xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 86db9f28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 
19 static struct kmem_cache *btrfs_ordered_extent_cache;
20 
21 static u64 entry_end(struct btrfs_ordered_extent *entry)
22 {
23 	if (entry->file_offset + entry->len < entry->file_offset)
24 		return (u64)-1;
25 	return entry->file_offset + entry->len;
26 }
27 
28 /* returns NULL if the insertion worked, or it returns the node it did find
29  * in the tree
30  */
31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32 				   struct rb_node *node)
33 {
34 	struct rb_node **p = &root->rb_node;
35 	struct rb_node *parent = NULL;
36 	struct btrfs_ordered_extent *entry;
37 
38 	while (*p) {
39 		parent = *p;
40 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
41 
42 		if (file_offset < entry->file_offset)
43 			p = &(*p)->rb_left;
44 		else if (file_offset >= entry_end(entry))
45 			p = &(*p)->rb_right;
46 		else
47 			return parent;
48 	}
49 
50 	rb_link_node(node, parent, p);
51 	rb_insert_color(node, root);
52 	return NULL;
53 }
54 
55 static void ordered_data_tree_panic(struct inode *inode, int errno,
56 					       u64 offset)
57 {
58 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
59 	btrfs_panic(fs_info, errno,
60 		    "Inconsistency in ordered tree at offset %llu", offset);
61 }
62 
63 /*
64  * look for a given offset in the tree, and if it can't be found return the
65  * first lesser offset
66  */
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 				     struct rb_node **prev_ret)
69 {
70 	struct rb_node *n = root->rb_node;
71 	struct rb_node *prev = NULL;
72 	struct rb_node *test;
73 	struct btrfs_ordered_extent *entry;
74 	struct btrfs_ordered_extent *prev_entry = NULL;
75 
76 	while (n) {
77 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 		prev = n;
79 		prev_entry = entry;
80 
81 		if (file_offset < entry->file_offset)
82 			n = n->rb_left;
83 		else if (file_offset >= entry_end(entry))
84 			n = n->rb_right;
85 		else
86 			return n;
87 	}
88 	if (!prev_ret)
89 		return NULL;
90 
91 	while (prev && file_offset >= entry_end(prev_entry)) {
92 		test = rb_next(prev);
93 		if (!test)
94 			break;
95 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 				      rb_node);
97 		if (file_offset < entry_end(prev_entry))
98 			break;
99 
100 		prev = test;
101 	}
102 	if (prev)
103 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 				      rb_node);
105 	while (prev && file_offset < entry_end(prev_entry)) {
106 		test = rb_prev(prev);
107 		if (!test)
108 			break;
109 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 				      rb_node);
111 		prev = test;
112 	}
113 	*prev_ret = prev;
114 	return NULL;
115 }
116 
117 /*
118  * helper to check if a given offset is inside a given entry
119  */
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 	if (file_offset < entry->file_offset ||
123 	    entry->file_offset + entry->len <= file_offset)
124 		return 0;
125 	return 1;
126 }
127 
128 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
129 			  u64 len)
130 {
131 	if (file_offset + len <= entry->file_offset ||
132 	    entry->file_offset + entry->len <= file_offset)
133 		return 0;
134 	return 1;
135 }
136 
137 /*
138  * look find the first ordered struct that has this offset, otherwise
139  * the first one less than this offset
140  */
141 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
142 					  u64 file_offset)
143 {
144 	struct rb_root *root = &tree->tree;
145 	struct rb_node *prev = NULL;
146 	struct rb_node *ret;
147 	struct btrfs_ordered_extent *entry;
148 
149 	if (tree->last) {
150 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
151 				 rb_node);
152 		if (offset_in_entry(entry, file_offset))
153 			return tree->last;
154 	}
155 	ret = __tree_search(root, file_offset, &prev);
156 	if (!ret)
157 		ret = prev;
158 	if (ret)
159 		tree->last = ret;
160 	return ret;
161 }
162 
163 /* allocate and add a new ordered_extent into the per-inode tree.
