xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
28 
29 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 {
31 	if (entry->file_offset + entry->len < entry->file_offset)
32 		return (u64)-1;
33 	return entry->file_offset + entry->len;
34 }
35 
36 /* returns NULL if the insertion worked, or it returns the node it did find
37  * in the tree
38  */
39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 				   struct rb_node *node)
41 {
42 	struct rb_node **p = &root->rb_node;
43 	struct rb_node *parent = NULL;
44 	struct btrfs_ordered_extent *entry;
45 
46 	while (*p) {
47 		parent = *p;
48 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 
50 		if (file_offset < entry->file_offset)
51 			p = &(*p)->rb_left;
52 		else if (file_offset >= entry_end(entry))
53 			p = &(*p)->rb_right;
54 		else
55 			return parent;
56 	}
57 
58 	rb_link_node(node, parent, p);
59 	rb_insert_color(node, root);
60 	return NULL;
61 }
62 
63 /*
64  * look for a given offset in the tree, and if it can't be found return the
65  * first lesser offset
66  */
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 				     struct rb_node **prev_ret)
69 {
70 	struct rb_node *n = root->rb_node;
71 	struct rb_node *prev = NULL;
72 	struct rb_node *test;
73 	struct btrfs_ordered_extent *entry;
74 	struct btrfs_ordered_extent *prev_entry = NULL;
75 
76 	while (n) {
77 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 		prev = n;
79 		prev_entry = entry;
80 
81 		if (file_offset < entry->file_offset)
82 			n = n->rb_left;
83 		else if (file_offset >= entry_end(entry))
84 			n = n->rb_right;
85 		else
86 			return n;
87 	}
88 	if (!prev_ret)
89 		return NULL;
90 
91 	while (prev && file_offset >= entry_end(prev_entry)) {
92 		test = rb_next(prev);
93 		if (!test)
94 			break;
95 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 				      rb_node);
97 		if (file_offset < entry_end(prev_entry))
98 			break;
99 
100 		prev = test;
101 	}
102 	if (prev)
103 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 				      rb_node);
105 	while (prev && file_offset < entry_end(prev_entry)) {
106 		test = rb_prev(prev);
107 		if (!test)
108 			break;
109 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 				      rb_node);
111 		prev = test;
112 	}
113 	*prev_ret = prev;
114 	return NULL;
115 }
116 
117 /*
118  * helper to check if a given offset is inside a given entry
119  */
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 	if (file_offset < entry->file_offset ||
123 	    entry->file_offset + entry->len <= file_offset)
124 		return 0;
125 	return 1;
126 }
127 
128 /*
129  * look find the first ordered struct that has this offset, otherwise
130  * the first one less than this offset
131  */
132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 					  u64 file_offset)
134 {
135 	struct rb_root *root = &tree->tree;
136 	struct rb_node *prev;
137 	struct rb_node *ret;
138 	struct btrfs_ordered_extent *entry;
139 
140 	if (tree->last) {
141 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 				 rb_node);
143 		if (offset_in_entry(entry, file_offset))
144 			return tree->last;
145 	}
146 	ret = __tree_search(root, file_offset, &prev);
147 	if (!ret)
148 		ret = prev;
149 	if (ret)
150 		tree->last = ret;
151 	return ret;
152 }
153 
154 /* allocate and add a new ordered_extent into the per-inode tree.
155  * file_offset is the logical offset in the file
156  *
157  * start is the disk block number of an extent already reserved in the
158  * extent allocation tree
159  *
160  * len is the length of the extent
161  *
162  * This also sets the EXTENT_ORDERED bit on the range in the inode.
163  *
164  * The tree is given a single reference on the ordered extent that was
165  * inserted.
