xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision a06c488d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	entry->disk_len = disk_len;
202 	entry->bytes_left = len;
203 	entry->inode = igrab(inode);
204 	entry->compress_type = compress_type;
205 	entry->truncated_len = (u64)-1;
206 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 		set_bit(type, &entry->flags);
208 
209 	if (dio)
210 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 
212 	/* one ref for the tree */
213 	atomic_set(&entry->refs, 1);
214 	init_waitqueue_head(&entry->wait);
215 	INIT_LIST_HEAD(&entry->list);
216 	INIT_LIST_HEAD(&entry->root_extent_list);
217 	INIT_LIST_HEAD(&entry->work_list);
218 	init_completion(&entry->completion);
219 	INIT_LIST_HEAD(&entry->log_list);
220 	INIT_LIST_HEAD(&entry->trans_list);
221 
222 	trace_btrfs_ordered_extent_add(inode, entry);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, file_offset,
226 			   &entry->rb_node);
227 	if (node)
228 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 	spin_unlock_irq(&tree->lock);
230 
231 	spin_lock(&root->ordered_extent_lock);
232 	list_add_tail(&entry->root_extent_list,
233 		      &root->ordered_extents);
234 	root->nr_ordered_extents++;
235 	if (root->nr_ordered_extents == 1) {
236 		spin_lock(&root->fs_info->ordered_root_lock);
237 		BUG_ON(!list_empty(&root->ordered_root));
238 		list_add_tail(&root->ordered_root,
239 			      &root->fs_info->ordered_roots);
240 		spin_unlock(&root->fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 
244 	return 0;
245 }
246 
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 			     u64 start, u64 len, u64 disk_len, int type)
249 {
250 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 					  disk_len, type, 0,
252 					  BTRFS_COMPRESS_NONE);
253 }
254 
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 				 u64 start, u64 len, u64 disk_len, int type)
257 {
258 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 					  disk_len, type, 1,
260 					  BTRFS_COMPRESS_NONE);
261 }
262 
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 				      u64 start, u64 len, u64 disk_len,
265 				      int type, int compress_type)
266 {
267 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 					  disk_len, type, 0,
269 					  compress_type);
270 }
271 
272 /*
273  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274  * when an ordered extent is finished.  If the list covers more than one
275  * ordered extent, it is split across multiples.
276  */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 			   struct btrfs_ordered_extent *entry,
279 			   struct btrfs_ordered_sum *sum)
280 {
281 	struct btrfs_ordered_inode_tree *tree;
282 
283 	tree = &BTRFS_I(inode)->ordered_tree;
284 	spin_lock_irq(&tree->lock);
285 	list_add_tail(&sum->list, &entry->list);
286 	spin_unlock_irq(&tree->lock);
287 }
288 
289 /*
290  * this is used to account for finished IO across a given range
291  * of the file.  The IO may span ordered extents.  If
292  * a given ordered_extent is completely done, 1 is returned, otherwise
293  * 0.
294  *
295  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296  * to make sure this function only returns 1 once for a given ordered extent.
297  *
298  * file_offset is updated to one byte past the range that is recorded as
299  * complete.  This allows you to walk forward in the file.
300  */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 				   struct btrfs_ordered_extent **cached,
303 				   u64 *file_offset, u64 io_size, int uptodate)
304 {
305 	struct btrfs_ordered_inode_tree *tree;
306 	struct rb_node *node;
307 	struct btrfs_ordered_extent *entry = NULL;
308 	int ret;
309 	unsigned long flags;
310 	u64 dec_end;
311 	u64 dec_start;
312 	u64 to_dec;
313 
314 	tree = &BTRFS_I(inode)->ordered_tree;
315 	spin_lock_irqsave(&tree->lock, flags);
316 	node = tree_search(tree, *file_offset);
317 	if (!node) {
318 		ret = 1;
319 		goto out;
320 	}
321 
322 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 	if (!offset_in_entry(entry, *file_offset)) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	dec_start = max(*file_offset, entry->file_offset);
329 	dec_end = min(*file_offset + io_size, entry->file_offset +
330 		      entry->len);
331 	*file_offset = dec_end;
332 	if (dec_start > dec_end) {
333 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 	}
336 	to_dec = dec_end - dec_start;
337 	if (to_dec > entry->bytes_left) {
338 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 			"bad ordered accounting left %llu size %llu",
340 			entry->bytes_left, to_dec);
341 	}
342 	entry->bytes_left -= to_dec;
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345 
346 	if (entry->bytes_left == 0) {
347 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 		/*
349 		 * Implicit memory barrier after test_and_set_bit
350 		 */
351 		if (waitqueue_active(&entry->wait))
352 			wake_up(&entry->wait);
353 	} else {
354 		ret = 1;
355 	}
356 out:
357 	if (!ret && cached && entry) {
358 		*cached = entry;
359 		atomic_inc(&entry->refs);
360 	}
361 	spin_unlock_irqrestore(&tree->lock, flags);
362 	return ret == 0;
363 }
364 
365 /*
366  * this is used to account for finished IO across a given range
367  * of the file.  The IO should not span ordered extents.  If
368  * a given ordered_extent is completely done, 1 is returned, otherwise
369  * 0.