164  * file_offset is the logical offset in the file
165  *
166  * start is the disk block number of an extent already reserved in the
167  * extent allocation tree
168  *
169  * len is the length of the extent
170  *
171  * The tree is given a single reference on the ordered extent that was
172  * inserted.
173  */
174 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
175 				      u64 start, u64 len, u64 disk_len,
176 				      int type, int dio, int compress_type)
177 {
178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
179 	struct btrfs_root *root = BTRFS_I(inode)->root;
180 	struct btrfs_ordered_inode_tree *tree;
181 	struct rb_node *node;
182 	struct btrfs_ordered_extent *entry;
183 
184 	tree = &BTRFS_I(inode)->ordered_tree;
185 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
186 	if (!entry)
187 		return -ENOMEM;
188 
189 	entry->file_offset = file_offset;
190 	entry->start = start;
191 	entry->len = len;
192 	entry->disk_len = disk_len;
193 	entry->bytes_left = len;
194 	entry->inode = igrab(inode);
195 	entry->compress_type = compress_type;
196 	entry->truncated_len = (u64)-1;
197 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
198 		set_bit(type, &entry->flags);
199 
200 	if (dio) {
201 		percpu_counter_add_batch(&fs_info->dio_bytes, len,
202 					 fs_info->delalloc_batch);
203 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
204 	}
205 
206 	/* one ref for the tree */
207 	refcount_set(&entry->refs, 1);
208 	init_waitqueue_head(&entry->wait);
209 	INIT_LIST_HEAD(&entry->list);
210 	INIT_LIST_HEAD(&entry->root_extent_list);
211 	INIT_LIST_HEAD(&entry->work_list);
212 	init_completion(&entry->completion);
213 	INIT_LIST_HEAD(&entry->log_list);
214 	INIT_LIST_HEAD(&entry->trans_list);
215 
216 	trace_btrfs_ordered_extent_add(inode, entry);
217 
218 	spin_lock_irq(&tree->lock);
219 	node = tree_insert(&tree->tree, file_offset,
220 			   &entry->rb_node);
221 	if (node)
222 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
223 	spin_unlock_irq(&tree->lock);
224 
225 	spin_lock(&root->ordered_extent_lock);
226 	list_add_tail(&entry->root_extent_list,
227 		      &root->ordered_extents);
228 	root->nr_ordered_extents++;
229 	if (root->nr_ordered_extents == 1) {
230 		spin_lock(&fs_info->ordered_root_lock);
231 		BUG_ON(!list_empty(&root->ordered_root));
232 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
233 		spin_unlock(&fs_info->ordered_root_lock);
234 	}
235 	spin_unlock(&root->ordered_extent_lock);
236 
237 	/*
238 	 * We don't need the count_max_extents here, we can assume that all of
239 	 * that work has been done at higher layers, so this is truly the
240 	 * smallest the extent is going to get.
241 	 */
242 	spin_lock(&BTRFS_I(inode)->lock);
243 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
244 	spin_unlock(&BTRFS_I(inode)->lock);
245 
246 	return 0;
247 }
248 
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 			     u64 start, u64 len, u64 disk_len, int type)
251 {
252 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 					  disk_len, type, 0,
254 					  BTRFS_COMPRESS_NONE);
255 }
256 
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 				 u64 start, u64 len, u64 disk_len, int type)
259 {
260 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 					  disk_len, type, 1,
262 					  BTRFS_COMPRESS_NONE);
263 }
264 
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 				      u64 start, u64 len, u64 disk_len,
267 				      int type, int compress_type)
268 {
269 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 					  disk_len, type, 0,
271 					  compress_type);
272 }
273 
274 /*
275  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276  * when an ordered extent is finished.  If the list covers more than one
277  * ordered extent, it is split across multiples.
278  */
279 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
280 			   struct btrfs_ordered_sum *sum)
281 {
282 	struct btrfs_ordered_inode_tree *tree;
283 
284 	tree = &BTRFS_I(entry->inode)->ordered_tree;
285 	spin_lock_irq(&tree->lock);
286 	list_add_tail(&sum->list, &entry->list);
287 	spin_unlock_irq(&tree->lock);
288 }
289 
290 /*
291  * this is used to account for finished IO across a given range
292  * of the file.  The IO may span ordered extents.  If
293  * a given ordered_extent is completely done, 1 is returned, otherwise
294  * 0.
