1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "ctree.h" 12 #include "transaction.h" 13 #include "btrfs_inode.h" 14 #include "extent_io.h" 15 #include "disk-io.h" 16 #include "compression.h" 17 #include "delalloc-space.h" 18 19 static struct kmem_cache *btrfs_ordered_extent_cache; 20 21 static u64 entry_end(struct btrfs_ordered_extent *entry) 22 { 23 if (entry->file_offset + entry->len < entry->file_offset) 24 return (u64)-1; 25 return entry->file_offset + entry->len; 26 } 27 28 /* returns NULL if the insertion worked, or it returns the node it did find 29 * in the tree 30 */ 31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 32 struct rb_node *node) 33 { 34 struct rb_node **p = &root->rb_node; 35 struct rb_node *parent = NULL; 36 struct btrfs_ordered_extent *entry; 37 38 while (*p) { 39 parent = *p; 40 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 41 42 if (file_offset < entry->file_offset) 43 p = &(*p)->rb_left; 44 else if (file_offset >= entry_end(entry)) 45 p = &(*p)->rb_right; 46 else 47 return parent; 48 } 49 50 rb_link_node(node, parent, p); 51 rb_insert_color(node, root); 52 return NULL; 53 } 54 55 static void ordered_data_tree_panic(struct inode *inode, int errno, 56 u64 offset) 57 { 58 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 59 btrfs_panic(fs_info, errno, 60 "Inconsistency in ordered tree at offset %llu", offset); 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 129 u64 len) 130 { 131 if (file_offset + len <= entry->file_offset || 132 entry->file_offset + entry->len <= file_offset) 133 return 0; 134 return 1; 135 } 136 137 /* 138 * look find the first ordered struct that has this offset, otherwise 139 * the first one less than this offset 140 */ 141 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 142 u64 file_offset) 143 { 144 struct rb_root *root = &tree->tree; 145 struct rb_node *prev = NULL; 146 struct rb_node *ret; 147 struct btrfs_ordered_extent *entry; 148 149 if (tree->last) { 150 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 151 rb_node); 152 if (offset_in_entry(entry, file_offset)) 153 return tree->last; 154 } 155 ret = __tree_search(root, file_offset, &prev); 156 if (!ret) 157 ret = prev; 158 if (ret) 159 tree->last = ret; 160 return ret; 161 } 162 163 /* allocate and add a new ordered_extent into the per-inode tree. 164 * file_offset is the logical offset in the file 165 * 166 * start is the disk block number of an extent already reserved in the 167 * extent allocation tree 168 * 169 * len is the length of the extent 170 * 171 * The tree is given a single reference on the ordered extent that was 172 * inserted. 173 */ 174 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 175 u64 start, u64 len, u64 disk_len, 176 int type, int dio, int compress_type) 177 { 178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 179 struct btrfs_root *root = BTRFS_I(inode)->root; 180 struct btrfs_ordered_inode_tree *tree; 181 struct rb_node *node; 182 struct btrfs_ordered_extent *entry; 183 184 tree = &BTRFS_I(inode)->ordered_tree; 185 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 186 if (!entry) 187 return -ENOMEM; 188 189 entry->file_offset = file_offset; 190 entry->start = start; 191 entry->len = len; 192 entry->disk_len = disk_len; 193 entry->bytes_left = len; 194 entry->inode = igrab(inode); 195 entry->compress_type = compress_type; 196 entry->truncated_len = (u64)-1; 197 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 198 set_bit(type, &entry->flags); 199 200 if (dio) { 201 percpu_counter_add_batch(&fs_info->dio_bytes, len, 202 fs_info->delalloc_batch); 203 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 204 } 205 206 /* one ref for the tree */ 207 refcount_set(&entry->refs, 1); 208 init_waitqueue_head(&entry->wait); 209 INIT_LIST_HEAD(&entry->list); 210 INIT_LIST_HEAD(&entry->root_extent_list); 211 INIT_LIST_HEAD(&entry->work_list); 212 init_completion(&entry->completion); 213 INIT_LIST_HEAD(&entry->log_list); 214 INIT_LIST_HEAD(&entry->trans_list); 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 spin_lock_irq(&tree->lock); 219 node = tree_insert(&tree->tree, file_offset, 220 &entry->rb_node); 221 if (node) 222 ordered_data_tree_panic(inode, -EEXIST, file_offset); 223 spin_unlock_irq(&tree->lock); 224 225 spin_lock(&root->ordered_extent_lock); 226 list_add_tail(&entry->root_extent_list, 227 &root->ordered_extents); 228 root->nr_ordered_extents++; 229 if (root->nr_ordered_extents == 1) { 230 spin_lock(&fs_info->ordered_root_lock); 231 BUG_ON(!list_empty(&root->ordered_root)); 232 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 233 spin_unlock(&fs_info->ordered_root_lock); 234 } 235 spin_unlock(&root->ordered_extent_lock); 236 237 /* 238 * We don't need the count_max_extents here, we can assume that all of 239 * that work has been done at higher layers, so this is truly the 240 * smallest the extent is going to get. 241 */ 242 spin_lock(&BTRFS_I(inode)->lock); 243 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 244 spin_unlock(&BTRFS_I(inode)->lock); 245 246 return 0; 247 } 248 249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 250 u64 start, u64 len, u64 disk_len, int type) 251 { 252 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 253 disk_len, type, 0, 254 BTRFS_COMPRESS_NONE); 255 } 256 257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 258 u64 start, u64 len, u64 disk_len, int type) 259 { 260 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 261 disk_len, type, 1, 262 BTRFS_COMPRESS_NONE); 263 } 264 265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 266 u64 start, u64 len, u64 disk_len, 267 int type, int compress_type) 268 { 269 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 270 disk_len, type, 0, 271 compress_type); 272 } 273 274 /* 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 276 * when an ordered extent is finished. If the list covers more than one 277 * ordered extent, it is split across multiples. 278 */ 279 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 280 struct btrfs_ordered_sum *sum) 281 { 282 struct btrfs_ordered_inode_tree *tree; 283 284 tree = &BTRFS_I(entry->inode)->ordered_tree; 285 spin_lock_irq(&tree->lock); 286 list_add_tail(&sum->list, &entry->list); 287 spin_unlock_irq(&tree->lock); 288 } 289 290 /* 291 * this is used to account for finished IO across a given range 292 * of the file. The IO may span ordered extents. If 293 * a given ordered_extent is completely done, 1 is returned, otherwise 294 * 0. 295 * 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 297 * to make sure this function only returns 1 once for a given ordered extent. 298 * 299 * file_offset is updated to one byte past the range that is recorded as 300 * complete. This allows you to walk forward in the file. 301 */ 302 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 303 struct btrfs_ordered_extent **cached, 304 u64 *file_offset, u64 io_size, int uptodate) 305 { 306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 307 struct btrfs_ordered_inode_tree *tree; 308 struct rb_node *node; 309 struct btrfs_ordered_extent *entry = NULL; 310 int ret; 311 unsigned long flags; 312 u64 dec_end; 313 u64 dec_start; 314 u64 to_dec; 315 316 tree = &BTRFS_I(inode)->ordered_tree; 317 spin_lock_irqsave(&tree->lock, flags); 318 node = tree_search(tree, *file_offset); 319 if (!node) { 320 ret = 1; 321 goto out; 322 } 323 324 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 325 if (!offset_in_entry(entry, *file_offset)) { 326 ret = 1; 327 goto out; 328 } 329 330 dec_start = max(*file_offset, entry->file_offset); 331 dec_end = min(*file_offset + io_size, entry->file_offset + 332 entry->len); 333 *file_offset = dec_end; 334 if (dec_start > dec_end) { 335 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", 336 dec_start, dec_end); 337 } 338 to_dec = dec_end - dec_start; 339 if (to_dec > entry->bytes_left) { 340 btrfs_crit(fs_info, 341 "bad ordered accounting left %llu size %llu", 342 entry->bytes_left, to_dec); 343 } 344 entry->bytes_left -= to_dec; 345 if (!uptodate) 346 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 347 348 if (entry->bytes_left == 0) { 349 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 350 /* test_and_set_bit implies a barrier */ 351 cond_wake_up_nomb(&entry->wait); 352 } else { 353 ret = 1; 354 } 355 out: 356 if (!ret && cached && entry) { 357 *cached = entry; 358 refcount_inc(&entry->refs); 359 } 360 spin_unlock_irqrestore(&tree->lock, flags); 361 return ret == 0; 362 } 363 364 /* 365 * this is used to account for finished IO across a given range 366 * of the file. The IO should not span ordered extents. If 367 * a given ordered_extent is completely done, 1 is returned, otherwise 368 * 0. 