370  *
371  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372  * to make sure this function only returns 1 once for a given ordered extent.
373  */
374 int btrfs_dec_test_ordered_pending(struct inode *inode,
375 				   struct btrfs_ordered_extent **cached,
376 				   u64 file_offset, u64 io_size, int uptodate)
377 {
378 	struct btrfs_ordered_inode_tree *tree;
379 	struct rb_node *node;
380 	struct btrfs_ordered_extent *entry = NULL;
381 	unsigned long flags;
382 	int ret;
383 
384 	tree = &BTRFS_I(inode)->ordered_tree;
385 	spin_lock_irqsave(&tree->lock, flags);
386 	if (cached && *cached) {
387 		entry = *cached;
388 		goto have_entry;
389 	}
390 
391 	node = tree_search(tree, file_offset);
392 	if (!node) {
393 		ret = 1;
394 		goto out;
395 	}
396 
397 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
398 have_entry:
399 	if (!offset_in_entry(entry, file_offset)) {
400 		ret = 1;
401 		goto out;
402 	}
403 
404 	if (io_size > entry->bytes_left) {
405 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 			   "bad ordered accounting left %llu size %llu",
407 		       entry->bytes_left, io_size);
408 	}
409 	entry->bytes_left -= io_size;
410 	if (!uptodate)
411 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412 
413 	if (entry->bytes_left == 0) {
414 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
415 		/*
416 		 * Implicit memory barrier after test_and_set_bit
417 		 */
418 		if (waitqueue_active(&entry->wait))
419 			wake_up(&entry->wait);
420 	} else {
421 		ret = 1;
422 	}
423 out:
424 	if (!ret && cached && entry) {
425 		*cached = entry;
426 		atomic_inc(&entry->refs);
427 	}
428 	spin_unlock_irqrestore(&tree->lock, flags);
429 	return ret == 0;
430 }
431 
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434 			      struct list_head *logged_list,
435 			      const loff_t start,
436 			      const loff_t end)
437 {
438 	struct btrfs_ordered_inode_tree *tree;
439 	struct btrfs_ordered_extent *ordered;
440 	struct rb_node *n;
441 	struct rb_node *prev;
442 
443 	tree = &BTRFS_I(inode)->ordered_tree;
444 	spin_lock_irq(&tree->lock);
445 	n = __tree_search(&tree->tree, end, &prev);
446 	if (!n)
447 		n = prev;
448 	for (; n; n = rb_prev(n)) {
449 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
450 		if (ordered->file_offset > end)
451 			continue;
452 		if (entry_end(ordered) <= start)
453 			break;
454 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
455 			continue;
456 		list_add(&ordered->log_list, logged_list);
457 		atomic_inc(&ordered->refs);
458 	}
459 	spin_unlock_irq(&tree->lock);
460 }
461 
462 void btrfs_put_logged_extents(struct list_head *logged_list)
463 {
464 	struct btrfs_ordered_extent *ordered;
465 
466 	while (!list_empty(logged_list)) {
467 		ordered = list_first_entry(logged_list,
468 					   struct btrfs_ordered_extent,
469 					   log_list);
470 		list_del_init(&ordered->log_list);
471 		btrfs_put_ordered_extent(ordered);
472 	}
473 }
474 
475 void btrfs_submit_logged_extents(struct list_head *logged_list,
476 				 struct btrfs_root *log)
477 {
478 	int index = log->log_transid % 2;
479 
480 	spin_lock_irq(&log->log_extents_lock[index]);
481 	list_splice_tail(logged_list, &log->logged_list[index]);
482 	spin_unlock_irq(&log->log_extents_lock[index]);
483 }
484 
485 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
486 			       struct btrfs_root *log, u64 transid)
487 {
488 	struct btrfs_ordered_extent *ordered;
489 	int index = transid % 2;
490 
491 	spin_lock_irq(&log->log_extents_lock[index]);
492 	while (!list_empty(&log->logged_list[index])) {
493 		struct inode *inode;
494 		ordered = list_first_entry(&log->logged_list[index],
495 					   struct btrfs_ordered_extent,
496 					   log_list);
497 		list_del_init(&ordered->log_list);
498 		inode = ordered->inode;
499 		spin_unlock_irq(&log->log_extents_lock[index]);
500 
