len, u64 disk_len, int type) 254 { 255 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 256 disk_len, type, 1, 257 BTRFS_COMPRESS_NONE); 258 } 259 260 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 261 u64 start, u64 len, u64 disk_len, 262 int type, int compress_type) 263 { 264 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 265 disk_len, type, 0, 266 compress_type); 267 } 268 269 /* 270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 271 * when an ordered extent is finished. If the list covers more than one 272 * ordered extent, it is split across multiples. 273 */ 274 void btrfs_add_ordered_sum(struct inode *inode, 275 struct btrfs_ordered_extent *entry, 276 struct btrfs_ordered_sum *sum) 277 { 278 struct btrfs_ordered_inode_tree *tree; 279 280 tree = &BTRFS_I(inode)->ordered_tree; 281 spin_lock_irq(&tree->lock); 282 list_add_tail(&sum->list, &entry->list); 283 spin_unlock_irq(&tree->lock); 284 } 285 286 /* 287 * this is used to account for finished IO across a given range 288 * of the file. The IO may span ordered extents. If 289 * a given ordered_extent is completely done, 1 is returned, otherwise 290 * 0. 291 * 292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 293 * to make sure this function only returns 1 once for a given ordered extent. 294 * 295 * file_offset is updated to one byte past the range that is recorded as 296 * complete. This allows you to walk forward in the file. 297 */ 298 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 299 struct btrfs_ordered_extent **cached, 300 u64 *file_offset, u64 io_size, int uptodate) 301 { 302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 303 struct btrfs_ordered_inode_tree *tree; 304 struct rb_node *node; 305 struct btrfs_ordered_extent *entry = NULL; 306 int ret; 307 unsigned long flags; 308 u64 dec_end; 309 u64 dec_start; 310 u64 to_dec; 311 312 tree = &BTRFS_I(inode)->ordered_tree; 313 spin_lock_irqsave(&tree->lock, flags); 314 node = tree_search(tree, *file_offset); 315 if (!node) { 316 ret = 1; 317 goto out; 318 } 319 320 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 321 if (!offset_in_entry(entry, *file_offset)) { 322 ret = 1; 323 goto out; 324 } 325 326 dec_start = max(*file_offset, entry->file_offset); 327 dec_end = min(*file_offset + io_size, entry->file_offset + 328 entry->len); 329 *file_offset = dec_end; 330 if (dec_start > dec_end) { 331 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 332 dec_start, dec_end); 333 } 334 to_dec = dec_end - dec_start; 335 if (to_dec > entry->bytes_left) { 336 btrfs_crit(fs_info, 337 "bad ordered accounting left %llu size %llu", 338 entry->bytes_left, to_dec); 339 } 340 entry->bytes_left -= to_dec; 341 if (!uptodate) 342 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 343 344 if (entry->bytes_left == 0) { 345 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 346 /* test_and_set_bit implies a barrier */ 347 cond_wake_up_nomb(&entry->wait); 348 } else { 349 ret = 1; 350 } 351 out: 352 if (!ret && cached && entry) { 353 *cached = entry; 354 refcount_inc(&entry->refs); 355 } 356 spin_unlock_irqrestore(&tree->lock, flags); 357 return ret == 0; 358 } 359 360 /* 361 * this is used to account for finished IO across a given range 362 * of the file. The IO should not span ordered extents. If 363 * a given ordered_extent is completely done, 1 is returned, otherwise 364 * 0. 365 * 366 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 367 * to make sure this function only returns 1 once for a given ordered extent. 