369 * 370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 371 * to make sure this function only returns 1 once for a given ordered extent. 372 */ 373 int btrfs_dec_test_ordered_pending(struct inode *inode, 374 struct btrfs_ordered_extent **cached, 375 u64 file_offset, u64 io_size, int uptodate) 376 { 377 struct btrfs_ordered_inode_tree *tree; 378 struct rb_node *node; 379 struct btrfs_ordered_extent *entry = NULL; 380 unsigned long flags; 381 int ret; 382 383 tree = &BTRFS_I(inode)->ordered_tree; 384 spin_lock_irqsave(&tree->lock, flags); 385 if (cached && *cached) { 386 entry = *cached; 387 goto have_entry; 388 } 389 390 node = tree_search(tree, file_offset); 391 if (!node) { 392 ret = 1; 393 goto out; 394 } 395 396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 397 have_entry: 398 if (!offset_in_entry(entry, file_offset)) { 399 ret = 1; 400 goto out; 401 } 402 403 if (io_size > entry->bytes_left) { 404 btrfs_crit(BTRFS_I(inode)->root->fs_info, 405 "bad ordered accounting left %llu size %llu", 406 entry->bytes_left, io_size); 407 } 408 entry->bytes_left -= io_size; 409 if (!uptodate) 410 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 411 412 if (entry->bytes_left == 0) { 413 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 414 /* test_and_set_bit implies a barrier */ 415 cond_wake_up_nomb(&entry->wait); 416 } else { 417 ret = 1; 418 } 419 out: 420 if (!ret && cached && entry) { 421 *cached = entry; 422 refcount_inc(&entry->refs); 423 } 424 spin_unlock_irqrestore(&tree->lock, flags); 425 return ret == 0; 426 } 427 428 /* 429 * used to drop a reference on an ordered extent. This will free 430 * the extent if the last reference is dropped 431 */ 432 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 433 { 434 struct list_head *cur; 435 struct btrfs_ordered_sum *sum; 436 437 trace_btrfs_ordered_extent_put(entry->inode, entry); 438 439 if (refcount_dec_and_test(&entry->refs)) { 440 ASSERT(list_empty(&entry->log_list)); 441 ASSERT(list_empty(&entry->trans_list)); 442 ASSERT(list_empty(&entry->root_extent_list)); 443 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 444 if (entry->inode) 445 btrfs_add_delayed_iput(entry->inode); 446 while (!list_empty(&entry->list)) { 447 cur = entry->list.next; 448 sum = list_entry(cur, struct btrfs_ordered_sum, list); 449 list_del(&sum->list); 450 kvfree(sum); 451 } 452 kmem_cache_free(btrfs_ordered_extent_cache, entry); 453 } 454 } 455 456 /* 457 * remove an ordered extent from the tree. No references are dropped 458 * and waiters are woken up. 459 */ 460 void btrfs_remove_ordered_extent(struct inode *inode, 461 struct btrfs_ordered_extent *entry) 462 { 463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 464 struct btrfs_ordered_inode_tree *tree; 465 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 466 struct btrfs_root *root = btrfs_inode->root; 467 struct rb_node *node; 468 469 /* This is paired with btrfs_add_ordered_extent. */ 470 spin_lock(&btrfs_inode->lock); 471 btrfs_mod_outstanding_extents(btrfs_inode, -1); 472 spin_unlock(&btrfs_inode->lock); 473 if (root != fs_info->tree_root) 474 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); 475 476 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 477 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len, 478 fs_info->delalloc_batch); 479 480 tree = &btrfs_inode->ordered_tree; 481 spin_lock_irq(&tree->lock); 482 node = &entry->rb_node; 483 rb_erase(node, &tree->tree); 484 RB_CLEAR_NODE(node); 485 if (tree->last == node) 486 tree->last = NULL; 487 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 