1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static u64 entry_end(struct btrfs_ordered_extent *entry) 29 { 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33 } 34 35 /* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40 { 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60 } 61 62 static void ordered_data_tree_panic(struct inode *inode, int errno, 63 u64 offset) 64 { 65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 67 "%llu\n", (unsigned long long)offset); 68 } 69 70 /* 71 * look for a given offset in the tree, and if it can't be found return the 72 * first lesser offset 73 */ 74 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 75 struct rb_node **prev_ret) 76 { 77 struct rb_node *n = root->rb_node; 78 struct rb_node *prev = NULL; 79 struct rb_node *test; 80 struct btrfs_ordered_extent *entry; 81 struct btrfs_ordered_extent *prev_entry = NULL; 82 83 while (n) { 84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 85 prev = n; 86 prev_entry = entry; 87 88 if (file_offset < entry->file_offset) 89 n = n->rb_left; 90 else if (file_offset >= entry_end(entry)) 91 n = n->rb_right; 92 else 93 return n; 94 } 95 if (!prev_ret) 96 return NULL; 97 98 while (prev && file_offset >= entry_end(prev_entry)) { 99 test = rb_next(prev); 100 if (!test) 101 break; 102 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 103 rb_node); 104 if (file_offset < entry_end(prev_entry)) 105 break; 106 107 prev = test; 108 } 109 if (prev) 110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 111 rb_node); 112 while (prev && file_offset < entry_end(prev_entry)) { 113 test = rb_prev(prev); 114 if (!test) 115 break; 116 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 117 rb_node); 118 prev = test; 119 } 120 *prev_ret = prev; 121 return NULL; 122 } 123 124 /* 125 * helper to check if a given offset is inside a given entry 126 */ 127 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 128 { 129 if (file_offset < entry->file_offset || 130 entry->file_offset + entry->len <= file_offset) 131 return 0; 132 return 1; 133 } 134 135 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 136 u64 len) 137 { 138 if (file_offset + len <= entry->file_offset || 139 entry->file_offset + entry->len <= file_offset) 140 return 0; 141 return 1; 142 } 143 144 /* 145 * look find the first ordered struct that has this offset, otherwise 146 * the first one less than this offset 147 */ 148 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 149 u64 file_offset) 150 { 151 struct rb_root *root = &tree->tree; 152 struct rb_node *prev = NULL; 153 struct rb_node *ret; 154 struct btrfs_ordered_extent *entry; 155 156 if (tree->last) { 157 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 158 rb_node); 159 if (offset_in_entry(entry, file_offset)) 160 return tree->last; 161 } 162 ret = __tree_search(root, file_offset, &prev); 163 if (!ret) 164 ret = prev; 165 if (ret) 166 tree->last = ret; 167 return ret; 168 } 169 170 /* allocate and add a new ordered_extent into the per-inode tree. 171 * file_offset is the logical offset in the file 172 * 173 * start is the disk block number of an extent already reserved in the 174 * extent allocation tree 175 * 176 * len is the length of the extent 177 * 178 * The tree is given a single reference on the ordered extent that was 179 * inserted. 