1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 #include "qgroup.h" 19 #include "subpage.h" 20 21 static struct kmem_cache *btrfs_ordered_extent_cache; 22 23 static u64 entry_end(struct btrfs_ordered_extent *entry) 24 { 25 if (entry->file_offset + entry->num_bytes < entry->file_offset) 26 return (u64)-1; 27 return entry->file_offset + entry->num_bytes; 28 } 29 30 /* returns NULL if the insertion worked, or it returns the node it did find 31 * in the tree 32 */ 33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 34 struct rb_node *node) 35 { 36 struct rb_node **p = &root->rb_node; 37 struct rb_node *parent = NULL; 38 struct btrfs_ordered_extent *entry; 39 40 while (*p) { 41 parent = *p; 42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 43 44 if (file_offset < entry->file_offset) 45 p = &(*p)->rb_left; 46 else if (file_offset >= entry_end(entry)) 47 p = &(*p)->rb_right; 48 else 49 return parent; 50 } 51 52 rb_link_node(node, parent, p); 53 rb_insert_color(node, root); 54 return NULL; 55 } 56 57 /* 58 * look for a given offset in the tree, and if it can't be found return the 59 * first lesser offset 60 */ 61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 62 struct rb_node **prev_ret) 63 { 64 struct rb_node *n = root->rb_node; 65 struct rb_node *prev = NULL; 66 struct rb_node *test; 67 struct btrfs_ordered_extent *entry; 68 struct btrfs_ordered_extent *prev_entry = NULL; 69 70 while (n) { 71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 72 prev = n; 73 prev_entry = entry; 74 75 if (file_offset < entry->file_offset) 76 n = n->rb_left; 77 else if (file_offset >= entry_end(entry)) 78 n = n->rb_right; 79 else 80 return n; 81 } 82 if (!prev_ret) 83 return NULL; 84 85 while (prev && file_offset >= entry_end(prev_entry)) { 86 test = rb_next(prev); 87 if (!test) 88 break; 89 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 90 rb_node); 91 if (file_offset < entry_end(prev_entry)) 92 break; 93 94 prev = test; 95 } 96 if (prev) 97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 98 rb_node); 99 while (prev && file_offset < entry_end(prev_entry)) { 100 test = rb_prev(prev); 101 if (!test) 102 break; 103 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 104 rb_node); 105 prev = test; 106 } 107 *prev_ret = prev; 108 return NULL; 109 } 110 111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 112 u64 len) 113 { 114 if (file_offset + len <= entry->file_offset || 115 entry->file_offset + entry->num_bytes <= file_offset) 116 return 0; 117 return 1; 118 } 119 120 /* 121 * look find the first ordered struct that has this offset, otherwise 122 * the first one less than this offset 123 */ 124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 125 u64 file_offset) 126 { 127 struct rb_root *root = &tree->tree; 128 struct rb_node *prev = NULL; 129 struct rb_node *ret; 130 struct btrfs_ordered_extent *entry; 131 132 if (tree->last) { 133 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 134 rb_node); 135 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 136 return tree->last; 137 } 138 ret = __tree_search(root, file_offset, &prev); 139 if (!ret) 140 ret = prev; 141 if (ret) 142 tree->last = ret; 143 return ret; 144 } 145 146 /** 147 * Add an ordered extent to the per-inode tree. 148 * 149 * @inode: Inode that this extent is for. 150 * @file_offset: Logical offset in file where the extent starts. 151 * @num_bytes: Logical length of extent in file. 152 * @ram_bytes: Full length of unencoded data. 153 * @disk_bytenr: Offset of extent on disk. 154 * @disk_num_bytes: Size of extent on disk. 155 * @offset: Offset into unencoded data where file data starts. 156 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 157 * @compress_type: Compression algorithm used for data. 158 * 159 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 160 * tree is given a single reference on the ordered extent that was inserted. 161 * 162 * Return: 0 or -ENOMEM. 