295  *
296  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297  * to make sure this function only returns 1 once for a given ordered extent.
298  *
299  * file_offset is updated to one byte past the range that is recorded as
300  * complete.  This allows you to walk forward in the file.
301  */
302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303 				   struct btrfs_ordered_extent **cached,
304 				   u64 *file_offset, u64 io_size, int uptodate)
305 {
306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307 	struct btrfs_ordered_inode_tree *tree;
308 	struct rb_node *node;
309 	struct btrfs_ordered_extent *entry = NULL;
310 	int ret;
311 	unsigned long flags;
312 	u64 dec_end;
313 	u64 dec_start;
314 	u64 to_dec;
315 
316 	tree = &BTRFS_I(inode)->ordered_tree;
317 	spin_lock_irqsave(&tree->lock, flags);
318 	node = tree_search(tree, *file_offset);
319 	if (!node) {
320 		ret = 1;
321 		goto out;
322 	}
323 
324 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325 	if (!offset_in_entry(entry, *file_offset)) {
326 		ret = 1;
327 		goto out;
328 	}
329 
330 	dec_start = max(*file_offset, entry->file_offset);
331 	dec_end = min(*file_offset + io_size, entry->file_offset +
332 		      entry->len);
333 	*file_offset = dec_end;
334 	if (dec_start > dec_end) {
335 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336 			   dec_start, dec_end);
337 	}
338 	to_dec = dec_end - dec_start;
339 	if (to_dec > entry->bytes_left) {
340 		btrfs_crit(fs_info,
341 			   "bad ordered accounting left %llu size %llu",
342 			   entry->bytes_left, to_dec);
343 	}
344 	entry->bytes_left -= to_dec;
345 	if (!uptodate)
346 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
347 
348 	if (entry->bytes_left == 0) {
349 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350 		/* test_and_set_bit implies a barrier */
351 		cond_wake_up_nomb(&entry->wait);
352 	} else {
353 		ret = 1;
354 	}
355 out:
356 	if (!ret && cached && entry) {
357 		*cached = entry;
358 		refcount_inc(&entry->refs);
359 	}
360 	spin_unlock_irqrestore(&tree->lock, flags);
361 	return ret == 0;
362 }
363 
364 /*
365  * this is used to account for finished IO across a given range
366  * of the file.  The IO should not span ordered extents.  If
367  * a given ordered_extent is completely done, 1 is returned, otherwise
368  * 0.
369  *
370  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371  * to make sure this function only returns 1 once for a given ordered extent.
372  */
373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 				   struct btrfs_ordered_extent **cached,
375 				   u64 file_offset, u64 io_size, int uptodate)
376 {
377 	struct btrfs_ordered_inode_tree *tree;
378 	struct rb_node *node;
379 	struct btrfs_ordered_extent *entry = NULL;
380 	unsigned long flags;
381 	int ret;
382 
383 	tree = &BTRFS_I(inode)->ordered_tree;
384 	spin_lock_irqsave(&tree->lock, flags);
385 	if (cached && *cached) {
386 		entry = *cached;
387 		goto have_entry;
388 	}
389 
390 	node = tree_search(tree, file_offset);
391 	if (!node) {
392 		ret = 1;
393 		goto out;
394 	}
395 
396 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 	if (!offset_in_entry(entry, file_offset)) {
399 		ret = 1;
400 		goto out;
401 	}
402 
403 	if (io_size > entry->bytes_left) {
404 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
405 			   "bad ordered accounting left %llu size %llu",
406 		       entry->bytes_left, io_size);
407 	}
408 	entry->bytes_left -= io_size;
409 	if (!uptodate)
