xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 
20 static struct kmem_cache *btrfs_ordered_extent_cache;
21 
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 {
24 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
25 		return (u64)-1;
26 	return entry->file_offset + entry->num_bytes;
27 }
28 
29 /* returns NULL if the insertion worked, or it returns the node it did find
30  * in the tree
31  */
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33 				   struct rb_node *node)
34 {
35 	struct rb_node **p = &root->rb_node;
36 	struct rb_node *parent = NULL;
37 	struct btrfs_ordered_extent *entry;
38 
39 	while (*p) {
40 		parent = *p;
41 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42 
43 		if (file_offset < entry->file_offset)
44 			p = &(*p)->rb_left;
45 		else if (file_offset >= entry_end(entry))
46 			p = &(*p)->rb_right;
47 		else
48 			return parent;
49 	}
50 
51 	rb_link_node(node, parent, p);
52 	rb_insert_color(node, root);
53 	return NULL;
54 }
55 
56 /*
57  * look for a given offset in the tree, and if it can't be found return the
58  * first lesser offset
59  */
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 				     struct rb_node **prev_ret)
62 {
63 	struct rb_node *n = root->rb_node;
64 	struct rb_node *prev = NULL;
65 	struct rb_node *test;
66 	struct btrfs_ordered_extent *entry;
67 	struct btrfs_ordered_extent *prev_entry = NULL;
68 
69 	while (n) {
70 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71 		prev = n;
72 		prev_entry = entry;
73 
74 		if (file_offset < entry->file_offset)
75 			n = n->rb_left;
76 		else if (file_offset >= entry_end(entry))
77 			n = n->rb_right;
78 		else
79 			return n;
80 	}
81 	if (!prev_ret)
82 		return NULL;
83 
84 	while (prev && file_offset >= entry_end(prev_entry)) {
85 		test = rb_next(prev);
86 		if (!test)
87 			break;
88 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89 				      rb_node);
90 		if (file_offset < entry_end(prev_entry))
91 			break;
92 
93 		prev = test;
94 	}
95 	if (prev)
96 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97 				      rb_node);
98 	while (prev && file_offset < entry_end(prev_entry)) {
99 		test = rb_prev(prev);
100 		if (!test)
101 			break;
102 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 				      rb_node);
104 		prev = test;
105 	}
106 	*prev_ret = prev;
107 	return NULL;
108 }
109 
110 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
111 			  u64 len)
112 {
113 	if (file_offset + len <= entry->file_offset ||
114 	    entry->file_offset + entry->num_bytes <= file_offset)
115 		return 0;
116 	return 1;
117 }
118 
119 /*
120  * look find the first ordered struct that has this offset, otherwise
121  * the first one less than this offset
122  */
123 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
124 					  u64 file_offset)
125 {
126 	struct rb_root *root = &tree->tree;
127 	struct rb_node *prev = NULL;
128 	struct rb_node *ret;
129 	struct btrfs_ordered_extent *entry;
130 
131 	if (tree->last) {
132 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
133 				 rb_node);
134 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
135 			return tree->last;
136 	}
137 	ret = __tree_search(root, file_offset, &prev);
138 	if (!ret)
139 		ret = prev;
140 	if (ret)
141 		tree->last = ret;
142 	return ret;
143 }
144 
145 /*
146  * Allocate and add a new ordered_extent into the per-inode tree.
147  *
148  * The tree is given a single reference on the ordered extent that was
149  * inserted.
150  */
151 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
152 				      u64 disk_bytenr, u64 num_bytes,
153 				      u64 disk_num_bytes, int type, int dio,
154 				      int compress_type)
155 {
156 	struct btrfs_root *root = inode->root;
157 	struct btrfs_fs_info *fs_info = root->fs_info;
158 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
159 	struct rb_node *node;
160 	struct btrfs_ordered_extent *entry;
161 	int ret;
162 
163 	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
164 		/* For nocow write, we can release the qgroup rsv right now */
165 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
166 		if (ret < 0)
167 			return ret;
168 		ret = 0;
169 	} else {
170 		/*
171 		 * The ordered extent has reserved qgroup space, release now
172 		 * and pass the reserved number for qgroup_record to free.