368 */ 369 int btrfs_dec_test_ordered_pending(struct inode *inode, 370 struct btrfs_ordered_extent **cached, 371 u64 file_offset, u64 io_size, int uptodate) 372 { 373 struct btrfs_ordered_inode_tree *tree; 374 struct rb_node *node; 375 struct btrfs_ordered_extent *entry = NULL; 376 unsigned long flags; 377 int ret; 378 379 tree = &BTRFS_I(inode)->ordered_tree; 380 spin_lock_irqsave(&tree->lock, flags); 381 if (cached && *cached) { 382 entry = *cached; 383 goto have_entry; 384 } 385 386 node = tree_search(tree, file_offset); 387 if (!node) { 388 ret = 1; 389 goto out; 390 } 391 392 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 393 have_entry: 394 if (!offset_in_entry(entry, file_offset)) { 395 ret = 1; 396 goto out; 397 } 398 399 if (io_size > entry->bytes_left) { 400 btrfs_crit(BTRFS_I(inode)->root->fs_info, 401 "bad ordered accounting left %llu size %llu", 402 entry->bytes_left, io_size); 403 } 404 entry->bytes_left -= io_size; 405 if (!uptodate) 406 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 407 408 if (entry->bytes_left == 0) { 409 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 410 /* test_and_set_bit implies a barrier */ 411 cond_wake_up_nomb(&entry->wait); 412 } else { 413 ret = 1; 414 } 415 out: 416 if (!ret && cached && entry) { 417 *cached = entry; 418 refcount_inc(&entry->refs); 419 } 420 spin_unlock_irqrestore(&tree->lock, flags); 421 return ret == 0; 422 } 423 424 /* Needs to either be called under a log transaction or the log_mutex */ 425 void btrfs_get_logged_extents(struct btrfs_inode *inode, 426 struct list_head *logged_list, 427 const loff_t start, 428 const loff_t end) 429 { 430 struct btrfs_ordered_inode_tree *tree; 431 struct btrfs_ordered_extent *ordered; 432 struct rb_node *n; 433 struct rb_node *prev; 434 435 tree = &inode->ordered_tree; 436 spin_lock_irq(&tree->lock); 437 n = __tree_search(&tree->tree, end, &prev); 438 if (!n) 439 n = prev; 440 for (; n; n = rb_prev(n)) { 441 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 442 if (ordered->file_offset > end) 443 continue; 444 if (entry_end(ordered) <= start) 445 break; 446 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 447 continue; 448 list_add(&ordered->log_list, logged_list); 449 refcount_inc(&ordered->refs); 450 } 451 spin_unlock_irq(&tree->lock); 452 } 453 454 void btrfs_put_logged_extents(struct list_head *logged_list) 455 { 456 struct btrfs_ordered_extent *ordered; 457 458 while (!list_empty(logged_list)) { 459 ordered = list_first_entry(logged_list, 460 struct btrfs_ordered_extent, 461 log_list); 462 list_del_init(&ordered->log_list); 463 btrfs_put_ordered_extent(ordered); 464 } 465 } 466 467 void btrfs_submit_logged_extents(struct list_head *logged_list, 468 struct btrfs_root *log) 469 { 470 int index = log->log_transid % 2; 471 472 spin_lock_irq(&log->log_extents_lock[index]); 473 list_splice_tail(logged_list, &log->logged_list[index]); 474 spin_unlock_irq(&log->log_extents_lock[index]); 475 } 476 477 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 478 struct btrfs_root *log, u64 transid) 479 { 480 struct btrfs_ordered_extent *ordered; 481 int index = transid % 2; 482 483 spin_lock_irq(&log->log_extents_lock[index]); 484 while (!list_empty(&log->logged_list[index])) { 485 struct inode *inode; 486 ordered = list_first_entry(&log->logged_list[index], 487 struct btrfs_ordered_extent, 488 log_list); 489 list_del_init(&ordered->log_list); 490 inode = ordered->inode; 491 spin_unlock_irq(&log->log_extents_lock[index]); 492 493 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 494 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 495 u64 start = ordered->file_offset; 496 u64 end = ordered->file_offset + ordered->len - 1; 497 498 WARN_ON(!inode); 499 filemap_fdatawrite_range(inode->i_mapping, start, end); 500 } 501 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 502 &ordered->flags)); 503 504 /* 505 * In order to keep us from losing our ordered extent 506 * information when committing the transaction we have to make 507 * sure that any logged extents are completed when we go to 508 * commit the transaction. To do this we simply increase the 509 * current transactions pending_ordered counter and decrement it 510 * when the ordered extent completes. 