1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 entry->disk_len = disk_len; 202 entry->bytes_left = len; 203 entry->inode = igrab(inode); 204 entry->compress_type = compress_type; 205 entry->truncated_len = (u64)-1; 206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 207 set_bit(type, &entry->flags); 208 209 if (dio) 210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 211 212 /* one ref for the tree */ 213 atomic_set(&entry->refs, 1); 214 init_waitqueue_head(&entry->wait); 215 INIT_LIST_HEAD(&entry->list); 216 INIT_LIST_HEAD(&entry->root_extent_list); 217 INIT_LIST_HEAD(&entry->work_list); 218 init_completion(&entry->completion); 219 INIT_LIST_HEAD(&entry->log_list); 220 INIT_LIST_HEAD(&entry->trans_list); 221 222 trace_btrfs_ordered_extent_add(inode, entry); 223 224 spin_lock_irq(&tree->lock); 225 node = tree_insert(&tree->tree, file_offset, 226 &entry->rb_node); 227 if (node) 228 ordered_data_tree_panic(inode, -EEXIST, file_offset); 229 spin_unlock_irq(&tree->lock); 230 231 spin_lock(&root->ordered_extent_lock); 232 list_add_tail(&entry->root_extent_list, 233 &root->ordered_extents); 234 root->nr_ordered_extents++; 235 if (root->nr_ordered_extents == 1) { 236 spin_lock(&root->fs_info->ordered_root_lock); 237 BUG_ON(!list_empty(&root->ordered_root)); 238 list_add_tail(&root->ordered_root, 239 &root->fs_info->ordered_roots); 240 spin_unlock(&root->fs_info->ordered_root_lock); 241 } 242 spin_unlock(&root->ordered_extent_lock); 243 244 return 0; 245 } 246 247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 248 u64 start, u64 len, u64 disk_len, int type) 249 { 250 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 251 disk_len, type, 0, 252 BTRFS_COMPRESS_NONE); 253 } 254 255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 256 u64 start, u64 len, u64 disk_len, int type) 257 { 258 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 259 disk_len, type, 1, 260 BTRFS_COMPRESS_NONE); 261 } 262 263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 264 u64 start, u64 len, u64 disk_len, 265 int type, int compress_type) 266 { 267 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 268 disk_len, type, 0, 269 compress_type); 270 } 271 272 /* 273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 274 * when an ordered extent is finished. If the list covers more than one 275 * ordered extent, it is split across multiples. 276 */ 277 void btrfs_add_ordered_sum(struct inode *inode, 278 struct btrfs_ordered_extent *entry, 279 struct btrfs_ordered_sum *sum) 280 { 281 struct btrfs_ordered_inode_tree *tree; 282 283 tree = &BTRFS_I(inode)->ordered_tree; 284 spin_lock_irq(&tree->lock); 285 list_add_tail(&sum->list, &entry->list); 286 spin_unlock_irq(&tree->lock); 287 } 288 289 /* 290 * this is used to account for finished IO across a given range 291 * of the file. The IO may span ordered extents. If 292 * a given ordered_extent is completely done, 1 is returned, otherwise 293 * 0. 294 * 295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 296 * to make sure this function only returns 1 once for a given ordered extent. 297 * 298 * file_offset is updated to one byte past the range that is recorded as 299 * complete. This allows you to walk forward in the file. 300 */ 301 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 302 struct btrfs_ordered_extent **cached, 303 u64 *file_offset, u64 io_size, int uptodate) 304 { 305 struct btrfs_ordered_inode_tree *tree; 306 struct rb_node *node; 307 struct btrfs_ordered_extent *entry = NULL; 308 int ret; 309 unsigned long flags; 310 u64 dec_end; 311 u64 dec_start; 312 u64 to_dec; 313 314 tree = &BTRFS_I(inode)->ordered_tree; 315 spin_lock_irqsave(&tree->lock, flags); 316 node = tree_search(tree, *file_offset); 317 if (!node) { 318 ret = 1; 319 goto out; 320 } 321 322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 323 if (!offset_in_entry(entry, *file_offset)) { 324 ret = 1; 325 goto out; 326 } 327 