1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/gfp.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/writeback.h> 23 #include <linux/pagevec.h> 24 #include "ctree.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "extent_io.h" 28 29 static u64 entry_end(struct btrfs_ordered_extent *entry) 30 { 31 if (entry->file_offset + entry->len < entry->file_offset) 32 return (u64)-1; 33 return entry->file_offset + entry->len; 34 } 35 36 /* returns NULL if the insertion worked, or it returns the node it did find 37 * in the tree 38 */ 39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 40 struct rb_node *node) 41 { 42 struct rb_node **p = &root->rb_node; 43 struct rb_node *parent = NULL; 44 struct btrfs_ordered_extent *entry; 45 46 while (*p) { 47 parent = *p; 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 49 50 if (file_offset < entry->file_offset) 51 p = &(*p)->rb_left; 52 else if (file_offset >= entry_end(entry)) 53 p = &(*p)->rb_right; 54 else 55 return parent; 56 } 57 58 rb_link_node(node, parent, p); 59 rb_insert_color(node, root); 60 return NULL; 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 /* 129 * look find the first ordered struct that has this offset, otherwise 130 * the first one less than this offset 131 */ 132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 133 u64 file_offset) 134 { 135 struct rb_root *root = &tree->tree; 136 struct rb_node *prev; 137 struct rb_node *ret; 138 struct btrfs_ordered_extent *entry; 139 140 if (tree->last) { 141 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 142 rb_node); 143 if (offset_in_entry(entry, file_offset)) 144 return tree->last; 145 } 146 ret = __tree_search(root, file_offset, &prev); 147 if (!ret) 148 ret = prev; 149 if (ret) 150 tree->last = ret; 151 return ret; 152 } 153 154 /* allocate and add a new ordered_extent into the per-inode tree. 155 * file_offset is the logical offset in the file 156 * 157 * start is the disk block number of an extent already reserved in the 158 * extent allocation tree 159 * 160 * len is the length of the extent 161 * 162 * This also sets the EXTENT_ORDERED bit on the range in the inode. 163 * 164 * The tree is given a single reference on the ordered extent that was 165 * inserted. 166 */ 167 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 168 u64 start, u64 len, u64 disk_len, int type) 169 { 170 struct btrfs_ordered_inode_tree *tree; 171 struct rb_node *node; 172 struct btrfs_ordered_extent *entry; 173 174 tree = &BTRFS_I(inode)->ordered_tree; 175 entry = kzalloc(sizeof(*entry), GFP_NOFS); 176 if (!entry) 177 return -ENOMEM; 178 179 mutex_lock(&tree->mutex); 180 entry->file_offset = file_offset; 181 entry->start = start; 182 entry->len = len; 183 entry->disk_len = disk_len; 184 entry->inode = inode; 185 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 186 set_bit(type, &entry->flags); 187 188 /* one ref for the tree */ 189 atomic_set(&entry->refs, 1); 190 init_waitqueue_head(&entry->wait); 191 INIT_LIST_HEAD(&entry->list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 194 node = tree_insert(&tree->tree, file_offset, 195 &entry->rb_node); 196 BUG_ON(node); 197 198 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, 199 entry_end(entry) - 1, GFP_NOFS); 200 201 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 202 list_add_tail(&entry->root_extent_list, 203 &BTRFS_I(inode)->root->fs_info->ordered_extents); 204 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 205 206 mutex_unlock(&tree->mutex); 207 BUG_ON(node); 208 return 0; 209 } 210 211 /* 212 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 213 * when an ordered extent is finished. If the list covers more than one 214 * ordered extent, it is split across multiples. 215 */ 216 int btrfs_add_ordered_sum(struct inode *inode, 217 struct btrfs_ordered_extent *entry, 218 struct btrfs_ordered_sum *sum) 219 { 220 struct btrfs_ordered_inode_tree *tree; 221 222 tree = &BTRFS_I(inode)->ordered_tree; 223 mutex_lock(&tree->mutex); 224 list_add_tail(&sum->list, &entry->list); 225 mutex_unlock(&tree->mutex); 226 return 0; 227 } 228 229 /* 230 * this is used to account for finished IO across a given range 231 * of the file. The IO should not span ordered extents. If 232 * a given ordered_extent is completely done, 1 is returned, otherwise 233 * 0. 234 * 235 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 236 * to make sure this function only returns 1 once for a given ordered extent. 