1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 20 static struct kmem_cache *btrfs_ordered_extent_cache; 21 22 static u64 entry_end(struct btrfs_ordered_extent *entry) 23 { 24 if (entry->file_offset + entry->num_bytes < entry->file_offset) 25 return (u64)-1; 26 return entry->file_offset + entry->num_bytes; 27 } 28 29 /* returns NULL if the insertion worked, or it returns the node it did find 30 * in the tree 31 */ 32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 33 struct rb_node *node) 34 { 35 struct rb_node **p = &root->rb_node; 36 struct rb_node *parent = NULL; 37 struct btrfs_ordered_extent *entry; 38 39 while (*p) { 40 parent = *p; 41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 42 43 if (file_offset < entry->file_offset) 44 p = &(*p)->rb_left; 45 else if (file_offset >= entry_end(entry)) 46 p = &(*p)->rb_right; 47 else 48 return parent; 49 } 50 51 rb_link_node(node, parent, p); 52 rb_insert_color(node, root); 53 return NULL; 54 } 55 56 /* 57 * look for a given offset in the tree, and if it can't be found return the 58 * first lesser offset 59 */ 60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 61 struct rb_node **prev_ret) 62 { 63 struct rb_node *n = root->rb_node; 64 struct rb_node *prev = NULL; 65 struct rb_node *test; 66 struct btrfs_ordered_extent *entry; 67 struct btrfs_ordered_extent *prev_entry = NULL; 68 69 while (n) { 70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 71 prev = n; 72 prev_entry = entry; 73 74 if (file_offset < entry->file_offset) 75 n = n->rb_left; 76 else if (file_offset >= entry_end(entry)) 77 n = n->rb_right; 78 else 79 return n; 80 } 81 if (!prev_ret) 82 return NULL; 83 84 while (prev && file_offset >= entry_end(prev_entry)) { 85 test = rb_next(prev); 86 if (!test) 87 break; 88 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 89 rb_node); 90 if (file_offset < entry_end(prev_entry)) 91 break; 92 93 prev = test; 94 } 95 if (prev) 96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 97 rb_node); 98 while (prev && file_offset < entry_end(prev_entry)) { 99 test = rb_prev(prev); 100 if (!test) 101 break; 102 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 103 rb_node); 104 prev = test; 105 } 106 *prev_ret = prev; 107 return NULL; 108 } 109 110 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 111 u64 len) 112 { 113 if (file_offset + len <= entry->file_offset || 114 entry->file_offset + entry->num_bytes <= file_offset) 115 return 0; 116 return 1; 117 } 118 119 /* 120 * look find the first ordered struct that has this offset, otherwise 121 * the first one less than this offset 122 */ 123 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 124 u64 file_offset) 125 { 126 struct rb_root *root = &tree->tree; 127 struct rb_node *prev = NULL; 128 struct rb_node *ret; 129 struct btrfs_ordered_extent *entry; 130 131 if (tree->last) { 132 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 133 rb_node); 134 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 135 return tree->last; 136 } 137 ret = __tree_search(root, file_offset, &prev); 138 if (!ret) 139 ret = prev; 140 if (ret) 141 tree->last = ret; 142 return ret; 143 } 144 145 /* 146 * Allocate and add a new ordered_extent into the per-inode tree. 147 * 148 * The tree is given a single reference on the ordered extent that was 149 * inserted. 150 */ 151 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 152 u64 disk_bytenr, u64 num_bytes, 153 u64 disk_num_bytes, int type, int dio, 154 int compress_type) 155 { 156 struct btrfs_root *root = inode->root; 157 struct btrfs_fs_info *fs_info = root->fs_info; 158 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 159 struct rb_node *node; 160 struct btrfs_ordered_extent *entry; 161 int ret; 162 163 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { 164 /* For nocow write, we can release the qgroup rsv right now */ 165 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 166 if (ret < 0) 167 return ret; 168 ret = 0; 169 } else { 170 /* 171 * The ordered extent has reserved qgroup space, release now 172 * and pass the reserved number for qgroup_record to free. 173 */ 174 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 175 if (ret < 0) 176 return ret; 177 } 178 