166  */
167 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
168 			     u64 start, u64 len, u64 disk_len, int type)
169 {
170 	struct btrfs_ordered_inode_tree *tree;
171 	struct rb_node *node;
172 	struct btrfs_ordered_extent *entry;
173 
174 	tree = &BTRFS_I(inode)->ordered_tree;
175 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
176 	if (!entry)
177 		return -ENOMEM;
178 
179 	mutex_lock(&tree->mutex);
180 	entry->file_offset = file_offset;
181 	entry->start = start;
182 	entry->len = len;
183 	entry->disk_len = disk_len;
184 	entry->inode = inode;
185 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
186 		set_bit(type, &entry->flags);
187 
188 	/* one ref for the tree */
189 	atomic_set(&entry->refs, 1);
190 	init_waitqueue_head(&entry->wait);
191 	INIT_LIST_HEAD(&entry->list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 
194 	node = tree_insert(&tree->tree, file_offset,
195 			   &entry->rb_node);
196 	BUG_ON(node);
197 
198 	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
199 			   entry_end(entry) - 1, GFP_NOFS);
200 
201 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
202 	list_add_tail(&entry->root_extent_list,
203 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
204 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
205 
206 	mutex_unlock(&tree->mutex);
207 	BUG_ON(node);
208 	return 0;
209 }
210 
211 /*
212  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
213  * when an ordered extent is finished.  If the list covers more than one
214  * ordered extent, it is split across multiples.
215  */
216 int btrfs_add_ordered_sum(struct inode *inode,
217 			  struct btrfs_ordered_extent *entry,
218 			  struct btrfs_ordered_sum *sum)
219 {
220 	struct btrfs_ordered_inode_tree *tree;
221 
222 	tree = &BTRFS_I(inode)->ordered_tree;
223 	mutex_lock(&tree->mutex);
224 	list_add_tail(&sum->list, &entry->list);
225 	mutex_unlock(&tree->mutex);
226 	return 0;
227 }
228 
229 /*
230  * this is used to account for finished IO across a given range
231  * of the file.  The IO should not span ordered extents.  If
232  * a given ordered_extent is completely done, 1 is returned, otherwise
233  * 0.
234  *
235  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
236  * to make sure this function only returns 1 once for a given ordered extent.
237  */
238 int btrfs_dec_test_ordered_pending(struct inode *inode,
239 				   u64 file_offset, u64 io_size)
240 {
241 	struct btrfs_ordered_inode_tree *tree;
242 	struct rb_node *node;
243 	struct btrfs_ordered_extent *entry;
244 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
245 	int ret;
246 
247 	tree = &BTRFS_I(inode)->ordered_tree;
248 	mutex_lock(&tree->mutex);
249 	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
250 			     GFP_NOFS);
251 	node = tree_search(tree, file_offset);
252 	if (!node) {
253 		ret = 1;
254 		goto out;
255 	}
256 
257 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
258 	if (!offset_in_entry(entry, file_offset)) {
259 		ret = 1;
260 		goto out;
261 	}
262 
263 	ret = test_range_bit(io_tree, entry->file_offset,
264 			     entry->file_offset + entry->len - 1,
265 			     EXTENT_ORDERED, 0);
266 	if (ret == 0)
267 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
268 out:
269 	mutex_unlock(&tree->mutex);
270 	return ret == 0;
271 }
272 
273 /*
274  * used to drop a reference on an ordered extent.  This will free
275  * the extent if the last reference is dropped
276  */
277 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
278 {
279 	struct list_head *cur;
280 	struct btrfs_ordered_sum *sum;
281 
282 	if (atomic_dec_and_test(&entry->refs)) {
283 		while (!list_empty(&entry->list)) {
284 			cur = entry->list.next;
285 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
286 			list_del(&sum->list);
287 			kfree(sum);
288 		}
289 		kfree(entry);
290 	}
291 	return 0;
292 }
293 
294 /*
295  * remove an ordered extent from the tree.  No references are dropped
296  * but, anyone waiting on this extent is woken up.