180 */ 181 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 182 u64 start, u64 len, u64 disk_len, 183 int type, int dio, int compress_type) 184 { 185 struct btrfs_ordered_inode_tree *tree; 186 struct rb_node *node; 187 struct btrfs_ordered_extent *entry; 188 189 tree = &BTRFS_I(inode)->ordered_tree; 190 entry = kzalloc(sizeof(*entry), GFP_NOFS); 191 if (!entry) 192 return -ENOMEM; 193 194 entry->file_offset = file_offset; 195 entry->start = start; 196 entry->len = len; 197 entry->disk_len = disk_len; 198 entry->bytes_left = len; 199 entry->inode = inode; 200 entry->compress_type = compress_type; 201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 202 set_bit(type, &entry->flags); 203 204 if (dio) 205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 206 207 /* one ref for the tree */ 208 atomic_set(&entry->refs, 1); 209 init_waitqueue_head(&entry->wait); 210 INIT_LIST_HEAD(&entry->list); 211 INIT_LIST_HEAD(&entry->root_extent_list); 212 213 trace_btrfs_ordered_extent_add(inode, entry); 214 215 spin_lock(&tree->lock); 216 node = tree_insert(&tree->tree, file_offset, 217 &entry->rb_node); 218 if (node) 219 ordered_data_tree_panic(inode, -EEXIST, file_offset); 220 spin_unlock(&tree->lock); 221 222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 223 list_add_tail(&entry->root_extent_list, 224 &BTRFS_I(inode)->root->fs_info->ordered_extents); 225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 226 227 return 0; 228 } 229 230 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 231 u64 start, u64 len, u64 disk_len, int type) 232 { 233 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 234 disk_len, type, 0, 235 BTRFS_COMPRESS_NONE); 236 } 237 238 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 239 u64 start, u64 len, u64 disk_len, int type) 240 { 241 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 242 disk_len, type, 1, 243 BTRFS_COMPRESS_NONE); 244 } 245 246 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 247 u64 start, u64 len, u64 disk_len, 248 int type, int compress_type) 249 { 250 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 251 disk_len, type, 0, 252 compress_type); 253 } 254 255 /* 256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 257 * when an ordered extent is finished. If the list covers more than one 258 * ordered extent, it is split across multiples. 259 */ 260 void btrfs_add_ordered_sum(struct inode *inode, 261 struct btrfs_ordered_extent *entry, 262 struct btrfs_ordered_sum *sum) 263 { 264 struct btrfs_ordered_inode_tree *tree; 265 266 tree = &BTRFS_I(inode)->ordered_tree; 267 spin_lock(&tree->lock); 268 list_add_tail(&sum->list, &entry->list); 269 spin_unlock(&tree->lock); 270 } 271 272 /* 273 * this is used to account for finished IO across a given range 274 * of the file. The IO may span ordered extents. If 275 * a given ordered_extent is completely done, 1 is returned, otherwise 276 * 0. 277 * 278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 279 * to make sure this function only returns 1 once for a given ordered extent. 280 * 281 * file_offset is updated to one byte past the range that is recorded as 282 * complete. This allows you to walk forward in the file. 283 */ 284 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 285 struct btrfs_ordered_extent **cached, 286 u64 *file_offset, u64 io_size) 287 { 288 struct btrfs_ordered_inode_tree *tree; 289 struct rb_node *node; 290 struct btrfs_ordered_extent *entry = NULL; 291 int ret; 292 u64 dec_end; 293 u64 dec_start; 294 u64 to_dec; 295 296 tree = &BTRFS_I(inode)->ordered_tree; 297 spin_lock(&tree->lock); 298 node = tree_search(tree, *file_offset); 299 if (!node) { 300 ret = 1; 301 goto out; 302 } 303 304 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 305 if (!offset_in_entry(entry, *file_offset)) { 306 ret = 1; 307 goto out; 308 } 309 310 dec_start = max(*file_offset, entry->file_offset); 311 dec_end = min(*file_offset + io_size, entry->file_offset + 312 entry->len); 313 *file_offset = dec_end; 314 if (dec_start > dec_end) { 315 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 316 (unsigned long long)dec_start, 317 (unsigned long long)dec_end); 318 } 319 to_dec = dec_end - dec_start; 320 if (to_dec > entry->bytes_left) { 