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 179 if (!entry) 180 return -ENOMEM; 181 182 entry->file_offset = file_offset; 183 entry->disk_bytenr = disk_bytenr; 184 entry->num_bytes = num_bytes; 185 entry->disk_num_bytes = disk_num_bytes; 186 entry->bytes_left = num_bytes; 187 entry->inode = igrab(&inode->vfs_inode); 188 entry->compress_type = compress_type; 189 entry->truncated_len = (u64)-1; 190 entry->qgroup_rsv = ret; 191 entry->physical = (u64)-1; 192 entry->disk = NULL; 193 entry->partno = (u8)-1; 194 195 ASSERT(type == BTRFS_ORDERED_REGULAR || 196 type == BTRFS_ORDERED_NOCOW || 197 type == BTRFS_ORDERED_PREALLOC || 198 type == BTRFS_ORDERED_COMPRESSED); 199 set_bit(type, &entry->flags); 200 201 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 202 fs_info->delalloc_batch); 203 204 if (dio) 205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 206 207 /* one ref for the tree */ 208 refcount_set(&entry->refs, 1); 209 init_waitqueue_head(&entry->wait); 210 INIT_LIST_HEAD(&entry->list); 211 INIT_LIST_HEAD(&entry->log_list); 212 INIT_LIST_HEAD(&entry->root_extent_list); 213 INIT_LIST_HEAD(&entry->work_list); 214 init_completion(&entry->completion); 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 spin_lock_irq(&tree->lock); 219 node = tree_insert(&tree->tree, file_offset, 220 &entry->rb_node); 221 if (node) 222 btrfs_panic(fs_info, -EEXIST, 223 "inconsistency in ordered tree at offset %llu", 224 file_offset); 225 spin_unlock_irq(&tree->lock); 226 227 spin_lock(&root->ordered_extent_lock); 228 list_add_tail(&entry->root_extent_list, 229 &root->ordered_extents); 230 root->nr_ordered_extents++; 231 if (root->nr_ordered_extents == 1) { 232 spin_lock(&fs_info->ordered_root_lock); 233 BUG_ON(!list_empty(&root->ordered_root)); 234 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 235 spin_unlock(&fs_info->ordered_root_lock); 236 } 237 spin_unlock(&root->ordered_extent_lock); 238 239 /* 240 * We don't need the count_max_extents here, we can assume that all of 241 * that work has been done at higher layers, so this is truly the 242 * smallest the extent is going to get. 243 */ 244 spin_lock(&inode->lock); 245 btrfs_mod_outstanding_extents(inode, 1); 246 spin_unlock(&inode->lock); 247 248 return 0; 249 } 250 251 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 252 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, 253 int type) 254 { 255 ASSERT(type == BTRFS_ORDERED_REGULAR || 256 type == BTRFS_ORDERED_NOCOW || 257 type == BTRFS_ORDERED_PREALLOC); 258 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 259 num_bytes, disk_num_bytes, type, 0, 260 BTRFS_COMPRESS_NONE); 261 } 262 263 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, 264 u64 disk_bytenr, u64 num_bytes, 265 u64 disk_num_bytes, int type) 266 { 267 ASSERT(type == BTRFS_ORDERED_REGULAR || 268 type == BTRFS_ORDERED_NOCOW || 269 type == BTRFS_ORDERED_PREALLOC); 270 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 271 num_bytes, disk_num_bytes, type, 1, 272 BTRFS_COMPRESS_NONE); 273 } 274 275 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, 276 u64 disk_bytenr, u64 num_bytes, 277 u64 disk_num_bytes, int compress_type) 278 { 279 ASSERT(compress_type != BTRFS_COMPRESS_NONE); 280 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, 281 num_bytes, disk_num_bytes, 282 BTRFS_ORDERED_COMPRESSED, 0, 283 compress_type); 284 } 285 286 /* 287 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 288 * when an ordered extent is finished. If the list covers more than one 289 * ordered extent, it is split across multiples. 290 */ 291 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 292 struct btrfs_ordered_sum *sum) 293 { 294 struct btrfs_ordered_inode_tree *tree; 295 296 tree = &BTRFS_I(entry->inode)->ordered_tree; 297 spin_lock_irq(&tree->lock); 298 list_add_tail(&sum->list, &entry->list); 299 spin_unlock_irq(&tree->lock); 300 } 301 302 /* 303 * Finish IO for one ordered extent across a given range. The range can 304 * contain several ordered extents. 305 * 306 * @found_ret: Return the finished ordered extent 307 * @file_offset: File offset for the finished IO 308 * Will also be updated to one byte past the range that is 309 * recordered as finished. This allows caller to walk forward. 