501 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
502 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
503 			u64 start = ordered->file_offset;
504 			u64 end = ordered->file_offset + ordered->len - 1;
505 
506 			WARN_ON(!inode);
507 			filemap_fdatawrite_range(inode->i_mapping, start, end);
508 		}
509 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
510 						   &ordered->flags));
511 
512 		/*
513 		 * In order to keep us from losing our ordered extent
514 		 * information when committing the transaction we have to make
515 		 * sure that any logged extents are completed when we go to
516 		 * commit the transaction.  To do this we simply increase the
517 		 * current transactions pending_ordered counter and decrement it
518 		 * when the ordered extent completes.
519 		 */
520 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
521 			struct btrfs_ordered_inode_tree *tree;
522 
523 			tree = &BTRFS_I(inode)->ordered_tree;
524 			spin_lock_irq(&tree->lock);
525 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
526 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
527 				atomic_inc(&trans->transaction->pending_ordered);
528 			}
529 			spin_unlock_irq(&tree->lock);
530 		}
531 		btrfs_put_ordered_extent(ordered);
532 		spin_lock_irq(&log->log_extents_lock[index]);
533 	}
534 	spin_unlock_irq(&log->log_extents_lock[index]);
535 }
536 
537 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
538 {
539 	struct btrfs_ordered_extent *ordered;
540 	int index = transid % 2;
541 
542 	spin_lock_irq(&log->log_extents_lock[index]);
543 	while (!list_empty(&log->logged_list[index])) {
544 		ordered = list_first_entry(&log->logged_list[index],
545 					   struct btrfs_ordered_extent,
546 					   log_list);
547 		list_del_init(&ordered->log_list);
548 		spin_unlock_irq(&log->log_extents_lock[index]);
549 		btrfs_put_ordered_extent(ordered);
550 		spin_lock_irq(&log->log_extents_lock[index]);
551 	}
552 	spin_unlock_irq(&log->log_extents_lock[index]);
553 }
554 
555 /*
556  * used to drop a reference on an ordered extent.  This will free
557  * the extent if the last reference is dropped
558  */
559 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
560 {
561 	struct list_head *cur;
562 	struct btrfs_ordered_sum *sum;
563 
564 	trace_btrfs_ordered_extent_put(entry->inode, entry);
565 
566 	if (atomic_dec_and_test(&entry->refs)) {
567 		ASSERT(list_empty(&entry->log_list));
568 		ASSERT(list_empty(&entry->trans_list));
569 		ASSERT(list_empty(&entry->root_extent_list));
570 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
571 		if (entry->inode)
572 			btrfs_add_delayed_iput(entry->inode);
573 		while (!list_empty(&entry->list)) {
574 			cur = entry->list.next;
575 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
576 			list_del(&sum->list);
577 			kfree(sum);
578 		}
579 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
580 	}
581 }
582 
583 /*
584  * remove an ordered extent from the tree.  No references are dropped
585  * and waiters are woken up.
586  */
587 void btrfs_remove_ordered_extent(struct inode *inode,
588 				 struct btrfs_ordered_extent *entry)
589 {
590 	struct btrfs_ordered_inode_tree *tree;
591 	struct btrfs_root *root = BTRFS_I(inode)->root;
592 	struct rb_node *node;
593 	bool dec_pending_ordered = false;
594 
595 	tree = &BTRFS_I(inode)->ordered_tree;
596 	spin_lock_irq(&tree->lock);
597 	node = &entry->rb_node;
598 	rb_erase(node, &tree->tree);
599 	RB_CLEAR_NODE(node);
600 	if (tree->last == node)
601 		tree->last = NULL;
602 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
603 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
604 		dec_pending_ordered = true;
605 	spin_unlock_irq(&tree->lock);
606 
607 	/*
608 	 * The current running transaction is waiting on us, we need to let it
609 	 * know that we're complete and wake it up.
