xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20 
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22 
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 		return (u64)-1;
27 	return entry->file_offset + entry->num_bytes;
28 }
29 
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 				   struct rb_node *node)
35 {
36 	struct rb_node **p = &root->rb_node;
37 	struct rb_node *parent = NULL;
38 	struct btrfs_ordered_extent *entry;
39 
40 	while (*p) {
41 		parent = *p;
42 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43 
44 		if (file_offset < entry->file_offset)
45 			p = &(*p)->rb_left;
46 		else if (file_offset >= entry_end(entry))
47 			p = &(*p)->rb_right;
48 		else
49 			return parent;
50 	}
51 
52 	rb_link_node(node, parent, p);
53 	rb_insert_color(node, root);
54 	return NULL;
55 }
56 
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 				     struct rb_node **prev_ret)
63 {
64 	struct rb_node *n = root->rb_node;
65 	struct rb_node *prev = NULL;
66 	struct rb_node *test;
67 	struct btrfs_ordered_extent *entry;
68 	struct btrfs_ordered_extent *prev_entry = NULL;
69 
70 	while (n) {
71 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 		prev = n;
73 		prev_entry = entry;
74 
75 		if (file_offset < entry->file_offset)
76 			n = n->rb_left;
77 		else if (file_offset >= entry_end(entry))
78 			n = n->rb_right;
79 		else
80 			return n;
81 	}
82 	if (!prev_ret)
83 		return NULL;
84 
85 	while (prev && file_offset >= entry_end(prev_entry)) {
86 		test = rb_next(prev);
87 		if (!test)
88 			break;
89 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 				      rb_node);
91 		if (file_offset < entry_end(prev_entry))
92 			break;
93 
94 		prev = test;
95 	}
96 	if (prev)
97 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 				      rb_node);
99 	while (prev && file_offset < entry_end(prev_entry)) {
100 		test = rb_prev(prev);
101 		if (!test)
102 			break;
103 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 				      rb_node);
105 		prev = test;
106 	}
107 	*prev_ret = prev;
108 	return NULL;
109 }
110 
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 			  u64 len)
113 {
114 	if (file_offset + len <= entry->file_offset ||
115 	    entry->file_offset + entry->num_bytes <= file_offset)
116 		return 0;
117 	return 1;
118 }
119 
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 					  u64 file_offset)
126 {
127 	struct rb_root *root = &tree->tree;
128 	struct rb_node *prev = NULL;
129 	struct rb_node *ret;
130 	struct btrfs_ordered_extent *entry;
131 
132 	if (tree->last) {
133 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 				 rb_node);
135 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 			return tree->last;
137 	}
138 	ret = __tree_search(root, file_offset, &prev);
139 	if (!ret)
140 		ret = prev;
141 	if (ret)
142 		tree->last = ret;
143 	return ret;
144 }
145 
146 /*
147  * Allocate and add a new ordered_extent into the per-inode tree.
148  *
149  * The tree is given a single reference on the ordered extent that was
150  * inserted.
151  */
152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153 				      u64 disk_bytenr, u64 num_bytes,
154 				      u64 disk_num_bytes, int type, int dio,
155 				      int compress_type)
156 {
157 	struct btrfs_root *root = inode->root;
158 	struct btrfs_fs_info *fs_info = root->fs_info;
159 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160 	struct rb_node *node;
161 	struct btrfs_ordered_extent *entry;
162 	int ret;
163 
164 	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165 		/* For nocow write, we can release the qgroup rsv right now */
166 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167 		if (ret < 0)
168 			return ret;
169 		ret = 0;
170 	} else {
171 		/*
172 		 * The ordered extent has reserved qgroup space, release now
173 		 * and pass the reserved number for qgroup_record to free.