328 dec_start = max(*file_offset, entry->file_offset); 329 dec_end = min(*file_offset + io_size, entry->file_offset + 330 entry->len); 331 *file_offset = dec_end; 332 if (dec_start > dec_end) { 333 btrfs_crit(BTRFS_I(inode)->root->fs_info, 334 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 335 } 336 to_dec = dec_end - dec_start; 337 if (to_dec > entry->bytes_left) { 338 btrfs_crit(BTRFS_I(inode)->root->fs_info, 339 "bad ordered accounting left %llu size %llu", 340 entry->bytes_left, to_dec); 341 } 342 entry->bytes_left -= to_dec; 343 if (!uptodate) 344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 345 346 if (entry->bytes_left == 0) { 347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 348 /* 349 * Implicit memory barrier after test_and_set_bit 350 */ 351 if (waitqueue_active(&entry->wait)) 352 wake_up(&entry->wait); 353 } else { 354 ret = 1; 355 } 356 out: 357 if (!ret && cached && entry) { 358 *cached = entry; 359 atomic_inc(&entry->refs); 360 } 361 spin_unlock_irqrestore(&tree->lock, flags); 362 return ret == 0; 363 } 364 365 /* 366 * this is used to account for finished IO across a given range 367 * of the file. The IO should not span ordered extents. If 368 * a given ordered_extent is completely done, 1 is returned, otherwise 369 * 0. 370 * 371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 372 * to make sure this function only returns 1 once for a given ordered extent. 373 */ 374 int btrfs_dec_test_ordered_pending(struct inode *inode, 375 struct btrfs_ordered_extent **cached, 376 u64 file_offset, u64 io_size, int uptodate) 377 { 378 struct btrfs_ordered_inode_tree *tree; 379 struct rb_node *node; 380 struct btrfs_ordered_extent *entry = NULL; 381 unsigned long flags; 382 int ret; 383 384 tree = &BTRFS_I(inode)->ordered_tree; 385 spin_lock_irqsave(&tree->lock, flags); 386 if (cached && *cached) { 387 entry = *cached; 388 goto have_entry; 389 } 390 391 node = tree_search(tree, file_offset); 392 if (!node) { 393 ret = 1; 394 goto out; 395 } 396 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 398 have_entry: 399 if (!offset_in_entry(entry, file_offset)) { 400 ret = 1; 401 goto out; 402 } 403 404 if (io_size > entry->bytes_left) { 405 btrfs_crit(BTRFS_I(inode)->root->fs_info, 406 "bad ordered accounting left %llu size %llu", 407 entry->bytes_left, io_size); 408 } 409 entry->bytes_left -= io_size; 410 if (!uptodate) 411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 412 413 if (entry->bytes_left == 0) { 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 415 /* 416 * Implicit memory barrier after test_and_set_bit 417 */ 418 if (waitqueue_active(&entry->wait)) 419 wake_up(&entry->wait); 420 } else { 421 ret = 1; 422 } 423 out: 424 if (!ret && cached && entry) { 425 *cached = entry; 426 atomic_inc(&entry->refs); 427 } 428 spin_unlock_irqrestore(&tree->lock, flags); 429 return ret == 0; 430 } 431 432 /* Needs to either be called under a log transaction or the log_mutex */ 433 void btrfs_get_logged_extents(struct inode *inode, 434 struct list_head *logged_list, 435 const loff_t start, 436 const loff_t end) 437 { 438 struct btrfs_ordered_inode_tree *tree; 439 struct btrfs_ordered_extent *ordered; 440 struct rb_node *n; 441 struct rb_node *prev; 442 443 tree = &BTRFS_I(inode)->ordered_tree; 444 spin_lock_irq(&tree->lock); 445 n = __tree_search(&tree->tree, end, &prev); 446 if (!n) 447 n = prev; 448 for (; n; n = rb_prev(n)) { 449 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 450 if (ordered->file_offset > end) 451 continue; 452 if (entry_end(ordered) <= start) 453 break; 454 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 455 continue; 456 list_add(&ordered->log_list, logged_list); 457 atomic_inc(&ordered->refs); 458 } 459 spin_unlock_irq(&tree->lock); 460 } 461 462 void btrfs_put_logged_extents(struct list_head *logged_list) 463 { 464 struct btrfs_ordered_extent *ordered; 465 466 while (!list_empty(logged_list)) { 