511 */ 512 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 513 struct btrfs_ordered_inode_tree *tree; 514 515 tree = &BTRFS_I(inode)->ordered_tree; 516 spin_lock_irq(&tree->lock); 517 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 518 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 519 atomic_inc(&trans->transaction->pending_ordered); 520 } 521 spin_unlock_irq(&tree->lock); 522 } 523 btrfs_put_ordered_extent(ordered); 524 spin_lock_irq(&log->log_extents_lock[index]); 525 } 526 spin_unlock_irq(&log->log_extents_lock[index]); 527 } 528 529 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 530 { 531 struct btrfs_ordered_extent *ordered; 532 int index = transid % 2; 533 534 spin_lock_irq(&log->log_extents_lock[index]); 535 while (!list_empty(&log->logged_list[index])) { 536 ordered = list_first_entry(&log->logged_list[index], 537 struct btrfs_ordered_extent, 538 log_list); 539 list_del_init(&ordered->log_list); 540 spin_unlock_irq(&log->log_extents_lock[index]); 541 btrfs_put_ordered_extent(ordered); 542 spin_lock_irq(&log->log_extents_lock[index]); 543 } 544 spin_unlock_irq(&log->log_extents_lock[index]); 545 } 546 547 /* 548 * used to drop a reference on an ordered extent. This will free 549 * the extent if the last reference is dropped 550 */ 551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 552 { 553 struct list_head *cur; 554 struct btrfs_ordered_sum *sum; 555 556 trace_btrfs_ordered_extent_put(entry->inode, entry); 557 558 if (refcount_dec_and_test(&entry->refs)) { 559 ASSERT(list_empty(&entry->log_list)); 560 ASSERT(list_empty(&entry->trans_list)); 561 ASSERT(list_empty(&entry->root_extent_list)); 562 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 563 if (entry->inode) 564 btrfs_add_delayed_iput(entry->inode); 565 while (!list_empty(&entry->list)) { 566 cur = entry->list.next; 567 sum = list_entry(cur, struct btrfs_ordered_sum, list); 568 list_del(&sum->list); 569 kfree(sum); 570 } 571 kmem_cache_free(btrfs_ordered_extent_cache, entry); 572 } 573 } 574 575 /* 576 * remove an ordered extent from the tree. No references are dropped 577 * and waiters are woken up. 578 */ 579 void btrfs_remove_ordered_extent(struct inode *inode, 580 struct btrfs_ordered_extent *entry) 581 { 582 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 583 struct btrfs_ordered_inode_tree *tree; 584 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 585 struct btrfs_root *root = btrfs_inode->root; 586 struct rb_node *node; 587 bool dec_pending_ordered = false; 588 589 /* This is paired with btrfs_add_ordered_extent. */ 590 spin_lock(&btrfs_inode->lock); 591 btrfs_mod_outstanding_extents(btrfs_inode, -1); 592 spin_unlock(&btrfs_inode->lock); 593 if (root != fs_info->tree_root) 594 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); 595 596 tree = &btrfs_inode->ordered_tree; 597 spin_lock_irq(&tree->lock); 598 node = &entry->rb_node; 599 rb_erase(node, &tree->tree); 600 RB_CLEAR_NODE(node); 601 if (tree->last == node) 602 tree->last = NULL; 603 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 604 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) 605 dec_pending_ordered = true; 606 spin_unlock_irq(&tree->lock); 607 608 /* 609 * The current running transaction is waiting on us, we need to let it 610 * know that we're complete and wake it up. 611 */ 612 if (dec_pending_ordered) { 613 struct btrfs_transaction *trans; 614 615 /* 616 * The checks for trans are just a formality, it should be set, 617 * but if it isn't we don't want to deref/assert under the spin 618 * lock, so be nice and check if trans is set, but ASSERT() so 619 * if it isn't set a developer will notice. 