173 		 */
174 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
175 		if (ret < 0)
176 			return ret;
177 	}
178 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
179 	if (!entry)
180 		return -ENOMEM;
181 
182 	entry->file_offset = file_offset;
183 	entry->disk_bytenr = disk_bytenr;
184 	entry->num_bytes = num_bytes;
185 	entry->disk_num_bytes = disk_num_bytes;
186 	entry->bytes_left = num_bytes;
187 	entry->inode = igrab(&inode->vfs_inode);
188 	entry->compress_type = compress_type;
189 	entry->truncated_len = (u64)-1;
190 	entry->qgroup_rsv = ret;
191 	entry->physical = (u64)-1;
192 	entry->disk = NULL;
193 	entry->partno = (u8)-1;
194 
195 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
196 	       type == BTRFS_ORDERED_NOCOW ||
197 	       type == BTRFS_ORDERED_PREALLOC ||
198 	       type == BTRFS_ORDERED_COMPRESSED);
199 	set_bit(type, &entry->flags);
200 
201 	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
202 				 fs_info->delalloc_batch);
203 
204 	if (dio)
205 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206 
207 	/* one ref for the tree */
208 	refcount_set(&entry->refs, 1);
209 	init_waitqueue_head(&entry->wait);
210 	INIT_LIST_HEAD(&entry->list);
211 	INIT_LIST_HEAD(&entry->log_list);
212 	INIT_LIST_HEAD(&entry->root_extent_list);
213 	INIT_LIST_HEAD(&entry->work_list);
214 	init_completion(&entry->completion);
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	spin_lock_irq(&tree->lock);
219 	node = tree_insert(&tree->tree, file_offset,
220 			   &entry->rb_node);
221 	if (node)
222 		btrfs_panic(fs_info, -EEXIST,
223 				"inconsistency in ordered tree at offset %llu",
224 				file_offset);
225 	spin_unlock_irq(&tree->lock);
226 
227 	spin_lock(&root->ordered_extent_lock);
228 	list_add_tail(&entry->root_extent_list,
229 		      &root->ordered_extents);
230 	root->nr_ordered_extents++;
231 	if (root->nr_ordered_extents == 1) {
232 		spin_lock(&fs_info->ordered_root_lock);
233 		BUG_ON(!list_empty(&root->ordered_root));
234 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
235 		spin_unlock(&fs_info->ordered_root_lock);
236 	}
237 	spin_unlock(&root->ordered_extent_lock);
238 
239 	/*
240 	 * We don't need the count_max_extents here, we can assume that all of
241 	 * that work has been done at higher layers, so this is truly the
242 	 * smallest the extent is going to get.
243 	 */
244 	spin_lock(&inode->lock);
245 	btrfs_mod_outstanding_extents(inode, 1);
246 	spin_unlock(&inode->lock);
247 
248 	return 0;
249 }
250 
251 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
252 			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
253 			     int type)
254 {
255 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
256 	       type == BTRFS_ORDERED_NOCOW ||
257 	       type == BTRFS_ORDERED_PREALLOC);
258 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259 					  num_bytes, disk_num_bytes, type, 0,
260 					  BTRFS_COMPRESS_NONE);
261 }
262 
263 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264 				 u64 disk_bytenr, u64 num_bytes,
265 				 u64 disk_num_bytes, int type)
266 {
267 	ASSERT(type == BTRFS_ORDERED_REGULAR ||
268 	       type == BTRFS_ORDERED_NOCOW ||
269 	       type == BTRFS_ORDERED_PREALLOC);
270 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
271 					  num_bytes, disk_num_bytes, type, 1,
272 					  BTRFS_COMPRESS_NONE);
273 }
274 
275 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
276 				      u64 disk_bytenr, u64 num_bytes,
277 				      u64 disk_num_bytes, int compress_type)
278 {
279 	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
280 	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
281 					  num_bytes, disk_num_bytes,
282 					  BTRFS_ORDERED_COMPRESSED, 0,
283 					  compress_type);
284 }
285 
286 /*
287  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
288  * when an ordered extent is finished.  If the list covers more than one
289  * ordered extent, it is split across multiples.