163 */ 164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 165 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 166 u64 disk_num_bytes, u64 offset, unsigned flags, 167 int compress_type) 168 { 169 struct btrfs_root *root = inode->root; 170 struct btrfs_fs_info *fs_info = root->fs_info; 171 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 172 struct rb_node *node; 173 struct btrfs_ordered_extent *entry; 174 int ret; 175 176 if (flags & 177 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 178 /* For nocow write, we can release the qgroup rsv right now */ 179 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 180 if (ret < 0) 181 return ret; 182 ret = 0; 183 } else { 184 /* 185 * The ordered extent has reserved qgroup space, release now 186 * and pass the reserved number for qgroup_record to free. 187 */ 188 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 189 if (ret < 0) 190 return ret; 191 } 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 193 if (!entry) 194 return -ENOMEM; 195 196 entry->file_offset = file_offset; 197 entry->num_bytes = num_bytes; 198 entry->ram_bytes = ram_bytes; 199 entry->disk_bytenr = disk_bytenr; 200 entry->disk_num_bytes = disk_num_bytes; 201 entry->offset = offset; 202 entry->bytes_left = num_bytes; 203 entry->inode = igrab(&inode->vfs_inode); 204 entry->compress_type = compress_type; 205 entry->truncated_len = (u64)-1; 206 entry->qgroup_rsv = ret; 207 entry->physical = (u64)-1; 208 209 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 210 entry->flags = flags; 211 212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 213 fs_info->delalloc_batch); 214 215 /* one ref for the tree */ 216 refcount_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->log_list); 220 INIT_LIST_HEAD(&entry->root_extent_list); 221 INIT_LIST_HEAD(&entry->work_list); 222 init_completion(&entry->completion); 223 224 trace_btrfs_ordered_extent_add(inode, entry); 225 226 spin_lock_irq(&tree->lock); 227 node = tree_insert(&tree->tree, file_offset, 228 &entry->rb_node); 229 if (node) 230 btrfs_panic(fs_info, -EEXIST, 231 "inconsistency in ordered tree at offset %llu", 232 file_offset); 233 spin_unlock_irq(&tree->lock); 234 235 spin_lock(&root->ordered_extent_lock); 236 list_add_tail(&entry->root_extent_list, 237 &root->ordered_extents); 238 root->nr_ordered_extents++; 239 if (root->nr_ordered_extents == 1) { 240 spin_lock(&fs_info->ordered_root_lock); 241 BUG_ON(!list_empty(&root->ordered_root)); 242 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 243 spin_unlock(&fs_info->ordered_root_lock); 244 } 245 spin_unlock(&root->ordered_extent_lock); 246 247 /* 248 * We don't need the count_max_extents here, we can assume that all of 249 * that work has been done at higher layers, so this is truly the 250 * smallest the extent is going to get. 251 */ 252 spin_lock(&inode->lock); 253 btrfs_mod_outstanding_extents(inode, 1); 254 spin_unlock(&inode->lock); 255 256 return 0; 257 } 258 259 /* 260 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 261 * when an ordered extent is finished. If the list covers more than one 262 * ordered extent, it is split across multiples. 263 */ 264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 265 struct btrfs_ordered_sum *sum) 266 { 267 struct btrfs_ordered_inode_tree *tree; 268 269 tree = &BTRFS_I(entry->inode)->ordered_tree; 270 spin_lock_irq(&tree->lock); 271 list_add_tail(&sum->list, &entry->list); 272 spin_unlock_irq(&tree->lock); 273 } 274 275 static void finish_ordered_fn(struct btrfs_work *work) 276 { 277 struct btrfs_ordered_extent *ordered_extent; 278 279 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 280 btrfs_finish_ordered_io(ordered_extent); 281 } 282 283 /* 284 * Mark all ordered extents io inside the specified range finished. 285 * 286 * @page: The involved page for the operation. 287 * For uncompressed buffered IO, the page status also needs to be 288 * updated to indicate whether the pending ordered io is finished. 289 * Can be NULL for direct IO and compressed write. 290 * For these cases, callers are ensured they won't execute the 291 * endio function twice. 