488 spin_unlock_irq(&tree->lock); 489 490 spin_lock(&root->ordered_extent_lock); 491 list_del_init(&entry->root_extent_list); 492 root->nr_ordered_extents--; 493 494 trace_btrfs_ordered_extent_remove(inode, entry); 495 496 if (!root->nr_ordered_extents) { 497 spin_lock(&fs_info->ordered_root_lock); 498 BUG_ON(list_empty(&root->ordered_root)); 499 list_del_init(&root->ordered_root); 500 spin_unlock(&fs_info->ordered_root_lock); 501 } 502 spin_unlock(&root->ordered_extent_lock); 503 wake_up(&entry->wait); 504 } 505 506 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 507 { 508 struct btrfs_ordered_extent *ordered; 509 510 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 511 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 512 complete(&ordered->completion); 513 } 514 515 /* 516 * wait for all the ordered extents in a root. This is done when balancing 517 * space between drives. 518 */ 519 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 520 const u64 range_start, const u64 range_len) 521 { 522 struct btrfs_fs_info *fs_info = root->fs_info; 523 LIST_HEAD(splice); 524 LIST_HEAD(skipped); 525 LIST_HEAD(works); 526 struct btrfs_ordered_extent *ordered, *next; 527 u64 count = 0; 528 const u64 range_end = range_start + range_len; 529 530 mutex_lock(&root->ordered_extent_mutex); 531 spin_lock(&root->ordered_extent_lock); 532 list_splice_init(&root->ordered_extents, &splice); 533 while (!list_empty(&splice) && nr) { 534 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 535 root_extent_list); 536 537 if (range_end <= ordered->start || 538 ordered->start + ordered->disk_len <= range_start) { 539 list_move_tail(&ordered->root_extent_list, &skipped); 540 cond_resched_lock(&root->ordered_extent_lock); 541 continue; 542 } 543 544 list_move_tail(&ordered->root_extent_list, 545 &root->ordered_extents); 546 refcount_inc(&ordered->refs); 547 spin_unlock(&root->ordered_extent_lock); 548 549 btrfs_init_work(&ordered->flush_work, 550 btrfs_flush_delalloc_helper, 551 btrfs_run_ordered_extent_work, NULL, NULL); 552 list_add_tail(&ordered->work_list, &works); 553 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 554 555 cond_resched(); 556 spin_lock(&root->ordered_extent_lock); 557 if (nr != U64_MAX) 558 nr--; 559 count++; 560 } 561 list_splice_tail(&skipped, &root->ordered_extents); 562 list_splice_tail(&splice, &root->ordered_extents); 563 spin_unlock(&root->ordered_extent_lock); 564 565 list_for_each_entry_safe(ordered, next, &works, work_list) { 566 list_del_init(&ordered->work_list); 567 wait_for_completion(&ordered->completion); 568 btrfs_put_ordered_extent(ordered); 569 cond_resched(); 570 } 571 mutex_unlock(&root->ordered_extent_mutex); 572 573 return count; 574 } 575 576 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 577 const u64 range_start, const u64 range_len) 578 { 579 struct btrfs_root *root; 580 struct list_head splice; 581 u64 total_done = 0; 582 u64 done; 583 584 INIT_LIST_HEAD(&splice); 585 586 mutex_lock(&fs_info->ordered_operations_mutex); 587 spin_lock(&fs_info->ordered_root_lock); 588 list_splice_init(&fs_info->ordered_roots, &splice); 589 while (!list_empty(&splice) && nr) { 590 root = list_first_entry(&splice, struct btrfs_root, 591 ordered_root); 592 root = btrfs_grab_fs_root(root); 593 BUG_ON(!root); 594 list_move_tail(&root->ordered_root, 595 &fs_info->ordered_roots); 596 spin_unlock(&fs_info->ordered_root_lock); 597 598 done = btrfs_wait_ordered_extents(root, nr, 599 range_start, range_len); 600 btrfs_put_fs_root(root); 601 total_done += done; 602 603 spin_lock(&fs_info->ordered_root_lock); 604 if (nr != U64_MAX) { 605 nr -= done; 606 } 607 } 608 list_splice_tail(&splice, &fs_info->ordered_roots); 609 spin_unlock(&fs_info->ordered_root_lock); 610 mutex_unlock(&fs_info->ordered_operations_mutex); 611 612 return total_done; 613 } 614 615 /* 616 * Used to start IO or wait for a given ordered extent to finish. 