610 	 */
611 	if (dec_pending_ordered) {
612 		struct btrfs_transaction *trans;
613 
614 		/*
615 		 * The checks for trans are just a formality, it should be set,
616 		 * but if it isn't we don't want to deref/assert under the spin
617 		 * lock, so be nice and check if trans is set, but ASSERT() so
618 		 * if it isn't set a developer will notice.
619 		 */
620 		spin_lock(&root->fs_info->trans_lock);
621 		trans = root->fs_info->running_transaction;
622 		if (trans)
623 			atomic_inc(&trans->use_count);
624 		spin_unlock(&root->fs_info->trans_lock);
625 
626 		ASSERT(trans);
627 		if (trans) {
628 			if (atomic_dec_and_test(&trans->pending_ordered))
629 				wake_up(&trans->pending_wait);
630 			btrfs_put_transaction(trans);
631 		}
632 	}
633 
634 	spin_lock(&root->ordered_extent_lock);
635 	list_del_init(&entry->root_extent_list);
636 	root->nr_ordered_extents--;
637 
638 	trace_btrfs_ordered_extent_remove(inode, entry);
639 
640 	if (!root->nr_ordered_extents) {
641 		spin_lock(&root->fs_info->ordered_root_lock);
642 		BUG_ON(list_empty(&root->ordered_root));
643 		list_del_init(&root->ordered_root);
644 		spin_unlock(&root->fs_info->ordered_root_lock);
645 	}
646 	spin_unlock(&root->ordered_extent_lock);
647 	wake_up(&entry->wait);
648 }
649 
650 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
651 {
652 	struct btrfs_ordered_extent *ordered;
653 
654 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
655 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
656 	complete(&ordered->completion);
657 }
658 
659 /*
660  * wait for all the ordered extents in a root.  This is done when balancing
661  * space between drives.
662  */
663 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
664 {
665 	struct list_head splice, works;
666 	struct btrfs_ordered_extent *ordered, *next;
667 	int count = 0;
668 
669 	INIT_LIST_HEAD(&splice);
670 	INIT_LIST_HEAD(&works);
671 
672 	mutex_lock(&root->ordered_extent_mutex);
673 	spin_lock(&root->ordered_extent_lock);
674 	list_splice_init(&root->ordered_extents, &splice);
675 	while (!list_empty(&splice) && nr) {
676 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
677 					   root_extent_list);
678 		list_move_tail(&ordered->root_extent_list,
679 			       &root->ordered_extents);
680 		atomic_inc(&ordered->refs);
681 		spin_unlock(&root->ordered_extent_lock);
682 
683 		btrfs_init_work(&ordered->flush_work,
684 				btrfs_flush_delalloc_helper,
685 				btrfs_run_ordered_extent_work, NULL, NULL);
686 		list_add_tail(&ordered->work_list, &works);
687 		btrfs_queue_work(root->fs_info->flush_workers,
688 				 &ordered->flush_work);
689 
690 		cond_resched();
691 		spin_lock(&root->ordered_extent_lock);
692 		if (nr != -1)
693 			nr--;
694 		count++;
695 	}
696 	list_splice_tail(&splice, &root->ordered_extents);
697 	spin_unlock(&root->ordered_extent_lock);
698 
699 	list_for_each_entry_safe(ordered, next, &works, work_list) {
700 		list_del_init(&ordered->work_list);
701 		wait_for_completion(&ordered->completion);
702 		btrfs_put_ordered_extent(ordered);
703 		cond_resched();
704 	}
705 	mutex_unlock(&root->ordered_extent_mutex);
706 
707 	return count;
708 }
709 
710 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
711 {
712 	struct btrfs_root *root;
713 	struct list_head splice;
714 	int done;
715 
716 	INIT_LIST_HEAD(&splice);
717 
718 	mutex_lock(&fs_info->ordered_operations_mutex);
719 	spin_lock(&fs_info->ordered_root_lock);
720 	list_splice_init(&fs_info->ordered_roots, &splice);
721 	while (!list_empty(&splice) && nr) {
722 		root = list_first_entry(&splice, struct btrfs_root,
723 					ordered_root);
724 		root = btrfs_grab_fs_root(root);
725 		BUG_ON(!root);
726 		list_move_tail(&root->ordered_root,
727 			       &fs_info->ordered_roots);
728 		spin_unlock(&fs_info->ordered_root_lock);
729 
730 		done = btrfs_wait_ordered_extents(root, nr);
731 		btrfs_put_fs_root(root);
732 
733 		spin_lock(&fs_info->ordered_root_lock);
734 		if (nr != -1) {
735 			nr -= done;
736 			WARN_ON(nr < 0);
737 		}
738 	}
739 	list_splice_tail(&splice, &fs_info->ordered_roots);
740 	spin_unlock(&fs_info->ordered_root_lock);
741 	mutex_unlock(&fs_info->ordered_operations_mutex);
742 }
743 
744 /*
745  * Used to start IO or wait for a given ordered extent to finish.