292 * 293 * This function is called for endio, thus the range must have ordered 294 * extent(s) covering it. 295 */ 296 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 297 struct page *page, u64 file_offset, 298 u64 num_bytes, bool uptodate) 299 { 300 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 301 struct btrfs_fs_info *fs_info = inode->root->fs_info; 302 struct btrfs_workqueue *wq; 303 struct rb_node *node; 304 struct btrfs_ordered_extent *entry = NULL; 305 unsigned long flags; 306 u64 cur = file_offset; 307 308 if (btrfs_is_free_space_inode(inode)) 309 wq = fs_info->endio_freespace_worker; 310 else 311 wq = fs_info->endio_write_workers; 312 313 if (page) 314 ASSERT(page->mapping && page_offset(page) <= file_offset && 315 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); 316 317 spin_lock_irqsave(&tree->lock, flags); 318 while (cur < file_offset + num_bytes) { 319 u64 entry_end; 320 u64 end; 321 u32 len; 322 323 node = tree_search(tree, cur); 324 /* No ordered extents at all */ 325 if (!node) 326 break; 327 328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 329 entry_end = entry->file_offset + entry->num_bytes; 330 /* 331 * |<-- OE --->| | 332 * cur 333 * Go to next OE. 334 */ 335 if (cur >= entry_end) { 336 node = rb_next(node); 337 /* No more ordered extents, exit */ 338 if (!node) 339 break; 340 entry = rb_entry(node, struct btrfs_ordered_extent, 341 rb_node); 342 343 /* Go to next ordered extent and continue */ 344 cur = entry->file_offset; 345 continue; 346 } 347 /* 348 * | |<--- OE --->| 349 * cur 350 * Go to the start of OE. 351 */ 352 if (cur < entry->file_offset) { 353 cur = entry->file_offset; 354 continue; 355 } 356 357 /* 358 * Now we are definitely inside one ordered extent. 359 * 360 * |<--- OE --->| 361 * | 362 * cur 363 */ 364 end = min(entry->file_offset + entry->num_bytes, 365 file_offset + num_bytes) - 1; 366 ASSERT(end + 1 - cur < U32_MAX); 367 len = end + 1 - cur; 368 369 if (page) { 370 /* 371 * Ordered (Private2) bit indicates whether we still 372 * have pending io unfinished for the ordered extent. 373 * 374 * If there's no such bit, we need to skip to next range. 375 */ 376 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { 377 cur += len; 378 continue; 379 } 380 btrfs_page_clear_ordered(fs_info, page, cur, len); 381 } 382 383 /* Now we're fine to update the accounting */ 384 if (unlikely(len > entry->bytes_left)) { 385 WARN_ON(1); 386 btrfs_crit(fs_info, 387 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", 388 inode->root->root_key.objectid, 389 btrfs_ino(inode), 390 entry->file_offset, 391 entry->num_bytes, 392 len, entry->bytes_left); 393 entry->bytes_left = 0; 394 } else { 395 entry->bytes_left -= len; 396 } 397 398 if (!uptodate) 399 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 400 401 /* 402 * All the IO of the ordered extent is finished, we need to queue 403 * the finish_func to be executed. 404 */ 405 if (entry->bytes_left == 0) { 406 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 407 cond_wake_up(&entry->wait); 408 refcount_inc(&entry->refs); 409 trace_btrfs_ordered_extent_mark_finished(inode, entry); 410 spin_unlock_irqrestore(&tree->lock, flags); 411 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL); 412 btrfs_queue_work(wq, &entry->work); 413 spin_lock_irqsave(&tree->lock, flags); 414 } 415 cur += len; 416 } 417 spin_unlock_irqrestore(&tree->lock, flags); 418 } 419 420 /* 421 * Finish IO for one ordered extent across a given range. The range can only 422 * contain one ordered extent. 423 * 424 * @cached: The cached ordered extent. If not NULL, we can skip the tree 425 * search and use the ordered extent directly. 426 * Will be also used to store the finished ordered extent. 427 * @file_offset: File offset for the finished IO 428 * @io_size: Length of the finish IO range 429 * 430 * Return true if the ordered extent is finished in the range, and update 431 * @cached. 432 * Return false otherwise. 433 * 434 * NOTE: The range can NOT cross multiple ordered extents. 435 * Thus caller should ensure the range doesn't cross ordered extents. 