174 		 */
175 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176 		if (ret < 0)
177 			return ret;
178 	}
179 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180 	if (!entry)
181 		return -ENOMEM;
182 
183 	entry->file_offset = file_offset;
184 	entry->disk_bytenr = disk_bytenr;
185 	entry->num_bytes = num_bytes;
186 	entry->disk_num_bytes = disk_num_bytes;
187 	entry->bytes_left = num_bytes;
188 	entry->inode = igrab(&inode->vfs_inode);
189 	entry->compress_type = compress_type;
190 	entry->truncated_len = (u64)-1;
191 	entry->qgroup_rsv = ret;
192 	entry->physical = (u64)-1;
193 
194 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
195 	       type == BTRFS_ORDERED_NOCOW ||
196 	       type == BTRFS_ORDERED_PREALLOC ||
197 	       type == BTRFS_ORDERED_COMPRESSED);
198 	set_bit(type, &entry->flags);
199 
200 	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
201 				 fs_info->delalloc_batch);
202 
203 	if (dio)
204 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
205 
206 	/* one ref for the tree */
207 	refcount_set(&entry->refs, 1);
208 	init_waitqueue_head(&entry->wait);
209 	INIT_LIST_HEAD(&entry->list);
210 	INIT_LIST_HEAD(&entry->log_list);
211 	INIT_LIST_HEAD(&entry->root_extent_list);
212 	INIT_LIST_HEAD(&entry->work_list);
213 	init_completion(&entry->completion);
214 
215 	trace_btrfs_ordered_extent_add(inode, entry);
216 
217 	spin_lock_irq(&tree->lock);
218 	node = tree_insert(&tree->tree, file_offset,
219 			   &entry->rb_node);
220 	if (node)
221 		btrfs_panic(fs_info, -EEXIST,
222 				"inconsistency in ordered tree at offset %llu",
223 				file_offset);
224 	spin_unlock_irq(&tree->lock);
225 
226 	spin_lock(&root->ordered_extent_lock);
227 	list_add_tail(&entry->root_extent_list,
228 		      &root->ordered_extents);
229 	root->nr_ordered_extents++;
230 	if (root->nr_ordered_extents == 1) {
231 		spin_lock(&fs_info->ordered_root_lock);
232 		BUG_ON(!list_empty(&root->ordered_root));
233 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
234 		spin_unlock(&fs_info->ordered_root_lock);
235 	}
236 	spin_unlock(&root->ordered_extent_lock);
237 
238 	/*
239 	 * We don't need the count_max_extents here, we can assume that all of
240 	 * that work has been done at higher layers, so this is truly the
241 	 * smallest the extent is going to get.
242 	 */
243 	spin_lock(&inode->lock);
244 	btrfs_mod_outstanding_extents(inode, 1);
245 	spin_unlock(&inode->lock);
246 
247 	return 0;
248 }
249 
250 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251 			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
252 			     int type)
253 {
254 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
255 	       type == BTRFS_ORDERED_NOCOW ||
256 	       type == BTRFS_ORDERED_PREALLOC);
257 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258 					  num_bytes, disk_num_bytes, type, 0,
259 					  BTRFS_COMPRESS_NONE);
260 }
261 
262 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263 				 u64 disk_bytenr, u64 num_bytes,
264 				 u64 disk_num_bytes, int type)
265 {
266 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
267 	       type == BTRFS_ORDERED_NOCOW ||
268 	       type == BTRFS_ORDERED_PREALLOC);
269 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270 					  num_bytes, disk_num_bytes, type, 1,
271 					  BTRFS_COMPRESS_NONE);
272 }
273 
274 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275 				      u64 disk_bytenr, u64 num_bytes,
276 				      u64 disk_num_bytes, int compress_type)
277 {
278 	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280 					  num_bytes, disk_num_bytes,
281 					  BTRFS_ORDERED_COMPRESSED, 0,
282 					  compress_type);
283 }
284 
285 /*
286  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287  * when an ordered extent is finished.  If the list covers more than one
288  * ordered extent, it is split across multiples.
289  */
290 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291 			   struct btrfs_ordered_sum *sum)
292 {
293 	struct btrfs_ordered_inode_tree *tree;
294 
295 	tree = &BTRFS_I(entry->inode)->ordered_tree;
296 	spin_lock_irq(&tree->lock);
297 	list_add_tail(&sum->list, &entry->list);
298 	spin_unlock_irq(&tree->lock);
299 }
300 
301 /*
302  * Mark all ordered extents io inside the specified range finished.
303  *
304  * @page:	 The invovled page for the opeartion.
305  *		 For uncompressed buffered IO, the page status also needs to be
306  *		 updated to indicate whether the pending ordered io is finished.
307  *		 Can be NULL for direct IO and compressed write.
308  *		 For these cases, callers are ensured they won't execute the
309  *		 endio function twice.
310  * @finish_func: The function to be executed when all the IO of an ordered
311  *		 extent are finished.
312  *
313  * This function is called for endio, thus the range must have ordered
314  * extent(s) coveri it.
