1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/gfp.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/writeback.h> 23 #include <linux/pagevec.h> 24 #include "ctree.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "extent_io.h" 28 29 static u64 entry_end(struct btrfs_ordered_extent *entry) 30 { 31 if (entry->file_offset + entry->len < entry->file_offset) 32 return (u64)-1; 33 return entry->file_offset + entry->len; 34 } 35 36 /* returns NULL if the insertion worked, or it returns the node it did find 37 * in the tree 38 */ 39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 40 struct rb_node *node) 41 { 42 struct rb_node **p = &root->rb_node; 43 struct rb_node *parent = NULL; 44 struct btrfs_ordered_extent *entry; 45 46 while (*p) { 47 parent = *p; 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 49 50 if (file_offset < entry->file_offset) 51 p = &(*p)->rb_left; 52 else if (file_offset >= entry_end(entry)) 53 p = &(*p)->rb_right; 54 else 55 return parent; 56 } 57 58 rb_link_node(node, parent, p); 59 rb_insert_color(node, root); 60 return NULL; 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 /* 129 * look find the first ordered struct that has this offset, otherwise 130 * the first one less than this offset 131 */ 132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 133 u64 file_offset) 134 { 135 struct rb_root *root = &tree->tree; 136 struct rb_node *prev; 137 struct rb_node *ret; 138 struct btrfs_ordered_extent *entry; 139 140 if (tree->last) { 141 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 142 rb_node); 143 if (offset_in_entry(entry, file_offset)) 144 return tree->last; 145 } 146 ret = __tree_search(root, file_offset, &prev); 147 if (!ret) 148 ret = prev; 149 if (ret) 150 tree->last = ret; 151 return ret; 152 } 153 154 /* allocate and add a new ordered_extent into the per-inode tree. 155 * file_offset is the logical offset in the file 156 * 157 * start is the disk block number of an extent already reserved in the 158 * extent allocation tree 159 * 160 * len is the length of the extent 161 * 162 * The tree is given a single reference on the ordered extent that was 163 * inserted. 164 */ 165 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 166 u64 start, u64 len, u64 disk_len, int type) 167 { 168 struct btrfs_ordered_inode_tree *tree; 169 struct rb_node *node; 170 struct btrfs_ordered_extent *entry; 171 172 tree = &BTRFS_I(inode)->ordered_tree; 173 entry = kzalloc(sizeof(*entry), GFP_NOFS); 174 if (!entry) 175 return -ENOMEM; 176 177 mutex_lock(&tree->mutex); 178 entry->file_offset = file_offset; 179 entry->start = start; 180 entry->len = len; 181 entry->disk_len = disk_len; 182 entry->bytes_left = len; 183 entry->inode = inode; 184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 185 set_bit(type, &entry->flags); 186 187 /* one ref for the tree */ 188 atomic_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->root_extent_list); 192 193 node = tree_insert(&tree->tree, file_offset, 194 &entry->rb_node); 195 BUG_ON(node); 196 197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 198 list_add_tail(&entry->root_extent_list, 199 &BTRFS_I(inode)->root->fs_info->ordered_extents); 200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 201 202 mutex_unlock(&tree->mutex); 203 BUG_ON(node); 204 return 0; 205 } 206 207 /* 208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 209 * when an ordered extent is finished. If the list covers more than one 210 * ordered extent, it is split across multiples. 