436 */ 437 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 438 struct btrfs_ordered_extent **cached, 439 u64 file_offset, u64 io_size) 440 { 441 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 442 struct rb_node *node; 443 struct btrfs_ordered_extent *entry = NULL; 444 unsigned long flags; 445 bool finished = false; 446 447 spin_lock_irqsave(&tree->lock, flags); 448 if (cached && *cached) { 449 entry = *cached; 450 goto have_entry; 451 } 452 453 node = tree_search(tree, file_offset); 454 if (!node) 455 goto out; 456 457 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 458 have_entry: 459 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 460 goto out; 461 462 if (io_size > entry->bytes_left) 463 btrfs_crit(inode->root->fs_info, 464 "bad ordered accounting left %llu size %llu", 465 entry->bytes_left, io_size); 466 467 entry->bytes_left -= io_size; 468 469 if (entry->bytes_left == 0) { 470 /* 471 * Ensure only one caller can set the flag and finished_ret 472 * accordingly 473 */ 474 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 475 /* test_and_set_bit implies a barrier */ 476 cond_wake_up_nomb(&entry->wait); 477 } 478 out: 479 if (finished && cached && entry) { 480 *cached = entry; 481 refcount_inc(&entry->refs); 482 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 483 } 484 spin_unlock_irqrestore(&tree->lock, flags); 485 return finished; 486 } 487 488 /* 489 * used to drop a reference on an ordered extent. This will free 490 * the extent if the last reference is dropped 491 */ 492 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 493 { 494 struct list_head *cur; 495 struct btrfs_ordered_sum *sum; 496 497 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 498 499 if (refcount_dec_and_test(&entry->refs)) { 500 ASSERT(list_empty(&entry->root_extent_list)); 501 ASSERT(list_empty(&entry->log_list)); 502 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 503 if (entry->inode) 504 btrfs_add_delayed_iput(entry->inode); 505 while (!list_empty(&entry->list)) { 506 cur = entry->list.next; 507 sum = list_entry(cur, struct btrfs_ordered_sum, list); 508 list_del(&sum->list); 509 kvfree(sum); 510 } 511 kmem_cache_free(btrfs_ordered_extent_cache, entry); 512 } 513 } 514 515 /* 516 * remove an ordered extent from the tree. No references are dropped 517 * and waiters are woken up. 518 */ 519 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 520 struct btrfs_ordered_extent *entry) 521 { 522 struct btrfs_ordered_inode_tree *tree; 523 struct btrfs_root *root = btrfs_inode->root; 524 struct btrfs_fs_info *fs_info = root->fs_info; 525 struct rb_node *node; 526 bool pending; 527 528 /* This is paired with btrfs_add_ordered_extent. */ 529 spin_lock(&btrfs_inode->lock); 530 btrfs_mod_outstanding_extents(btrfs_inode, -1); 531 spin_unlock(&btrfs_inode->lock); 532 if (root != fs_info->tree_root) { 533 u64 release; 534 535 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 536 release = entry->disk_num_bytes; 537 else 538 release = entry->num_bytes; 539 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 540 } 541 542 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 543 fs_info->delalloc_batch); 544 545 tree = &btrfs_inode->ordered_tree; 546 spin_lock_irq(&tree->lock); 547 node = &entry->rb_node; 548 rb_erase(node, &tree->tree); 549 RB_CLEAR_NODE(node); 550 if (tree->last == node) 551 tree->last = NULL; 552 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 553 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 554 spin_unlock_irq(&tree->lock); 555 556 /* 557 * The current running transaction is waiting on us, we need to let it 558 * know that we're complete and wake it up. 559 */ 560 if (pending) { 561 struct btrfs_transaction *trans; 562 563 /* 564 * The checks for trans are just a formality, it should be set, 565 * but if it isn't we don't want to deref/assert under the spin 566 * lock, so be nice and check if trans is set, but ASSERT() so 567 * if it isn't set a developer will notice. 