321 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 322 (unsigned long long)entry->bytes_left, 323 (unsigned long long)to_dec); 324 } 325 entry->bytes_left -= to_dec; 326 if (entry->bytes_left == 0) 327 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 328 else 329 ret = 1; 330 out: 331 if (!ret && cached && entry) { 332 *cached = entry; 333 atomic_inc(&entry->refs); 334 } 335 spin_unlock(&tree->lock); 336 return ret == 0; 337 } 338 339 /* 340 * this is used to account for finished IO across a given range 341 * of the file. The IO should not span ordered extents. If 342 * a given ordered_extent is completely done, 1 is returned, otherwise 343 * 0. 344 * 345 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 346 * to make sure this function only returns 1 once for a given ordered extent. 347 */ 348 int btrfs_dec_test_ordered_pending(struct inode *inode, 349 struct btrfs_ordered_extent **cached, 350 u64 file_offset, u64 io_size) 351 { 352 struct btrfs_ordered_inode_tree *tree; 353 struct rb_node *node; 354 struct btrfs_ordered_extent *entry = NULL; 355 int ret; 356 357 tree = &BTRFS_I(inode)->ordered_tree; 358 spin_lock(&tree->lock); 359 node = tree_search(tree, file_offset); 360 if (!node) { 361 ret = 1; 362 goto out; 363 } 364 365 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 366 if (!offset_in_entry(entry, file_offset)) { 367 ret = 1; 368 goto out; 369 } 370 371 if (io_size > entry->bytes_left) { 372 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 373 (unsigned long long)entry->bytes_left, 374 (unsigned long long)io_size); 375 } 376 entry->bytes_left -= io_size; 377 if (entry->bytes_left == 0) 378 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 379 else 380 ret = 1; 381 out: 382 if (!ret && cached && entry) { 383 *cached = entry; 384 atomic_inc(&entry->refs); 385 } 386 spin_unlock(&tree->lock); 387 return ret == 0; 388 } 389 390 /* 391 * used to drop a reference on an ordered extent. This will free 392 * the extent if the last reference is dropped 393 */ 394 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 395 { 396 struct list_head *cur; 397 struct btrfs_ordered_sum *sum; 398 399 trace_btrfs_ordered_extent_put(entry->inode, entry); 400 401 if (atomic_dec_and_test(&entry->refs)) { 402 while (!list_empty(&entry->list)) { 403 cur = entry->list.next; 404 sum = list_entry(cur, struct btrfs_ordered_sum, list); 405 list_del(&sum->list); 406 kfree(sum); 407 } 408 kfree(entry); 409 } 410 } 411 412 /* 413 * remove an ordered extent from the tree. No references are dropped 414 * and you must wake_up entry->wait. You must hold the tree lock 415 * while you call this function. 416 */ 417 static void __btrfs_remove_ordered_extent(struct inode *inode, 418 struct btrfs_ordered_extent *entry) 419 { 420 struct btrfs_ordered_inode_tree *tree; 421 struct btrfs_root *root = BTRFS_I(inode)->root; 422 struct rb_node *node; 423 424 tree = &BTRFS_I(inode)->ordered_tree; 425 node = &entry->rb_node; 426 rb_erase(node, &tree->tree); 427 tree->last = NULL; 428 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 429 430 spin_lock(&root->fs_info->ordered_extent_lock); 431 list_del_init(&entry->root_extent_list); 432 433 trace_btrfs_ordered_extent_remove(inode, entry); 434 435 /* 436 * we have no more ordered extents for this inode and 437 * no dirty pages. We can safely remove it from the 438 * list of ordered extents 439 */ 440 if (RB_EMPTY_ROOT(&tree->tree) && 441 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 442 list_del_init(&BTRFS_I(inode)->ordered_operations); 443 } 444 spin_unlock(&root->fs_info->ordered_extent_lock); 445 } 446 447 /* 448 * remove an ordered extent from the tree. No references are dropped 449 * but any waiters are woken. 