410 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
411 
412 	if (entry->bytes_left == 0) {
413 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
414 		/* test_and_set_bit implies a barrier */
415 		cond_wake_up_nomb(&entry->wait);
416 	} else {
417 		ret = 1;
418 	}
419 out:
420 	if (!ret && cached && entry) {
421 		*cached = entry;
422 		refcount_inc(&entry->refs);
423 	}
424 	spin_unlock_irqrestore(&tree->lock, flags);
425 	return ret == 0;
426 }
427 
428 /*
429  * used to drop a reference on an ordered extent.  This will free
430  * the extent if the last reference is dropped
431  */
432 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
433 {
434 	struct list_head *cur;
435 	struct btrfs_ordered_sum *sum;
436 
437 	trace_btrfs_ordered_extent_put(entry->inode, entry);
438 
439 	if (refcount_dec_and_test(&entry->refs)) {
440 		ASSERT(list_empty(&entry->log_list));
441 		ASSERT(list_empty(&entry->trans_list));
442 		ASSERT(list_empty(&entry->root_extent_list));
443 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
444 		if (entry->inode)
445 			btrfs_add_delayed_iput(entry->inode);
446 		while (!list_empty(&entry->list)) {
447 			cur = entry->list.next;
448 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
449 			list_del(&sum->list);
450 			kvfree(sum);
451 		}
452 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
453 	}
454 }
455 
456 /*
457  * remove an ordered extent from the tree.  No references are dropped
458  * and waiters are woken up.
459  */
460 void btrfs_remove_ordered_extent(struct inode *inode,
461 				 struct btrfs_ordered_extent *entry)
462 {
463 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
464 	struct btrfs_ordered_inode_tree *tree;
465 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
466 	struct btrfs_root *root = btrfs_inode->root;
467 	struct rb_node *node;
468 
469 	/* This is paired with btrfs_add_ordered_extent. */
470 	spin_lock(&btrfs_inode->lock);
471 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
472 	spin_unlock(&btrfs_inode->lock);
473 	if (root != fs_info->tree_root)
474 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
475 
476 	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
477 		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
478 					 fs_info->delalloc_batch);
479 
480 	tree = &btrfs_inode->ordered_tree;
481 	spin_lock_irq(&tree->lock);
482 	node = &entry->rb_node;
483 	rb_erase(node, &tree->tree);
484 	RB_CLEAR_NODE(node);
485 	if (tree->last == node)
486 		tree->last = NULL;
487 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
488 	spin_unlock_irq(&tree->lock);
489 
490 	spin_lock(&root->ordered_extent_lock);
491 	list_del_init(&entry->root_extent_list);
492 	root->nr_ordered_extents--;
493 
494 	trace_btrfs_ordered_extent_remove(inode, entry);
495 
496 	if (!root->nr_ordered_extents) {
497 		spin_lock(&fs_info->ordered_root_lock);
498 		BUG_ON(list_empty(&root->ordered_root));
499 		list_del_init(&root->ordered_root);
500 		spin_unlock(&fs_info->ordered_root_lock);
501 	}
502 	spin_unlock(&root->ordered_extent_lock);
503 	wake_up(&entry->wait);
504 }
505 
506 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
507 {
508 	struct btrfs_ordered_extent *ordered;
509 
510 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
511 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
512 	complete(&ordered->completion);
513 }
514 
515 /*
516  * wait for all the ordered extents in a root.  This is done when balancing
517  * space between drives.