467 ordered = list_first_entry(logged_list, 468 struct btrfs_ordered_extent, 469 log_list); 470 list_del_init(&ordered->log_list); 471 btrfs_put_ordered_extent(ordered); 472 } 473 } 474 475 void btrfs_submit_logged_extents(struct list_head *logged_list, 476 struct btrfs_root *log) 477 { 478 int index = log->log_transid % 2; 479 480 spin_lock_irq(&log->log_extents_lock[index]); 481 list_splice_tail(logged_list, &log->logged_list[index]); 482 spin_unlock_irq(&log->log_extents_lock[index]); 483 } 484 485 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 486 struct btrfs_root *log, u64 transid) 487 { 488 struct btrfs_ordered_extent *ordered; 489 int index = transid % 2; 490 491 spin_lock_irq(&log->log_extents_lock[index]); 492 while (!list_empty(&log->logged_list[index])) { 493 struct inode *inode; 494 ordered = list_first_entry(&log->logged_list[index], 495 struct btrfs_ordered_extent, 496 log_list); 497 list_del_init(&ordered->log_list); 498 inode = ordered->inode; 499 spin_unlock_irq(&log->log_extents_lock[index]); 500 501 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 502 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 503 u64 start = ordered->file_offset; 504 u64 end = ordered->file_offset + ordered->len - 1; 505 506 WARN_ON(!inode); 507 filemap_fdatawrite_range(inode->i_mapping, start, end); 508 } 509 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 510 &ordered->flags)); 511 512 /* 513 * In order to keep us from losing our ordered extent 514 * information when committing the transaction we have to make 515 * sure that any logged extents are completed when we go to 516 * commit the transaction. To do this we simply increase the 517 * current transactions pending_ordered counter and decrement it 518 * when the ordered extent completes. 519 */ 520 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 521 struct btrfs_ordered_inode_tree *tree; 522 523 tree = &BTRFS_I(inode)->ordered_tree; 524 spin_lock_irq(&tree->lock); 525 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 526 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 527 atomic_inc(&trans->transaction->pending_ordered); 528 } 529 spin_unlock_irq(&tree->lock); 530 } 531 btrfs_put_ordered_extent(ordered); 532 spin_lock_irq(&log->log_extents_lock[index]); 533 } 534 spin_unlock_irq(&log->log_extents_lock[index]); 535 } 536 537 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 538 { 539 struct btrfs_ordered_extent *ordered; 540 int index = transid % 2; 541 542 spin_lock_irq(&log->log_extents_lock[index]); 543 while (!list_empty(&log->logged_list[index])) { 544 ordered = list_first_entry(&log->logged_list[index], 545 struct btrfs_ordered_extent, 546 log_list); 547 list_del_init(&ordered->log_list); 548 spin_unlock_irq(&log->log_extents_lock[index]); 549 btrfs_put_ordered_extent(ordered); 550 spin_lock_irq(&log->log_extents_lock[index]); 551 } 552 spin_unlock_irq(&log->log_extents_lock[index]); 553 } 554 555 /* 556 * used to drop a reference on an ordered extent. This will free 557 * the extent if the last reference is dropped 558 */ 559 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 560 { 561 struct list_head *cur; 562 struct btrfs_ordered_sum *sum; 563 564 trace_btrfs_ordered_extent_put(entry->inode, entry); 565 566 if (atomic_dec_and_test(&entry->refs)) { 567 ASSERT(list_empty(&entry->log_list)); 568 ASSERT(list_empty(&entry->trans_list)); 569 ASSERT(list_empty(&entry->root_extent_list)); 570 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 571 if (entry->inode) 572 btrfs_add_delayed_iput(entry->inode); 573 while (!list_empty(&entry->list)) { 574 cur = entry->list.next; 575 sum = list_entry(cur, struct btrfs_ordered_sum, list); 576 list_del(&sum->list); 577 kfree(sum); 578 } 579 kmem_cache_free(btrfs_ordered_extent_cache, entry); 580 } 581 } 582 583 /* 584 * remove an ordered extent from the tree. No references are dropped 585 * and waiters are woken up. 586 */ 