1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 20 static struct kmem_cache *btrfs_ordered_extent_cache; 21 22 static u64 entry_end(struct btrfs_ordered_extent *entry) 23 { 24 if (entry->file_offset + entry->num_bytes < entry->file_offset) 25 return (u64)-1; 26 return entry->file_offset + entry->num_bytes; 27 } 28 29 /* returns NULL if the insertion worked, or it returns the node it did find 30 * in the tree 31 */ 32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 33 struct rb_node *node) 34 { 35 struct rb_node **p = &root->rb_node; 36 struct rb_node *parent = NULL; 37 struct btrfs_ordered_extent *entry; 38 39 while (*p) { 40 parent = *p; 41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 42 43 if (file_offset < entry->file_offset) 44 p = &(*p)->rb_left; 45 else if (file_offset >= entry_end(entry)) 46 p = &(*p)->rb_right; 47 else 48 return parent; 49 } 50 51 rb_link_node(node, parent, p); 52 rb_insert_color(node, root); 53 return NULL; 54 } 55 56 /* 57 * look for a given offset in the tree, and if it can't be found return the 58 * first lesser offset 59 */ 60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 61 struct rb_node **prev_ret) 62 { 63 struct rb_node *n = root->rb_node; 64 struct rb_node *prev = NULL; 65 struct rb_node *test; 66 struct btrfs_ordered_extent *entry; 67 struct btrfs_ordered_extent *prev_entry = NULL; 68 69 while (n) { 70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 71 prev = n; 72 prev_entry = entry; 73 74 if (file_offset < entry->file_offset) 75 n = n->rb_left; 76 else if (file_offset >= entry_end(entry)) 77 n = n->rb_right; 78 else 79 return n; 80 } 81 if (!prev_ret) 82 return NULL; 83 84 while (prev && file_offset >= entry_end(prev_entry)) { 85 test = rb_next(prev); 86 if (!test) 87 break; 88 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 89 rb_node); 90 if (file_offset < entry_end(prev_entry)) 91 break; 92 93 prev = test; 94 } 95 if (prev) 96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 97 rb_node); 98 while (prev && file_offset < entry_end(prev_entry)) { 99 test = rb_prev(prev); 100 if (!test) 101 break; 102 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 103 rb_node); 104 prev = test; 105 } 106 *prev_ret = prev; 107 return NULL; 108 } 109 110 /* 111 * helper to check if a given offset is inside a given entry 112 */ 113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 114 { 115 if (file_offset < entry->file_offset || 116 entry->file_offset + entry->num_bytes <= file_offset) 117 return 0; 118 return 1; 119 } 120 121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 122 u64 len) 123 { 124 if (file_offset + len <= entry->file_offset || 125 entry->file_offset + entry->num_bytes <= file_offset) 126 return 0; 127 return 1; 128 } 129 130 /* 131 * look find the first ordered struct that has this offset, otherwise 132 * the first one less than this offset 133 */ 134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 135 u64 file_offset) 136 { 137 struct rb_root *root = &tree->tree; 138 struct rb_node *prev = NULL; 139 struct rb_node *ret; 140 struct btrfs_ordered_extent *entry; 141 142 if (tree->last) { 143 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 144 rb_node); 145 if (offset_in_entry(entry, file_offset)) 146 return tree->last; 147 } 148 ret = __tree_search(root, file_offset, &prev); 149 if (!ret) 150 ret = prev; 151 if (ret) 152 tree->last = ret; 153 return ret; 154 } 155 156 /* 157 * Allocate and add a new ordered_extent into the per-inode tree. 158 * 159 * The tree is given a single reference on the ordered extent that was 160 * inserted. 