310 * @io_size: Length of the finish IO range 311 * @uptodate: If the IO finished without problem 312 * 313 * Return true if any ordered extent is finished in the range, and update 314 * @found_ret and @file_offset. 315 * Return false otherwise. 316 * 317 * NOTE: Although The range can cross multiple ordered extents, only one 318 * ordered extent will be updated during one call. The caller is responsible to 319 * iterate all ordered extents in the range. 320 */ 321 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, 322 struct btrfs_ordered_extent **finished_ret, 323 u64 *file_offset, u64 io_size, int uptodate) 324 { 325 struct btrfs_fs_info *fs_info = inode->root->fs_info; 326 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 327 struct rb_node *node; 328 struct btrfs_ordered_extent *entry = NULL; 329 bool finished = false; 330 unsigned long flags; 331 u64 dec_end; 332 u64 dec_start; 333 u64 to_dec; 334 335 spin_lock_irqsave(&tree->lock, flags); 336 node = tree_search(tree, *file_offset); 337 if (!node) 338 goto out; 339 340 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 341 if (!in_range(*file_offset, entry->file_offset, entry->num_bytes)) 342 goto out; 343 344 dec_start = max(*file_offset, entry->file_offset); 345 dec_end = min(*file_offset + io_size, 346 entry->file_offset + entry->num_bytes); 347 *file_offset = dec_end; 348 if (dec_start > dec_end) { 349 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 350 dec_start, dec_end); 351 } 352 to_dec = dec_end - dec_start; 353 if (to_dec > entry->bytes_left) { 354 btrfs_crit(fs_info, 355 "bad ordered accounting left %llu size %llu", 356 entry->bytes_left, to_dec); 357 } 358 entry->bytes_left -= to_dec; 359 if (!uptodate) 360 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 361 362 if (entry->bytes_left == 0) { 363 /* 364 * Ensure only one caller can set the flag and finished_ret 365 * accordingly 366 */ 367 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 368 /* test_and_set_bit implies a barrier */ 369 cond_wake_up_nomb(&entry->wait); 370 } 371 out: 372 if (finished && finished_ret && entry) { 373 *finished_ret = entry; 374 refcount_inc(&entry->refs); 375 } 376 spin_unlock_irqrestore(&tree->lock, flags); 377 return finished; 378 } 379 380 /* 381 * Finish IO for one ordered extent across a given range. The range can only 382 * contain one ordered extent. 383 * 384 * @cached: The cached ordered extent. If not NULL, we can skip the tree 385 * search and use the ordered extent directly. 386 * Will be also used to store the finished ordered extent. 387 * @file_offset: File offset for the finished IO 388 * @io_size: Length of the finish IO range 389 * @uptodate: If the IO finishes without problem 390 * 391 * Return true if the ordered extent is finished in the range, and update 392 * @cached. 393 * Return false otherwise. 394 * 395 * NOTE: The range can NOT cross multiple ordered extents. 396 * Thus caller should ensure the range doesn't cross ordered extents. 397 */ 398 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 399 struct btrfs_ordered_extent **cached, 400 u64 file_offset, u64 io_size, int uptodate) 401 { 402 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 403 struct rb_node *node; 404 struct btrfs_ordered_extent *entry = NULL; 405 unsigned long flags; 406 bool finished = false; 407 408 spin_lock_irqsave(&tree->lock, flags); 409 if (cached && *cached) { 410 entry = *cached; 411 goto have_entry; 412 } 413 414 node = tree_search(tree, file_offset); 415 if (!node) 416 goto out; 417 418 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 419 have_entry: 420 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 421 goto out; 422 423 if (io_size > entry->bytes_left) 424 btrfs_crit(inode->root->fs_info, 425 "bad ordered accounting left %llu size %llu", 426 entry->bytes_left, io_size); 427 428 entry->bytes_left -= io_size; 429 if (!uptodate) 430 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 431 432 if (entry->bytes_left == 0) { 433 /* 434 * Ensure only one caller can set the flag and finished_ret 435 * accordingly 436 */ 437 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 438 /* test_and_set_bit implies a barrier */ 439 cond_wake_up_nomb(&entry->wait); 