290  */
291 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
292 			   struct btrfs_ordered_sum *sum)
293 {
294 	struct btrfs_ordered_inode_tree *tree;
295 
296 	tree = &BTRFS_I(entry->inode)->ordered_tree;
297 	spin_lock_irq(&tree->lock);
298 	list_add_tail(&sum->list, &entry->list);
299 	spin_unlock_irq(&tree->lock);
300 }
301 
302 /*
303  * Finish IO for one ordered extent across a given range.  The range can
304  * contain several ordered extents.
305  *
306  * @found_ret:	 Return the finished ordered extent
307  * @file_offset: File offset for the finished IO
308  * 		 Will also be updated to one byte past the range that is
309  * 		 recordered as finished. This allows caller to walk forward.
310  * @io_size:	 Length of the finish IO range
311  * @uptodate:	 If the IO finished without problem
312  *
313  * Return true if any ordered extent is finished in the range, and update
314  * @found_ret and @file_offset.
315  * Return false otherwise.
316  *
317  * NOTE: Although The range can cross multiple ordered extents, only one
318  * ordered extent will be updated during one call. The caller is responsible to
319  * iterate all ordered extents in the range.
320  */
321 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
322 				   struct btrfs_ordered_extent **finished_ret,
323 				   u64 *file_offset, u64 io_size, int uptodate)
324 {
325 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
326 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
327 	struct rb_node *node;
328 	struct btrfs_ordered_extent *entry = NULL;
329 	bool finished = false;
330 	unsigned long flags;
331 	u64 dec_end;
332 	u64 dec_start;
333 	u64 to_dec;
334 
335 	spin_lock_irqsave(&tree->lock, flags);
336 	node = tree_search(tree, *file_offset);
337 	if (!node)
338 		goto out;
339 
340 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
341 	if (!in_range(*file_offset, entry->file_offset, entry->num_bytes))
342 		goto out;
343 
344 	dec_start = max(*file_offset, entry->file_offset);
345 	dec_end = min(*file_offset + io_size,
346 		      entry->file_offset + entry->num_bytes);
347 	*file_offset = dec_end;
348 	if (dec_start > dec_end) {
349 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
350 			   dec_start, dec_end);
351 	}
352 	to_dec = dec_end - dec_start;
353 	if (to_dec > entry->bytes_left) {
354 		btrfs_crit(fs_info,
355 			   "bad ordered accounting left %llu size %llu",
356 			   entry->bytes_left, to_dec);
357 	}
358 	entry->bytes_left -= to_dec;
359 	if (!uptodate)
360 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
361 
362 	if (entry->bytes_left == 0) {
363 		/*
364 		 * Ensure only one caller can set the flag and finished_ret
365 		 * accordingly
366 		 */
367 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
368 		/* test_and_set_bit implies a barrier */
369 		cond_wake_up_nomb(&entry->wait);
370 	}
371 out:
372 	if (finished && finished_ret && entry) {
373 		*finished_ret = entry;
374 		refcount_inc(&entry->refs);
375 	}
376 	spin_unlock_irqrestore(&tree->lock, flags);
377 	return finished;
378 }
379 
380 /*
381  * Finish IO for one ordered extent across a given range.  The range can only
382  * contain one ordered extent.
383  *
384  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
385  *               search and use the ordered extent directly.
386  * 		 Will be also used to store the finished ordered extent.