450 */ 451 void btrfs_remove_ordered_extent(struct inode *inode, 452 struct btrfs_ordered_extent *entry) 453 { 454 struct btrfs_ordered_inode_tree *tree; 455 456 tree = &BTRFS_I(inode)->ordered_tree; 457 spin_lock(&tree->lock); 458 __btrfs_remove_ordered_extent(inode, entry); 459 spin_unlock(&tree->lock); 460 wake_up(&entry->wait); 461 } 462 463 /* 464 * wait for all the ordered extents in a root. This is done when balancing 465 * space between drives. 466 */ 467 void btrfs_wait_ordered_extents(struct btrfs_root *root, 468 int nocow_only, int delay_iput) 469 { 470 struct list_head splice; 471 struct list_head *cur; 472 struct btrfs_ordered_extent *ordered; 473 struct inode *inode; 474 475 INIT_LIST_HEAD(&splice); 476 477 spin_lock(&root->fs_info->ordered_extent_lock); 478 list_splice_init(&root->fs_info->ordered_extents, &splice); 479 while (!list_empty(&splice)) { 480 cur = splice.next; 481 ordered = list_entry(cur, struct btrfs_ordered_extent, 482 root_extent_list); 483 if (nocow_only && 484 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 485 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 486 list_move(&ordered->root_extent_list, 487 &root->fs_info->ordered_extents); 488 cond_resched_lock(&root->fs_info->ordered_extent_lock); 489 continue; 490 } 491 492 list_del_init(&ordered->root_extent_list); 493 atomic_inc(&ordered->refs); 494 495 /* 496 * the inode may be getting freed (in sys_unlink path). 497 */ 498 inode = igrab(ordered->inode); 499 500 spin_unlock(&root->fs_info->ordered_extent_lock); 501 502 if (inode) { 503 btrfs_start_ordered_extent(inode, ordered, 1); 504 btrfs_put_ordered_extent(ordered); 505 if (delay_iput) 506 btrfs_add_delayed_iput(inode); 507 else 508 iput(inode); 509 } else { 510 btrfs_put_ordered_extent(ordered); 511 } 512 513 spin_lock(&root->fs_info->ordered_extent_lock); 514 } 515 spin_unlock(&root->fs_info->ordered_extent_lock); 516 } 517 518 /* 519 * this is used during transaction commit to write all the inodes 520 * added to the ordered operation list. These files must be fully on 521 * disk before the transaction commits. 522 * 523 * we have two modes here, one is to just start the IO via filemap_flush 524 * and the other is to wait for all the io. When we wait, we have an 525 * extra check to make sure the ordered operation list really is empty 526 * before we return 527 */ 528 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 529 { 530 struct btrfs_inode *btrfs_inode; 531 struct inode *inode; 532 struct list_head splice; 533 534 INIT_LIST_HEAD(&splice); 535 536 mutex_lock(&root->fs_info->ordered_operations_mutex); 537 spin_lock(&root->fs_info->ordered_extent_lock); 538 again: 539 list_splice_init(&root->fs_info->ordered_operations, &splice); 540 541 while (!list_empty(&splice)) { 542 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 543 ordered_operations); 544 545 inode = &btrfs_inode->vfs_inode; 546 547 list_del_init(&btrfs_inode->ordered_operations); 548 549 /* 550 * the inode may be getting freed (in sys_unlink path). 551 */ 552 inode = igrab(inode); 553 554 if (!wait && inode) { 555 list_add_tail(&BTRFS_I(inode)->ordered_operations, 556 &root->fs_info->ordered_operations); 557 } 558 spin_unlock(&root->fs_info->ordered_extent_lock); 559 560 if (inode) { 561 if (wait) 562 btrfs_wait_ordered_range(inode, 0, (u64)-1); 563 else 564 filemap_flush(inode->i_mapping); 565 btrfs_add_delayed_iput(inode); 566 } 567 568 cond_resched(); 569 spin_lock(&root->fs_info->ordered_extent_lock); 570 } 571 if (wait && !list_empty(&root->fs_info->ordered_operations)) 572 goto again; 573 574 spin_unlock(&root->fs_info->ordered_extent_lock); 575 mutex_unlock(&root->fs_info->ordered_operations_mutex); 576 } 577 578 /* 579 * Used to start IO or wait for a given ordered extent to finish. 