617 * 618 * If wait is one, this effectively waits on page writeback for all the pages 619 * in the extent, and it waits on the io completion code to insert 620 * metadata into the btree corresponding to the extent 621 */ 622 void btrfs_start_ordered_extent(struct inode *inode, 623 struct btrfs_ordered_extent *entry, 624 int wait) 625 { 626 u64 start = entry->file_offset; 627 u64 end = start + entry->len - 1; 628 629 trace_btrfs_ordered_extent_start(inode, entry); 630 631 /* 632 * pages in the range can be dirty, clean or writeback. We 633 * start IO on any dirty ones so the wait doesn't stall waiting 634 * for the flusher thread to find them 635 */ 636 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 637 filemap_fdatawrite_range(inode->i_mapping, start, end); 638 if (wait) { 639 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 640 &entry->flags)); 641 } 642 } 643 644 /* 645 * Used to wait on ordered extents across a large range of bytes. 646 */ 647 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 648 { 649 int ret = 0; 650 int ret_wb = 0; 651 u64 end; 652 u64 orig_end; 653 struct btrfs_ordered_extent *ordered; 654 655 if (start + len < start) { 656 orig_end = INT_LIMIT(loff_t); 657 } else { 658 orig_end = start + len - 1; 659 if (orig_end > INT_LIMIT(loff_t)) 660 orig_end = INT_LIMIT(loff_t); 661 } 662 663 /* start IO across the range first to instantiate any delalloc 664 * extents 665 */ 666 ret = btrfs_fdatawrite_range(inode, start, orig_end); 667 if (ret) 668 return ret; 669 670 /* 671 * If we have a writeback error don't return immediately. Wait first 672 * for any ordered extents that haven't completed yet. This is to make 673 * sure no one can dirty the same page ranges and call writepages() 674 * before the ordered extents complete - to avoid failures (-EEXIST) 675 * when adding the new ordered extents to the ordered tree. 676 */ 677 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 678 679 end = orig_end; 680 while (1) { 681 ordered = btrfs_lookup_first_ordered_extent(inode, end); 682 if (!ordered) 683 break; 684 if (ordered->file_offset > orig_end) { 685 btrfs_put_ordered_extent(ordered); 686 break; 687 } 688 if (ordered->file_offset + ordered->len <= start) { 689 btrfs_put_ordered_extent(ordered); 690 break; 691 } 692 btrfs_start_ordered_extent(inode, ordered, 1); 693 end = ordered->file_offset; 694 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 695 ret = -EIO; 696 btrfs_put_ordered_extent(ordered); 697 if (ret || end == 0 || end == start) 698 break; 699 end--; 700 } 701 return ret_wb ? ret_wb : ret; 702 } 703 704 /* 705 * find an ordered extent corresponding to file_offset. return NULL if 706 * nothing is found, otherwise take a reference on the extent and return it 707 */ 708 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 709 u64 file_offset) 710 { 711 struct btrfs_ordered_inode_tree *tree; 712 struct rb_node *node; 713 struct btrfs_ordered_extent *entry = NULL; 714 715 tree = &BTRFS_I(inode)->ordered_tree; 716 spin_lock_irq(&tree->lock); 717 node = tree_search(tree, file_offset); 718 if (!node) 719 goto out; 720 721 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 722 if (!offset_in_entry(entry, file_offset)) 723 entry = NULL; 724 if (entry) 725 refcount_inc(&entry->refs); 726 out: 727 spin_unlock_irq(&tree->lock); 728 return entry; 729 } 730 731 /* Since the DIO code tries to lock a wide area we need to look for any ordered 732 * extents that exist in the range, rather than just the start of the range. 733 */ 734 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 735 struct btrfs_inode *inode, u64 file_offset, u64 len) 736 { 737 struct btrfs_ordered_inode_tree *tree; 738 struct rb_node *node; 739 struct btrfs_ordered_extent *entry = NULL; 740 741 tree = &inode->ordered_tree; 742 spin_lock_irq(&tree->lock); 743 node = tree_search(tree, file_offset); 744 if (!node) { 745 node = tree_search(tree, file_offset + len); 746 if (!node) 747 goto out; 748 } 749 750 while (1) { 751 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 752 if (range_overlaps(entry, file_offset, len)) 753 break; 754 755 if (entry->file_offset >= file_offset + len) { 756 entry = NULL; 757 break; 758 } 759 entry = NULL; 760 node = rb_next(node); 761 if (!node) 762 break; 763 } 764 out: 765 