387  * @file_offset: File offset for the finished IO
388  * @io_size:	 Length of the finish IO range
389  * @uptodate:	 If the IO finishes without problem
390  *
391  * Return true if the ordered extent is finished in the range, and update
392  * @cached.
393  * Return false otherwise.
394  *
395  * NOTE: The range can NOT cross multiple ordered extents.
396  * Thus caller should ensure the range doesn't cross ordered extents.
397  */
398 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
399 				    struct btrfs_ordered_extent **cached,
400 				    u64 file_offset, u64 io_size, int uptodate)
401 {
402 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
403 	struct rb_node *node;
404 	struct btrfs_ordered_extent *entry = NULL;
405 	unsigned long flags;
406 	bool finished = false;
407 
408 	spin_lock_irqsave(&tree->lock, flags);
409 	if (cached && *cached) {
410 		entry = *cached;
411 		goto have_entry;
412 	}
413 
414 	node = tree_search(tree, file_offset);
415 	if (!node)
416 		goto out;
417 
418 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
419 have_entry:
420 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
421 		goto out;
422 
423 	if (io_size > entry->bytes_left)
424 		btrfs_crit(inode->root->fs_info,
425 			   "bad ordered accounting left %llu size %llu",
426 		       entry->bytes_left, io_size);
427 
428 	entry->bytes_left -= io_size;
429 	if (!uptodate)
430 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
431 
432 	if (entry->bytes_left == 0) {
433 		/*
434 		 * Ensure only one caller can set the flag and finished_ret
435 		 * accordingly
436 		 */
437 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
438 		/* test_and_set_bit implies a barrier */
439 		cond_wake_up_nomb(&entry->wait);
440 	}
441 out:
442 	if (finished && cached && entry) {
443 		*cached = entry;
444 		refcount_inc(&entry->refs);
445 	}
446 	spin_unlock_irqrestore(&tree->lock, flags);
447 	return finished;
448 }
449 
450 /*
451  * used to drop a reference on an ordered extent.  This will free
452  * the extent if the last reference is dropped
453  */
454 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
455 {
456 	struct list_head *cur;
457 	struct btrfs_ordered_sum *sum;
458 
459 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
460 
461 	if (refcount_dec_and_test(&entry->refs)) {
462 		ASSERT(list_empty(&entry->root_extent_list));
463 		ASSERT(list_empty(&entry->log_list));
464 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
465 		if (entry->inode)
466 			btrfs_add_delayed_iput(entry->inode);
467 		while (!list_empty(&entry->list)) {
468 			cur = entry->list.next;
469 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
470 			list_del(&sum->list);
471 			kvfree(sum);
472 		}
473 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
474 	}
475 }
476 
477 /*
478  * remove an ordered extent from the tree.  No references are dropped
479  * and waiters are woken up.
480  */
481 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
482 				 struct btrfs_ordered_extent *entry)
483 {
484 	struct btrfs_ordered_inode_tree *tree;
485 	struct btrfs_root *root = btrfs_inode->root;
486 	struct btrfs_fs_info *fs_info = root->fs_info;
487 	struct rb_node *node;
488 	bool pending;
489 
490 	/* This is paired with btrfs_add_ordered_extent. */
491 	spin_lock(&btrfs_inode->lock);
492 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
493 	spin_unlock(&btrfs_inode->lock);
494 	if (root != fs_info->tree_root)
495 		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
496 						false);
497 
498 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
499 				 fs_info->delalloc_batch);
500 
501 	tree = &btrfs_inode->ordered_tree;
502 	spin_lock_irq(&tree->lock);
503 	node = &entry->rb_node;
504 	rb_erase(node, &tree->tree);
505 	RB_CLEAR_NODE(node);
506 	if (tree->last == node)
507 		tree->last = NULL;
508 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
509 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
510 	spin_unlock_irq(&tree->lock);
511 
512 	/*
513 	 * The current running transaction is waiting on us, we need to let it
514 	 * know that we're complete and wake it up.