297  */
298 int btrfs_remove_ordered_extent(struct inode *inode,
299 				struct btrfs_ordered_extent *entry)
300 {
301 	struct btrfs_ordered_inode_tree *tree;
302 	struct rb_node *node;
303 
304 	tree = &BTRFS_I(inode)->ordered_tree;
305 	mutex_lock(&tree->mutex);
306 	node = &entry->rb_node;
307 	rb_erase(node, &tree->tree);
308 	tree->last = NULL;
309 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
310 
311 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
312 	list_del_init(&entry->root_extent_list);
313 
314 	/*
315 	 * we have no more ordered extents for this inode and
316 	 * no dirty pages.  We can safely remove it from the
317 	 * list of ordered extents
318 	 */
319 	if (RB_EMPTY_ROOT(&tree->tree) &&
320 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
321 		list_del_init(&BTRFS_I(inode)->ordered_operations);
322 	}
323 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
324 
325 	mutex_unlock(&tree->mutex);
326 	wake_up(&entry->wait);
327 	return 0;
328 }
329 
330 /*
331  * wait for all the ordered extents in a root.  This is done when balancing
332  * space between drives.
333  */
334 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
335 {
336 	struct list_head splice;
337 	struct list_head *cur;
338 	struct btrfs_ordered_extent *ordered;
339 	struct inode *inode;
340 
341 	INIT_LIST_HEAD(&splice);
342 
343 	spin_lock(&root->fs_info->ordered_extent_lock);
344 	list_splice_init(&root->fs_info->ordered_extents, &splice);
345 	while (!list_empty(&splice)) {
346 		cur = splice.next;
347 		ordered = list_entry(cur, struct btrfs_ordered_extent,
348 				     root_extent_list);
349 		if (nocow_only &&
350 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
351 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
352 			list_move(&ordered->root_extent_list,
353 				  &root->fs_info->ordered_extents);
354 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
355 			continue;
356 		}
357 
358 		list_del_init(&ordered->root_extent_list);
359 		atomic_inc(&ordered->refs);
360 
361 		/*
362 		 * the inode may be getting freed (in sys_unlink path).
363 		 */
364 		inode = igrab(ordered->inode);
365 
366 		spin_unlock(&root->fs_info->ordered_extent_lock);
367 
368 		if (inode) {
369 			btrfs_start_ordered_extent(inode, ordered, 1);
370 			btrfs_put_ordered_extent(ordered);
371 			iput(inode);
372 		} else {
373 			btrfs_put_ordered_extent(ordered);
374 		}
375 
376 		spin_lock(&root->fs_info->ordered_extent_lock);
377 	}
378 	spin_unlock(&root->fs_info->ordered_extent_lock);
379 	return 0;
380 }
381 
382 /*
383  * this is used during transaction commit to write all the inodes
384  * added to the ordered operation list.  These files must be fully on
385  * disk before the transaction commits.
386  *
387  * we have two modes here, one is to just start the IO via filemap_flush
388  * and the other is to wait for all the io.  When we wait, we have an
389  * extra check to make sure the ordered operation list really is empty
390  * before we return
391  */
392 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
393 {
394 	struct btrfs_inode *btrfs_inode;
395 	struct inode *inode;
396 	struct list_head splice;
397 
398 	INIT_LIST_HEAD(&splice);
399 
400 	mutex_lock(&root->fs_info->ordered_operations_mutex);
401 	spin_lock(&root->fs_info->ordered_extent_lock);
402 again:
403 	list_splice_init(&root->fs_info->ordered_operations, &splice);
404 
405 	while (!list_empty(&splice)) {
406 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
407 				   ordered_operations);
408 
409 		inode = &btrfs_inode->vfs_inode;
410 
411 		list_del_init(&btrfs_inode->ordered_operations);
412 
413 		/*
414 		 * the inode may be getting freed (in sys_unlink path).
415 		 */
416 		inode = igrab(inode);
417 
418 		if (!wait && inode) {
419 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
420 			      &root->fs_info->ordered_operations);
421 		}
422 		spin_unlock(&root->fs_info->ordered_extent_lock);
423 
424 		if (inode) {
425 			if (wait)
426 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
427 			else
428 				filemap_flush(inode->i_mapping);
429 			iput(inode);
430 		}
431 
432 		cond_resched();
433 		spin_lock(&root->fs_info->ordered_extent_lock);
434 	}
435 	if (wait && !list_empty(&root->fs_info->ordered_operations))
436 		goto again;
437 
438 	spin_unlock(&root->fs_info->ordered_extent_lock);
439 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
440 
441 	return 0;
442 }
443 
444 /*
445  * Used to start IO or wait for a given ordered extent to finish.