587 void btrfs_remove_ordered_extent(struct inode *inode, 588 struct btrfs_ordered_extent *entry) 589 { 590 struct btrfs_ordered_inode_tree *tree; 591 struct btrfs_root *root = BTRFS_I(inode)->root; 592 struct rb_node *node; 593 bool dec_pending_ordered = false; 594 595 tree = &BTRFS_I(inode)->ordered_tree; 596 spin_lock_irq(&tree->lock); 597 node = &entry->rb_node; 598 rb_erase(node, &tree->tree); 599 RB_CLEAR_NODE(node); 600 if (tree->last == node) 601 tree->last = NULL; 602 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 603 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) 604 dec_pending_ordered = true; 605 spin_unlock_irq(&tree->lock); 606 607 /* 608 * The current running transaction is waiting on us, we need to let it 609 * know that we're complete and wake it up. 610 */ 611 if (dec_pending_ordered) { 612 struct btrfs_transaction *trans; 613 614 /* 615 * The checks for trans are just a formality, it should be set, 616 * but if it isn't we don't want to deref/assert under the spin 617 * lock, so be nice and check if trans is set, but ASSERT() so 618 * if it isn't set a developer will notice. 619 */ 620 spin_lock(&root->fs_info->trans_lock); 621 trans = root->fs_info->running_transaction; 622 if (trans) 623 atomic_inc(&trans->use_count); 624 spin_unlock(&root->fs_info->trans_lock); 625 626 ASSERT(trans); 627 if (trans) { 628 if (atomic_dec_and_test(&trans->pending_ordered)) 629 wake_up(&trans->pending_wait); 630 btrfs_put_transaction(trans); 631 } 632 } 633 634 spin_lock(&root->ordered_extent_lock); 635 list_del_init(&entry->root_extent_list); 636 root->nr_ordered_extents--; 637 638 trace_btrfs_ordered_extent_remove(inode, entry); 639 640 if (!root->nr_ordered_extents) { 641 spin_lock(&root->fs_info->ordered_root_lock); 642 BUG_ON(list_empty(&root->ordered_root)); 643 list_del_init(&root->ordered_root); 644 spin_unlock(&root->fs_info->ordered_root_lock); 645 } 646 spin_unlock(&root->ordered_extent_lock); 647 wake_up(&entry->wait); 648 } 649 650 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 651 { 652 struct btrfs_ordered_extent *ordered; 653 654 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 655 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 656 complete(&ordered->completion); 657 } 658 659 /* 660 * wait for all the ordered extents in a root. This is done when balancing 661 * space between drives. 662 */ 663 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) 664 { 665 struct list_head splice, works; 666 struct btrfs_ordered_extent *ordered, *next; 667 int count = 0; 668 669 INIT_LIST_HEAD(&splice); 670 INIT_LIST_HEAD(&works); 671 672 mutex_lock(&root->ordered_extent_mutex); 673 spin_lock(&root->ordered_extent_lock); 674 list_splice_init(&root->ordered_extents, &splice); 675 while (!list_empty(&splice) && nr) { 676 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 677 root_extent_list); 678 list_move_tail(&ordered->root_extent_list, 679 &root->ordered_extents); 680 atomic_inc(&ordered->refs); 681 spin_unlock(&root->ordered_extent_lock); 682 683 btrfs_init_work(&ordered->flush_work, 684 btrfs_flush_delalloc_helper, 685 btrfs_run_ordered_extent_work, NULL, NULL); 686 list_add_tail(&ordered->work_list, &works); 687 btrfs_queue_work(root->fs_info->flush_workers, 688 &ordered->flush_work); 689 690 cond_resched(); 691 spin_lock(&root->ordered_extent_lock); 692 if (nr != -1) 693 nr--; 694 count++; 695 } 696 list_splice_tail(&splice, &root->ordered_extents); 697 spin_unlock(&root->ordered_extent_lock); 698 699 list_for_each_entry_safe(ordered, next, &works, work_list) { 700 list_del_init(&ordered->work_list); 701 wait_for_completion(&ordered->completion); 702 btrfs_put_ordered_extent(ordered); 703 cond_resched(); 704 } 705 mutex_unlock(&root->ordered_extent_mutex); 706 707 return count; 708 } 709 710 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) 711 { 712 struct btrfs_root *root; 713 struct list_head splice; 714 int