568 */ 569 spin_lock(&fs_info->trans_lock); 570 trans = fs_info->running_transaction; 571 if (trans) 572 refcount_inc(&trans->use_count); 573 spin_unlock(&fs_info->trans_lock); 574 575 ASSERT(trans); 576 if (trans) { 577 if (atomic_dec_and_test(&trans->pending_ordered)) 578 wake_up(&trans->pending_wait); 579 btrfs_put_transaction(trans); 580 } 581 } 582 583 spin_lock(&root->ordered_extent_lock); 584 list_del_init(&entry->root_extent_list); 585 root->nr_ordered_extents--; 586 587 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 588 589 if (!root->nr_ordered_extents) { 590 spin_lock(&fs_info->ordered_root_lock); 591 BUG_ON(list_empty(&root->ordered_root)); 592 list_del_init(&root->ordered_root); 593 spin_unlock(&fs_info->ordered_root_lock); 594 } 595 spin_unlock(&root->ordered_extent_lock); 596 wake_up(&entry->wait); 597 } 598 599 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 600 { 601 struct btrfs_ordered_extent *ordered; 602 603 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 604 btrfs_start_ordered_extent(ordered, 1); 605 complete(&ordered->completion); 606 } 607 608 /* 609 * wait for all the ordered extents in a root. This is done when balancing 610 * space between drives. 611 */ 612 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 613 const u64 range_start, const u64 range_len) 614 { 615 struct btrfs_fs_info *fs_info = root->fs_info; 616 LIST_HEAD(splice); 617 LIST_HEAD(skipped); 618 LIST_HEAD(works); 619 struct btrfs_ordered_extent *ordered, *next; 620 u64 count = 0; 621 const u64 range_end = range_start + range_len; 622 623 mutex_lock(&root->ordered_extent_mutex); 624 spin_lock(&root->ordered_extent_lock); 625 list_splice_init(&root->ordered_extents, &splice); 626 while (!list_empty(&splice) && nr) { 627 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 628 root_extent_list); 629 630 if (range_end <= ordered->disk_bytenr || 631 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 632 list_move_tail(&ordered->root_extent_list, &skipped); 633 cond_resched_lock(&root->ordered_extent_lock); 634 continue; 635 } 636 637 list_move_tail(&ordered->root_extent_list, 638 &root->ordered_extents); 639 refcount_inc(&ordered->refs); 640 spin_unlock(&root->ordered_extent_lock); 641 642 btrfs_init_work(&ordered->flush_work, 643 btrfs_run_ordered_extent_work, NULL, NULL); 644 list_add_tail(&ordered->work_list, &works); 645 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 646 647 cond_resched(); 648 spin_lock(&root->ordered_extent_lock); 649 if (nr != U64_MAX) 650 nr--; 651 count++; 652 } 653 list_splice_tail(&skipped, &root->ordered_extents); 654 list_splice_tail(&splice, &root->ordered_extents); 655 spin_unlock(&root->ordered_extent_lock); 656 657 list_for_each_entry_safe(ordered, next, &works, work_list) { 658 list_del_init(&ordered->work_list); 659 wait_for_completion(&ordered->completion); 660 btrfs_put_ordered_extent(ordered); 661 cond_resched(); 662 } 663 mutex_unlock(&root->ordered_extent_mutex); 664 665 return count; 666 } 667 668 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 669 const u64 range_start, const u64 range_len) 670 { 671 struct btrfs_root *root; 672 struct list_head splice; 673 u64 done; 674 675 INIT_LIST_HEAD(&splice); 676 677 mutex_lock(&fs_info->ordered_operations_mutex); 678 spin_lock(&fs_info->ordered_root_lock); 679 list_splice_init(&fs_info->ordered_roots, &splice); 680 while (!list_empty(&splice) && nr) { 681 root = list_first_entry(&splice, struct btrfs_root, 682 ordered_root); 683 root = btrfs_grab_root(root); 684 BUG_ON(!root); 685 list_move_tail(&root->ordered_root, 686 &fs_info->ordered_roots); 687 spin_unlock(&fs_info->ordered_root_lock); 688 689 done = btrfs_wait_ordered_extents(root, nr, 690 range_start, range_len); 691 btrfs_put_root(root); 692 693 spin_lock(&fs_info->ordered_root_lock); 694 if (nr != U64_MAX) { 695 nr -= done; 696 } 697 } 698 list_splice_tail(&splice, &fs_info->ordered_roots); 699 spin_unlock(&fs_info->ordered_root_lock); 700 mutex_unlock(&fs_info->ordered_operations_mutex); 701 } 702 703 /* 704 * Used to start IO or wait for a given ordered extent to finish. 