746  *
747  * If wait is one, this effectively waits on page writeback for all the pages
748  * in the extent, and it waits on the io completion code to insert
749  * metadata into the btree corresponding to the extent
750  */
751 void btrfs_start_ordered_extent(struct inode *inode,
752 				       struct btrfs_ordered_extent *entry,
753 				       int wait)
754 {
755 	u64 start = entry->file_offset;
756 	u64 end = start + entry->len - 1;
757 
758 	trace_btrfs_ordered_extent_start(inode, entry);
759 
760 	/*
761 	 * pages in the range can be dirty, clean or writeback.  We
762 	 * start IO on any dirty ones so the wait doesn't stall waiting
763 	 * for the flusher thread to find them
764 	 */
765 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
766 		filemap_fdatawrite_range(inode->i_mapping, start, end);
767 	if (wait) {
768 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
769 						 &entry->flags));
770 	}
771 }
772 
773 /*
774  * Used to wait on ordered extents across a large range of bytes.
775  */
776 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
777 {
778 	int ret = 0;
779 	int ret_wb = 0;
780 	u64 end;
781 	u64 orig_end;
782 	struct btrfs_ordered_extent *ordered;
783 
784 	if (start + len < start) {
785 		orig_end = INT_LIMIT(loff_t);
786 	} else {
787 		orig_end = start + len - 1;
788 		if (orig_end > INT_LIMIT(loff_t))
789 			orig_end = INT_LIMIT(loff_t);
790 	}
791 
792 	/* start IO across the range first to instantiate any delalloc
793 	 * extents
794 	 */
795 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
796 	if (ret)
797 		return ret;
798 
799 	/*
800 	 * If we have a writeback error don't return immediately. Wait first
801 	 * for any ordered extents that haven't completed yet. This is to make
802 	 * sure no one can dirty the same page ranges and call writepages()
803 	 * before the ordered extents complete - to avoid failures (-EEXIST)
804 	 * when adding the new ordered extents to the ordered tree.
805 	 */
806 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
807 
808 	end = orig_end;
809 	while (1) {
810 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
811 		if (!ordered)
812 			break;
813 		if (ordered->file_offset > orig_end) {
814 			btrfs_put_ordered_extent(ordered);
815 			break;
816 		}
817 		if (ordered->file_offset + ordered->len <= start) {
818 			btrfs_put_ordered_extent(ordered);
819 			break;
820 		}
821 		btrfs_start_ordered_extent(inode, ordered, 1);
822 		end = ordered->file_offset;
823 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
824 			ret = -EIO;
825 		btrfs_put_ordered_extent(ordered);
826 		if (ret || end == 0 || end == start)
827 			break;
828 		end--;
829 	}
830 	return ret_wb ? ret_wb : ret;
831 }
832 
833 /*
834  * find an ordered extent corresponding to file_offset.  return NULL if
835  * nothing is found, otherwise take a reference on the extent and return it
836  */
837 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
838 							 u64 file_offset)
839 {
840 	struct btrfs_ordered_inode_tree *tree;
841 	struct rb_node *node;
842 	struct btrfs_ordered_extent *entry = NULL;
843 
844 	tree = &BTRFS_I(inode)->ordered_tree;
845 	spin_lock_irq(&tree->lock);
846 	node = tree_search(tree, file_offset);
847 	if (!node)
848 		goto out;
849 
850 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
851 	if (!offset_in_entry(entry, file_offset))
852 		entry = NULL;
853 	if (entry)
854 		atomic_inc(&entry->refs);
855 out:
856 	spin_unlock_irq(&tree->lock);
857 	return entry;
858 }
859 
860 /* Since the DIO code tries to lock a wide area we need to look for any ordered
861  * extents that exist in the range, rather than just the start of the range.