446  *
447  * If wait is one, this effectively waits on page writeback for all the pages
448  * in the extent, and it waits on the io completion code to insert
449  * metadata into the btree corresponding to the extent
450  */
451 void btrfs_start_ordered_extent(struct inode *inode,
452 				       struct btrfs_ordered_extent *entry,
453 				       int wait)
454 {
455 	u64 start = entry->file_offset;
456 	u64 end = start + entry->len - 1;
457 
458 	/*
459 	 * pages in the range can be dirty, clean or writeback.  We
460 	 * start IO on any dirty ones so the wait doesn't stall waiting
461 	 * for pdflush to find them
462 	 */
463 	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
464 	if (wait) {
465 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
466 						 &entry->flags));
467 	}
468 }
469 
470 /*
471  * Used to wait on ordered extents across a large range of bytes.
472  */
473 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
474 {
475 	u64 end;
476 	u64 orig_end;
477 	u64 wait_end;
478 	struct btrfs_ordered_extent *ordered;
479 
480 	if (start + len < start) {
481 		orig_end = INT_LIMIT(loff_t);
482 	} else {
483 		orig_end = start + len - 1;
484 		if (orig_end > INT_LIMIT(loff_t))
485 			orig_end = INT_LIMIT(loff_t);
486 	}
487 	wait_end = orig_end;
488 again:
489 	/* start IO across the range first to instantiate any delalloc
490 	 * extents
491 	 */
492 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
493 
494 	/* The compression code will leave pages locked but return from
495 	 * writepage without setting the page writeback.  Starting again
496 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
497 	 */
498 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
499 
500 	btrfs_wait_on_page_writeback_range(inode->i_mapping,
501 					   start >> PAGE_CACHE_SHIFT,
502 					   orig_end >> PAGE_CACHE_SHIFT);
503 
504 	end = orig_end;
505 	while (1) {
506 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
507 		if (!ordered)
508 			break;
509 		if (ordered->file_offset > orig_end) {
510 			btrfs_put_ordered_extent(ordered);
511 			break;
512 		}
513 		if (ordered->file_offset + ordered->len < start) {
514 			btrfs_put_ordered_extent(ordered);
515 			break;
516 		}
517 		btrfs_start_ordered_extent(inode, ordered, 1);
518 		end = ordered->file_offset;
519 		btrfs_put_ordered_extent(ordered);
520 		if (end == 0 || end == start)
521 			break;
522 		end--;
523 	}
524 	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
525 			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
526 		schedule_timeout(1);
527 		goto again;
528 	}
529 	return 0;
530 }
531 
532 /*
533  * find an ordered extent corresponding to file_offset.  return NULL if
534  * nothing is found, otherwise take a reference on the extent and return it
535  */
536 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
537 							 u64 file_offset)
538 {
539 	struct btrfs_ordered_inode_tree *tree;
540 	struct rb_node *node;
541 	struct btrfs_ordered_extent *entry = NULL;
542 
543 	tree = &BTRFS_I(inode)->ordered_tree;
544 	mutex_lock(&tree->mutex);
545 	node = tree_search(tree, file_offset);
546 	if (!node)
547 		goto out;
548 
549 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
550 	if (!offset_in_entry(entry, file_offset))
551 		entry = NULL;
552 	if (entry)
553 		atomic_inc(&entry->refs);
554 out:
555 	mutex_unlock(&tree->mutex);
556 	return entry;
557 }
558 
559 /*
560  * lookup and return any extent before 'file_offset'.  NULL is returned
561  * if none is found
562  */
563 struct btrfs_ordered_extent *
564 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
565 {
566 	struct btrfs_ordered_inode_tree *tree;
567 	struct rb_node *node;
568 	struct btrfs_ordered_extent *entry = NULL;
569 
570 	tree = &BTRFS_I(inode)->ordered_tree;
571 	mutex_lock(&tree->mutex);
572 	node = tree_search(tree, file_offset);
573 	if (!node)
574 		goto out;
575 
576 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
577 	atomic_inc(&entry->refs);
578 out:
579 	mutex_unlock(&tree->mutex);
580 	return entry;
581 }
582 
583 /*
584  * After an extent is done, call this to conditionally update the on disk
585  * i_size.  i_size is updated to cover any fully written part of the file.