161 */ 162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 163 u64 disk_bytenr, u64 num_bytes, 164 u64 disk_num_bytes, int type, int dio, 165 int compress_type) 166 { 167 struct btrfs_root *root = inode->root; 168 struct btrfs_fs_info *fs_info = root->fs_info; 169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 170 struct rb_node *node; 171 struct btrfs_ordered_extent *entry; 172 int ret; 173 174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { 175 /* For nocow write, we can release the qgroup rsv right now */ 176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 177 if (ret < 0) 178 return ret; 179 ret = 0; 180 } else { 181 /* 182 * The ordered extent has reserved qgroup space, release now 183 * and pass the reserved number for qgroup_record to free. 184 */ 185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 186 if (ret < 0) 187 return ret; 188 } 189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 190 if (!entry) 191 return -ENOMEM; 192 193 entry->file_offset = file_offset; 194 entry->disk_bytenr = disk_bytenr; 195 entry->num_bytes = num_bytes; 196 entry->disk_num_bytes = disk_num_bytes; 197 entry->bytes_left = num_bytes; 198 entry->inode = igrab(&inode->vfs_inode); 199 entry->compress_type = compress_type; 200 entry->truncated_len = (u64)-1; 201 entry->qgroup_rsv = ret; 202 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 203 set_bit(type, &entry->flags); 204 205 if (dio) { 206 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes, 207 fs_info->delalloc_batch); 208 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 209 } 210 211 /* one ref for the tree */ 212 refcount_set(&entry->refs, 1); 213 init_waitqueue_head(&entry->wait); 214 INIT_LIST_HEAD(&entry->list); 215 INIT_LIST_HEAD(&entry->log_list); 216 INIT_LIST_HEAD(&entry->root_extent_list); 217 INIT_LIST_HEAD(&entry->work_list); 218 init_completion(&entry->completion); 219 220 trace_btrfs_ordered_extent_add(inode, entry); 221 222 spin_lock_irq(&tree->lock); 223 node = tree_insert(&tree->tree, file_offset, 224 &entry->rb_node); 225 if (node) 226 btrfs_panic(fs_info, -EEXIST, 227 "inconsistency in ordered tree at offset %llu", 228 file_offset); 229 spin_unlock_irq(&tree->lock); 230 231 spin_lock(&root->ordered_extent_lock); 232 list_add_tail(&entry->root_extent_list, 233 &root->ordered_extents); 234 root->nr_ordered_extents++; 235 if (root->nr_ordered_extents == 1) { 236 spin_lock(&fs_info->ordered_root_lock); 237 BUG_ON(!list_empty(&root->ordered_root)); 238 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 239 spin_unlock(&fs_info->ordered_root_lock); 240 } 241 spin_unlock(&root->ordered_extent_lock); 242 243 /* 244 * We don't need the count_max_extents here, we can assume that all of 245 * that work has been done at higher layers, so this is truly the 246 * smallest the extent is going to get. 247 */ 248 spin_lock(&inode->lock); 249 btrfs_mod_outstanding_extents(inode, 1); 250 spin_unlock(&inode->lock); 251 252 return 0; 253 } 254 255 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 256 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, 257 int type) 258 { 259 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 260 num_bytes, disk_num_bytes, type, 0, 261 BTRFS_COMPRESS_NONE); 262 } 263 264 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, 265 u64 disk_bytenr, u64 num_bytes, 266 u64 disk_num_bytes, int type) 267 { 268 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 269 num_bytes, disk_num_bytes, type, 1, 270 BTRFS_COMPRESS_NONE); 271 } 272 273 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, 274 u64 disk_bytenr, u64 num_bytes, 275 u64 disk_num_bytes, int type, 276 int compress_type) 277 { 278 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 279 num_bytes, disk_num_bytes, type, 0, 280 compress_type); 281 } 282 283 /* 284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 285 * when an ordered extent is finished. If the list covers more than one 286 * ordered extent, it is split across multiples. 287 */ 288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 289 struct btrfs_ordered_sum *sum) 290 { 291 struct btrfs_ordered_inode_tree *tree; 292 293 tree = &BTRFS_I(entry->inode)->ordered_tree; 294 spin_lock_irq(&tree->lock); 295 list_add_tail(&sum->list, &entry->list); 296 spin_unlock_irq(&tree->lock); 297 } 298 299 /* 300 * this is used to account for finished IO across a given range 301 * of the file. The IO may span ordered extents. If 302 * a given ordered_extent is completely done, 1 is returned, otherwise 303 * 0. 