862  */
863 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
864 							u64 file_offset,
865 							u64 len)
866 {
867 	struct btrfs_ordered_inode_tree *tree;
868 	struct rb_node *node;
869 	struct btrfs_ordered_extent *entry = NULL;
870 
871 	tree = &BTRFS_I(inode)->ordered_tree;
872 	spin_lock_irq(&tree->lock);
873 	node = tree_search(tree, file_offset);
874 	if (!node) {
875 		node = tree_search(tree, file_offset + len);
876 		if (!node)
877 			goto out;
878 	}
879 
880 	while (1) {
881 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
882 		if (range_overlaps(entry, file_offset, len))
883 			break;
884 
885 		if (entry->file_offset >= file_offset + len) {
886 			entry = NULL;
887 			break;
888 		}
889 		entry = NULL;
890 		node = rb_next(node);
891 		if (!node)
892 			break;
893 	}
894 out:
895 	if (entry)
896 		atomic_inc(&entry->refs);
897 	spin_unlock_irq(&tree->lock);
898 	return entry;
899 }
900 
901 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
902 					 u64 file_offset,
903 					 u64 len)
904 {
905 	struct btrfs_ordered_extent *oe;
906 
907 	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
908 	if (oe) {
909 		btrfs_put_ordered_extent(oe);
910 		return true;
911 	}
912 	return false;
913 }
914 
915 /*
916  * lookup and return any extent before 'file_offset'.  NULL is returned
917  * if none is found
918  */
919 struct btrfs_ordered_extent *
920 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
921 {
922 	struct btrfs_ordered_inode_tree *tree;
923 	struct rb_node *node;
924 	struct btrfs_ordered_extent *entry = NULL;
925 
926 	tree = &BTRFS_I(inode)->ordered_tree;
927 	spin_lock_irq(&tree->lock);
928 	node = tree_search(tree, file_offset);
929 	if (!node)
930 		goto out;
931 
932 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
933 	atomic_inc(&entry->refs);
934 out:
935 	spin_unlock_irq(&tree->lock);
936 	return entry;
937 }
938 
939 /*
940  * After an extent is done, call this to conditionally update the on disk
941  * i_size.  i_size is updated to cover any fully written part of the file.
942  */
943 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
944 				struct btrfs_ordered_extent *ordered)
945 {
946 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
947 	u64 disk_i_size;
948 	u64 new_i_size;
949 	u64 i_size = i_size_read(inode);
950 	struct rb_node *node;
951 	struct rb_node *prev = NULL;
952 	struct btrfs_ordered_extent *test;
953 	int ret = 1;
954 
955 	spin_lock_irq(&tree->lock);
956 	if (ordered) {
957 		offset = entry_end(ordered);
958 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
959 			offset = min(offset,
960 				     ordered->file_offset +
961 				     ordered->truncated_len);
962 	} else {
963 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
964 	}
965 	disk_i_size = BTRFS_I(inode)->disk_i_size;
966 
967 	/* truncate file */
968 	if (disk_i_size > i_size) {
969 		BTRFS_I(inode)->disk_i_size = i_size;
970 		ret = 0;
971 		goto out;
972 	}
973 
974 	/*
975 	 * if the disk i_size is already at the inode->i_size, or
976 	 * this ordered extent is inside the disk i_size, we're done
977 	 */
978 	if (disk_i_size == i_size)
979 		goto out;
980 
981 	/*
982 	 * We still need to update disk_i_size if outstanding_isize is greater
983 	 * than disk_i_size.
984 	 */
985 	if (offset <= disk_i_size &&
986 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
987 		goto out;
988 
989 	/*
990 	 * walk backward from this ordered extent to disk_i_size.