620 */ 621 spin_lock(&fs_info->trans_lock); 622 trans = fs_info->running_transaction; 623 if (trans) 624 refcount_inc(&trans->use_count); 625 spin_unlock(&fs_info->trans_lock); 626 627 ASSERT(trans); 628 if (trans) { 629 if (atomic_dec_and_test(&trans->pending_ordered)) 630 wake_up(&trans->pending_wait); 631 btrfs_put_transaction(trans); 632 } 633 } 634 635 spin_lock(&root->ordered_extent_lock); 636 list_del_init(&entry->root_extent_list); 637 root->nr_ordered_extents--; 638 639 trace_btrfs_ordered_extent_remove(inode, entry); 640 641 if (!root->nr_ordered_extents) { 642 spin_lock(&fs_info->ordered_root_lock); 643 BUG_ON(list_empty(&root->ordered_root)); 644 list_del_init(&root->ordered_root); 645 spin_unlock(&fs_info->ordered_root_lock); 646 } 647 spin_unlock(&root->ordered_extent_lock); 648 wake_up(&entry->wait); 649 } 650 651 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 652 { 653 struct btrfs_ordered_extent *ordered; 654 655 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 656 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 657 complete(&ordered->completion); 658 } 659 660 /* 661 * wait for all the ordered extents in a root. This is done when balancing 662 * space between drives. 663 */ 664 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 665 const u64 range_start, const u64 range_len) 666 { 667 struct btrfs_fs_info *fs_info = root->fs_info; 668 LIST_HEAD(splice); 669 LIST_HEAD(skipped); 670 LIST_HEAD(works); 671 struct btrfs_ordered_extent *ordered, *next; 672 u64 count = 0; 673 const u64 range_end = range_start + range_len; 674 675 mutex_lock(&root->ordered_extent_mutex); 676 spin_lock(&root->ordered_extent_lock); 677 list_splice_init(&root->ordered_extents, &splice); 678 while (!list_empty(&splice) && nr) { 679 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 680 root_extent_list); 681 682 if (range_end <= ordered->start || 683 ordered->start + ordered->disk_len <= range_start) { 684 list_move_tail(&ordered->root_extent_list, &skipped); 685 cond_resched_lock(&root->ordered_extent_lock); 686 continue; 687 } 688 689 list_move_tail(&ordered->root_extent_list, 690 &root->ordered_extents); 691 refcount_inc(&ordered->refs); 692 spin_unlock(&root->ordered_extent_lock); 693 694 btrfs_init_work(&ordered->flush_work, 695 btrfs_flush_delalloc_helper, 696 btrfs_run_ordered_extent_work, NULL, NULL); 697 list_add_tail(&ordered->work_list, &works); 698 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 699 700 cond_resched(); 701 spin_lock(&root->ordered_extent_lock); 702 if (nr != U64_MAX) 703 nr--; 704 count++; 705 } 706 list_splice_tail(&skipped, &root->ordered_extents); 707 list_splice_tail(&splice, &root->ordered_extents); 708 spin_unlock(&root->ordered_extent_lock); 709 710 list_for_each_entry_safe(ordered, next, &works, work_list) { 711 list_del_init(&ordered->work_list); 712 wait_for_completion(&ordered->completion); 713 btrfs_put_ordered_extent(ordered); 714 cond_resched(); 715 } 716 mutex_unlock(&root->ordered_extent_mutex); 717 718 return count; 719 } 720 721 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 722 const u64 range_start, const u64 range_len) 723 { 724 struct btrfs_root *root; 725 struct list_head splice; 726 u64 total_done = 0; 727 u64 done; 728 729 INIT_LIST_HEAD(&splice); 730 731 mutex_lock(&fs_info->ordered_operations_mutex); 732 spin_lock(&fs_info->ordered_root_lock); 733 list_splice_init(&fs_info->ordered_roots, &splice); 734 while (!list_empty(&splice) && nr) { 735 root = list_first_entry(&splice, struct btrfs_root, 736 ordered_root); 737 root = btrfs_grab_fs_root(root); 738 BUG_ON(!root); 739 list_move_tail(&root->ordered_root, 740 &fs_info->ordered_roots); 741 spin_unlock(&fs_info->ordered_root_lock); 742 743 done = btrfs_wait_ordered_extents(root, nr, 744 range_start, range_len); 745 btrfs_put_fs_root(root); 746 total_done += done; 747 748 spin_lock(&fs_info->ordered_root_lock); 749 if (nr != U64_MAX) { 750 nr -= done; 751 } 752 } 753 list_splice_tail(&splice, &fs_info->ordered_roots); 754 spin_unlock(&fs_info->ordered_root_lock); 755 mutex_unlock(&fs_info->ordered_operations_mutex); 756 757 return total_done; 758 } 759 760 /* 761 * Used to start IO or wait for a given ordered extent to finish. 