done; 715 716 INIT_LIST_HEAD(&splice); 717 718 mutex_lock(&fs_info->ordered_operations_mutex); 719 spin_lock(&fs_info->ordered_root_lock); 720 list_splice_init(&fs_info->ordered_roots, &splice); 721 while (!list_empty(&splice) && nr) { 722 root = list_first_entry(&splice, struct btrfs_root, 723 ordered_root); 724 root = btrfs_grab_fs_root(root); 725 BUG_ON(!root); 726 list_move_tail(&root->ordered_root, 727 &fs_info->ordered_roots); 728 spin_unlock(&fs_info->ordered_root_lock); 729 730 done = btrfs_wait_ordered_extents(root, nr); 731 btrfs_put_fs_root(root); 732 733 spin_lock(&fs_info->ordered_root_lock); 734 if (nr != -1) { 735 nr -= done; 736 WARN_ON(nr < 0); 737 } 738 } 739 list_splice_tail(&splice, &fs_info->ordered_roots); 740 spin_unlock(&fs_info->ordered_root_lock); 741 mutex_unlock(&fs_info->ordered_operations_mutex); 742 } 743 744 /* 745 * Used to start IO or wait for a given ordered extent to finish. 746 * 747 * If wait is one, this effectively waits on page writeback for all the pages 748 * in the extent, and it waits on the io completion code to insert 749 * metadata into the btree corresponding to the extent 750 */ 751 void btrfs_start_ordered_extent(struct inode *inode, 752 struct btrfs_ordered_extent *entry, 753 int wait) 754 { 755 u64 start = entry->file_offset; 756 u64 end = start + entry->len - 1; 757 758 trace_btrfs_ordered_extent_start(inode, entry); 759 760 /* 761 * pages in the range can be dirty, clean or writeback. We 762 * start IO on any dirty ones so the wait doesn't stall waiting 763 * for the flusher thread to find them 764 */ 765 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 766 filemap_fdatawrite_range(inode->i_mapping, start, end); 767 if (wait) { 768 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 769 &entry->flags)); 770 } 771 } 772 773 /* 774 * Used to wait on ordered extents across a large range of bytes. 775 */ 776 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 777 { 778 int ret = 0; 779 int ret_wb = 0; 780 u64 end; 781 u64 orig_end; 782 struct btrfs_ordered_extent *ordered; 783 784 if (start + len < start) { 785 orig_end = INT_LIMIT(loff_t); 786 } else { 787 orig_end = start + len - 1; 788 if (orig_end > INT_LIMIT(loff_t)) 789 orig_end = INT_LIMIT(loff_t); 790 } 791 792 /* start IO across the range first to instantiate any delalloc 793 * extents 794 */ 795 ret = btrfs_fdatawrite_range(inode, start, orig_end); 796 if (ret) 797 return ret; 798 799 /* 800 * If we have a writeback error don't return immediately. Wait first 801 * for any ordered extents that haven't completed yet. This is to make 802 * sure no one can dirty the same page ranges and call writepages() 803 * before the ordered extents complete - to avoid failures (-EEXIST) 804 * when adding the new ordered extents to the ordered tree. 805 */ 806 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 807 808 end = orig_end; 809 while (1) { 810 ordered = btrfs_lookup_first_ordered_extent(inode, end); 811 if (!ordered) 812 break; 813 if (ordered->file_offset > orig_end) { 814 btrfs_put_ordered_extent(ordered); 815 break; 816 } 817 if (ordered->file_offset + ordered->len <= start) { 818 btrfs_put_ordered_extent(ordered); 819 break; 820 } 821 btrfs_start_ordered_extent(inode, ordered, 1); 822 end = ordered->file_offset; 823 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 824 ret = -EIO; 825 btrfs_put_ordered_extent(ordered); 826 if (ret || end == 0 || end == start) 827 break; 828 end--; 829 } 830 return ret_wb ? ret_wb : ret; 831 } 832 833 /* 834 * find an ordered extent corresponding to file_offset. return NULL if 835 * nothing is found, otherwise take a reference on the extent and return it 836 */ 837 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 838 u64 file_offset) 839 { 840 struct btrfs_ordered_inode_tree *tree; 841 struct rb_node *node; 842 struct btrfs_ordered_extent *entry = NULL; 843 844 tree = &BTRFS_I(inode)->ordered_tree; 845 spin_lock_irq(&tree->lock); 846 node = tree_search(tree, file_offset); 847 if (!node) 848 goto out; 849 850 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 851 if (!offset_in_entry(entry, file_offset)) 852 entry = NULL; 853 if (entry) 854 atomic_inc(&entry->refs); 855 out: 856 spin_unlock_irq(&tree->lock); 857 return entry; 858 } 859 860 /* Since the DIO code tries to lock a wide area we need to look for any ordered 861 * extents that exist in the range, rather than just the start of the range. 