211 */ 212 int btrfs_add_ordered_sum(struct inode *inode, 213 struct btrfs_ordered_extent *entry, 214 struct btrfs_ordered_sum *sum) 215 { 216 struct btrfs_ordered_inode_tree *tree; 217 218 tree = &BTRFS_I(inode)->ordered_tree; 219 mutex_lock(&tree->mutex); 220 list_add_tail(&sum->list, &entry->list); 221 mutex_unlock(&tree->mutex); 222 return 0; 223 } 224 225 /* 226 * this is used to account for finished IO across a given range 227 * of the file. The IO should not span ordered extents. If 228 * a given ordered_extent is completely done, 1 is returned, otherwise 229 * 0. 230 * 231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 232 * to make sure this function only returns 1 once for a given ordered extent. 233 */ 234 int btrfs_dec_test_ordered_pending(struct inode *inode, 235 u64 file_offset, u64 io_size) 236 { 237 struct btrfs_ordered_inode_tree *tree; 238 struct rb_node *node; 239 struct btrfs_ordered_extent *entry; 240 int ret; 241 242 tree = &BTRFS_I(inode)->ordered_tree; 243 mutex_lock(&tree->mutex); 244 node = tree_search(tree, file_offset); 245 if (!node) { 246 ret = 1; 247 goto out; 248 } 249 250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 251 if (!offset_in_entry(entry, file_offset)) { 252 ret = 1; 253 goto out; 254 } 255 256 if (io_size > entry->bytes_left) { 257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 258 (unsigned long long)entry->bytes_left, 259 (unsigned long long)io_size); 260 } 261 entry->bytes_left -= io_size; 262 if (entry->bytes_left == 0) 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 264 else 265 ret = 1; 266 out: 267 mutex_unlock(&tree->mutex); 268 return ret == 0; 269 } 270 271 /* 272 * used to drop a reference on an ordered extent. This will free 273 * the extent if the last reference is dropped 274 */ 275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 276 { 277 struct list_head *cur; 278 struct btrfs_ordered_sum *sum; 279 280 if (atomic_dec_and_test(&entry->refs)) { 281 while (!list_empty(&entry->list)) { 282 cur = entry->list.next; 283 sum = list_entry(cur, struct btrfs_ordered_sum, list); 284 list_del(&sum->list); 285 kfree(sum); 286 } 287 kfree(entry); 288 } 289 return 0; 290 } 291 292 /* 293 * remove an ordered extent from the tree. No references are dropped 294 * and you must wake_up entry->wait. You must hold the tree mutex 295 * while you call this function. 296 */ 297 static int __btrfs_remove_ordered_extent(struct inode *inode, 298 struct btrfs_ordered_extent *entry) 299 { 300 struct btrfs_ordered_inode_tree *tree; 301 struct rb_node *node; 302 303 tree = &BTRFS_I(inode)->ordered_tree; 304 node = &entry->rb_node; 305 rb_erase(node, &tree->tree); 306 tree->last = NULL; 307 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 308 309 spin_lock(&BTRFS_I(inode)->accounting_lock); 310 BTRFS_I(inode)->outstanding_extents--; 311 spin_unlock(&BTRFS_I(inode)->accounting_lock); 312 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root, 313 inode, 1); 314 315 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 316 list_del_init(&entry->root_extent_list); 317 318 /* 319 * we have no more ordered extents for this inode and 320 * no dirty pages. We can safely remove it from the 321 * list of ordered extents 322 */ 323 if (RB_EMPTY_ROOT(&tree->tree) && 324 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 325 list_del_init(&BTRFS_I(inode)->ordered_operations); 326 } 327 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 328 329 return 0; 330 } 331 332 /* 333 * remove an ordered extent from the tree. No references are dropped 334 * but any waiters are woken. 335 */ 336 int btrfs_remove_ordered_extent(struct inode *inode, 337 struct btrfs_ordered_extent *entry) 338 { 339 struct btrfs_ordered_inode_tree *tree; 340 int ret; 341 342 tree = &BTRFS_I(inode)->ordered_tree; 343 mutex_lock(&tree->mutex); 344 ret = __btrfs_remove_ordered_extent(inode, entry); 345 mutex_unlock(&tree->mutex); 346 wake_up(&entry->wait); 347 348 return ret; 349 } 350 351 /* 352 * wait for all the ordered extents in a root. This is done when balancing 353 * space between drives. 