515 	 */
516 	if (pending) {
517 		struct btrfs_transaction *trans;
518 
519 		/*
520 		 * The checks for trans are just a formality, it should be set,
521 		 * but if it isn't we don't want to deref/assert under the spin
522 		 * lock, so be nice and check if trans is set, but ASSERT() so
523 		 * if it isn't set a developer will notice.
524 		 */
525 		spin_lock(&fs_info->trans_lock);
526 		trans = fs_info->running_transaction;
527 		if (trans)
528 			refcount_inc(&trans->use_count);
529 		spin_unlock(&fs_info->trans_lock);
530 
531 		ASSERT(trans);
532 		if (trans) {
533 			if (atomic_dec_and_test(&trans->pending_ordered))
534 				wake_up(&trans->pending_wait);
535 			btrfs_put_transaction(trans);
536 		}
537 	}
538 
539 	spin_lock(&root->ordered_extent_lock);
540 	list_del_init(&entry->root_extent_list);
541 	root->nr_ordered_extents--;
542 
543 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
544 
545 	if (!root->nr_ordered_extents) {
546 		spin_lock(&fs_info->ordered_root_lock);
547 		BUG_ON(list_empty(&root->ordered_root));
548 		list_del_init(&root->ordered_root);
549 		spin_unlock(&fs_info->ordered_root_lock);
550 	}
551 	spin_unlock(&root->ordered_extent_lock);
552 	wake_up(&entry->wait);
553 }
554 
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557 	struct btrfs_ordered_extent *ordered;
558 
559 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 	btrfs_start_ordered_extent(ordered, 1);
561 	complete(&ordered->completion);
562 }
563 
564 /*
565  * wait for all the ordered extents in a root.  This is done when balancing
566  * space between drives.
567  */
568 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
569 			       const u64 range_start, const u64 range_len)
570 {
571 	struct btrfs_fs_info *fs_info = root->fs_info;
572 	LIST_HEAD(splice);
573 	LIST_HEAD(skipped);
574 	LIST_HEAD(works);
575 	struct btrfs_ordered_extent *ordered, *next;
576 	u64 count = 0;
577 	const u64 range_end = range_start + range_len;
578 
579 	mutex_lock(&root->ordered_extent_mutex);
580 	spin_lock(&root->ordered_extent_lock);
581 	list_splice_init(&root->ordered_extents, &splice);
582 	while (!list_empty(&splice) && nr) {
583 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
584 					   root_extent_list);
585 
586 		if (range_end <= ordered->disk_bytenr ||
587 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
588 			list_move_tail(&ordered->root_extent_list, &skipped);
589 			cond_resched_lock(&root->ordered_extent_lock);
590 			continue;
591 		}
592 
593 		list_move_tail(&ordered->root_extent_list,
594 			       &root->ordered_extents);
595 		refcount_inc(&ordered->refs);
596 		spin_unlock(&root->ordered_extent_lock);
597 
598 		btrfs_init_work(&ordered->flush_work,
599 				btrfs_run_ordered_extent_work, NULL, NULL);
600 		list_add_tail(&ordered->work_list, &works);
601 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
602 
603 		cond_resched();
604 		spin_lock(&root->ordered_extent_lock);
605 		if (nr != U64_MAX)
606 			nr--;
607 		count++;
608 	}
609 	list_splice_tail(&skipped, &root->ordered_extents);
610 	list_splice_tail(&splice, &root->ordered_extents);
611 	spin_unlock(&root->ordered_extent_lock);
612 
613 	list_for_each_entry_safe(ordered, next, &works, work_list) {
614 		list_del_init(&ordered->work_list);
615 		wait_for_completion(&ordered->completion);
616 		btrfs_put_ordered_extent(ordered);
617 		cond_resched();
618 	}
619 	mutex_unlock(&root->ordered_extent_mutex);
620 
621 	return count;
622 }
623 
624 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
625 			     const u64 range_start, const u64 range_len)
626 {
627 	struct btrfs_root *root;
628 	struct list_head splice;