440 } 441 out: 442 if (finished && cached && entry) { 443 *cached = entry; 444 refcount_inc(&entry->refs); 445 } 446 spin_unlock_irqrestore(&tree->lock, flags); 447 return finished; 448 } 449 450 /* 451 * used to drop a reference on an ordered extent. This will free 452 * the extent if the last reference is dropped 453 */ 454 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 455 { 456 struct list_head *cur; 457 struct btrfs_ordered_sum *sum; 458 459 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 460 461 if (refcount_dec_and_test(&entry->refs)) { 462 ASSERT(list_empty(&entry->root_extent_list)); 463 ASSERT(list_empty(&entry->log_list)); 464 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 465 if (entry->inode) 466 btrfs_add_delayed_iput(entry->inode); 467 while (!list_empty(&entry->list)) { 468 cur = entry->list.next; 469 sum = list_entry(cur, struct btrfs_ordered_sum, list); 470 list_del(&sum->list); 471 kvfree(sum); 472 } 473 kmem_cache_free(btrfs_ordered_extent_cache, entry); 474 } 475 } 476 477 /* 478 * remove an ordered extent from the tree. No references are dropped 479 * and waiters are woken up. 480 */ 481 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 482 struct btrfs_ordered_extent *entry) 483 { 484 struct btrfs_ordered_inode_tree *tree; 485 struct btrfs_root *root = btrfs_inode->root; 486 struct btrfs_fs_info *fs_info = root->fs_info; 487 struct rb_node *node; 488 bool pending; 489 490 /* This is paired with btrfs_add_ordered_extent. */ 491 spin_lock(&btrfs_inode->lock); 492 btrfs_mod_outstanding_extents(btrfs_inode, -1); 493 spin_unlock(&btrfs_inode->lock); 494 if (root != fs_info->tree_root) 495 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, 496 false); 497 498 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 499 fs_info->delalloc_batch); 500 501 tree = &btrfs_inode->ordered_tree; 502 spin_lock_irq(&tree->lock); 503 node = &entry->rb_node; 504 rb_erase(node, &tree->tree); 505 RB_CLEAR_NODE(node); 506 if (tree->last == node) 507 tree->last = NULL; 508 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 509 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 510 spin_unlock_irq(&tree->lock); 511 512 /* 513 * The current running transaction is waiting on us, we need to let it 514 * know that we're complete and wake it up. 515 */ 516 if (pending) { 517 struct btrfs_transaction *trans; 518 519 /* 520 * The checks for trans are just a formality, it should be set, 521 * but if it isn't we don't want to deref/assert under the spin 522 * lock, so be nice and check if trans is set, but ASSERT() so 523 * if it isn't set a developer will notice. 524 */ 525 spin_lock(&fs_info->trans_lock); 526 trans = fs_info->running_transaction; 527 if (trans) 528 refcount_inc(&trans->use_count); 529 spin_unlock(&fs_info->trans_lock); 530 531 ASSERT(trans); 532 if (trans) { 533 if (atomic_dec_and_test(&trans->pending_ordered)) 534 wake_up(&trans->pending_wait); 535 btrfs_put_transaction(trans); 536 } 537 } 538 539 spin_lock(&root->ordered_extent_lock); 540 list_del_init(&entry->root_extent_list); 541 root->nr_ordered_extents--; 542 543 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 544 545 if (!root->nr_ordered_extents) { 546 spin_lock(&fs_info->ordered_root_lock); 547 BUG_ON(list_empty(&root->ordered_root)); 548 list_del_init(&root->ordered_root); 549 spin_unlock(&fs_info->ordered_root_lock); 550 } 551 spin_unlock(&root->ordered_extent_lock); 552 wake_up(&entry->wait); 553 } 554 555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 556 { 557 struct btrfs_ordered_extent *ordered; 558 559 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 560 btrfs_start_ordered_extent(ordered, 1); 561 complete(&ordered->completion); 562 } 563 564 /* 565 * wait for all the ordered extents in a root. This is done when balancing 566 * space between drives. 