705 * 706 * If wait is one, this effectively waits on page writeback for all the pages 707 * in the extent, and it waits on the io completion code to insert 708 * metadata into the btree corresponding to the extent 709 */ 710 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 711 { 712 u64 start = entry->file_offset; 713 u64 end = start + entry->num_bytes - 1; 714 struct btrfs_inode *inode = BTRFS_I(entry->inode); 715 716 trace_btrfs_ordered_extent_start(inode, entry); 717 718 /* 719 * pages in the range can be dirty, clean or writeback. We 720 * start IO on any dirty ones so the wait doesn't stall waiting 721 * for the flusher thread to find them 722 */ 723 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 724 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 725 if (wait) { 726 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 727 &entry->flags)); 728 } 729 } 730 731 /* 732 * Used to wait on ordered extents across a large range of bytes. 733 */ 734 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 735 { 736 int ret = 0; 737 int ret_wb = 0; 738 u64 end; 739 u64 orig_end; 740 struct btrfs_ordered_extent *ordered; 741 742 if (start + len < start) { 743 orig_end = INT_LIMIT(loff_t); 744 } else { 745 orig_end = start + len - 1; 746 if (orig_end > INT_LIMIT(loff_t)) 747 orig_end = INT_LIMIT(loff_t); 748 } 749 750 /* start IO across the range first to instantiate any delalloc 751 * extents 752 */ 753 ret = btrfs_fdatawrite_range(inode, start, orig_end); 754 if (ret) 755 return ret; 756 757 /* 758 * If we have a writeback error don't return immediately. Wait first 759 * for any ordered extents that haven't completed yet. This is to make 760 * sure no one can dirty the same page ranges and call writepages() 761 * before the ordered extents complete - to avoid failures (-EEXIST) 762 * when adding the new ordered extents to the ordered tree. 763 */ 764 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 765 766 end = orig_end; 767 while (1) { 768 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 769 if (!ordered) 770 break; 771 if (ordered->file_offset > orig_end) { 772 btrfs_put_ordered_extent(ordered); 773 break; 774 } 775 if (ordered->file_offset + ordered->num_bytes <= start) { 776 btrfs_put_ordered_extent(ordered); 777 break; 778 } 779 btrfs_start_ordered_extent(ordered, 1); 780 end = ordered->file_offset; 781 /* 782 * If the ordered extent had an error save the error but don't 783 * exit without waiting first for all other ordered extents in 784 * the range to complete. 785 */ 786 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 787 ret = -EIO; 788 btrfs_put_ordered_extent(ordered); 789 if (end == 0 || end == start) 790 break; 791 end--; 792 } 793 return ret_wb ? ret_wb : ret; 794 } 795 796 /* 797 * find an ordered extent corresponding to file_offset. return NULL if 798 * nothing is found, otherwise take a reference on the extent and return it 799 */ 800 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 801 u64 file_offset) 802 { 803 struct btrfs_ordered_inode_tree *tree; 804 struct rb_node *node; 805 struct btrfs_ordered_extent *entry = NULL; 806 unsigned long flags; 807 808 tree = &inode->ordered_tree; 809 spin_lock_irqsave(&tree->lock, flags); 810 node = tree_search(tree, file_offset); 811 if (!node) 812 goto out; 813 814 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 815 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 816 entry = NULL; 817 if (entry) { 818 refcount_inc(&entry->refs); 819 trace_btrfs_ordered_extent_lookup(inode, entry); 820 } 821 out: 822 spin_unlock_irqrestore(&tree->lock, flags); 823 return entry; 824 } 825 826 /* Since the DIO code tries to lock a wide area we need to look for any ordered 827 * extents that exist in the range, rather than just the start of the range. 