629 	u64 done;
630 
631 	INIT_LIST_HEAD(&splice);
632 
633 	mutex_lock(&fs_info->ordered_operations_mutex);
634 	spin_lock(&fs_info->ordered_root_lock);
635 	list_splice_init(&fs_info->ordered_roots, &splice);
636 	while (!list_empty(&splice) && nr) {
637 		root = list_first_entry(&splice, struct btrfs_root,
638 					ordered_root);
639 		root = btrfs_grab_root(root);
640 		BUG_ON(!root);
641 		list_move_tail(&root->ordered_root,
642 			       &fs_info->ordered_roots);
643 		spin_unlock(&fs_info->ordered_root_lock);
644 
645 		done = btrfs_wait_ordered_extents(root, nr,
646 						  range_start, range_len);
647 		btrfs_put_root(root);
648 
649 		spin_lock(&fs_info->ordered_root_lock);
650 		if (nr != U64_MAX) {
651 			nr -= done;
652 		}
653 	}
654 	list_splice_tail(&splice, &fs_info->ordered_roots);
655 	spin_unlock(&fs_info->ordered_root_lock);
656 	mutex_unlock(&fs_info->ordered_operations_mutex);
657 }
658 
659 /*
660  * Used to start IO or wait for a given ordered extent to finish.
661  *
662  * If wait is one, this effectively waits on page writeback for all the pages
663  * in the extent, and it waits on the io completion code to insert
664  * metadata into the btree corresponding to the extent
665  */
666 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
667 {
668 	u64 start = entry->file_offset;
669 	u64 end = start + entry->num_bytes - 1;
670 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
671 
672 	trace_btrfs_ordered_extent_start(inode, entry);
673 
674 	/*
675 	 * pages in the range can be dirty, clean or writeback.  We
676 	 * start IO on any dirty ones so the wait doesn't stall waiting
677 	 * for the flusher thread to find them
678 	 */
679 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
680 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
681 	if (wait) {
682 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
683 						 &entry->flags));
684 	}
685 }
686 
687 /*
688  * Used to wait on ordered extents across a large range of bytes.
689  */
690 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
691 {
692 	int ret = 0;
693 	int ret_wb = 0;
694 	u64 end;
695 	u64 orig_end;
696 	struct btrfs_ordered_extent *ordered;
697 
698 	if (start + len < start) {
699 		orig_end = INT_LIMIT(loff_t);
700 	} else {
701 		orig_end = start + len - 1;
702 		if (orig_end > INT_LIMIT(loff_t))
703 			orig_end = INT_LIMIT(loff_t);
704 	}
705 
706 	/* start IO across the range first to instantiate any delalloc
707 	 * extents
708 	 */
709 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
710 	if (ret)
711 		return ret;
712 
713 	/*
714 	 * If we have a writeback error don't return immediately. Wait first
715 	 * for any ordered extents that haven't completed yet. This is to make
716 	 * sure no one can dirty the same page ranges and call writepages()
717 	 * before the ordered extents complete - to avoid failures (-EEXIST)
718 	 * when adding the new ordered extents to the ordered tree.
719 	 */
720 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
721 
722 	end = orig_end;
723 	while (1) {
724 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
725 		if (!ordered)
726 			break;
727 		if (ordered->file_offset > orig_end) {
728 			btrfs_put_ordered_extent(ordered);
729 			break;
730 		}
731 		if (ordered->file_offset + ordered->num_bytes <= start) {
732 			btrfs_put_ordered_extent(ordered);
733 			break;
734 		}
735 		btrfs_start_ordered_extent(ordered, 1);
736 		end = ordered->file_offset;
737 		/*
738 		 * If the ordered extent had an error save the error but don't
739 		 * exit without waiting first for all other ordered extents in
740 		 * the range to complete.