237 */ 238 int btrfs_dec_test_ordered_pending(struct inode *inode, 239 u64 file_offset, u64 io_size) 240 { 241 struct btrfs_ordered_inode_tree *tree; 242 struct rb_node *node; 243 struct btrfs_ordered_extent *entry; 244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 245 int ret; 246 247 tree = &BTRFS_I(inode)->ordered_tree; 248 mutex_lock(&tree->mutex); 249 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, 250 GFP_NOFS); 251 node = tree_search(tree, file_offset); 252 if (!node) { 253 ret = 1; 254 goto out; 255 } 256 257 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 258 if (!offset_in_entry(entry, file_offset)) { 259 ret = 1; 260 goto out; 261 } 262 263 ret = test_range_bit(io_tree, entry->file_offset, 264 entry->file_offset + entry->len - 1, 265 EXTENT_ORDERED, 0); 266 if (ret == 0) 267 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 268 out: 269 mutex_unlock(&tree->mutex); 270 return ret == 0; 271 } 272 273 /* 274 * used to drop a reference on an ordered extent. This will free 275 * the extent if the last reference is dropped 276 */ 277 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 278 { 279 struct list_head *cur; 280 struct btrfs_ordered_sum *sum; 281 282 if (atomic_dec_and_test(&entry->refs)) { 283 while (!list_empty(&entry->list)) { 284 cur = entry->list.next; 285 sum = list_entry(cur, struct btrfs_ordered_sum, list); 286 list_del(&sum->list); 287 kfree(sum); 288 } 289 kfree(entry); 290 } 291 return 0; 292 } 293 294 /* 295 * remove an ordered extent from the tree. No references are dropped 296 * but, anyone waiting on this extent is woken up. 297 */ 298 int btrfs_remove_ordered_extent(struct inode *inode, 299 struct btrfs_ordered_extent *entry) 300 { 301 struct btrfs_ordered_inode_tree *tree; 302 struct rb_node *node; 303 304 tree = &BTRFS_I(inode)->ordered_tree; 305 mutex_lock(&tree->mutex); 306 node = &entry->rb_node; 307 rb_erase(node, &tree->tree); 308 tree->last = NULL; 309 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 310 311 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 312 list_del_init(&entry->root_extent_list); 313 314 /* 315 * we have no more ordered extents for this inode and 316 * no dirty pages. We can safely remove it from the 317 * list of ordered extents 318 */ 319 if (RB_EMPTY_ROOT(&tree->tree) && 320 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 321 list_del_init(&BTRFS_I(inode)->ordered_operations); 322 } 323 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 324 325 mutex_unlock(&tree->mutex); 326 wake_up(&entry->wait); 327 return 0; 328 } 329 330 /* 331 * wait for all the ordered extents in a root. This is done when balancing 332 * space between drives. 333 */ 334 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) 335 { 336 struct list_head splice; 337 struct list_head *cur; 338 struct btrfs_ordered_extent *ordered; 339 struct inode *inode; 340 341 INIT_LIST_HEAD(&splice); 342 343 spin_lock(&root->fs_info->ordered_extent_lock); 344 list_splice_init(&root->fs_info->ordered_extents, &splice); 345 while (!list_empty(&splice)) { 346 cur = splice.next; 347 ordered = list_entry(cur, struct btrfs_ordered_extent, 348 root_extent_list); 349 if (nocow_only && 350 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 351 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 352 list_move(&ordered->root_extent_list, 353 &root->fs_info->ordered_extents); 354 cond_resched_lock(&root->fs_info->ordered_extent_lock); 355 continue; 356 } 357 358 list_del_init(&ordered->root_extent_list); 359 atomic_inc(&ordered->refs); 360 361 /* 362 * the inode may be getting freed (in sys_unlink path). 363 */ 364 inode = igrab(ordered->inode); 365 366 spin_unlock(&root->fs_info->ordered_extent_lock); 367 368 if (inode) { 369 btrfs_start_ordered_extent(inode, ordered, 1); 370 btrfs_put_ordered_extent(ordered); 371 iput(inode); 372 } else { 373 btrfs_put_ordered_extent(ordered); 374 } 375 376 spin_lock(&root->fs_info->ordered_extent_lock); 377 } 378 spin_unlock(&root->fs_info->ordered_extent_lock); 379 return 0; 380 } 381 382 /* 383 * this is used during transaction commit to write all the inodes 384 * added to the ordered operation list. These files must be fully on 385 * disk before the transaction commits. 