304 * 305 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 306 * to make sure this function only returns 1 once for a given ordered extent. 307 * 308 * file_offset is updated to one byte past the range that is recorded as 309 * complete. This allows you to walk forward in the file. 310 */ 311 int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, 312 struct btrfs_ordered_extent **cached, 313 u64 *file_offset, u64 io_size, int uptodate) 314 { 315 struct btrfs_fs_info *fs_info = inode->root->fs_info; 316 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 317 struct rb_node *node; 318 struct btrfs_ordered_extent *entry = NULL; 319 int ret; 320 unsigned long flags; 321 u64 dec_end; 322 u64 dec_start; 323 u64 to_dec; 324 325 spin_lock_irqsave(&tree->lock, flags); 326 node = tree_search(tree, *file_offset); 327 if (!node) { 328 ret = 1; 329 goto out; 330 } 331 332 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 333 if (!offset_in_entry(entry, *file_offset)) { 334 ret = 1; 335 goto out; 336 } 337 338 dec_start = max(*file_offset, entry->file_offset); 339 dec_end = min(*file_offset + io_size, 340 entry->file_offset + entry->num_bytes); 341 *file_offset = dec_end; 342 if (dec_start > dec_end) { 343 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 344 dec_start, dec_end); 345 } 346 to_dec = dec_end - dec_start; 347 if (to_dec > entry->bytes_left) { 348 btrfs_crit(fs_info, 349 "bad ordered accounting left %llu size %llu", 350 entry->bytes_left, to_dec); 351 } 352 entry->bytes_left -= to_dec; 353 if (!uptodate) 354 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 355 356 if (entry->bytes_left == 0) { 357 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 358 /* test_and_set_bit implies a barrier */ 359 cond_wake_up_nomb(&entry->wait); 360 } else { 361 ret = 1; 362 } 363 out: 364 if (!ret && cached && entry) { 365 *cached = entry; 366 refcount_inc(&entry->refs); 367 } 368 spin_unlock_irqrestore(&tree->lock, flags); 369 return ret == 0; 370 } 371 372 /* 373 * this is used to account for finished IO across a given range 374 * of the file. The IO should not span ordered extents. If 375 * a given ordered_extent is completely done, 1 is returned, otherwise 376 * 0. 377 * 378 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 379 * to make sure this function only returns 1 once for a given ordered extent. 380 */ 381 int btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 382 struct btrfs_ordered_extent **cached, 383 u64 file_offset, u64 io_size, int uptodate) 384 { 385 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 386 struct rb_node *node; 387 struct btrfs_ordered_extent *entry = NULL; 388 unsigned long flags; 389 int ret; 390 391 spin_lock_irqsave(&tree->lock, flags); 392 if (cached && *cached) { 393 entry = *cached; 394 goto have_entry; 395 } 396 397 node = tree_search(tree, file_offset); 398 if (!node) { 399 ret = 1; 400 goto out; 401 } 402 403 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 404 have_entry: 405 if (!offset_in_entry(entry, file_offset)) { 406 ret = 1; 407 goto out; 408 } 409 410 if (io_size > entry->bytes_left) { 411 btrfs_crit(inode->root->fs_info, 412 "bad ordered accounting left %llu size %llu", 413 entry->bytes_left, io_size); 414 } 415 entry->bytes_left -= io_size; 416 if (!uptodate) 417 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 418 419 if (entry->bytes_left == 0) { 420 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 421 /* test_and_set_bit implies a barrier */ 422 cond_wake_up_nomb(&entry->wait); 423 } else { 424 ret = 1; 425 } 426 out: 427 if (!ret && cached && entry) { 428 *cached = entry; 429 refcount_inc(&entry->refs); 430 } 431 spin_unlock_irqrestore(&tree->lock, flags); 432 return ret == 0; 433 } 434 435 /* 436 * used to drop a reference on an ordered extent. This will free 437 * the