580 * 581 * If wait is one, this effectively waits on page writeback for all the pages 582 * in the extent, and it waits on the io completion code to insert 583 * metadata into the btree corresponding to the extent 584 */ 585 void btrfs_start_ordered_extent(struct inode *inode, 586 struct btrfs_ordered_extent *entry, 587 int wait) 588 { 589 u64 start = entry->file_offset; 590 u64 end = start + entry->len - 1; 591 592 trace_btrfs_ordered_extent_start(inode, entry); 593 594 /* 595 * pages in the range can be dirty, clean or writeback. We 596 * start IO on any dirty ones so the wait doesn't stall waiting 597 * for pdflush to find them 598 */ 599 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 600 filemap_fdatawrite_range(inode->i_mapping, start, end); 601 if (wait) { 602 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 603 &entry->flags)); 604 } 605 } 606 607 /* 608 * Used to wait on ordered extents across a large range of bytes. 609 */ 610 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 611 { 612 u64 end; 613 u64 orig_end; 614 struct btrfs_ordered_extent *ordered; 615 int found; 616 617 if (start + len < start) { 618 orig_end = INT_LIMIT(loff_t); 619 } else { 620 orig_end = start + len - 1; 621 if (orig_end > INT_LIMIT(loff_t)) 622 orig_end = INT_LIMIT(loff_t); 623 } 624 again: 625 /* start IO across the range first to instantiate any delalloc 626 * extents 627 */ 628 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 629 630 /* The compression code will leave pages locked but return from 631 * writepage without setting the page writeback. Starting again 632 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 633 */ 634 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 635 636 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 637 638 end = orig_end; 639 found = 0; 640 while (1) { 641 ordered = btrfs_lookup_first_ordered_extent(inode, end); 642 if (!ordered) 643 break; 644 if (ordered->file_offset > orig_end) { 645 btrfs_put_ordered_extent(ordered); 646 break; 647 } 648 if (ordered->file_offset + ordered->len < start) { 649 btrfs_put_ordered_extent(ordered); 650 break; 651 } 652 found++; 653 btrfs_start_ordered_extent(inode, ordered, 1); 654 end = ordered->file_offset; 655 btrfs_put_ordered_extent(ordered); 656 if (end == 0 || end == start) 657 break; 658 end--; 659 } 660 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 661 EXTENT_DELALLOC, 0, NULL)) { 662 schedule_timeout(1); 663 goto again; 664 } 665 } 666 667 /* 668 * find an ordered extent corresponding to file_offset. return NULL if 669 * nothing is found, otherwise take a reference on the extent and return it 670 */ 671 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 672 u64 file_offset) 673 { 674 struct btrfs_ordered_inode_tree *tree; 675 struct rb_node *node; 676 struct btrfs_ordered_extent *entry = NULL; 677 678 tree = &BTRFS_I(inode)->ordered_tree; 679 spin_lock(&tree->lock); 680 node = tree_search(tree, file_offset); 681 if (!node) 682 goto out; 683 684 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 685 if (!offset_in_entry(entry, file_offset)) 686 entry = NULL; 687 if (entry) 688 atomic_inc(&entry->refs); 689 out: 690 spin_unlock(&tree->lock); 691 return entry; 692 } 693 694 /* Since the DIO code tries to lock a wide area we need to look for any ordered 695 * extents that exist in the range, rather than just the start of the range. 