386 * 387 * we have two modes here, one is to just start the IO via filemap_flush 388 * and the other is to wait for all the io. When we wait, we have an 389 * extra check to make sure the ordered operation list really is empty 390 * before we return 391 */ 392 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 393 { 394 struct btrfs_inode *btrfs_inode; 395 struct inode *inode; 396 struct list_head splice; 397 398 INIT_LIST_HEAD(&splice); 399 400 mutex_lock(&root->fs_info->ordered_operations_mutex); 401 spin_lock(&root->fs_info->ordered_extent_lock); 402 again: 403 list_splice_init(&root->fs_info->ordered_operations, &splice); 404 405 while (!list_empty(&splice)) { 406 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 407 ordered_operations); 408 409 inode = &btrfs_inode->vfs_inode; 410 411 list_del_init(&btrfs_inode->ordered_operations); 412 413 /* 414 * the inode may be getting freed (in sys_unlink path). 415 */ 416 inode = igrab(inode); 417 418 if (!wait && inode) { 419 list_add_tail(&BTRFS_I(inode)->ordered_operations, 420 &root->fs_info->ordered_operations); 421 } 422 spin_unlock(&root->fs_info->ordered_extent_lock); 423 424 if (inode) { 425 if (wait) 426 btrfs_wait_ordered_range(inode, 0, (u64)-1); 427 else 428 filemap_flush(inode->i_mapping); 429 iput(inode); 430 } 431 432 cond_resched(); 433 spin_lock(&root->fs_info->ordered_extent_lock); 434 } 435 if (wait && !list_empty(&root->fs_info->ordered_operations)) 436 goto again; 437 438 spin_unlock(&root->fs_info->ordered_extent_lock); 439 mutex_unlock(&root->fs_info->ordered_operations_mutex); 440 441 return 0; 442 } 443 444 /* 445 * Used to start IO or wait for a given ordered extent to finish. 446 * 447 * If wait is one, this effectively waits on page writeback for all the pages 448 * in the extent, and it waits on the io completion code to insert 449 * metadata into the btree corresponding to the extent 450 */ 451 void btrfs_start_ordered_extent(struct inode *inode, 452 struct btrfs_ordered_extent *entry, 453 int wait) 454 { 455 u64 start = entry->file_offset; 456 u64 end = start + entry->len - 1; 457 458 /* 459 * pages in the range can be dirty, clean or writeback. We 460 * start IO on any dirty ones so the wait doesn't stall waiting 461 * for pdflush to find them 462 */ 463 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); 464 if (wait) { 465 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 466 &entry->flags)); 467 } 468 } 469 470 /* 471 * Used to wait on ordered extents across a large range of bytes. 472 */ 473 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 474 { 475 u64 end; 476 u64 orig_end; 477 u64 wait_end; 478 struct btrfs_ordered_extent *ordered; 479 480 if (start + len < start) { 481 orig_end = INT_LIMIT(loff_t); 482 } else { 483 orig_end = start + len - 1; 484 if (orig_end > INT_LIMIT(loff_t)) 485 orig_end = INT_LIMIT(loff_t); 486 } 487 wait_end = orig_end; 488 again: 489 /* start IO across the range first to instantiate any delalloc 490 * extents 491 */ 492 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE); 493 494 /* The compression code will leave pages locked but return from 495 * writepage without setting the page writeback. Starting again 496 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 497 */ 498 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); 499 500 btrfs_wait_on_page_writeback_range(inode->i_mapping, 501 start >> PAGE_CACHE_SHIFT, 502 orig_end >> PAGE_CACHE_SHIFT); 503 504 end = orig_end; 505 while (1) { 506 ordered = btrfs_lookup_first_ordered_extent(inode, end); 507 if (!ordered) 508 break; 509 if (ordered->file_offset > orig_end) { 510 btrfs_put_ordered_extent(ordered); 511 break; 512 } 513 if (ordered->file_offset + ordered->len < start) { 514 btrfs_put_ordered_extent(ordered); 515 break; 516 } 517 btrfs_start_ordered_extent(inode, ordered, 1); 518 end = ordered->file_offset; 519 btrfs_put_ordered_extent(ordered); 520 if (end == 0 || end == start) 521 break; 522 end--; 523 } 524 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 525 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { 526 schedule_timeout(1); 527 goto again; 528 } 529 return 0; 530 } 531 532 /* 533 * find an ordered extent corresponding to file_offset. return NULL if 534 * nothing is found, otherwise take a reference on the extent and return it 535 */ 536 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 537 u64 file_offset) 538 { 539 struct btrfs_ordered_inode_tree *tree; 540 struct rb_node *node; 541 struct btrfs_ordered_extent *entry = NULL; 542 543 tree = &BTRFS_I(inode)->ordered_tree; 544 mutex_lock(&tree->mutex); 545 node = tree_search(tree, file_offset); 