741 		 */
742 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
743 			ret = -EIO;
744 		btrfs_put_ordered_extent(ordered);
745 		if (end == 0 || end == start)
746 			break;
747 		end--;
748 	}
749 	return ret_wb ? ret_wb : ret;
750 }
751 
752 /*
753  * find an ordered extent corresponding to file_offset.  return NULL if
754  * nothing is found, otherwise take a reference on the extent and return it
755  */
756 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
757 							 u64 file_offset)
758 {
759 	struct btrfs_ordered_inode_tree *tree;
760 	struct rb_node *node;
761 	struct btrfs_ordered_extent *entry = NULL;
762 	unsigned long flags;
763 
764 	tree = &inode->ordered_tree;
765 	spin_lock_irqsave(&tree->lock, flags);
766 	node = tree_search(tree, file_offset);
767 	if (!node)
768 		goto out;
769 
770 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
771 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
772 		entry = NULL;
773 	if (entry)
774 		refcount_inc(&entry->refs);
775 out:
776 	spin_unlock_irqrestore(&tree->lock, flags);
777 	return entry;
778 }
779 
780 /* Since the DIO code tries to lock a wide area we need to look for any ordered
781  * extents that exist in the range, rather than just the start of the range.
782  */
783 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
784 		struct btrfs_inode *inode, u64 file_offset, u64 len)
785 {
786 	struct btrfs_ordered_inode_tree *tree;
787 	struct rb_node *node;
788 	struct btrfs_ordered_extent *entry = NULL;
789 
790 	tree = &inode->ordered_tree;
791 	spin_lock_irq(&tree->lock);
792 	node = tree_search(tree, file_offset);
793 	if (!node) {
794 		node = tree_search(tree, file_offset + len);
795 		if (!node)
796 			goto out;
797 	}
798 
799 	while (1) {
800 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
801 		if (range_overlaps(entry, file_offset, len))
802 			break;
803 
804 		if (entry->file_offset >= file_offset + len) {
805 			entry = NULL;
806 			break;
807 		}
808 		entry = NULL;
809 		node = rb_next(node);
810 		if (!node)
811 			break;
812 	}
813 out:
814 	if (entry)
815 		refcount_inc(&entry->refs);
816 	spin_unlock_irq(&tree->lock);
817 	return entry;
818 }
819 
820 /*
821  * Adds all ordered extents to the given list. The list ends up sorted by the
822  * file_offset of the ordered extents.
823  */
824 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
825 					   struct list_head *list)
826 {
827 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
828 	struct rb_node *n;
829 
830 	ASSERT(inode_is_locked(&inode->vfs_inode));
831 
832 	spin_lock_irq(&tree->lock);
833 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
834 		struct btrfs_ordered_extent *ordered;
835 
836 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
837 
838 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
839 			continue;
840 
841 		ASSERT(list_empty(&ordered->log_list));
842 		list_add_tail(&ordered->log_list, list);
843 		refcount_inc(&ordered->refs);
844 	}
845 	spin_unlock_irq(&tree->lock);
846 }
847 
848 /*
849  * lookup and return any extent before 'file_offset'.  NULL is returned
850  * if none is found
851  */
852 struct btrfs_ordered_extent *
853 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
854 {
855 	struct btrfs_ordered_inode_tree *tree;
856 	struct rb_node *node;
857 	struct btrfs_ordered_extent *entry = NULL;
858 
859 	tree = &inode->ordered_tree;
860 	spin_lock_irq(&tree->lock);
861 	node = tree_search(tree, file_offset);
862 	if (!node)
863 		goto out;
864 
865 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
866 	refcount_inc(&entry->refs);
867 out:
868 	spin_unlock_irq(&tree->lock);
869 	return entry;
870 }
871 
872 /*
873  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
874  * ordered extents in it are run to completion.
875  *
876  * @inode:        Inode whose ordered tree is to be searched
877  * @start:        Beginning of range to flush
878  * @end:          Last byte of range to lock
879  * @cached_state: If passed, will return the extent state responsible for the
880  * locked range. It's the caller's responsibility to free the cached state.