586  */
587 int btrfs_ordered_update_i_size(struct inode *inode,
588 				struct btrfs_ordered_extent *ordered)
589 {
590 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
591 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
592 	u64 disk_i_size;
593 	u64 new_i_size;
594 	u64 i_size_test;
595 	struct rb_node *node;
596 	struct btrfs_ordered_extent *test;
597 
598 	mutex_lock(&tree->mutex);
599 	disk_i_size = BTRFS_I(inode)->disk_i_size;
600 
601 	/*
602 	 * if the disk i_size is already at the inode->i_size, or
603 	 * this ordered extent is inside the disk i_size, we're done
604 	 */
605 	if (disk_i_size >= inode->i_size ||
606 	    ordered->file_offset + ordered->len <= disk_i_size) {
607 		goto out;
608 	}
609 
610 	/*
611 	 * we can't update the disk_isize if there are delalloc bytes
612 	 * between disk_i_size and  this ordered extent
613 	 */
614 	if (test_range_bit(io_tree, disk_i_size,
615 			   ordered->file_offset + ordered->len - 1,
616 			   EXTENT_DELALLOC, 0)) {
617 		goto out;
618 	}
619 	/*
620 	 * walk backward from this ordered extent to disk_i_size.
621 	 * if we find an ordered extent then we can't update disk i_size
622 	 * yet
623 	 */
624 	node = &ordered->rb_node;
625 	while (1) {
626 		node = rb_prev(node);
627 		if (!node)
628 			break;
629 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
630 		if (test->file_offset + test->len <= disk_i_size)
631 			break;
632 		if (test->file_offset >= inode->i_size)
633 			break;
634 		if (test->file_offset >= disk_i_size)
635 			goto out;
636 	}
637 	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
638 
639 	/*
640 	 * at this point, we know we can safely update i_size to at least
641 	 * the offset from this ordered extent.  But, we need to
642 	 * walk forward and see if ios from higher up in the file have
643 	 * finished.
644 	 */
645 	node = rb_next(&ordered->rb_node);
646 	i_size_test = 0;
647 	if (node) {
648 		/*
649 		 * do we have an area where IO might have finished
650 		 * between our ordered extent and the next one.
651 		 */
652 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
653 		if (test->file_offset > entry_end(ordered))
654 			i_size_test = test->file_offset;
655 	} else {
656 		i_size_test = i_size_read(inode);
657 	}
658 
659 	/*
660 	 * i_size_test is the end of a region after this ordered
661 	 * extent where there are no ordered extents.  As long as there
662 	 * are no delalloc bytes in this area, it is safe to update
663 	 * disk_i_size to the end of the region.
664 	 */
665 	if (i_size_test > entry_end(ordered) &&
666 	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
667 			   EXTENT_DELALLOC, 0)) {
668 		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
669 	}
670 	BTRFS_I(inode)->disk_i_size = new_i_size;
671 out:
672 	mutex_unlock(&tree->mutex);
673 	return 0;
674 }
675 
676 /*
677  * search the ordered extents for one corresponding to 'offset' and
678  * try to find a checksum.  This is used because we allow pages to
679  * be reclaimed before their checksum is actually put into the btree
680  */
681 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
682 			   u32 *sum)
683 {
684 	struct btrfs_ordered_sum *ordered_sum;
685 	struct btrfs_sector_sum *sector_sums;
686 	struct btrfs_ordered_extent *ordered;
687 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
688 	unsigned long num_sectors;
689 	unsigned long i;
690 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
691 	int ret = 1;
692 
693 	ordered = btrfs_lookup_ordered_extent(inode, offset);
694 	if (!ordered)
695 		return 1;
696 
697 	mutex_lock(&tree->mutex);
698 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
699 		if (disk_bytenr >= ordered_sum->bytenr) {
700 			num_sectors = ordered_sum->len / sectorsize;
701 			sector_sums = ordered_sum->sums;
702 			for (i = 0; i < num_sectors; i++) {
703 				if (sector_sums[i].bytenr == disk_bytenr) {
704 					*sum = sector_sums[i].sum;
705 					ret = 0;
706 					goto out;
707 				}
708 			}
709 		}
710 	}
711 out:
712 	mutex_unlock(&tree->mutex);
713 	btrfs_put_ordered_extent(ordered);
714 	return ret;
715 }
716 
717 
718 /**
719  * taken from mm/filemap.c because it isn't exported
720  *
721  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
722  * @mapping:	address space structure to write
723  * @start:	offset in bytes where the range starts
724  * @end:	offset in bytes where the range ends (inclusive)
725  * @sync_mode:	enable synchronous operation
726  *
727  * Start writeback against all of a mapping's dirty pages that lie
728  * within the byte offsets <start, end> inclusive.