315  */
316 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
317 				struct page *page, u64 file_offset,
318 				u64 num_bytes, btrfs_func_t finish_func,
319 				bool uptodate)
320 {
321 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
323 	struct btrfs_workqueue *wq;
324 	struct rb_node *node;
325 	struct btrfs_ordered_extent *entry = NULL;
326 	unsigned long flags;
327 	u64 cur = file_offset;
328 
329 	if (btrfs_is_free_space_inode(inode))
330 		wq = fs_info->endio_freespace_worker;
331 	else
332 		wq = fs_info->endio_write_workers;
333 
334 	if (page)
335 		ASSERT(page->mapping && page_offset(page) <= file_offset &&
336 		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337 
338 	spin_lock_irqsave(&tree->lock, flags);
339 	while (cur < file_offset + num_bytes) {
340 		u64 entry_end;
341 		u64 end;
342 		u32 len;
343 
344 		node = tree_search(tree, cur);
345 		/* No ordered extents at all */
346 		if (!node)
347 			break;
348 
349 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
350 		entry_end = entry->file_offset + entry->num_bytes;
351 		/*
352 		 * |<-- OE --->|  |
353 		 *		  cur
354 		 * Go to next OE.
355 		 */
356 		if (cur >= entry_end) {
357 			node = rb_next(node);
358 			/* No more ordered extents, exit */
359 			if (!node)
360 				break;
361 			entry = rb_entry(node, struct btrfs_ordered_extent,
362 					 rb_node);
363 
364 			/* Go to next ordered extent and continue */
365 			cur = entry->file_offset;
366 			continue;
367 		}
368 		/*
369 		 * |	|<--- OE --->|
370 		 * cur
371 		 * Go to the start of OE.
372 		 */
373 		if (cur < entry->file_offset) {
374 			cur = entry->file_offset;
375 			continue;
376 		}
377 
378 		/*
379 		 * Now we are definitely inside one ordered extent.
380 		 *
381 		 * |<--- OE --->|
382 		 *	|
383 		 *	cur
384 		 */
385 		end = min(entry->file_offset + entry->num_bytes,
386 			  file_offset + num_bytes) - 1;
387 		ASSERT(end + 1 - cur < U32_MAX);
388 		len = end + 1 - cur;
389 
390 		if (page) {
391 			/*
392 			 * Ordered (Private2) bit indicates whether we still
393 			 * have pending io unfinished for the ordered extent.
394 			 *
395 			 * If there's no such bit, we need to skip to next range.
396 			 */
397 			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398 				cur += len;
399 				continue;
400 			}
401 			btrfs_page_clear_ordered(fs_info, page, cur, len);
402 		}
403 
404 		/* Now we're fine to update the accounting */
405 		if (unlikely(len > entry->bytes_left)) {
406 			WARN_ON(1);
407 			btrfs_crit(fs_info,
408 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
409 				   inode->root->root_key.objectid,
410 				   btrfs_ino(inode),
411 				   entry->file_offset,
412 				   entry->num_bytes,
413 				   len, entry->bytes_left);
414 			entry->bytes_left = 0;
415 		} else {
416 			entry->bytes_left -= len;
417 		}
418 
419 		if (!uptodate)
420 			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421 
422 		/*
423 		 * All the IO of the ordered extent is finished, we need to queue
424 		 * the finish_func to be executed.
425 		 */
426 		if (entry->bytes_left == 0) {
427 			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
428 			cond_wake_up(&entry->wait);
429 			refcount_inc(&entry->refs);
430 			spin_unlock_irqrestore(&tree->lock, flags);
431 			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
432 			btrfs_queue_work(wq, &entry->work);
433 			spin_lock_irqsave(&tree->lock, flags);
434 		}
435 		cur += len;
436 	}
437 	spin_unlock_irqrestore(&tree->lock, flags);
438 }
439 
440 /*
441  * Finish IO for one ordered extent across a given range.  The range can only
442  * contain one ordered extent.
443  *
444  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
445  *               search and use the ordered extent directly.
446  * 		 Will be also used to store the finished ordered extent.
447  * @file_offset: File offset for the finished IO
448  * @io_size:	 Length of the finish IO range
449  * @uptodate:	 If the IO finishes without problem
450  *
451  * Return true if the ordered extent is finished in the range, and update
452  * @cached.
453  * Return false otherwise.