881  *
882  * This function always returns with the given range locked, ensuring after it's
883  * called no order extent can be pending.
884  */
885 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
886 					u64 end,
887 					struct extent_state **cached_state)
888 {
889 	struct btrfs_ordered_extent *ordered;
890 	struct extent_state *cache = NULL;
891 	struct extent_state **cachedp = &cache;
892 
893 	if (cached_state)
894 		cachedp = cached_state;
895 
896 	while (1) {
897 		lock_extent_bits(&inode->io_tree, start, end, cachedp);
898 		ordered = btrfs_lookup_ordered_range(inode, start,
899 						     end - start + 1);
900 		if (!ordered) {
901 			/*
902 			 * If no external cached_state has been passed then
903 			 * decrement the extra ref taken for cachedp since we
904 			 * aren't exposing it outside of this function
905 			 */
906 			if (!cached_state)
907 				refcount_dec(&cache->refs);
908 			break;
909 		}
910 		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
911 		btrfs_start_ordered_extent(ordered, 1);
912 		btrfs_put_ordered_extent(ordered);
913 	}
914 }
915 
916 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
917 				u64 len)
918 {
919 	struct inode *inode = ordered->inode;
920 	u64 file_offset = ordered->file_offset + pos;
921 	u64 disk_bytenr = ordered->disk_bytenr + pos;
922 	u64 num_bytes = len;
923 	u64 disk_num_bytes = len;
924 	int type;
925 	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
926 	int compress_type = ordered->compress_type;
927 	unsigned long weight;
928 	int ret;
929 
930 	weight = hweight_long(flags_masked);
931 	WARN_ON_ONCE(weight > 1);
932 	if (!weight)
933 		type = 0;
934 	else
935 		type = __ffs(flags_masked);
936 
937 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
938 		WARN_ON_ONCE(1);
939 		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
940 				file_offset, disk_bytenr, num_bytes,
941 				disk_num_bytes, compress_type);
942 	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
943 		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
944 				disk_bytenr, num_bytes, disk_num_bytes, type);
945 	} else {
946 		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
947 				disk_bytenr, num_bytes, disk_num_bytes, type);
948 	}
949 
950 	return ret;
951 }
952 
953 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
954 				u64 post)
955 {
956 	struct inode *inode = ordered->inode;
957 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
958 	struct rb_node *node;
959 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
960 	int ret = 0;
961 
962 	spin_lock_irq(&tree->lock);
963 	/* Remove from tree once */
964 	node = &ordered->rb_node;
965 	rb_erase(node, &tree->tree);
966 	RB_CLEAR_NODE(node);
967 	if (tree->last == node)
968 		tree->last = NULL;
969 
970 	ordered->file_offset += pre;
971 	ordered->disk_bytenr += pre;
972 	ordered->num_bytes -= (pre + post);
973 	ordered->disk_num_bytes -= (pre + post);
974 	ordered->bytes_left -= (pre + post);
975 
976 	/* Re-insert the node */
977 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
978 	if (node)
979 		btrfs_panic(fs_info, -EEXIST,
980 			"zoned: inconsistency in ordered tree at offset %llu",
981 			    ordered->file_offset);
982 
983 	spin_unlock_irq(&tree->lock);
984 
985 	if (pre)
986 		ret = clone_ordered_extent(ordered, 0, pre);
987 	if (post)
988 		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
989 					   post);
990 
991 	return ret;
992 }
993 
994 int __init ordered_data_init(void)
995 {
996 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
997 				     sizeof(struct btrfs_ordered_extent), 0,
998 				     SLAB_MEM_SPREAD,
999 				     NULL);
1000 	if (!btrfs_ordered_extent_cache)
1001 		return -ENOMEM;
1002 
1003 	return 0;
1004 }
1005 
1006 void __cold ordered_data_exit(void)
1007 {
1008 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1009 }
1010