567 */ 568 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 569 const u64 range_start, const u64 range_len) 570 { 571 struct btrfs_fs_info *fs_info = root->fs_info; 572 LIST_HEAD(splice); 573 LIST_HEAD(skipped); 574 LIST_HEAD(works); 575 struct btrfs_ordered_extent *ordered, *next; 576 u64 count = 0; 577 const u64 range_end = range_start + range_len; 578 579 mutex_lock(&root->ordered_extent_mutex); 580 spin_lock(&root->ordered_extent_lock); 581 list_splice_init(&root->ordered_extents, &splice); 582 while (!list_empty(&splice) && nr) { 583 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 584 root_extent_list); 585 586 if (range_end <= ordered->disk_bytenr || 587 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 588 list_move_tail(&ordered->root_extent_list, &skipped); 589 cond_resched_lock(&root->ordered_extent_lock); 590 continue; 591 } 592 593 list_move_tail(&ordered->root_extent_list, 594 &root->ordered_extents); 595 refcount_inc(&ordered->refs); 596 spin_unlock(&root->ordered_extent_lock); 597 598 btrfs_init_work(&ordered->flush_work, 599 btrfs_run_ordered_extent_work, NULL, NULL); 600 list_add_tail(&ordered->work_list, &works); 601 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 602 603 cond_resched(); 604 spin_lock(&root->ordered_extent_lock); 605 if (nr != U64_MAX) 606 nr--; 607 count++; 608 } 609 list_splice_tail(&skipped, &root->ordered_extents); 610 list_splice_tail(&splice, &root->ordered_extents); 611 spin_unlock(&root->ordered_extent_lock); 612 613 list_for_each_entry_safe(ordered, next, &works, work_list) { 614 list_del_init(&ordered->work_list); 615 wait_for_completion(&ordered->completion); 616 btrfs_put_ordered_extent(ordered); 617 cond_resched(); 618 } 619 mutex_unlock(&root->ordered_extent_mutex); 620 621 return count; 622 } 623 624 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 625 const u64 range_start, const u64 range_len) 626 { 627 struct btrfs_root *root; 628 struct list_head splice; 629 u64 done; 630 631 INIT_LIST_HEAD(&splice); 632 633 mutex_lock(&fs_info->ordered_operations_mutex); 634 spin_lock(&fs_info->ordered_root_lock); 635 list_splice_init(&fs_info->ordered_roots, &splice); 636 while (!list_empty(&splice) && nr) { 637 root = list_first_entry(&splice, struct btrfs_root, 638 ordered_root); 639 root = btrfs_grab_root(root); 640 BUG_ON(!root); 641 list_move_tail(&root->ordered_root, 642 &fs_info->ordered_roots); 643 spin_unlock(&fs_info->ordered_root_lock); 644 645 done = btrfs_wait_ordered_extents(root, nr, 646 range_start, range_len); 647 btrfs_put_root(root); 648 649 spin_lock(&fs_info->ordered_root_lock); 650 if (nr != U64_MAX) { 651 nr -= done; 652 } 653 } 654 list_splice_tail(&splice, &fs_info->ordered_roots); 655 spin_unlock(&fs_info->ordered_root_lock); 656 mutex_unlock(&fs_info->ordered_operations_mutex); 657 } 658 659 /* 660 * Used to start IO or wait for a given ordered extent to finish. 661 * 662 * If wait is one, this effectively waits on page writeback for all the pages 663 * in the extent, and it waits on the io completion code to insert 664 * metadata into the btree corresponding to the extent 665 */ 666 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 667 { 668 u64 start = entry->file_offset; 669 u64 end = start + entry->num_bytes - 1; 670 struct btrfs_inode *inode = BTRFS_I(entry->inode); 671 672 trace_btrfs_ordered_extent_start(inode, entry); 673 674 /* 675 * pages in the range can be dirty, clean or writeback. We 676 * start IO on any dirty ones so the wait doesn't stall waiting 677 * for the flusher thread to find them 678 */ 679 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 680 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 681 if (wait) { 682 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 683 &entry->flags)); 684 } 685 } 686 687 /* 688 * Used to wait on ordered extents across a large range of bytes. 689 */ 690 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 691 { 692 int ret = 0; 693 int ret_wb = 0; 694 u64 end; 695 u64 orig_end; 696 struct btrfs_ordered_extent *ordered; 697 698 if (start + len < start) { 699 orig_end = INT_LIMIT(loff_t); 700 } else { 701 orig_end = start + len - 1; 702 if (orig_end > INT_LIMIT(loff_t)) 703 orig_end = INT_LIMIT(loff_t); 704 } 705 706 /* start IO across the range first to instantiate any delalloc 707 * extents 708 */ 709 ret = btrfs_fdatawrite_range(inode, start, orig_end); 710 if (ret) 711 return ret; 712 713 /* 714 * If we have a writeback error don't return immediately. Wait first 715 * for any ordered extents that haven't completed yet. This is to make 716 * sure no one