454  *
455  * NOTE: The range can NOT cross multiple ordered extents.
456  * Thus caller should ensure the range doesn't cross ordered extents.
457  */
458 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
459 				    struct btrfs_ordered_extent **cached,
460 				    u64 file_offset, u64 io_size, int uptodate)
461 {
462 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
463 	struct rb_node *node;
464 	struct btrfs_ordered_extent *entry = NULL;
465 	unsigned long flags;
466 	bool finished = false;
467 
468 	spin_lock_irqsave(&tree->lock, flags);
469 	if (cached && *cached) {
470 		entry = *cached;
471 		goto have_entry;
472 	}
473 
474 	node = tree_search(tree, file_offset);
475 	if (!node)
476 		goto out;
477 
478 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
479 have_entry:
480 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
481 		goto out;
482 
483 	if (io_size > entry->bytes_left)
484 		btrfs_crit(inode->root->fs_info,
485 			   "bad ordered accounting left %llu size %llu",
486 		       entry->bytes_left, io_size);
487 
488 	entry->bytes_left -= io_size;
489 	if (!uptodate)
490 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
491 
492 	if (entry->bytes_left == 0) {
493 		/*
494 		 * Ensure only one caller can set the flag and finished_ret
495 		 * accordingly
496 		 */
497 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
498 		/* test_and_set_bit implies a barrier */
499 		cond_wake_up_nomb(&entry->wait);
500 	}
501 out:
502 	if (finished && cached && entry) {
503 		*cached = entry;
504 		refcount_inc(&entry->refs);
505 	}
506 	spin_unlock_irqrestore(&tree->lock, flags);
507 	return finished;
508 }
509 
510 /*
511  * used to drop a reference on an ordered extent.  This will free
512  * the extent if the last reference is dropped
513  */
514 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
515 {
516 	struct list_head *cur;
517 	struct btrfs_ordered_sum *sum;
518 
519 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
520 
521 	if (refcount_dec_and_test(&entry->refs)) {
522 		ASSERT(list_empty(&entry->root_extent_list));
523 		ASSERT(list_empty(&entry->log_list));
524 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
525 		if (entry->inode)
526 			btrfs_add_delayed_iput(entry->inode);
527 		while (!list_empty(&entry->list)) {
528 			cur = entry->list.next;
529 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
530 			list_del(&sum->list);
531 			kvfree(sum);
532 		}
533 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
534 	}
535 }
536 
537 /*
538  * remove an ordered extent from the tree.  No references are dropped
539  * and waiters are woken up.
540  */
541 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
542 				 struct btrfs_ordered_extent *entry)
543 {
544 	struct btrfs_ordered_inode_tree *tree;
545 	struct btrfs_root *root = btrfs_inode->root;
546 	struct btrfs_fs_info *fs_info = root->fs_info;
547 	struct rb_node *node;
548 	bool pending;
549 
550 	/* This is paired with btrfs_add_ordered_extent. */
551 	spin_lock(&btrfs_inode->lock);
552 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
553 	spin_unlock(&btrfs_inode->lock);
554 	if (root != fs_info->tree_root)
555 		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
556 						false);
557 
558 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
559 				 fs_info->delalloc_batch);
560 
561 	tree = &btrfs_inode->ordered_tree;
562 	spin_lock_irq(&tree->lock);
563 	node = &entry->rb_node;
564 	rb_erase(node, &tree->tree);
565 	RB_CLEAR_NODE(node);
566 	if (tree->last == node)
567 		tree->last = NULL;
568 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
569 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
570 	spin_unlock_irq(&tree->lock);
571 
572 	/*
573 	 * The current running transaction is waiting on us, we need to let it
574 	 * know that we're complete and wake it up.
575 	 */
576 	if (pending) {
577 		struct btrfs_transaction *trans;
578 
579 		/*
580 		 * The checks for trans are just a formality, it should be set,
581 		 * but if it isn't we don't want to deref/assert under the spin
582 		 * lock, so be nice and check if trans is set, but ASSERT() so
583 		 * if it isn't set a developer will notice.