991 	 * if we find an ordered extent then we can't update disk i_size
992 	 * yet
993 	 */
994 	if (ordered) {
995 		node = rb_prev(&ordered->rb_node);
996 	} else {
997 		prev = tree_search(tree, offset);
998 		/*
999 		 * we insert file extents without involving ordered struct,
1000 		 * so there should be no ordered struct cover this offset
1001 		 */
1002 		if (prev) {
1003 			test = rb_entry(prev, struct btrfs_ordered_extent,
1004 					rb_node);
1005 			BUG_ON(offset_in_entry(test, offset));
1006 		}
1007 		node = prev;
1008 	}
1009 	for (; node; node = rb_prev(node)) {
1010 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1011 
1012 		/* We treat this entry as if it doesnt exist */
1013 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1014 			continue;
1015 		if (test->file_offset + test->len <= disk_i_size)
1016 			break;
1017 		if (test->file_offset >= i_size)
1018 			break;
1019 		if (entry_end(test) > disk_i_size) {
1020 			/*
1021 			 * we don't update disk_i_size now, so record this
1022 			 * undealt i_size. Or we will not know the real
1023 			 * i_size.
1024 			 */
1025 			if (test->outstanding_isize < offset)
1026 				test->outstanding_isize = offset;
1027 			if (ordered &&
1028 			    ordered->outstanding_isize >
1029 			    test->outstanding_isize)
1030 				test->outstanding_isize =
1031 						ordered->outstanding_isize;
1032 			goto out;
1033 		}
1034 	}
1035 	new_i_size = min_t(u64, offset, i_size);
1036 
1037 	/*
1038 	 * Some ordered extents may completed before the current one, and
1039 	 * we hold the real i_size in ->outstanding_isize.
1040 	 */
1041 	if (ordered && ordered->outstanding_isize > new_i_size)
1042 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1043 	BTRFS_I(inode)->disk_i_size = new_i_size;
1044 	ret = 0;
1045 out:
1046 	/*
1047 	 * We need to do this because we can't remove ordered extents until
1048 	 * after the i_disk_size has been updated and then the inode has been
1049 	 * updated to reflect the change, so we need to tell anybody who finds
1050 	 * this ordered extent that we've already done all the real work, we
1051 	 * just haven't completed all the other work.
1052 	 */
1053 	if (ordered)
1054 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1055 	spin_unlock_irq(&tree->lock);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * search the ordered extents for one corresponding to 'offset' and
1061  * try to find a checksum.  This is used because we allow pages to
1062  * be reclaimed before their checksum is actually put into the btree
1063  */
1064 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1065 			   u32 *sum, int len)
1066 {
1067 	struct btrfs_ordered_sum *ordered_sum;
1068 	struct btrfs_ordered_extent *ordered;
1069 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070 	unsigned long num_sectors;
1071 	unsigned long i;
1072 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1073 	int index = 0;
1074 
1075 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1076 	if (!ordered)
1077 		return 0;
1078 
1079 	spin_lock_irq(&tree->lock);
1080 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1081 		if (disk_bytenr >= ordered_sum->bytenr &&
1082 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1083 			i = (disk_bytenr - ordered_sum->bytenr) >>
1084 			    inode->i_sb->s_blocksize_bits;
1085 			num_sectors = ordered_sum->len >>
1086 				      inode->i_sb->s_blocksize_bits;
1087 			num_sectors = min_t(int, len - index, num_sectors - i);
1088 			memcpy(sum + index, ordered_sum->sums + i,
1089 			       num_sectors);
1090 
1091 			index += (int)num_sectors;
1092 			if (index == len)
1093 				goto out;
1094 			disk_bytenr += num_sectors * sectorsize;
1095 		}
1096 	}
1097 out:
1098 	spin_unlock_irq(&tree->lock);
1099 	btrfs_put_ordered_extent(ordered);
1100 	return index;
1101 }
1102 
1103 int __init ordered_data_init(void)
1104 {
1105 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1106 				     sizeof(struct btrfs_ordered_extent), 0,
1107 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1108 				     NULL);
1109 	if (!btrfs_ordered_extent_cache)
1110 		return -ENOMEM;
1111 
1112 	return 0;
1113 }
1114 
1115 void ordered_data_exit(void)
1116 {
1117 	if (btrfs_ordered_extent_cache)
1118 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1119 }
1120