762 * 763 * If wait is one, this effectively waits on page writeback for all the pages 764 * in the extent, and it waits on the io completion code to insert 765 * metadata into the btree corresponding to the extent 766 */ 767 void btrfs_start_ordered_extent(struct inode *inode, 768 struct btrfs_ordered_extent *entry, 769 int wait) 770 { 771 u64 start = entry->file_offset; 772 u64 end = start + entry->len - 1; 773 774 trace_btrfs_ordered_extent_start(inode, entry); 775 776 /* 777 * pages in the range can be dirty, clean or writeback. We 778 * start IO on any dirty ones so the wait doesn't stall waiting 779 * for the flusher thread to find them 780 */ 781 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 782 filemap_fdatawrite_range(inode->i_mapping, start, end); 783 if (wait) { 784 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 785 &entry->flags)); 786 } 787 } 788 789 /* 790 * Used to wait on ordered extents across a large range of bytes. 791 */ 792 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 793 { 794 int ret = 0; 795 int ret_wb = 0; 796 u64 end; 797 u64 orig_end; 798 struct btrfs_ordered_extent *ordered; 799 800 if (start + len < start) { 801 orig_end = INT_LIMIT(loff_t); 802 } else { 803 orig_end = start + len - 1; 804 if (orig_end > INT_LIMIT(loff_t)) 805 orig_end = INT_LIMIT(loff_t); 806 } 807 808 /* start IO across the range first to instantiate any delalloc 809 * extents 810 */ 811 ret = btrfs_fdatawrite_range(inode, start, orig_end); 812 if (ret) 813 return ret; 814 815 /* 816 * If we have a writeback error don't return immediately. Wait first 817 * for any ordered extents that haven't completed yet. This is to make 818 * sure no one can dirty the same page ranges and call writepages() 819 * before the ordered extents complete - to avoid failures (-EEXIST) 820 * when adding the new ordered extents to the ordered tree. 821 */ 822 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 823 824 end = orig_end; 825 while (1) { 826 ordered = btrfs_lookup_first_ordered_extent(inode, end); 827 if (!ordered) 828 break; 829 if (ordered->file_offset > orig_end) { 830 btrfs_put_ordered_extent(ordered); 831 break; 832 } 833 if (ordered->file_offset + ordered->len <= start) { 834 btrfs_put_ordered_extent(ordered); 835 break; 836 } 837 btrfs_start_ordered_extent(inode, ordered, 1); 838 end = ordered->file_offset; 839 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 840 ret = -EIO; 841 btrfs_put_ordered_extent(ordered); 842 if (ret || end == 0 || end == start) 843 break; 844 end--; 845 } 846 return ret_wb ? ret_wb : ret; 847 } 848 849 /* 850 * find an ordered extent corresponding to file_offset. return NULL if 851 * nothing is found, otherwise take a reference on the extent and return it 852 */ 853 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 854 u64 file_offset) 855 { 856 struct btrfs_ordered_inode_tree *tree; 857 struct rb_node *node; 858 struct btrfs_ordered_extent *entry = NULL; 859 860 tree = &BTRFS_I(inode)->ordered_tree; 861 spin_lock_irq(&tree->lock); 862 node = tree_search(tree, file_offset); 863 if (!node) 864 goto out; 865 866 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 867 if (!offset_in_entry(entry, file_offset)) 868 entry = NULL; 869 if (entry) 870 refcount_inc(&entry->refs); 871 out: 872 spin_unlock_irq(&tree->lock); 873 return entry; 874 } 875 876 /* Since the DIO code tries to lock a wide area we need to look for any ordered 877 * extents that exist in the range, rather than just the start of the range. 