584 		 */
585 		spin_lock(&fs_info->trans_lock);
586 		trans = fs_info->running_transaction;
587 		if (trans)
588 			refcount_inc(&trans->use_count);
589 		spin_unlock(&fs_info->trans_lock);
590 
591 		ASSERT(trans);
592 		if (trans) {
593 			if (atomic_dec_and_test(&trans->pending_ordered))
594 				wake_up(&trans->pending_wait);
595 			btrfs_put_transaction(trans);
596 		}
597 	}
598 
599 	spin_lock(&root->ordered_extent_lock);
600 	list_del_init(&entry->root_extent_list);
601 	root->nr_ordered_extents--;
602 
603 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
604 
605 	if (!root->nr_ordered_extents) {
606 		spin_lock(&fs_info->ordered_root_lock);
607 		BUG_ON(list_empty(&root->ordered_root));
608 		list_del_init(&root->ordered_root);
609 		spin_unlock(&fs_info->ordered_root_lock);
610 	}
611 	spin_unlock(&root->ordered_extent_lock);
612 	wake_up(&entry->wait);
613 }
614 
615 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
616 {
617 	struct btrfs_ordered_extent *ordered;
618 
619 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
620 	btrfs_start_ordered_extent(ordered, 1);
621 	complete(&ordered->completion);
622 }
623 
624 /*
625  * wait for all the ordered extents in a root.  This is done when balancing
626  * space between drives.
627  */
628 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
629 			       const u64 range_start, const u64 range_len)
630 {
631 	struct btrfs_fs_info *fs_info = root->fs_info;
632 	LIST_HEAD(splice);
633 	LIST_HEAD(skipped);
634 	LIST_HEAD(works);
635 	struct btrfs_ordered_extent *ordered, *next;
636 	u64 count = 0;
637 	const u64 range_end = range_start + range_len;
638 
639 	mutex_lock(&root->ordered_extent_mutex);
640 	spin_lock(&root->ordered_extent_lock);
641 	list_splice_init(&root->ordered_extents, &splice);
642 	while (!list_empty(&splice) && nr) {
643 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
644 					   root_extent_list);
645 
646 		if (range_end <= ordered->disk_bytenr ||
647 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
648 			list_move_tail(&ordered->root_extent_list, &skipped);
649 			cond_resched_lock(&root->ordered_extent_lock);
650 			continue;
651 		}
652 
653 		list_move_tail(&ordered->root_extent_list,
654 			       &root->ordered_extents);
655 		refcount_inc(&ordered->refs);
656 		spin_unlock(&root->ordered_extent_lock);
657 
658 		btrfs_init_work(&ordered->flush_work,
659 				btrfs_run_ordered_extent_work, NULL, NULL);
660 		list_add_tail(&ordered->work_list, &works);
661 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
662 
663 		cond_resched();
664 		spin_lock(&root->ordered_extent_lock);
665 		if (nr != U64_MAX)
666 			nr--;
667 		count++;
668 	}
669 	list_splice_tail(&skipped, &root->ordered_extents);
670 	list_splice_tail(&splice, &root->ordered_extents);
671 	spin_unlock(&root->ordered_extent_lock);
672 
673 	list_for_each_entry_safe(ordered, next, &works, work_list) {
674 		list_del_init(&ordered->work_list);
675 		wait_for_completion(&ordered->completion);
676 		btrfs_put_ordered_extent(ordered);
677 		cond_resched();
678 	}
679 	mutex_unlock(&root->ordered_extent_mutex);
680 
681 	return count;
682 }
683 
684 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
685 			     const u64 range_start, const u64 range_len)
686 {
687 	struct btrfs_root *root;
688 	struct list_head splice;
689 	u64 done;
690 
691 	INIT_LIST_HEAD(&splice);
692 
693 	mutex_lock(&fs_info->ordered_operations_mutex);
694 	spin_lock(&fs_info->ordered_root_lock);
695 	list_splice_init(&fs_info->ordered_roots, &splice);
696 	while (!list_empty(&splice) && nr) {
697 		root = list_first_entry(&splice, struct btrfs_root,
698 					ordered_root);
699 		root = btrfs_grab_root(root);
700 		BUG_ON(!root);
701 		list_move_tail(&root->ordered_root,
702 			       &fs_info->ordered_roots);
703 		spin_unlock(&fs_info->ordered_root_lock);
704 
705 		done = btrfs_wait_ordered_extents(root, nr,
706 						  range_start, range_len);
707 		btrfs_put_root(root);
708 
709 		spin_lock(&fs_info->ordered_root_lock);
710 		if (nr != U64_MAX) {
711 			nr -= done;
712 		}
713 	}
714 	list_splice_tail(&splice, &fs_info->ordered_roots);
715 	spin_unlock(&fs_info->ordered_root_lock);
716 	mutex_unlock(&fs_info->ordered_operations_mutex);
717 }
718 
719 /*
720  * Used to start IO or wait for a given ordered extent to finish.