546 if (!node) 547 goto out; 548 549 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 550 if (!offset_in_entry(entry, file_offset)) 551 entry = NULL; 552 if (entry) 553 atomic_inc(&entry->refs); 554 out: 555 mutex_unlock(&tree->mutex); 556 return entry; 557 } 558 559 /* 560 * lookup and return any extent before 'file_offset'. NULL is returned 561 * if none is found 562 */ 563 struct btrfs_ordered_extent * 564 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 565 { 566 struct btrfs_ordered_inode_tree *tree; 567 struct rb_node *node; 568 struct btrfs_ordered_extent *entry = NULL; 569 570 tree = &BTRFS_I(inode)->ordered_tree; 571 mutex_lock(&tree->mutex); 572 node = tree_search(tree, file_offset); 573 if (!node) 574 goto out; 575 576 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 577 atomic_inc(&entry->refs); 578 out: 579 mutex_unlock(&tree->mutex); 580 return entry; 581 } 582 583 /* 584 * After an extent is done, call this to conditionally update the on disk 585 * i_size. i_size is updated to cover any fully written part of the file. 586 */ 587 int btrfs_ordered_update_i_size(struct inode *inode, 588 struct btrfs_ordered_extent *ordered) 589 { 590 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 591 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 592 u64 disk_i_size; 593 u64 new_i_size; 594 u64 i_size_test; 595 struct rb_node *node; 596 struct btrfs_ordered_extent *test; 597 598 mutex_lock(&tree->mutex); 599 disk_i_size = BTRFS_I(inode)->disk_i_size; 600 601 /* 602 * if the disk i_size is already at the inode->i_size, or 603 * this ordered extent is inside the disk i_size, we're done 604 */ 605 if (disk_i_size >= inode->i_size || 606 ordered->file_offset + ordered->len <= disk_i_size) { 607 goto out; 608 } 609 610 /* 611 * we can't update the disk_isize if there are delalloc bytes 612 * between disk_i_size and this ordered extent 613 */ 614 if (test_range_bit(io_tree, disk_i_size, 615 ordered->file_offset + ordered->len - 1, 616 EXTENT_DELALLOC, 0)) { 617 goto out; 618 } 619 /* 620 * walk backward from this ordered extent to disk_i_size. 621 * if we find an ordered extent then we can't update disk i_size 622 * yet 623 */ 624 node = &ordered->rb_node; 625 while (1) { 626 node = rb_prev(node); 627 if (!node) 628 break; 629 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 630 if (test->file_offset + test->len <= disk_i_size) 631 break; 632 if (test->file_offset >= inode->i_size) 633 break; 634 if (test->file_offset >= disk_i_size) 635 goto out; 636 } 637 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); 638 639 /* 640 * at this point, we know we can safely update i_size to at least 641 * the offset from this ordered extent. But, we need to 642 * walk forward and see if ios from higher up in the file have 643 * finished. 644 */ 645 node = rb_next(&ordered->rb_node); 646 i_size_test = 0; 647 if (node) { 648 /* 649 * do we have an area where IO might have finished 650 * between our ordered extent and the next one. 651 */ 652 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 653 if (test->file_offset > entry_end(ordered)) 654 i_size_test = test->file_offset; 655 } else { 656 i_size_test = i_size_read(inode); 657 } 658 659 /* 660 * i_size_test is the end of a region after this ordered 661 * extent where there are no ordered extents. As long as there 662 * are no delalloc bytes in this area, it is safe to update 663 * disk_i_size to the end of the region. 664 */ 665 if (i_size_test > entry_end(ordered) && 666 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, 667 EXTENT_DELALLOC, 0)) { 668 new_i_size = min_t(u64, i_size_test, i_size_read(inode)); 669 } 670 BTRFS_I(inode)->disk_i_size = new_i_size; 671 out: 672 mutex_unlock(&tree->mutex); 673 return 0; 674 } 675 676 /* 677 * search the ordered extents for one corresponding to 'offset' and 678 * try to find a checksum. This is used because we allow pages to 679 * be reclaimed before their checksum is actually put into the btree 680 */ 681 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 682 u32 *sum) 683 { 684 struct btrfs_ordered_sum *ordered_sum; 685 struct btrfs_sector_sum *sector_sums; 686 struct btrfs_ordered_extent *ordered; 687 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 688 unsigned long num_sectors; 689 unsigned long i; 690 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 691 int ret = 1; 692 693 ordered = btrfs_lookup_ordered_extent(inode, offset); 