878 */ 879 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 880 struct btrfs_inode *inode, u64 file_offset, u64 len) 881 { 882 struct btrfs_ordered_inode_tree *tree; 883 struct rb_node *node; 884 struct btrfs_ordered_extent *entry = NULL; 885 886 tree = &inode->ordered_tree; 887 spin_lock_irq(&tree->lock); 888 node = tree_search(tree, file_offset); 889 if (!node) { 890 node = tree_search(tree, file_offset + len); 891 if (!node) 892 goto out; 893 } 894 895 while (1) { 896 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 897 if (range_overlaps(entry, file_offset, len)) 898 break; 899 900 if (entry->file_offset >= file_offset + len) { 901 entry = NULL; 902 break; 903 } 904 entry = NULL; 905 node = rb_next(node); 906 if (!node) 907 break; 908 } 909 out: 910 if (entry) 911 refcount_inc(&entry->refs); 912 spin_unlock_irq(&tree->lock); 913 return entry; 914 } 915 916 bool btrfs_have_ordered_extents_in_range(struct inode *inode, 917 u64 file_offset, 918 u64 len) 919 { 920 struct btrfs_ordered_extent *oe; 921 922 oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len); 923 if (oe) { 924 btrfs_put_ordered_extent(oe); 925 return true; 926 } 927 return false; 928 } 929 930 /* 931 * lookup and return any extent before 'file_offset'. NULL is returned 932 * if none is found 933 */ 934 struct btrfs_ordered_extent * 935 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 936 { 937 struct btrfs_ordered_inode_tree *tree; 938 struct rb_node *node; 939 struct btrfs_ordered_extent *entry = NULL; 940 941 tree = &BTRFS_I(inode)->ordered_tree; 942 spin_lock_irq(&tree->lock); 943 node = tree_search(tree, file_offset); 944 if (!node) 945 goto out; 946 947 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 948 refcount_inc(&entry->refs); 949 out: 950 spin_unlock_irq(&tree->lock); 951 return entry; 952 } 953 954 /* 955 * After an extent is done, call this to conditionally update the on disk 956 * i_size. i_size is updated to cover any fully written part of the file. 957 */ 958 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 959 struct btrfs_ordered_extent *ordered) 960 { 961 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 962 u64 disk_i_size; 963 u64 new_i_size; 964 u64 i_size = i_size_read(inode); 965 struct rb_node *node; 966 struct rb_node *prev = NULL; 967 struct btrfs_ordered_extent *test; 968 int ret = 1; 969 u64 orig_offset = offset; 970 971 spin_lock_irq(&tree->lock); 972 if (ordered) { 973 offset = entry_end(ordered); 974 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 975 offset = min(offset, 976 ordered->file_offset + 977 ordered->truncated_len); 978 } else { 979 offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); 980 } 981 disk_i_size = BTRFS_I(inode)->disk_i_size; 982 983 /* 984 * truncate file. 985 * If ordered is not NULL, then this is called from endio and 986 * disk_i_size will be updated by either truncate itself or any 987 * in-flight IOs which are inside the disk_i_size. 988 * 989 * Because btrfs_setsize() may set i_size with disk_i_size if truncate 990 * fails somehow, we need to make sure we have a precise disk_i_size by 991 * updating it as usual. 992 * 993 */ 994 if (!ordered && disk_i_size > i_size) { 995 BTRFS_I(inode)->disk_i_size = orig_offset; 996 ret = 0; 997 goto out; 998 } 999 1000 /* 1001 * if the disk i_size is already at the inode->i_size, or 1002 * this ordered extent is inside the disk i_size, we're done 1003 */ 1004 if (disk_i_size == i_size) 1005 goto out; 1006 1007 /* 1008 * We still need to update disk_i_size if outstanding_isize is greater 1009 * than disk_i_size. 1010 */ 1011 if (offset <= disk_i_size && 1012 (!ordered || ordered->outstanding_isize <= disk_i_size)) 1013 goto out; 1014 1015 /* 1016 * walk backward from this ordered extent to disk_i_size. 1017 * if we find an ordered extent then we can't update disk i_size 1018 * yet 