if (entry) 766 refcount_inc(&entry->refs); 767 spin_unlock_irq(&tree->lock); 768 return entry; 769 } 770 771 /* 772 * lookup and return any extent before 'file_offset'. NULL is returned 773 * if none is found 774 */ 775 struct btrfs_ordered_extent * 776 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 777 { 778 struct btrfs_ordered_inode_tree *tree; 779 struct rb_node *node; 780 struct btrfs_ordered_extent *entry = NULL; 781 782 tree = &BTRFS_I(inode)->ordered_tree; 783 spin_lock_irq(&tree->lock); 784 node = tree_search(tree, file_offset); 785 if (!node) 786 goto out; 787 788 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 789 refcount_inc(&entry->refs); 790 out: 791 spin_unlock_irq(&tree->lock); 792 return entry; 793 } 794 795 /* 796 * After an extent is done, call this to conditionally update the on disk 797 * i_size. i_size is updated to cover any fully written part of the file. 798 */ 799 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 800 struct btrfs_ordered_extent *ordered) 801 { 802 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 803 u64 disk_i_size; 804 u64 new_i_size; 805 u64 i_size = i_size_read(inode); 806 struct rb_node *node; 807 struct rb_node *prev = NULL; 808 struct btrfs_ordered_extent *test; 809 int ret = 1; 810 u64 orig_offset = offset; 811 812 spin_lock_irq(&tree->lock); 813 if (ordered) { 814 offset = entry_end(ordered); 815 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 816 offset = min(offset, 817 ordered->file_offset + 818 ordered->truncated_len); 819 } else { 820 offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); 821 } 822 disk_i_size = BTRFS_I(inode)->disk_i_size; 823 824 /* 825 * truncate file. 826 * If ordered is not NULL, then this is called from endio and 827 * disk_i_size will be updated by either truncate itself or any 828 * in-flight IOs which are inside the disk_i_size. 829 * 830 * Because btrfs_setsize() may set i_size with disk_i_size if truncate 831 * fails somehow, we need to make sure we have a precise disk_i_size by 832 * updating it as usual. 833 * 834 */ 835 if (!ordered && disk_i_size > i_size) { 836 BTRFS_I(inode)->disk_i_size = orig_offset; 837 ret = 0; 838 goto out; 839 } 840 841 /* 842 * if the disk i_size is already at the inode->i_size, or 843 * this ordered extent is inside the disk i_size, we're done 844 */ 845 if (disk_i_size == i_size) 846 goto out; 847 848 /* 849 * We still need to update disk_i_size if outstanding_isize is greater 850 * than disk_i_size. 851 */ 852 if (offset <= disk_i_size && 853 (!ordered || ordered->outstanding_isize <= disk_i_size)) 854 goto out; 855 856 /* 857 * walk backward from this ordered extent to disk_i_size. 858 * if we find an ordered extent then we can't update disk i_size 859 * yet 860 */ 861 if (ordered) { 862 node = rb_prev(&ordered->rb_node); 863 } else { 864 prev = tree_search(tree, offset); 865 /* 866 * we insert file extents without involving ordered struct, 867 * so there should be no ordered struct cover this offset 868 */ 869 if (prev) { 870 test = rb_entry(prev, struct btrfs_ordered_extent, 871 rb_node); 872 BUG_ON(offset_in_entry(test, offset)); 873 } 874 node = prev; 875 } 876 for (; node; node = rb_prev(node)) { 877 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 878 879 /* We treat this entry as if it doesn't exist */ 880 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 881 continue; 882 883 if (entry_end(test) <= disk_i_size) 884 break; 885 if (test->file_offset >= i_size) 886 break; 887 888 /* 889 * We don't update disk_i_size now, so record this undealt 890 * i_size. Or we will not know the real i_size. 891 */ 892 if (test->outstanding_isize < offset) 893 test->outstanding_isize = offset; 894 if (ordered && 895 ordered->outstanding_isize > test->outstanding_isize) 896 test->outstanding_isize = ordered->outstanding_isize; 897 goto out; 898 } 899 new_i_size = min_t(u64, offset, i_size); 900 901 /* 902 * Some ordered extents may completed before the current one, and 903 * we hold the real i_size in ->outstanding_isize. 