694 if (!ordered) 695 return 1; 696 697 mutex_lock(&tree->mutex); 698 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 699 if (disk_bytenr >= ordered_sum->bytenr) { 700 num_sectors = ordered_sum->len / sectorsize; 701 sector_sums = ordered_sum->sums; 702 for (i = 0; i < num_sectors; i++) { 703 if (sector_sums[i].bytenr == disk_bytenr) { 704 *sum = sector_sums[i].sum; 705 ret = 0; 706 goto out; 707 } 708 } 709 } 710 } 711 out: 712 mutex_unlock(&tree->mutex); 713 btrfs_put_ordered_extent(ordered); 714 return ret; 715 } 716 717 718 /** 719 * taken from mm/filemap.c because it isn't exported 720 * 721 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 722 * @mapping: address space structure to write 723 * @start: offset in bytes where the range starts 724 * @end: offset in bytes where the range ends (inclusive) 725 * @sync_mode: enable synchronous operation 726 * 727 * Start writeback against all of a mapping's dirty pages that lie 728 * within the byte offsets <start, end> inclusive. 729 * 730 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 731 * opposed to a regular memory cleansing writeback. The difference between 732 * these two operations is that if a dirty page/buffer is encountered, it must 733 * be waited upon, and not just skipped over. 734 */ 735 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, 736 loff_t end, int sync_mode) 737 { 738 struct writeback_control wbc = { 739 .sync_mode = sync_mode, 740 .nr_to_write = mapping->nrpages * 2, 741 .range_start = start, 742 .range_end = end, 743 .for_writepages = 1, 744 }; 745 return btrfs_writepages(mapping, &wbc); 746 } 747 748 /** 749 * taken from mm/filemap.c because it isn't exported 750 * 751 * wait_on_page_writeback_range - wait for writeback to complete 752 * @mapping: target address_space 753 * @start: beginning page index 754 * @end: ending page index 755 * 756 * Wait for writeback to complete against pages indexed by start->end 757 * inclusive 758 */ 759 int btrfs_wait_on_page_writeback_range(struct address_space *mapping, 760 pgoff_t start, pgoff_t end) 761 { 762 struct pagevec pvec; 763 int nr_pages; 764 int ret = 0; 765 pgoff_t index; 766 767 if (end < start) 768 return 0; 769 770 pagevec_init(&pvec, 0); 771 index = start; 772 while ((index <= end) && 773 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 774 PAGECACHE_TAG_WRITEBACK, 775 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 776 unsigned i; 777 778 for (i = 0; i < nr_pages; i++) { 779 struct page *page = pvec.pages[i]; 780 781 /* until radix tree lookup accepts end_index */ 782 if (page->index > end) 783 continue; 784 785 wait_on_page_writeback(page); 786 if (PageError(page)) 787 ret = -EIO; 788 } 789 pagevec_release(&pvec); 790 cond_resched(); 791 } 792 793 /* Check for outstanding write errors */ 794 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 795 ret = -ENOSPC; 796 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 797 ret = -EIO; 798 799 return ret; 800 } 801 802 /* 803 * add a given inode to the list of inodes that must be fully on 804 * disk before a transaction commit finishes. 805 * 806 * This basically gives us the ext3 style data=ordered mode, and it is mostly 807 * used to make sure renamed files are fully on disk. 808 * 809 * It is a noop if the inode is already fully on disk. 810 * 811 * If trans is not null, we'll do a friendly check for a transaction that 812 * is already flushing things and force the IO down ourselves. 813 */ 814 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 815 struct btrfs_root *root, 816 struct inode *inode) 817 { 818 u64 last_mod; 819 820 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 821 822 /* 823 * if this file hasn't been changed since the last transaction 824 * commit, we can safely return without doing anything 825 */ 826 if (last_mod < root->fs_info->last_trans_committed) 827 return 0; 828 829 /* 830 * the transaction is already committing. Just start the IO and 831 * don't bother with all of this list nonsense 832 */ 833 if (trans && root->fs_info->running_transaction->blocked) { 834 btrfs_wait_ordered_range(inode, 0, (u64)-1); 835 return 0; 836 } 837 838 spin_lock(&root->fs_info->ordered_extent_lock); 839 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 840 list_add_tail(&BTRFS_I(inode)->ordered_operations, 841 &root->fs_info->ordered_operations); 842 } 843 spin_unlock(&root->fs_info->ordered_extent_lock); 844 845 return 0; 846 } 847