721  *
722  * If wait is one, this effectively waits on page writeback for all the pages
723  * in the extent, and it waits on the io completion code to insert
724  * metadata into the btree corresponding to the extent
725  */
726 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
727 {
728 	u64 start = entry->file_offset;
729 	u64 end = start + entry->num_bytes - 1;
730 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
731 
732 	trace_btrfs_ordered_extent_start(inode, entry);
733 
734 	/*
735 	 * pages in the range can be dirty, clean or writeback.  We
736 	 * start IO on any dirty ones so the wait doesn't stall waiting
737 	 * for the flusher thread to find them
738 	 */
739 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
740 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
741 	if (wait) {
742 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
743 						 &entry->flags));
744 	}
745 }
746 
747 /*
748  * Used to wait on ordered extents across a large range of bytes.
749  */
750 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
751 {
752 	int ret = 0;
753 	int ret_wb = 0;
754 	u64 end;
755 	u64 orig_end;
756 	struct btrfs_ordered_extent *ordered;
757 
758 	if (start + len < start) {
759 		orig_end = INT_LIMIT(loff_t);
760 	} else {
761 		orig_end = start + len - 1;
762 		if (orig_end > INT_LIMIT(loff_t))
763 			orig_end = INT_LIMIT(loff_t);
764 	}
765 
766 	/* start IO across the range first to instantiate any delalloc
767 	 * extents
768 	 */
769 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
770 	if (ret)
771 		return ret;
772 
773 	/*
774 	 * If we have a writeback error don't return immediately. Wait first
775 	 * for any ordered extents that haven't completed yet. This is to make
776 	 * sure no one can dirty the same page ranges and call writepages()
777 	 * before the ordered extents complete - to avoid failures (-EEXIST)
778 	 * when adding the new ordered extents to the ordered tree.
779 	 */
780 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
781 
782 	end = orig_end;
783 	while (1) {
784 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
785 		if (!ordered)
786 			break;
787 		if (ordered->file_offset > orig_end) {
788 			btrfs_put_ordered_extent(ordered);
789 			break;
790 		}
791 		if (ordered->file_offset + ordered->num_bytes <= start) {
792 			btrfs_put_ordered_extent(ordered);
793 			break;
794 		}
795 		btrfs_start_ordered_extent(ordered, 1);
796 		end = ordered->file_offset;
797 		/*
798 		 * If the ordered extent had an error save the error but don't
799 		 * exit without waiting first for all other ordered extents in
800 		 * the range to complete.
801 		 */
802 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
803 			ret = -EIO;
804 		btrfs_put_ordered_extent(ordered);
805 		if (end == 0 || end == start)
806 			break;
807 		end--;
808 	}
809 	return ret_wb ? ret_wb : ret;
810 }
811 
812 /*
813  * find an ordered extent corresponding to file_offset.  return NULL if
814  * nothing is found, otherwise take a reference on the extent and return it
815  */
816 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
817 							 u64 file_offset)
818 {
819 	struct btrfs_ordered_inode_tree *tree;
820 	struct rb_node *node;
821 	struct btrfs_ordered_extent *entry = NULL;
822 	unsigned long flags;
823 
824 	tree = &inode->ordered_tree;
825 	spin_lock_irqsave(&tree->lock, flags);
826 	node = tree_search(tree, file_offset);
827 	if (!node)
828 		goto out;
829 
830 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
831 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
832 		entry = NULL;
833 	if (entry)
834 		refcount_inc(&entry->refs);
835 out:
836 	spin_unlock_irqrestore(&tree->lock, flags);
837 	return entry;
838 }
839 
840 /* Since the DIO code tries to lock a wide area we need to look for any ordered
841  * extents that exist in the range, rather than just the start of the range.