904 */ 905 if (ordered && ordered->outstanding_isize > new_i_size) 906 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 907 BTRFS_I(inode)->disk_i_size = new_i_size; 908 ret = 0; 909 out: 910 /* 911 * We need to do this because we can't remove ordered extents until 912 * after the i_disk_size has been updated and then the inode has been 913 * updated to reflect the change, so we need to tell anybody who finds 914 * this ordered extent that we've already done all the real work, we 915 * just haven't completed all the other work. 916 */ 917 if (ordered) 918 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 919 spin_unlock_irq(&tree->lock); 920 return ret; 921 } 922 923 /* 924 * search the ordered extents for one corresponding to 'offset' and 925 * try to find a checksum. This is used because we allow pages to 926 * be reclaimed before their checksum is actually put into the btree 927 */ 928 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 929 u8 *sum, int len) 930 { 931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 932 struct btrfs_ordered_sum *ordered_sum; 933 struct btrfs_ordered_extent *ordered; 934 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 935 unsigned long num_sectors; 936 unsigned long i; 937 u32 sectorsize = btrfs_inode_sectorsize(inode); 938 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 939 int index = 0; 940 941 ordered = btrfs_lookup_ordered_extent(inode, offset); 942 if (!ordered) 943 return 0; 944 945 spin_lock_irq(&tree->lock); 946 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 947 if (disk_bytenr >= ordered_sum->bytenr && 948 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 949 i = (disk_bytenr - ordered_sum->bytenr) >> 950 inode->i_sb->s_blocksize_bits; 951 num_sectors = ordered_sum->len >> 952 inode->i_sb->s_blocksize_bits; 953 num_sectors = min_t(int, len - index, num_sectors - i); 954 memcpy(sum + index, ordered_sum->sums + i * csum_size, 955 num_sectors * csum_size); 956 957 index += (int)num_sectors * csum_size; 958 if (index == len) 959 goto out; 960 disk_bytenr += num_sectors * sectorsize; 961 } 962 } 963 out: 964 spin_unlock_irq(&tree->lock); 965 btrfs_put_ordered_extent(ordered); 966 return index; 967 } 968 969 /* 970 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 971 * ordered extents in it are run to completion. 972 * 973 * @tree: IO tree used for locking out other users of the range 974 * @inode: Inode whose ordered tree is to be searched 975 * @start: Beginning of range to flush 976 * @end: Last byte of range to lock 977 * @cached_state: If passed, will return the extent state responsible for the 978 * locked range. It's the caller's responsibility to free the cached state. 979 * 980 * This function always returns with the given range locked, ensuring after it's 981 * called no order extent can be pending. 982 */ 983 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree, 984 struct btrfs_inode *inode, u64 start, 985 u64 end, 986 struct extent_state **cached_state) 987 { 988 struct btrfs_ordered_extent *ordered; 989 struct extent_state *cache = NULL; 990 struct extent_state **cachedp = &cache; 991 992 if (cached_state) 993 cachedp = cached_state; 994 995 while (1) { 996 lock_extent_bits(tree, start, end, cachedp); 997 ordered = btrfs_lookup_ordered_range(inode, start, 998 end - start + 1); 999 if (!ordered) { 1000 /* 1001 * If no external cached_state has been passed then 1002 * decrement the extra ref taken for cachedp since we 1003 * aren't exposing it outside of this function 1004 */ 1005 if (!cached_state) 1006 refcount_dec(&cache->refs); 1007 break; 1008 } 1009 unlock_extent_cached(tree, start, end, cachedp); 1010 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1011 btrfs_put_ordered_extent(ordered); 1012 } 1013 } 1014 1015 int __init ordered_data_init(void) 1016 { 1017 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1018 sizeof(struct btrfs_ordered_extent), 0, 1019 SLAB_MEM_SPREAD, 1020 NULL); 1021 if (!btrfs_ordered_extent_cache) 1022 return -ENOMEM; 1023 1024 return 0; 1025 } 1026 1027 void __cold ordered_data_exit(void) 1028 { 1029 kmem_cache_destroy(btrfs_ordered_extent_cache); 1030 } 1031