696 */ 697 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 698 u64 file_offset, 699 u64 len) 700 { 701 struct btrfs_ordered_inode_tree *tree; 702 struct rb_node *node; 703 struct btrfs_ordered_extent *entry = NULL; 704 705 tree = &BTRFS_I(inode)->ordered_tree; 706 spin_lock(&tree->lock); 707 node = tree_search(tree, file_offset); 708 if (!node) { 709 node = tree_search(tree, file_offset + len); 710 if (!node) 711 goto out; 712 } 713 714 while (1) { 715 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 716 if (range_overlaps(entry, file_offset, len)) 717 break; 718 719 if (entry->file_offset >= file_offset + len) { 720 entry = NULL; 721 break; 722 } 723 entry = NULL; 724 node = rb_next(node); 725 if (!node) 726 break; 727 } 728 out: 729 if (entry) 730 atomic_inc(&entry->refs); 731 spin_unlock(&tree->lock); 732 return entry; 733 } 734 735 /* 736 * lookup and return any extent before 'file_offset'. NULL is returned 737 * if none is found 738 */ 739 struct btrfs_ordered_extent * 740 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 741 { 742 struct btrfs_ordered_inode_tree *tree; 743 struct rb_node *node; 744 struct btrfs_ordered_extent *entry = NULL; 745 746 tree = &BTRFS_I(inode)->ordered_tree; 747 spin_lock(&tree->lock); 748 node = tree_search(tree, file_offset); 749 if (!node) 750 goto out; 751 752 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 753 atomic_inc(&entry->refs); 754 out: 755 spin_unlock(&tree->lock); 756 return entry; 757 } 758 759 /* 760 * After an extent is done, call this to conditionally update the on disk 761 * i_size. i_size is updated to cover any fully written part of the file. 762 */ 763 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 764 struct btrfs_ordered_extent *ordered) 765 { 766 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 767 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 768 u64 disk_i_size; 769 u64 new_i_size; 770 u64 i_size_test; 771 u64 i_size = i_size_read(inode); 772 struct rb_node *node; 773 struct rb_node *prev = NULL; 774 struct btrfs_ordered_extent *test; 775 int ret = 1; 776 777 if (ordered) 778 offset = entry_end(ordered); 779 else 780 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 781 782 spin_lock(&tree->lock); 783 disk_i_size = BTRFS_I(inode)->disk_i_size; 784 785 /* truncate file */ 786 if (disk_i_size > i_size) { 787 BTRFS_I(inode)->disk_i_size = i_size; 788 ret = 0; 789 goto out; 790 } 791 792 /* 793 * if the disk i_size is already at the inode->i_size, or 794 * this ordered extent is inside the disk i_size, we're done 795 */ 796 if (disk_i_size == i_size || offset <= disk_i_size) { 797 goto out; 798 } 799 800 /* 801 * we can't update the disk_isize if there are delalloc bytes 802 * between disk_i_size and this ordered extent 803 */ 804 if (test_range_bit(io_tree, disk_i_size, offset - 1, 805 EXTENT_DELALLOC, 0, NULL)) { 806 goto out; 807 } 808 /* 809 * walk backward from this ordered extent to disk_i_size. 810 * if we find an ordered extent then we can't update disk i_size 811 * yet 812 */ 813 if (ordered) { 814 node = rb_prev(&ordered->rb_node); 815 } else { 816 prev = tree_search(tree, offset); 817 /* 818 * we insert file extents without involving ordered struct, 819 * so there should be no ordered struct cover this offset 820 */ 821 if (prev) { 822 test = rb_entry(prev, struct btrfs_ordered_extent, 823 rb_node); 824 BUG_ON(offset_in_entry(test, offset)); 825 } 826 node = prev; 827 } 828 while (node) { 829 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 830 if (test->file_offset + test->len <= disk_i_size) 831 break; 832 if (test->file_offset >= i_size) 833 break; 834 if (test->file_offset >= disk_i_size) 835 goto out; 836 node = rb_prev(node); 837 } 838 new_i_size = min_t(u64, offset, i_size); 839 840 /* 841 * at this point, we know we can safely update i_size to at least 842 * the offset from this ordered extent. But, we need to 843 * walk forward and see if ios from higher up in the file have 844 * finished. 