828 */ 829 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 830 struct btrfs_inode *inode, u64 file_offset, u64 len) 831 { 832 struct btrfs_ordered_inode_tree *tree; 833 struct rb_node *node; 834 struct btrfs_ordered_extent *entry = NULL; 835 836 tree = &inode->ordered_tree; 837 spin_lock_irq(&tree->lock); 838 node = tree_search(tree, file_offset); 839 if (!node) { 840 node = tree_search(tree, file_offset + len); 841 if (!node) 842 goto out; 843 } 844 845 while (1) { 846 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 847 if (range_overlaps(entry, file_offset, len)) 848 break; 849 850 if (entry->file_offset >= file_offset + len) { 851 entry = NULL; 852 break; 853 } 854 entry = NULL; 855 node = rb_next(node); 856 if (!node) 857 break; 858 } 859 out: 860 if (entry) { 861 refcount_inc(&entry->refs); 862 trace_btrfs_ordered_extent_lookup_range(inode, entry); 863 } 864 spin_unlock_irq(&tree->lock); 865 return entry; 866 } 867 868 /* 869 * Adds all ordered extents to the given list. The list ends up sorted by the 870 * file_offset of the ordered extents. 871 */ 872 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 873 struct list_head *list) 874 { 875 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 876 struct rb_node *n; 877 878 ASSERT(inode_is_locked(&inode->vfs_inode)); 879 880 spin_lock_irq(&tree->lock); 881 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 882 struct btrfs_ordered_extent *ordered; 883 884 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 885 886 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 887 continue; 888 889 ASSERT(list_empty(&ordered->log_list)); 890 list_add_tail(&ordered->log_list, list); 891 refcount_inc(&ordered->refs); 892 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 893 } 894 spin_unlock_irq(&tree->lock); 895 } 896 897 /* 898 * lookup and return any extent before 'file_offset'. NULL is returned 899 * if none is found 900 */ 901 struct btrfs_ordered_extent * 902 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 903 { 904 struct btrfs_ordered_inode_tree *tree; 905 struct rb_node *node; 906 struct btrfs_ordered_extent *entry = NULL; 907 908 tree = &inode->ordered_tree; 909 spin_lock_irq(&tree->lock); 910 node = tree_search(tree, file_offset); 911 if (!node) 912 goto out; 913 914 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 915 refcount_inc(&entry->refs); 916 trace_btrfs_ordered_extent_lookup_first(inode, entry); 917 out: 918 spin_unlock_irq(&tree->lock); 919 return entry; 920 } 921 922 /* 923 * Lookup the first ordered extent that overlaps the range 924 * [@file_offset, @file_offset + @len). 925 * 926 * The difference between this and btrfs_lookup_first_ordered_extent() is 927 * that this one won't return any ordered extent that does not overlap the range. 928 * And the difference against btrfs_lookup_ordered_extent() is, this function 929 * ensures the first ordered extent gets returned. 930 */ 931 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 932 struct btrfs_inode *inode, u64 file_offset, u64 len) 933 { 934 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 935 struct rb_node *node; 936 struct rb_node *cur; 937 struct rb_node *prev; 938 struct rb_node *next; 939 struct btrfs_ordered_extent *entry = NULL; 940 941 spin_lock_irq(&tree->lock); 942 node = tree->tree.rb_node; 943 /* 944 * Here we don't want to use tree_search() which will use tree->last 945 * and screw up the search order. 946 * And __tree_search() can't return the adjacent ordered extents 947 * either, thus here we do our own search. 948 */ 949 while (node) { 950 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 951 952 if (file_offset < entry->file_offset) { 953 node = node->rb_left; 954 } else if (file_offset >= entry_end(entry)) { 955 node = node->rb_right; 956 } else { 957 /* 958 * Direct hit, got an ordered extent that starts at 959 * @file_offset 960 */ 961 goto out; 962 } 963 } 964 if (!entry) { 965 /* Empty tree */ 966 goto out; 967 } 968 969 cur = &entry->rb_node; 970 /* We got an entry around @file_offset, check adjacent entries */ 971 if (entry->file_offset < file_offset) { 972 prev = cur; 973 next = rb_next(cur); 974 } else { 975 prev = rb_prev(cur); 976 next = cur; 977 } 978 if (prev) { 979 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 980 if (range_overlaps(entry, file_offset, len)) 981 goto out; 982 } 983 if (next) { 984 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 985 if (range_overlaps(entry, file_offset, len)) 986 goto out; 987 } 988 /* No ordered extent in the range */ 989 entry = NULL; 990 out: 991 if (entry) { 992 refcount_inc(&entry->refs); 993 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 994 } 995 996 spin_unlock_irq(&tree->lock); 997 return entry; 998 } 999 1000 /* 1001 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 1002 * ordered extents in it are run to completion. 