extent if the last reference is dropped 438 */ 439 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 440 { 441 struct list_head *cur; 442 struct btrfs_ordered_sum *sum; 443 444 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 445 446 if (refcount_dec_and_test(&entry->refs)) { 447 ASSERT(list_empty(&entry->root_extent_list)); 448 ASSERT(list_empty(&entry->log_list)); 449 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 450 if (entry->inode) 451 btrfs_add_delayed_iput(entry->inode); 452 while (!list_empty(&entry->list)) { 453 cur = entry->list.next; 454 sum = list_entry(cur, struct btrfs_ordered_sum, list); 455 list_del(&sum->list); 456 kvfree(sum); 457 } 458 kmem_cache_free(btrfs_ordered_extent_cache, entry); 459 } 460 } 461 462 /* 463 * remove an ordered extent from the tree. No references are dropped 464 * and waiters are woken up. 465 */ 466 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 467 struct btrfs_ordered_extent *entry) 468 { 469 struct btrfs_ordered_inode_tree *tree; 470 struct btrfs_root *root = btrfs_inode->root; 471 struct btrfs_fs_info *fs_info = root->fs_info; 472 struct rb_node *node; 473 bool pending; 474 475 /* This is paired with btrfs_add_ordered_extent. */ 476 spin_lock(&btrfs_inode->lock); 477 btrfs_mod_outstanding_extents(btrfs_inode, -1); 478 spin_unlock(&btrfs_inode->lock); 479 if (root != fs_info->tree_root) 480 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, 481 false); 482 483 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 484 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes, 485 fs_info->delalloc_batch); 486 487 tree = &btrfs_inode->ordered_tree; 488 spin_lock_irq(&tree->lock); 489 node = &entry->rb_node; 490 rb_erase(node, &tree->tree); 491 RB_CLEAR_NODE(node); 492 if (tree->last == node) 493 tree->last = NULL; 494 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 495 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 496 spin_unlock_irq(&tree->lock); 497 498 /* 499 * The current running transaction is waiting on us, we need to let it 500 * know that we're complete and wake it up. 501 */ 502 if (pending) { 503 struct btrfs_transaction *trans; 504 505 /* 506 * The checks for trans are just a formality, it should be set, 507 * but if it isn't we don't want to deref/assert under the spin 508 * lock, so be nice and check if trans is set, but ASSERT() so 509 * if it isn't set a developer will notice. 510 */ 511 spin_lock(&fs_info->trans_lock); 512 trans = fs_info->running_transaction; 513 if (trans) 514 refcount_inc(&trans->use_count); 515 spin_unlock(&fs_info->trans_lock); 516 517 ASSERT(trans); 518 if (trans) { 519 if (atomic_dec_and_test(&trans->pending_ordered)) 520 wake_up(&trans->pending_wait); 521 btrfs_put_transaction(trans); 522 } 523 } 524 525 spin_lock(&root->ordered_extent_lock); 526 list_del_init(&entry->root_extent_list); 527 root->nr_ordered_extents--; 528 529 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 530 531 if (!root->nr_ordered_extents) { 532 spin_lock(&fs_info->ordered_root_lock); 533 BUG_ON(list_empty(&root->ordered_root)); 534 list_del_init(&root->ordered_root); 535 spin_unlock(&fs_info->ordered_root_lock); 536 } 537 spin_unlock(&root->ordered_extent_lock); 538 wake_up(&entry->wait); 539 } 540 541 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 542 { 543 struct btrfs_ordered_extent *ordered; 544 545 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 546 btrfs_start_ordered_extent(ordered, 1); 547 complete(&ordered->completion); 548 } 549 550 /* 551 * wait for all the ordered extents in a root. This is done when balancing 552 * space between drives. 