518  */
519 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
520 			       const u64 range_start, const u64 range_len)
521 {
522 	struct btrfs_fs_info *fs_info = root->fs_info;
523 	LIST_HEAD(splice);
524 	LIST_HEAD(skipped);
525 	LIST_HEAD(works);
526 	struct btrfs_ordered_extent *ordered, *next;
527 	u64 count = 0;
528 	const u64 range_end = range_start + range_len;
529 
530 	mutex_lock(&root->ordered_extent_mutex);
531 	spin_lock(&root->ordered_extent_lock);
532 	list_splice_init(&root->ordered_extents, &splice);
533 	while (!list_empty(&splice) && nr) {
534 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
535 					   root_extent_list);
536 
537 		if (range_end <= ordered->start ||
538 		    ordered->start + ordered->disk_len <= range_start) {
539 			list_move_tail(&ordered->root_extent_list, &skipped);
540 			cond_resched_lock(&root->ordered_extent_lock);
541 			continue;
542 		}
543 
544 		list_move_tail(&ordered->root_extent_list,
545 			       &root->ordered_extents);
546 		refcount_inc(&ordered->refs);
547 		spin_unlock(&root->ordered_extent_lock);
548 
549 		btrfs_init_work(&ordered->flush_work,
550 				btrfs_flush_delalloc_helper,
551 				btrfs_run_ordered_extent_work, NULL, NULL);
552 		list_add_tail(&ordered->work_list, &works);
553 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
554 
555 		cond_resched();
556 		spin_lock(&root->ordered_extent_lock);
557 		if (nr != U64_MAX)
558 			nr--;
559 		count++;
560 	}
561 	list_splice_tail(&skipped, &root->ordered_extents);
562 	list_splice_tail(&splice, &root->ordered_extents);
563 	spin_unlock(&root->ordered_extent_lock);
564 
565 	list_for_each_entry_safe(ordered, next, &works, work_list) {
566 		list_del_init(&ordered->work_list);
567 		wait_for_completion(&ordered->completion);
568 		btrfs_put_ordered_extent(ordered);
569 		cond_resched();
570 	}
571 	mutex_unlock(&root->ordered_extent_mutex);
572 
573 	return count;
574 }
575 
576 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
577 			     const u64 range_start, const u64 range_len)
578 {
579 	struct btrfs_root *root;
580 	struct list_head splice;
581 	u64 total_done = 0;
582 	u64 done;
583 
584 	INIT_LIST_HEAD(&splice);
585 
586 	mutex_lock(&fs_info->ordered_operations_mutex);
587 	spin_lock(&fs_info->ordered_root_lock);
588 	list_splice_init(&fs_info->ordered_roots, &splice);
589 	while (!list_empty(&splice) && nr) {
590 		root = list_first_entry(&splice, struct btrfs_root,
591 					ordered_root);
592 		root = btrfs_grab_fs_root(root);
593 		BUG_ON(!root);
594 		list_move_tail(&root->ordered_root,
595 			       &fs_info->ordered_roots);
596 		spin_unlock(&fs_info->ordered_root_lock);
597 
598 		done = btrfs_wait_ordered_extents(root, nr,
599 						  range_start, range_len);
600 		btrfs_put_fs_root(root);
601 		total_done += done;
602 
603 		spin_lock(&fs_info->ordered_root_lock);
604 		if (nr != U64_MAX) {
605 			nr -= done;
606 		}
607 	}
608 	list_splice_tail(&splice, &fs_info->ordered_roots);
609 	spin_unlock(&fs_info->ordered_root_lock);
610 	mutex_unlock(&fs_info->ordered_operations_mutex);
611 
612 	return total_done;
613 }
614 
615 /*
616  * Used to start IO or wait for a given ordered extent to finish.
617  *
618  * If wait is one, this effectively waits on page writeback for all the pages
619  * in the extent, and it waits on the io completion code to insert
620  * metadata into the btree corresponding to the extent
621  */
622 void btrfs_start_ordered_extent(struct inode *inode,
623 				       struct btrfs_ordered_extent *entry,
624 				       int wait)
625 {
626 	u64 start = entry->file_offset;
627 	u64 end = start + entry->len - 1;
628 
629 	trace_btrfs_ordered_extent_start(inode, entry);
630 
631 	/*
632 	 * pages in the range can be dirty, clean or writeback.  We
633 	 * start IO on any dirty ones so the wait doesn't stall waiting
634 	 * for the flusher thread to find them
635 	 */
636 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
637 		filemap_fdatawrite_range(inode->i_mapping, start, end);
638 	if (wait) {
639 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
640 						 &entry->flags));
641 	}
642 }
643 
644 /*
645  * Used to wait on ordered extents across a large range of bytes.