842  */
843 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
844 		struct btrfs_inode *inode, u64 file_offset, u64 len)
845 {
846 	struct btrfs_ordered_inode_tree *tree;
847 	struct rb_node *node;
848 	struct btrfs_ordered_extent *entry = NULL;
849 
850 	tree = &inode->ordered_tree;
851 	spin_lock_irq(&tree->lock);
852 	node = tree_search(tree, file_offset);
853 	if (!node) {
854 		node = tree_search(tree, file_offset + len);
855 		if (!node)
856 			goto out;
857 	}
858 
859 	while (1) {
860 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861 		if (range_overlaps(entry, file_offset, len))
862 			break;
863 
864 		if (entry->file_offset >= file_offset + len) {
865 			entry = NULL;
866 			break;
867 		}
868 		entry = NULL;
869 		node = rb_next(node);
870 		if (!node)
871 			break;
872 	}
873 out:
874 	if (entry)
875 		refcount_inc(&entry->refs);
876 	spin_unlock_irq(&tree->lock);
877 	return entry;
878 }
879 
880 /*
881  * Adds all ordered extents to the given list. The list ends up sorted by the
882  * file_offset of the ordered extents.
883  */
884 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
885 					   struct list_head *list)
886 {
887 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
888 	struct rb_node *n;
889 
890 	ASSERT(inode_is_locked(&inode->vfs_inode));
891 
892 	spin_lock_irq(&tree->lock);
893 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
894 		struct btrfs_ordered_extent *ordered;
895 
896 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
897 
898 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
899 			continue;
900 
901 		ASSERT(list_empty(&ordered->log_list));
902 		list_add_tail(&ordered->log_list, list);
903 		refcount_inc(&ordered->refs);
904 	}
905 	spin_unlock_irq(&tree->lock);
906 }
907 
908 /*
909  * lookup and return any extent before 'file_offset'.  NULL is returned
910  * if none is found
911  */
912 struct btrfs_ordered_extent *
913 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
914 {
915 	struct btrfs_ordered_inode_tree *tree;
916 	struct rb_node *node;
917 	struct btrfs_ordered_extent *entry = NULL;
918 
919 	tree = &inode->ordered_tree;
920 	spin_lock_irq(&tree->lock);
921 	node = tree_search(tree, file_offset);
922 	if (!node)
923 		goto out;
924 
925 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
926 	refcount_inc(&entry->refs);
927 out:
928 	spin_unlock_irq(&tree->lock);
929 	return entry;
930 }
931 
932 /*
933  * Lookup the first ordered extent that overlaps the range
934  * [@file_offset, @file_offset + @len).
935  *
936  * The difference between this and btrfs_lookup_first_ordered_extent() is
937  * that this one won't return any ordered extent that does not overlap the range.
938  * And the difference against btrfs_lookup_ordered_extent() is, this function
939  * ensures the first ordered extent gets returned.
940  */
941 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
942 			struct btrfs_inode *inode, u64 file_offset, u64 len)
943 {
944 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
945 	struct rb_node *node;
946 	struct rb_node *cur;
947 	struct rb_node *prev;
948 	struct rb_node *next;
949 	struct btrfs_ordered_extent *entry = NULL;
950 
951 	spin_lock_irq(&tree->lock);
952 	node = tree->tree.rb_node;
953 	/*
954 	 * Here we don't want to use tree_search() which will use tree->last
955 	 * and screw up the search order.
956 	 * And __tree_search() can't return the adjacent ordered extents
957 	 * either, thus here we do our own search.
958 	 */
959 	while (node) {
960 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
961 
962 		if (file_offset < entry->file_offset) {
963 			node = node->rb_left;
964 		} else if (file_offset >= entry_end(entry)) {
965 			node = node->rb_right;
966 		} else {
967 			/*
968 			 * Direct hit, got an ordered extent that starts at
969 			 * @file_offset
970 			 */
971 			goto out;
972 		}
973 	}
974 	if (!entry) {
975 		/* Empty tree */
976 		goto out;
977 	}
978 
979 	cur = &entry->rb_node;
980 	/* We got an entry around @file_offset, check adjacent entries */
981 	if (entry->file_offset < file_offset) {
982 		prev = cur;
983 		next = rb_next(cur);
984 	} else {
985 		prev = rb_prev(cur);
986 		next = cur;
987 	}
988 	if (prev) {
989 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
990 		if (range_overlaps(entry, file_offset, len))
991 			goto out;
992 	}
993 	if (next) {
994 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
995 		if (range_overlaps(entry, file_offset, len))
996 			goto out;
997 	}
998 	/* No ordered extent in the range */
999 	entry = NULL;
1000 out:
1001 	if (entry)
1002 		refcount_inc(&entry->refs);
1003 	spin_unlock_irq(&tree->lock);
1004 	return entry;
1005 }
1006 
1007 /*
1008  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1009  * ordered extents in it are run to completion.