can dirty the same page ranges and call writepages() 717 * before the ordered extents complete - to avoid failures (-EEXIST) 718 * when adding the new ordered extents to the ordered tree. 719 */ 720 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 721 722 end = orig_end; 723 while (1) { 724 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 725 if (!ordered) 726 break; 727 if (ordered->file_offset > orig_end) { 728 btrfs_put_ordered_extent(ordered); 729 break; 730 } 731 if (ordered->file_offset + ordered->num_bytes <= start) { 732 btrfs_put_ordered_extent(ordered); 733 break; 734 } 735 btrfs_start_ordered_extent(ordered, 1); 736 end = ordered->file_offset; 737 /* 738 * If the ordered extent had an error save the error but don't 739 * exit without waiting first for all other ordered extents in 740 * the range to complete. 741 */ 742 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 743 ret = -EIO; 744 btrfs_put_ordered_extent(ordered); 745 if (end == 0 || end == start) 746 break; 747 end--; 748 } 749 return ret_wb ? ret_wb : ret; 750 } 751 752 /* 753 * find an ordered extent corresponding to file_offset. return NULL if 754 * nothing is found, otherwise take a reference on the extent and return it 755 */ 756 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 757 u64 file_offset) 758 { 759 struct btrfs_ordered_inode_tree *tree; 760 struct rb_node *node; 761 struct btrfs_ordered_extent *entry = NULL; 762 unsigned long flags; 763 764 tree = &inode->ordered_tree; 765 spin_lock_irqsave(&tree->lock, flags); 766 node = tree_search(tree, file_offset); 767 if (!node) 768 goto out; 769 770 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 771 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 772 entry = NULL; 773 if (entry) 774 refcount_inc(&entry->refs); 775 out: 776 spin_unlock_irqrestore(&tree->lock, flags); 777 return entry; 778 } 779 780 /* Since the DIO code tries to lock a wide area we need to look for any ordered 781 * extents that exist in the range, rather than just the start of the range. 782 */ 783 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 784 struct btrfs_inode *inode, u64 file_offset, u64 len) 785 { 786 struct btrfs_ordered_inode_tree *tree; 787 struct rb_node *node; 788 struct btrfs_ordered_extent *entry = NULL; 789 790 tree = &inode->ordered_tree; 791 spin_lock_irq(&tree->lock); 792 node = tree_search(tree, file_offset); 793 if (!node) { 794 node = tree_search(tree, file_offset + len); 795 if (!node) 796 goto out; 797 } 798 799 while (1) { 800 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 801 if (range_overlaps(entry, file_offset, len)) 802 break; 803 804 if (entry->file_offset >= file_offset + len) { 805 entry = NULL; 806 break; 807 } 808 entry = NULL; 809 node = rb_next(node); 810 if (!node) 811 break; 812 } 813 out: 814 if (entry) 815 refcount_inc(&entry->refs); 816 spin_unlock_irq(&tree->lock); 817 return entry; 818 } 819 820 /* 821 * Adds all ordered extents to the given list. The list ends up sorted by the 822 * file_offset of the ordered extents. 823 */ 824 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 825 struct list_head *list) 826 { 827 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 828 struct rb_node *n; 829 830 ASSERT(inode_is_locked(&inode->vfs_inode)); 831 832 spin_lock_irq(&tree->lock); 833 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 834 struct btrfs_ordered_extent *ordered; 835 836 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 837 838 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 839 continue; 840 841 ASSERT(list_empty(&ordered->log_list)); 842 list_add_tail(&ordered->log_list, list); 843 refcount_inc(&ordered->refs); 844 } 845 spin_unlock_irq(&tree->lock); 846 } 847 848 /* 849 * lookup and return any extent before 'file_offset'. NULL is returned 850 * if none is found 851 */ 852 struct btrfs_ordered_extent * 853 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 854 { 855 struct btrfs_ordered_inode_tree *tree; 856 struct rb_node *node; 857 struct btrfs_ordered_extent *entry = NULL; 858 859 tree = &inode->ordered_tree; 860 spin_lock_irq(&tree->lock); 861 node = tree_search(tree, file_offset); 862 if (!node) 863 goto out; 864 865 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 866 refcount_inc(&entry->refs); 867 out: 868 spin_unlock_irq(&tree->lock); 869 return entry; 870 } 871 872 /* 873 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 874 * ordered extents in it are run to completion. 