646  */
647 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
648 {
649 	int ret = 0;
650 	int ret_wb = 0;
651 	u64 end;
652 	u64 orig_end;
653 	struct btrfs_ordered_extent *ordered;
654 
655 	if (start + len < start) {
656 		orig_end = INT_LIMIT(loff_t);
657 	} else {
658 		orig_end = start + len - 1;
659 		if (orig_end > INT_LIMIT(loff_t))
660 			orig_end = INT_LIMIT(loff_t);
661 	}
662 
663 	/* start IO across the range first to instantiate any delalloc
664 	 * extents
665 	 */
666 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
667 	if (ret)
668 		return ret;
669 
670 	/*
671 	 * If we have a writeback error don't return immediately. Wait first
672 	 * for any ordered extents that haven't completed yet. This is to make
673 	 * sure no one can dirty the same page ranges and call writepages()
674 	 * before the ordered extents complete - to avoid failures (-EEXIST)
675 	 * when adding the new ordered extents to the ordered tree.
676 	 */
677 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
678 
679 	end = orig_end;
680 	while (1) {
681 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
682 		if (!ordered)
683 			break;
684 		if (ordered->file_offset > orig_end) {
685 			btrfs_put_ordered_extent(ordered);
686 			break;
687 		}
688 		if (ordered->file_offset + ordered->len <= start) {
689 			btrfs_put_ordered_extent(ordered);
690 			break;
691 		}
692 		btrfs_start_ordered_extent(inode, ordered, 1);
693 		end = ordered->file_offset;
694 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
695 			ret = -EIO;
696 		btrfs_put_ordered_extent(ordered);
697 		if (ret || end == 0 || end == start)
698 			break;
699 		end--;
700 	}
701 	return ret_wb ? ret_wb : ret;
702 }
703 
704 /*
705  * find an ordered extent corresponding to file_offset.  return NULL if
706  * nothing is found, otherwise take a reference on the extent and return it
707  */
708 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
709 							 u64 file_offset)
710 {
711 	struct btrfs_ordered_inode_tree *tree;
712 	struct rb_node *node;
713 	struct btrfs_ordered_extent *entry = NULL;
714 
715 	tree = &BTRFS_I(inode)->ordered_tree;
716 	spin_lock_irq(&tree->lock);
717 	node = tree_search(tree, file_offset);
718 	if (!node)
719 		goto out;
720 
721 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
722 	if (!offset_in_entry(entry, file_offset))
723 		entry = NULL;
724 	if (entry)
725 		refcount_inc(&entry->refs);
726 out:
727 	spin_unlock_irq(&tree->lock);
728 	return entry;
729 }
730 
731 /* Since the DIO code tries to lock a wide area we need to look for any ordered
732  * extents that exist in the range, rather than just the start of the range.
733  */
734 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
735 		struct btrfs_inode *inode, u64 file_offset, u64 len)
736 {
737 	struct btrfs_ordered_inode_tree *tree;
738 	struct rb_node *node;
739 	struct btrfs_ordered_extent *entry = NULL;
740 
741 	tree = &inode->ordered_tree;
742 	spin_lock_irq(&tree->lock);
743 	node = tree_search(tree, file_offset);
744 	if (!node) {
745 		node = tree_search(tree, file_offset + len);
746 		if (!node)
747 			goto out;
748 	}
749 
750 	while (1) {
751 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
752 		if (range_overlaps(entry, file_offset, len))
753 			break;
754 
755 		if (entry->file_offset >= file_offset + len) {
756 			entry = NULL;
757 			break;
758 		}
759 		entry = NULL;
760 		node = rb_next(node);
761 		if (!node)
762 			break;
763 	}
764 out:
765 	if (entry)
766 		refcount_inc(&entry->refs);
767 	spin_unlock_irq(&tree->lock);
768 	return entry;
769 }
770 
771 /*
772  * lookup and return any extent before 'file_offset'.  NULL is returned
773  * if none is found
774  */
775 struct btrfs_ordered_extent *
776 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
777 {
778 	struct btrfs_ordered_inode_tree *tree;
779 	struct rb_node *node;
780 	struct btrfs_ordered_extent *entry = NULL;
781 
782 	tree = &BTRFS_I(inode)->ordered_tree;
783 	spin_lock_irq(&tree->lock);
784 	node = tree_search(tree, file_offset);
785 	if (!node)
786 		goto out;
787 
788 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
789 	refcount_inc(&entry->refs);
790 out:
791 	spin_unlock_irq(&tree->lock);
792 	return entry;
793 }
794 
795 /*
796  * After an extent is done, call this to conditionally update the on disk
797  * i_size.  i_size is updated to cover any fully written part of the file.