845 */ 846 if (ordered) { 847 node = rb_next(&ordered->rb_node); 848 } else { 849 if (prev) 850 node = rb_next(prev); 851 else 852 node = rb_first(&tree->tree); 853 } 854 i_size_test = 0; 855 if (node) { 856 /* 857 * do we have an area where IO might have finished 858 * between our ordered extent and the next one. 859 */ 860 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 861 if (test->file_offset > offset) 862 i_size_test = test->file_offset; 863 } else { 864 i_size_test = i_size; 865 } 866 867 /* 868 * i_size_test is the end of a region after this ordered 869 * extent where there are no ordered extents. As long as there 870 * are no delalloc bytes in this area, it is safe to update 871 * disk_i_size to the end of the region. 872 */ 873 if (i_size_test > offset && 874 !test_range_bit(io_tree, offset, i_size_test - 1, 875 EXTENT_DELALLOC, 0, NULL)) { 876 new_i_size = min_t(u64, i_size_test, i_size); 877 } 878 BTRFS_I(inode)->disk_i_size = new_i_size; 879 ret = 0; 880 out: 881 /* 882 * we need to remove the ordered extent with the tree lock held 883 * so that other people calling this function don't find our fully 884 * processed ordered entry and skip updating the i_size 885 */ 886 if (ordered) 887 __btrfs_remove_ordered_extent(inode, ordered); 888 spin_unlock(&tree->lock); 889 if (ordered) 890 wake_up(&ordered->wait); 891 return ret; 892 } 893 894 /* 895 * search the ordered extents for one corresponding to 'offset' and 896 * try to find a checksum. This is used because we allow pages to 897 * be reclaimed before their checksum is actually put into the btree 898 */ 899 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 900 u32 *sum) 901 { 902 struct btrfs_ordered_sum *ordered_sum; 903 struct btrfs_sector_sum *sector_sums; 904 struct btrfs_ordered_extent *ordered; 905 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 906 unsigned long num_sectors; 907 unsigned long i; 908 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 909 int ret = 1; 910 911 ordered = btrfs_lookup_ordered_extent(inode, offset); 912 if (!ordered) 913 return 1; 914 915 spin_lock(&tree->lock); 916 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 917 if (disk_bytenr >= ordered_sum->bytenr) { 918 num_sectors = ordered_sum->len / sectorsize; 919 sector_sums = ordered_sum->sums; 920 for (i = 0; i < num_sectors; i++) { 921 if (sector_sums[i].bytenr == disk_bytenr) { 922 *sum = sector_sums[i].sum; 923 ret = 0; 924 goto out; 925 } 926 } 927 } 928 } 929 out: 930 spin_unlock(&tree->lock); 931 btrfs_put_ordered_extent(ordered); 932 return ret; 933 } 934 935 936 /* 937 * add a given inode to the list of inodes that must be fully on 938 * disk before a transaction commit finishes. 939 * 940 * This basically gives us the ext3 style data=ordered mode, and it is mostly 941 * used to make sure renamed files are fully on disk. 942 * 943 * It is a noop if the inode is already fully on disk. 944 * 945 * If trans is not null, we'll do a friendly check for a transaction that 946 * is already flushing things and force the IO down ourselves. 947 */ 948 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 949 struct btrfs_root *root, struct inode *inode) 950 { 951 u64 last_mod; 952 953 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 954 955 /* 956 * if this file hasn't been changed since the last transaction 957 * commit, we can safely return without doing anything 958 */ 959 if (last_mod < root->fs_info->last_trans_committed) 960 return; 961 962 /* 963 * the transaction is already committing. Just start the IO and 964 * don't bother with all of this list nonsense 965 */ 966 if (trans && root->fs_info->running_transaction->blocked) { 967 btrfs_wait_ordered_range(inode, 0, (u64)-1); 968 return; 969 } 970 971 spin_lock(&root->fs_info->ordered_extent_lock); 972 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 973 list_add_tail(&BTRFS_I(inode)->ordered_operations, 974 &root->fs_info->ordered_operations); 975 } 976 spin_unlock(&root->fs_info->ordered_extent_lock); 977 } 978