1010  *
1011  * @inode:        Inode whose ordered tree is to be searched
1012  * @start:        Beginning of range to flush
1013  * @end:          Last byte of range to lock
1014  * @cached_state: If passed, will return the extent state responsible for the
1015  * locked range. It's the caller's responsibility to free the cached state.
1016  *
1017  * This function always returns with the given range locked, ensuring after it's
1018  * called no order extent can be pending.
1019  */
1020 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021 					u64 end,
1022 					struct extent_state **cached_state)
1023 {
1024 	struct btrfs_ordered_extent *ordered;
1025 	struct extent_state *cache = NULL;
1026 	struct extent_state **cachedp = &cache;
1027 
1028 	if (cached_state)
1029 		cachedp = cached_state;
1030 
1031 	while (1) {
1032 		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033 		ordered = btrfs_lookup_ordered_range(inode, start,
1034 						     end - start + 1);
1035 		if (!ordered) {
1036 			/*
1037 			 * If no external cached_state has been passed then
1038 			 * decrement the extra ref taken for cachedp since we
1039 			 * aren't exposing it outside of this function
1040 			 */
1041 			if (!cached_state)
1042 				refcount_dec(&cache->refs);
1043 			break;
1044 		}
1045 		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046 		btrfs_start_ordered_extent(ordered, 1);
1047 		btrfs_put_ordered_extent(ordered);
1048 	}
1049 }
1050 
1051 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1052 				u64 len)
1053 {
1054 	struct inode *inode = ordered->inode;
1055 	u64 file_offset = ordered->file_offset + pos;
1056 	u64 disk_bytenr = ordered->disk_bytenr + pos;
1057 	u64 num_bytes = len;
1058 	u64 disk_num_bytes = len;
1059 	int type;
1060 	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1061 	int compress_type = ordered->compress_type;
1062 	unsigned long weight;
1063 	int ret;
1064 
1065 	weight = hweight_long(flags_masked);
1066 	WARN_ON_ONCE(weight > 1);
1067 	if (!weight)
1068 		type = 0;
1069 	else
1070 		type = __ffs(flags_masked);
1071 
1072 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1073 		WARN_ON_ONCE(1);
1074 		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1075 				file_offset, disk_bytenr, num_bytes,
1076 				disk_num_bytes, compress_type);
1077 	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1078 		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1079 				disk_bytenr, num_bytes, disk_num_bytes, type);
1080 	} else {
1081 		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1082 				disk_bytenr, num_bytes, disk_num_bytes, type);
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1089 				u64 post)
1090 {
1091 	struct inode *inode = ordered->inode;
1092 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1093 	struct rb_node *node;
1094 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095 	int ret = 0;
1096 
1097 	spin_lock_irq(&tree->lock);
1098 	/* Remove from tree once */
1099 	node = &ordered->rb_node;
1100 	rb_erase(node, &tree->tree);
1101 	RB_CLEAR_NODE(node);
1102 	if (tree->last == node)
1103 		tree->last = NULL;
1104 
1105 	ordered->file_offset += pre;
1106 	ordered->disk_bytenr += pre;
1107 	ordered->num_bytes -= (pre + post);
1108 	ordered->disk_num_bytes -= (pre + post);
1109 	ordered->bytes_left -= (pre + post);
1110 
1111 	/* Re-insert the node */
1112 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1113 	if (node)
1114 		btrfs_panic(fs_info, -EEXIST,
1115 			"zoned: inconsistency in ordered tree at offset %llu",
1116 			    ordered->file_offset);
1117 
1118 	spin_unlock_irq(&tree->lock);
1119 
1120 	if (pre)
1121 		ret = clone_ordered_extent(ordered, 0, pre);
1122 	if (ret == 0 && post)
1123 		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1124 					   post);
1125 
1126 	return ret;
1127 }
1128 
1129 int __init ordered_data_init(void)
1130 {
1131 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1132 				     sizeof(struct btrfs_ordered_extent), 0,
1133 				     SLAB_MEM_SPREAD,
1134 				     NULL);
1135 	if (!btrfs_ordered_extent_cache)
1136 		return -ENOMEM;
1137 
1138 	return 0;
1139 }
1140 
1141 void __cold ordered_data_exit(void)
1142 {
1143 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1144 }
1145