798  */
799 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
800 				struct btrfs_ordered_extent *ordered)
801 {
802 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
803 	u64 disk_i_size;
804 	u64 new_i_size;
805 	u64 i_size = i_size_read(inode);
806 	struct rb_node *node;
807 	struct rb_node *prev = NULL;
808 	struct btrfs_ordered_extent *test;
809 	int ret = 1;
810 	u64 orig_offset = offset;
811 
812 	spin_lock_irq(&tree->lock);
813 	if (ordered) {
814 		offset = entry_end(ordered);
815 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
816 			offset = min(offset,
817 				     ordered->file_offset +
818 				     ordered->truncated_len);
819 	} else {
820 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
821 	}
822 	disk_i_size = BTRFS_I(inode)->disk_i_size;
823 
824 	/*
825 	 * truncate file.
826 	 * If ordered is not NULL, then this is called from endio and
827 	 * disk_i_size will be updated by either truncate itself or any
828 	 * in-flight IOs which are inside the disk_i_size.
829 	 *
830 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
831 	 * fails somehow, we need to make sure we have a precise disk_i_size by
832 	 * updating it as usual.
833 	 *
834 	 */
835 	if (!ordered && disk_i_size > i_size) {
836 		BTRFS_I(inode)->disk_i_size = orig_offset;
837 		ret = 0;
838 		goto out;
839 	}
840 
841 	/*
842 	 * if the disk i_size is already at the inode->i_size, or
843 	 * this ordered extent is inside the disk i_size, we're done
844 	 */
845 	if (disk_i_size == i_size)
846 		goto out;
847 
848 	/*
849 	 * We still need to update disk_i_size if outstanding_isize is greater
850 	 * than disk_i_size.
851 	 */
852 	if (offset <= disk_i_size &&
853 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
854 		goto out;
855 
856 	/*
857 	 * walk backward from this ordered extent to disk_i_size.
858 	 * if we find an ordered extent then we can't update disk i_size
859 	 * yet
860 	 */
861 	if (ordered) {
862 		node = rb_prev(&ordered->rb_node);
863 	} else {
864 		prev = tree_search(tree, offset);
865 		/*
866 		 * we insert file extents without involving ordered struct,
867 		 * so there should be no ordered struct cover this offset
868 		 */
869 		if (prev) {
870 			test = rb_entry(prev, struct btrfs_ordered_extent,
871 					rb_node);
872 			BUG_ON(offset_in_entry(test, offset));
873 		}
874 		node = prev;
875 	}
876 	for (; node; node = rb_prev(node)) {
877 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
878 
879 		/* We treat this entry as if it doesn't exist */
880 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
881 			continue;
882 
883 		if (entry_end(test) <= disk_i_size)
884 			break;
885 		if (test->file_offset >= i_size)
886 			break;
887 
888 		/*
889 		 * We don't update disk_i_size now, so record this undealt
890 		 * i_size. Or we will not know the real i_size.
891 		 */
892 		if (test->outstanding_isize < offset)
893 			test->outstanding_isize = offset;
894 		if (ordered &&
895 		    ordered->outstanding_isize > test->outstanding_isize)
896 			test->outstanding_isize = ordered->outstanding_isize;
897 		goto out;
898 	}
899 	new_i_size = min_t(u64, offset, i_size);
900 
901 	/*
902 	 * Some ordered extents may completed before the current one, and
903 	 * we hold the real i_size in ->outstanding_isize.