553 */ 554 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 555 const u64 range_start, const u64 range_len) 556 { 557 struct btrfs_fs_info *fs_info = root->fs_info; 558 LIST_HEAD(splice); 559 LIST_HEAD(skipped); 560 LIST_HEAD(works); 561 struct btrfs_ordered_extent *ordered, *next; 562 u64 count = 0; 563 const u64 range_end = range_start + range_len; 564 565 mutex_lock(&root->ordered_extent_mutex); 566 spin_lock(&root->ordered_extent_lock); 567 list_splice_init(&root->ordered_extents, &splice); 568 while (!list_empty(&splice) && nr) { 569 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 570 root_extent_list); 571 572 if (range_end <= ordered->disk_bytenr || 573 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 574 list_move_tail(&ordered->root_extent_list, &skipped); 575 cond_resched_lock(&root->ordered_extent_lock); 576 continue; 577 } 578 579 list_move_tail(&ordered->root_extent_list, 580 &root->ordered_extents); 581 refcount_inc(&ordered->refs); 582 spin_unlock(&root->ordered_extent_lock); 583 584 btrfs_init_work(&ordered->flush_work, 585 btrfs_run_ordered_extent_work, NULL, NULL); 586 list_add_tail(&ordered->work_list, &works); 587 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 588 589 cond_resched(); 590 spin_lock(&root->ordered_extent_lock); 591 if (nr != U64_MAX) 592 nr--; 593 count++; 594 } 595 list_splice_tail(&skipped, &root->ordered_extents); 596 list_splice_tail(&splice, &root->ordered_extents); 597 spin_unlock(&root->ordered_extent_lock); 598 599 list_for_each_entry_safe(ordered, next, &works, work_list) { 600 list_del_init(&ordered->work_list); 601 wait_for_completion(&ordered->completion); 602 btrfs_put_ordered_extent(ordered); 603 cond_resched(); 604 } 605 mutex_unlock(&root->ordered_extent_mutex); 606 607 return count; 608 } 609 610 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 611 const u64 range_start, const u64 range_len) 612 { 613 struct btrfs_root *root; 614 struct list_head splice; 615 u64 done; 616 617 INIT_LIST_HEAD(&splice); 618 619 mutex_lock(&fs_info->ordered_operations_mutex); 620 spin_lock(&fs_info->ordered_root_lock); 621 list_splice_init(&fs_info->ordered_roots, &splice); 622 while (!list_empty(&splice) && nr) { 623 root = list_first_entry(&splice, struct btrfs_root, 624 ordered_root); 625 root = btrfs_grab_root(root); 626 BUG_ON(!root); 627 list_move_tail(&root->ordered_root, 628 &fs_info->ordered_roots); 629 spin_unlock(&fs_info->ordered_root_lock); 630 631 done = btrfs_wait_ordered_extents(root, nr, 632 range_start, range_len); 633 btrfs_put_root(root); 634 635 spin_lock(&fs_info->ordered_root_lock); 636 if (nr != U64_MAX) { 637 nr -= done; 638 } 639 } 640 list_splice_tail(&splice, &fs_info->ordered_roots); 641 spin_unlock(&fs_info->ordered_root_lock); 642 mutex_unlock(&fs_info->ordered_operations_mutex); 643 } 644 645 /* 646 * Used to start IO or wait for a given ordered extent to finish. 647 * 648 * If wait is one, this effectively waits on page writeback for all the pages 649 * in the extent, and it waits on the io completion code to insert 650 * metadata into the btree corresponding to the extent 651 */ 652 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 653 { 654 u64 start = entry->file_offset; 655 u64 end = start + entry->num_bytes - 1; 656 struct btrfs_inode *inode = BTRFS_I(entry->inode); 657 658 trace_btrfs_ordered_extent_start(inode, entry); 659 660 /* 661 * pages in the range can be dirty, clean or writeback. We 662 * start IO on any dirty ones so the wait doesn't stall waiting 663 * for the flusher thread to find them 664 */ 665 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 666 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 667 if (wait) { 668 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 669 &entry->flags)); 670 } 671 } 672 673 /* 674 * Used to wait on ordered extents across a large range of bytes. 