729  *
730  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
731  * opposed to a regular memory cleansing writeback.  The difference between
732  * these two operations is that if a dirty page/buffer is encountered, it must
733  * be waited upon, and not just skipped over.
734  */
735 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
736 			   loff_t end, int sync_mode)
737 {
738 	struct writeback_control wbc = {
739 		.sync_mode = sync_mode,
740 		.nr_to_write = mapping->nrpages * 2,
741 		.range_start = start,
742 		.range_end = end,
743 		.for_writepages = 1,
744 	};
745 	return btrfs_writepages(mapping, &wbc);
746 }
747 
748 /**
749  * taken from mm/filemap.c because it isn't exported
750  *
751  * wait_on_page_writeback_range - wait for writeback to complete
752  * @mapping:	target address_space
753  * @start:	beginning page index
754  * @end:	ending page index
755  *
756  * Wait for writeback to complete against pages indexed by start->end
757  * inclusive
758  */
759 int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
760 				       pgoff_t start, pgoff_t end)
761 {
762 	struct pagevec pvec;
763 	int nr_pages;
764 	int ret = 0;
765 	pgoff_t index;
766 
767 	if (end < start)
768 		return 0;
769 
770 	pagevec_init(&pvec, 0);
771 	index = start;
772 	while ((index <= end) &&
773 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
774 			PAGECACHE_TAG_WRITEBACK,
775 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
776 		unsigned i;
777 
778 		for (i = 0; i < nr_pages; i++) {
779 			struct page *page = pvec.pages[i];
780 
781 			/* until radix tree lookup accepts end_index */
782 			if (page->index > end)
783 				continue;
784 
785 			wait_on_page_writeback(page);
786 			if (PageError(page))
787 				ret = -EIO;
788 		}
789 		pagevec_release(&pvec);
790 		cond_resched();
791 	}
792 
793 	/* Check for outstanding write errors */
794 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
795 		ret = -ENOSPC;
796 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
797 		ret = -EIO;
798 
799 	return ret;
800 }
801 
802 /*
803  * add a given inode to the list of inodes that must be fully on
804  * disk before a transaction commit finishes.
805  *
806  * This basically gives us the ext3 style data=ordered mode, and it is mostly
807  * used to make sure renamed files are fully on disk.
808  *
809  * It is a noop if the inode is already fully on disk.
810  *
811  * If trans is not null, we'll do a friendly check for a transaction that
812  * is already flushing things and force the IO down ourselves.
813  */
814 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
815 				struct btrfs_root *root,
816 				struct inode *inode)
817 {
818 	u64 last_mod;
819 
820 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
821 
822 	/*
823 	 * if this file hasn't been changed since the last transaction
824 	 * commit, we can safely return without doing anything
825 	 */
826 	if (last_mod < root->fs_info->last_trans_committed)
827 		return 0;
828 
829 	/*
830 	 * the transaction is already committing.  Just start the IO and
831 	 * don't bother with all of this list nonsense
832 	 */
833 	if (trans && root->fs_info->running_transaction->blocked) {
834 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
835 		return 0;
836 	}
837 
838 	spin_lock(&root->fs_info->ordered_extent_lock);
839 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
840 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
841 			      &root->fs_info->ordered_operations);
842 	}
843 	spin_unlock(&root->fs_info->ordered_extent_lock);
844 
845 	return 0;
846 }
847