862 */ 863 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 864 u64 file_offset, 865 u64 len) 866 { 867 struct btrfs_ordered_inode_tree *tree; 868 struct rb_node *node; 869 struct btrfs_ordered_extent *entry = NULL; 870 871 tree = &BTRFS_I(inode)->ordered_tree; 872 spin_lock_irq(&tree->lock); 873 node = tree_search(tree, file_offset); 874 if (!node) { 875 node = tree_search(tree, file_offset + len); 876 if (!node) 877 goto out; 878 } 879 880 while (1) { 881 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 882 if (range_overlaps(entry, file_offset, len)) 883 break; 884 885 if (entry->file_offset >= file_offset + len) { 886 entry = NULL; 887 break; 888 } 889 entry = NULL; 890 node = rb_next(node); 891 if (!node) 892 break; 893 } 894 out: 895 if (entry) 896 atomic_inc(&entry->refs); 897 spin_unlock_irq(&tree->lock); 898 return entry; 899 } 900 901 bool btrfs_have_ordered_extents_in_range(struct inode *inode, 902 u64 file_offset, 903 u64 len) 904 { 905 struct btrfs_ordered_extent *oe; 906 907 oe = btrfs_lookup_ordered_range(inode, file_offset, len); 908 if (oe) { 909 btrfs_put_ordered_extent(oe); 910 return true; 911 } 912 return false; 913 } 914 915 /* 916 * lookup and return any extent before 'file_offset'. NULL is returned 917 * if none is found 918 */ 919 struct btrfs_ordered_extent * 920 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 921 { 922 struct btrfs_ordered_inode_tree *tree; 923 struct rb_node *node; 924 struct btrfs_ordered_extent *entry = NULL; 925 926 tree = &BTRFS_I(inode)->ordered_tree; 927 spin_lock_irq(&tree->lock); 928 node = tree_search(tree, file_offset); 929 if (!node) 930 goto out; 931 932 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 933 atomic_inc(&entry->refs); 934 out: 935 spin_unlock_irq(&tree->lock); 936 return entry; 937 } 938 939 /* 940 * After an extent is done, call this to conditionally update the on disk 941 * i_size. i_size is updated to cover any fully written part of the file. 942 */ 943 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 944 struct btrfs_ordered_extent *ordered) 945 { 946 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 947 u64 disk_i_size; 948 u64 new_i_size; 949 u64 i_size = i_size_read(inode); 950 struct rb_node *node; 951 struct rb_node *prev = NULL; 952 struct btrfs_ordered_extent *test; 953 int ret = 1; 954 955 spin_lock_irq(&tree->lock); 956 if (ordered) { 957 offset = entry_end(ordered); 958 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 959 offset = min(offset, 960 ordered->file_offset + 961 ordered->truncated_len); 962 } else { 963 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 964 } 965 disk_i_size = BTRFS_I(inode)->disk_i_size; 966 967 /* truncate file */ 968 if (disk_i_size > i_size) { 969 BTRFS_I(inode)->disk_i_size = i_size; 970 ret = 0; 971 goto out; 972 } 973 974 /* 975 * if the disk i_size is already at the inode->i_size, or 976 * this ordered extent is inside the disk i_size, we're done 977 */ 978 if (disk_i_size == i_size) 979 goto out; 980 981 /* 982 * We still need to update disk_i_size if outstanding_isize is greater 983 * than disk_i_size. 984 */ 985 if (offset <= disk_i_size && 986 (!ordered || ordered->outstanding_isize <= disk_i_size)) 987 goto out; 988 989 /* 990 * walk backward from this ordered extent to disk_i_size. 991 * if we find an ordered extent then we can't update disk i_size 992 * yet 993 */ 994 if (ordered) { 995 node = rb_prev(&ordered->rb_node); 996 } else { 997 prev = tree_search(tree, offset); 998 /* 999 * we insert file extents without involving ordered struct, 1000 * so there should be no ordered struct cover this offset 1001 */ 1002 if (prev) { 1003 test = rb_entry(prev, struct btrfs_ordered_extent, 1004 rb_node); 1005 BUG_ON(offset_in_entry(test, offset)); 1006 } 1007 node = prev; 1008 } 1009 for (; node; node = rb_prev(node)) { 1010 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1011 1012 /* We treat this entry as if it doesnt exist */ 1013 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 1014 continue; 1015 if (test->file_offset + test->len <= disk_i_size) 1016 break; 1017 if (test->file_offset >= i_size) 1018 break; 1019 if (entry_end(test) > disk_i_size) { 1020 /* 1021 * we don't update disk_i_size now, so record this 1022 * undealt i_size. Or we will not know the real 1023 * i_size. 1024 */ 1025 if (test->outstanding_isize < offset) 1026 test->outstanding_isize = offset; 1027 if (ordered && 1028 ordered->outstanding_isize > 1029 test->outstanding_isize) 1030 test->outstanding_isize = 1031 ordered->outstanding_isize; 1032 goto out; 1033 } 1034 } 1035 new_i_size = min_t(u64, offset, i_size); 1036 1037 /* 1038 * Some ordered extents may completed before the current one, and 1039 * we hold the real i_size in ->outstanding_isize. 1040 */ 1041 if (ordered && ordered->outstanding_isize > new_i_size) 1042 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1043 BTRFS_I(inode)->disk_i_size = new_i_size; 1044 ret = 0; 1045 out: 1046 /* 1047 * We need to do this because we can't remove ordered extents until 1048 * after the i_disk_size has been updated and then the inode has been 1049 * updated to reflect the change, so we need to tell anybody who finds 1050 * this ordered extent that we've already done all the real work, we 1051 * just haven't completed all the other work. 1052 */ 1053 if (ordered) 1054 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1055 spin_unlock_irq(&tree->lock); 1056 return ret; 1057 } 1058 1059 /* 1060 * search the ordered extents for one corresponding to 'offset' and 1061 * try to find a checksum. This is used because we allow pages to 1062 * be reclaimed before their checksum is actually put into the btree 1063 */ 1064 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1065 u32 *sum, int len) 1066 { 1067 struct btrfs_ordered_sum *ordered_sum; 1068 struct btrfs_ordered_extent *ordered; 1069 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1070 unsigned long num_sectors; 1071 unsigned long i; 1072 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1073 int index = 0; 1074 1075 ordered = btrfs_lookup_ordered_extent(inode, offset); 1076 if (!ordered) 1077 return 0; 1078 1079 spin_lock_irq(&tree->lock); 1080 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1081 if (disk_bytenr >= ordered_sum->bytenr && 1082 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1083 i = (disk_bytenr - ordered_sum->bytenr) >> 1084 inode->i_sb->s_blocksize_bits; 1085 num_sectors = ordered_sum->len >> 1086 inode->i_sb->s_blocksize_bits; 1087 num_sectors = min_t(int, len - index, num_sectors - i); 1088 memcpy(sum + index, ordered_sum->sums + i, 1089 num_sectors); 1090 1091 index += (int)num_sectors; 1092 if (index == len) 1093 goto out; 1094 disk_bytenr += num_sectors * sectorsize; 1095 } 1096 } 1097 out: 1098 spin_unlock_irq(&tree->lock); 1099 btrfs_put_ordered_extent(ordered); 1100 return index; 1101 } 1102 1103 int __init ordered_data_init(void) 1104 { 1105 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1106 sizeof(struct btrfs_ordered_extent), 0, 1107 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1108 NULL); 1109 if (!btrfs_ordered_extent_cache) 1110 return -ENOMEM; 1111 1112 return 0; 1113 } 1114 1115 void ordered_data_exit(void) 1116 { 1117 if (btrfs_ordered_extent_cache) 1118 kmem_cache_destroy(btrfs_ordered_extent_cache); 1119 } 1120