675 */ 676 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 677 { 678 int ret = 0; 679 int ret_wb = 0; 680 u64 end; 681 u64 orig_end; 682 struct btrfs_ordered_extent *ordered; 683 684 if (start + len < start) { 685 orig_end = INT_LIMIT(loff_t); 686 } else { 687 orig_end = start + len - 1; 688 if (orig_end > INT_LIMIT(loff_t)) 689 orig_end = INT_LIMIT(loff_t); 690 } 691 692 /* start IO across the range first to instantiate any delalloc 693 * extents 694 */ 695 ret = btrfs_fdatawrite_range(inode, start, orig_end); 696 if (ret) 697 return ret; 698 699 /* 700 * If we have a writeback error don't return immediately. Wait first 701 * for any ordered extents that haven't completed yet. This is to make 702 * sure no one can dirty the same page ranges and call writepages() 703 * before the ordered extents complete - to avoid failures (-EEXIST) 704 * when adding the new ordered extents to the ordered tree. 705 */ 706 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 707 708 end = orig_end; 709 while (1) { 710 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 711 if (!ordered) 712 break; 713 if (ordered->file_offset > orig_end) { 714 btrfs_put_ordered_extent(ordered); 715 break; 716 } 717 if (ordered->file_offset + ordered->num_bytes <= start) { 718 btrfs_put_ordered_extent(ordered); 719 break; 720 } 721 btrfs_start_ordered_extent(ordered, 1); 722 end = ordered->file_offset; 723 /* 724 * If the ordered extent had an error save the error but don't 725 * exit without waiting first for all other ordered extents in 726 * the range to complete. 727 */ 728 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 729 ret = -EIO; 730 btrfs_put_ordered_extent(ordered); 731 if (end == 0 || end == start) 732 break; 733 end--; 734 } 735 return ret_wb ? ret_wb : ret; 736 } 737 738 /* 739 * find an ordered extent corresponding to file_offset. return NULL if 740 * nothing is found, otherwise take a reference on the extent and return it 741 */ 742 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 743 u64 file_offset) 744 { 745 struct btrfs_ordered_inode_tree *tree; 746 struct rb_node *node; 747 struct btrfs_ordered_extent *entry = NULL; 748 749 tree = &inode->ordered_tree; 750 spin_lock_irq(&tree->lock); 751 node = tree_search(tree, file_offset); 752 if (!node) 753 goto out; 754 755 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 756 if (!offset_in_entry(entry, file_offset)) 757 entry = NULL; 758 if (entry) 759 refcount_inc(&entry->refs); 760 out: 761 spin_unlock_irq(&tree->lock); 762 return entry; 763 } 764 765 /* Since the DIO code tries to lock a wide area we need to look for any ordered 766 * extents that exist in the range, rather than just the start of the range. 767 */ 768 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 769 struct btrfs_inode *inode, u64 file_offset, u64 len) 770 { 771 struct btrfs_ordered_inode_tree *tree; 772 struct rb_node *node; 773 struct btrfs_ordered_extent *entry = NULL; 774 775 tree = &inode->ordered_tree; 776 spin_lock_irq(&tree->lock); 777 node = tree_search(tree, file_offset); 778 if (!node) { 779 node = tree_search(tree, file_offset + len); 780 if (!node) 781 goto out; 782 } 783 784 while (1) { 785 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 786 if (range_overlaps(entry, file_offset, len)) 787 break; 788 789 if (entry->file_offset >= file_offset + len) { 790 entry = NULL; 791 break; 792 } 793 entry = NULL; 794 node = rb_next(node); 795 if (!node) 796 break; 797 } 798 out: 799 if (entry) 800 refcount_inc(&entry->refs); 801 spin_unlock_irq(&tree->lock); 802 return entry; 803 } 804 805 /* 806 * Adds all ordered extents to the given list. The list ends up sorted by the 807 * file_offset of the ordered extents. 808 */ 809 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 810 struct list_head *list) 811 { 812 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 813 struct rb_node *n; 814 815 ASSERT(inode_is_locked(&inode->vfs_inode)); 816 817 spin_lock_irq(&tree->lock); 818 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 819 struct btrfs_ordered_extent *ordered; 820 821 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 822 823 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 824 continue; 825 826 ASSERT(list_empty(&ordered->log_list)); 827 list_add_tail(&ordered->log_list, list); 828 refcount_inc(&ordered->refs); 829 } 830 spin_unlock_irq(&tree->lock); 831 } 832 833 /* 834 * lookup and return any extent before 