1019 */ 1020 if (ordered) { 1021 node = rb_prev(&ordered->rb_node); 1022 } else { 1023 prev = tree_search(tree, offset); 1024 /* 1025 * we insert file extents without involving ordered struct, 1026 * so there should be no ordered struct cover this offset 1027 */ 1028 if (prev) { 1029 test = rb_entry(prev, struct btrfs_ordered_extent, 1030 rb_node); 1031 BUG_ON(offset_in_entry(test, offset)); 1032 } 1033 node = prev; 1034 } 1035 for (; node; node = rb_prev(node)) { 1036 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1037 1038 /* We treat this entry as if it doesn't exist */ 1039 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 1040 continue; 1041 1042 if (entry_end(test) <= disk_i_size) 1043 break; 1044 if (test->file_offset >= i_size) 1045 break; 1046 1047 /* 1048 * We don't update disk_i_size now, so record this undealt 1049 * i_size. Or we will not know the real i_size. 1050 */ 1051 if (test->outstanding_isize < offset) 1052 test->outstanding_isize = offset; 1053 if (ordered && 1054 ordered->outstanding_isize > test->outstanding_isize) 1055 test->outstanding_isize = ordered->outstanding_isize; 1056 goto out; 1057 } 1058 new_i_size = min_t(u64, offset, i_size); 1059 1060 /* 1061 * Some ordered extents may completed before the current one, and 1062 * we hold the real i_size in ->outstanding_isize. 1063 */ 1064 if (ordered && ordered->outstanding_isize > new_i_size) 1065 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1066 BTRFS_I(inode)->disk_i_size = new_i_size; 1067 ret = 0; 1068 out: 1069 /* 1070 * We need to do this because we can't remove ordered extents until 1071 * after the i_disk_size has been updated and then the inode has been 1072 * updated to reflect the change, so we need to tell anybody who finds 1073 * this ordered extent that we've already done all the real work, we 1074 * just haven't completed all the other work. 1075 */ 1076 if (ordered) 1077 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1078 spin_unlock_irq(&tree->lock); 1079 return ret; 1080 } 1081 1082 /* 1083 * search the ordered extents for one corresponding to 'offset' and 1084 * try to find a checksum. This is used because we allow pages to 1085 * be reclaimed before their checksum is actually put into the btree 1086 */ 1087 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1088 u32 *sum, int len) 1089 { 1090 struct btrfs_ordered_sum *ordered_sum; 1091 struct btrfs_ordered_extent *ordered; 1092 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1093 unsigned long num_sectors; 1094 unsigned long i; 1095 u32 sectorsize = btrfs_inode_sectorsize(inode); 1096 int index = 0; 1097 1098 ordered = btrfs_lookup_ordered_extent(inode, offset); 1099 if (!ordered) 1100 return 0; 1101 1102 spin_lock_irq(&tree->lock); 1103 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1104 if (disk_bytenr >= ordered_sum->bytenr && 1105 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1106 i = (disk_bytenr - ordered_sum->bytenr) >> 1107 inode->i_sb->s_blocksize_bits; 1108 num_sectors = ordered_sum->len >> 1109 inode->i_sb->s_blocksize_bits; 1110 num_sectors = min_t(int, len - index, num_sectors - i); 1111 memcpy(sum + index, ordered_sum->sums + i, 1112 num_sectors); 1113 1114 index += (int)num_sectors; 1115 if (index == len) 1116 goto out; 1117 disk_bytenr += num_sectors * sectorsize; 1118 } 1119 } 1120 out: 1121 spin_unlock_irq(&tree->lock); 1122 btrfs_put_ordered_extent(ordered); 1123 return index; 1124 } 1125 1126 int __init ordered_data_init(void) 1127 { 1128 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1129 sizeof(struct btrfs_ordered_extent), 0, 1130 SLAB_MEM_SPREAD, 1131 NULL); 1132 if (!btrfs_ordered_extent_cache) 1133 return -ENOMEM; 1134 1135 return 0; 1136 } 1137 1138 void __cold ordered_data_exit(void) 1139 { 1140 kmem_cache_destroy(btrfs_ordered_extent_cache); 1141 } 1142