875 * 876 * @inode: Inode whose ordered tree is to be searched 877 * @start: Beginning of range to flush 878 * @end: Last byte of range to lock 879 * @cached_state: If passed, will return the extent state responsible for the 880 * locked range. It's the caller's responsibility to free the cached state. 881 * 882 * This function always returns with the given range locked, ensuring after it's 883 * called no order extent can be pending. 884 */ 885 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 886 u64 end, 887 struct extent_state **cached_state) 888 { 889 struct btrfs_ordered_extent *ordered; 890 struct extent_state *cache = NULL; 891 struct extent_state **cachedp = &cache; 892 893 if (cached_state) 894 cachedp = cached_state; 895 896 while (1) { 897 lock_extent_bits(&inode->io_tree, start, end, cachedp); 898 ordered = btrfs_lookup_ordered_range(inode, start, 899 end - start + 1); 900 if (!ordered) { 901 /* 902 * If no external cached_state has been passed then 903 * decrement the extra ref taken for cachedp since we 904 * aren't exposing it outside of this function 905 */ 906 if (!cached_state) 907 refcount_dec(&cache->refs); 908 break; 909 } 910 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 911 btrfs_start_ordered_extent(ordered, 1); 912 btrfs_put_ordered_extent(ordered); 913 } 914 } 915 916 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 917 u64 len) 918 { 919 struct inode *inode = ordered->inode; 920 u64 file_offset = ordered->file_offset + pos; 921 u64 disk_bytenr = ordered->disk_bytenr + pos; 922 u64 num_bytes = len; 923 u64 disk_num_bytes = len; 924 int type; 925 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT); 926 int compress_type = ordered->compress_type; 927 unsigned long weight; 928 int ret; 929 930 weight = hweight_long(flags_masked); 931 WARN_ON_ONCE(weight > 1); 932 if (!weight) 933 type = 0; 934 else 935 type = __ffs(flags_masked); 936 937 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) { 938 WARN_ON_ONCE(1); 939 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode), 940 file_offset, disk_bytenr, num_bytes, 941 disk_num_bytes, compress_type); 942 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 943 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset, 944 disk_bytenr, num_bytes, disk_num_bytes, type); 945 } else { 946 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, 947 disk_bytenr, num_bytes, disk_num_bytes, type); 948 } 949 950 return ret; 951 } 952 953 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 954 u64 post) 955 { 956 struct inode *inode = ordered->inode; 957 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 958 struct rb_node *node; 959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 960 int ret = 0; 961 962 spin_lock_irq(&tree->lock); 963 /* Remove from tree once */ 964 node = &ordered->rb_node; 965 rb_erase(node, &tree->tree); 966 RB_CLEAR_NODE(node); 967 if (tree->last == node) 968 tree->last = NULL; 969 970 ordered->file_offset += pre; 971 ordered->disk_bytenr += pre; 972 ordered->num_bytes -= (pre + post); 973 ordered->disk_num_bytes -= (pre + post); 974 ordered->bytes_left -= (pre + post); 975 976 /* Re-insert the node */ 977 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 978 if (node) 979 btrfs_panic(fs_info, -EEXIST, 980 "zoned: inconsistency in ordered tree at offset %llu", 981 ordered->file_offset); 982 983 spin_unlock_irq(&tree->lock); 984 985 if (pre) 986 ret = clone_ordered_extent(ordered, 0, pre); 987 if (ret == 0 && post) 988 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 989 post); 990 991 return ret; 992 } 993 994 int __init ordered_data_init(void) 995 { 996 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 997 sizeof(struct btrfs_ordered_extent), 0, 998 SLAB_MEM_SPREAD, 999 NULL); 1000 if (!btrfs_ordered_extent_cache) 1001 return -ENOMEM; 1002 1003 return 0; 1004 } 1005 1006 void __cold ordered_data_exit(void) 1007 { 1008 kmem_cache_destroy(btrfs_ordered_extent_cache); 1009 } 1010