'file_offset'. NULL is returned 835 * if none is found 836 */ 837 struct btrfs_ordered_extent * 838 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 839 { 840 struct btrfs_ordered_inode_tree *tree; 841 struct rb_node *node; 842 struct btrfs_ordered_extent *entry = NULL; 843 844 tree = &inode->ordered_tree; 845 spin_lock_irq(&tree->lock); 846 node = tree_search(tree, file_offset); 847 if (!node) 848 goto out; 849 850 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 851 refcount_inc(&entry->refs); 852 out: 853 spin_unlock_irq(&tree->lock); 854 return entry; 855 } 856 857 /* 858 * search the ordered extents for one corresponding to 'offset' and 859 * try to find a checksum. This is used because we allow pages to 860 * be reclaimed before their checksum is actually put into the btree 861 */ 862 int btrfs_find_ordered_sum(struct btrfs_inode *inode, u64 offset, 863 u64 disk_bytenr, u8 *sum, int len) 864 { 865 struct btrfs_fs_info *fs_info = inode->root->fs_info; 866 struct btrfs_ordered_sum *ordered_sum; 867 struct btrfs_ordered_extent *ordered; 868 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 869 unsigned long num_sectors; 870 unsigned long i; 871 u32 sectorsize = btrfs_inode_sectorsize(inode); 872 const u8 blocksize_bits = inode->vfs_inode.i_sb->s_blocksize_bits; 873 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 874 int index = 0; 875 876 ordered = btrfs_lookup_ordered_extent(inode, offset); 877 if (!ordered) 878 return 0; 879 880 spin_lock_irq(&tree->lock); 881 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 882 if (disk_bytenr >= ordered_sum->bytenr && 883 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 884 i = (disk_bytenr - ordered_sum->bytenr) >> blocksize_bits; 885 num_sectors = ordered_sum->len >> blocksize_bits; 886 num_sectors = min_t(int, len - index, num_sectors - i); 887 memcpy(sum + index, ordered_sum->sums + i * csum_size, 888 num_sectors * csum_size); 889 890 index += (int)num_sectors * csum_size; 891 if (index == len) 892 goto out; 893 disk_bytenr += num_sectors * sectorsize; 894 } 895 } 896 out: 897 spin_unlock_irq(&tree->lock); 898 btrfs_put_ordered_extent(ordered); 899 return index; 900 } 901 902 /* 903 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 904 * ordered extents in it are run to completion. 905 * 906 * @inode: Inode whose ordered tree is to be searched 907 * @start: Beginning of range to flush 908 * @end: Last byte of range to lock 909 * @cached_state: If passed, will return the extent state responsible for the 910 * locked range. It's the caller's responsibility to free the cached state. 911 * 912 * This function always returns with the given range locked, ensuring after it's 913 * called no order extent can be pending. 914 */ 915 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 916 u64 end, 917 struct extent_state **cached_state) 918 { 919 struct btrfs_ordered_extent *ordered; 920 struct extent_state *cache = NULL; 921 struct extent_state **cachedp = &cache; 922 923 if (cached_state) 924 cachedp = cached_state; 925 926 while (1) { 927 lock_extent_bits(&inode->io_tree, start, end, cachedp); 928 ordered = btrfs_lookup_ordered_range(inode, start, 929 end - start + 1); 930 if (!ordered) { 931 /* 932 * If no external cached_state has been passed then 933 * decrement the extra ref taken for cachedp since we 934 * aren't exposing it outside of this function 935 */ 936 if (!cached_state) 937 refcount_dec(&cache->refs); 938 break; 939 } 940 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 941 btrfs_start_ordered_extent(ordered, 1); 942 btrfs_put_ordered_extent(ordered); 943 } 944 } 945 946 int __init ordered_data_init(void) 947 { 948 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 949 sizeof(struct btrfs_ordered_extent), 0, 950 SLAB_MEM_SPREAD, 951 NULL); 952 if (!btrfs_ordered_extent_cache) 953 return -ENOMEM; 954 955 return 0; 956 } 957 958 void __cold ordered_data_exit(void) 959 { 960 kmem_cache_destroy(btrfs_ordered_extent_cache); 961 } 962