1003 * 1004 * @inode: Inode whose ordered tree is to be searched 1005 * @start: Beginning of range to flush 1006 * @end: Last byte of range to lock 1007 * @cached_state: If passed, will return the extent state responsible for the 1008 * locked range. It's the caller's responsibility to free the cached state. 1009 * 1010 * This function always returns with the given range locked, ensuring after it's 1011 * called no order extent can be pending. 1012 */ 1013 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1014 u64 end, 1015 struct extent_state **cached_state) 1016 { 1017 struct btrfs_ordered_extent *ordered; 1018 struct extent_state *cache = NULL; 1019 struct extent_state **cachedp = &cache; 1020 1021 if (cached_state) 1022 cachedp = cached_state; 1023 1024 while (1) { 1025 lock_extent_bits(&inode->io_tree, start, end, cachedp); 1026 ordered = btrfs_lookup_ordered_range(inode, start, 1027 end - start + 1); 1028 if (!ordered) { 1029 /* 1030 * If no external cached_state has been passed then 1031 * decrement the extra ref taken for cachedp since we 1032 * aren't exposing it outside of this function 1033 */ 1034 if (!cached_state) 1035 refcount_dec(&cache->refs); 1036 break; 1037 } 1038 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 1039 btrfs_start_ordered_extent(ordered, 1); 1040 btrfs_put_ordered_extent(ordered); 1041 } 1042 } 1043 1044 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 1045 u64 len) 1046 { 1047 struct inode *inode = ordered->inode; 1048 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1049 u64 file_offset = ordered->file_offset + pos; 1050 u64 disk_bytenr = ordered->disk_bytenr + pos; 1051 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; 1052 1053 /* 1054 * The splitting extent is already counted and will be added again in 1055 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. 1056 */ 1057 percpu_counter_add_batch(&fs_info->ordered_bytes, -len, 1058 fs_info->delalloc_batch); 1059 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); 1060 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, 1061 disk_bytenr, len, 0, flags, 1062 ordered->compress_type); 1063 } 1064 1065 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 1066 u64 post) 1067 { 1068 struct inode *inode = ordered->inode; 1069 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1070 struct rb_node *node; 1071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1072 int ret = 0; 1073 1074 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered); 1075 1076 spin_lock_irq(&tree->lock); 1077 /* Remove from tree once */ 1078 node = &ordered->rb_node; 1079 rb_erase(node, &tree->tree); 1080 RB_CLEAR_NODE(node); 1081 if (tree->last == node) 1082 tree->last = NULL; 1083 1084 ordered->file_offset += pre; 1085 ordered->disk_bytenr += pre; 1086 ordered->num_bytes -= (pre + post); 1087 ordered->disk_num_bytes -= (pre + post); 1088 ordered->bytes_left -= (pre + post); 1089 1090 /* Re-insert the node */ 1091 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1092 if (node) 1093 btrfs_panic(fs_info, -EEXIST, 1094 "zoned: inconsistency in ordered tree at offset %llu", 1095 ordered->file_offset); 1096 1097 spin_unlock_irq(&tree->lock); 1098 1099 if (pre) 1100 ret = clone_ordered_extent(ordered, 0, pre); 1101 if (ret == 0 && post) 1102 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1103 post); 1104 1105 return ret; 1106 } 1107 1108 int __init ordered_data_init(void) 1109 { 1110 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1111 sizeof(struct btrfs_ordered_extent), 0, 1112 SLAB_MEM_SPREAD, 1113 NULL); 1114 if (!btrfs_ordered_extent_cache) 1115 return -ENOMEM; 1116 1117 return 0; 1118 } 1119 1120 void __cold ordered_data_exit(void) 1121 { 1122 kmem_cache_destroy(btrfs_ordered_extent_cache); 1123 } 1124