904 	 */
905 	if (ordered && ordered->outstanding_isize > new_i_size)
906 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
907 	BTRFS_I(inode)->disk_i_size = new_i_size;
908 	ret = 0;
909 out:
910 	/*
911 	 * We need to do this because we can't remove ordered extents until
912 	 * after the i_disk_size has been updated and then the inode has been
913 	 * updated to reflect the change, so we need to tell anybody who finds
914 	 * this ordered extent that we've already done all the real work, we
915 	 * just haven't completed all the other work.
916 	 */
917 	if (ordered)
918 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
919 	spin_unlock_irq(&tree->lock);
920 	return ret;
921 }
922 
923 /*
924  * search the ordered extents for one corresponding to 'offset' and
925  * try to find a checksum.  This is used because we allow pages to
926  * be reclaimed before their checksum is actually put into the btree
927  */
928 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
929 			   u8 *sum, int len)
930 {
931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
932 	struct btrfs_ordered_sum *ordered_sum;
933 	struct btrfs_ordered_extent *ordered;
934 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
935 	unsigned long num_sectors;
936 	unsigned long i;
937 	u32 sectorsize = btrfs_inode_sectorsize(inode);
938 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
939 	int index = 0;
940 
941 	ordered = btrfs_lookup_ordered_extent(inode, offset);
942 	if (!ordered)
943 		return 0;
944 
945 	spin_lock_irq(&tree->lock);
946 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
947 		if (disk_bytenr >= ordered_sum->bytenr &&
948 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
949 			i = (disk_bytenr - ordered_sum->bytenr) >>
950 			    inode->i_sb->s_blocksize_bits;
951 			num_sectors = ordered_sum->len >>
952 				      inode->i_sb->s_blocksize_bits;
953 			num_sectors = min_t(int, len - index, num_sectors - i);
954 			memcpy(sum + index, ordered_sum->sums + i * csum_size,
955 			       num_sectors * csum_size);
956 
957 			index += (int)num_sectors * csum_size;
958 			if (index == len)
959 				goto out;
960 			disk_bytenr += num_sectors * sectorsize;
961 		}
962 	}
963 out:
964 	spin_unlock_irq(&tree->lock);
965 	btrfs_put_ordered_extent(ordered);
966 	return index;
967 }
968 
969 /*
970  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
971  * ordered extents in it are run to completion.
972  *
973  * @tree:         IO tree used for locking out other users of the range
974  * @inode:        Inode whose ordered tree is to be searched
975  * @start:        Beginning of range to flush
976  * @end:          Last byte of range to lock
977  * @cached_state: If passed, will return the extent state responsible for the
978  * locked range. It's the caller's responsibility to free the cached state.
979  *
980  * This function always returns with the given range locked, ensuring after it's
981  * called no order extent can be pending.
982  */
983 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
984 					struct btrfs_inode *inode, u64 start,
985 					u64 end,
986 					struct extent_state **cached_state)
987 {
988 	struct btrfs_ordered_extent *ordered;
989 	struct extent_state *cache = NULL;
990 	struct extent_state **cachedp = &cache;
991 
992 	if (cached_state)
993 		cachedp = cached_state;
994 
995 	while (1) {
996 		lock_extent_bits(tree, start, end, cachedp);
997 		ordered = btrfs_lookup_ordered_range(inode, start,
998 						     end - start + 1);
999 		if (!ordered) {
1000 			/*
1001 			 * If no external cached_state has been passed then
1002 			 * decrement the extra ref taken for cachedp since we
1003 			 * aren't exposing it outside of this function
1004 			 */
1005 			if (!cached_state)
1006 				refcount_dec(&cache->refs);
1007 			break;
1008 		}
1009 		unlock_extent_cached(tree, start, end, cachedp);
1010 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1011 		btrfs_put_ordered_extent(ordered);
1012 	}
1013 }
1014 
1015 int __init ordered_data_init(void)
1016 {
1017 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1018 				     sizeof(struct btrfs_ordered_extent), 0,
1019 				     SLAB_MEM_SPREAD,
1020 				     NULL);
1021 	if (!btrfs_ordered_extent_cache)
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 void __cold ordered_data_exit(void)
1028 {
1029 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1030 }
1031