354 */ 355 int btrfs_wait_ordered_extents(struct btrfs_root *root, 356 int nocow_only, int delay_iput) 357 { 358 struct list_head splice; 359 struct list_head *cur; 360 struct btrfs_ordered_extent *ordered; 361 struct inode *inode; 362 363 INIT_LIST_HEAD(&splice); 364 365 spin_lock(&root->fs_info->ordered_extent_lock); 366 list_splice_init(&root->fs_info->ordered_extents, &splice); 367 while (!list_empty(&splice)) { 368 cur = splice.next; 369 ordered = list_entry(cur, struct btrfs_ordered_extent, 370 root_extent_list); 371 if (nocow_only && 372 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 373 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 374 list_move(&ordered->root_extent_list, 375 &root->fs_info->ordered_extents); 376 cond_resched_lock(&root->fs_info->ordered_extent_lock); 377 continue; 378 } 379 380 list_del_init(&ordered->root_extent_list); 381 atomic_inc(&ordered->refs); 382 383 /* 384 * the inode may be getting freed (in sys_unlink path). 385 */ 386 inode = igrab(ordered->inode); 387 388 spin_unlock(&root->fs_info->ordered_extent_lock); 389 390 if (inode) { 391 btrfs_start_ordered_extent(inode, ordered, 1); 392 btrfs_put_ordered_extent(ordered); 393 if (delay_iput) 394 btrfs_add_delayed_iput(inode); 395 else 396 iput(inode); 397 } else { 398 btrfs_put_ordered_extent(ordered); 399 } 400 401 spin_lock(&root->fs_info->ordered_extent_lock); 402 } 403 spin_unlock(&root->fs_info->ordered_extent_lock); 404 return 0; 405 } 406 407 /* 408 * this is used during transaction commit to write all the inodes 409 * added to the ordered operation list. These files must be fully on 410 * disk before the transaction commits. 411 * 412 * we have two modes here, one is to just start the IO via filemap_flush 413 * and the other is to wait for all the io. When we wait, we have an 414 * extra check to make sure the ordered operation list really is empty 415 * before we return 416 */ 417 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 418 { 419 struct btrfs_inode *btrfs_inode; 420 struct inode *inode; 421 struct list_head splice; 422 423 INIT_LIST_HEAD(&splice); 424 425 mutex_lock(&root->fs_info->ordered_operations_mutex); 426 spin_lock(&root->fs_info->ordered_extent_lock); 427 again: 428 list_splice_init(&root->fs_info->ordered_operations, &splice); 429 430 while (!list_empty(&splice)) { 431 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 432 ordered_operations); 433 434 inode = &btrfs_inode->vfs_inode; 435 436 list_del_init(&btrfs_inode->ordered_operations); 437 438 /* 439 * the inode may be getting freed (in sys_unlink path). 440 */ 441 inode = igrab(inode); 442 443 if (!wait && inode) { 444 list_add_tail(&BTRFS_I(inode)->ordered_operations, 445 &root->fs_info->ordered_operations); 446 } 447 spin_unlock(&root->fs_info->ordered_extent_lock); 448 449 if (inode) { 450 if (wait) 451 btrfs_wait_ordered_range(inode, 0, (u64)-1); 452 else 453 filemap_flush(inode->i_mapping); 454 btrfs_add_delayed_iput(inode); 455 } 456 457 cond_resched(); 458 spin_lock(&root->fs_info->ordered_extent_lock); 459 } 460 if (wait && !list_empty(&root->fs_info->ordered_operations)) 461 goto again; 462 463 spin_unlock(&root->fs_info->ordered_extent_lock); 464 mutex_unlock(&root->fs_info->ordered_operations_mutex); 465 466 return 0; 467 } 468 469 /* 470 * Used to start IO or wait for a given ordered extent to finish. 471 * 472 * If wait is one, this effectively waits on page writeback for all the pages 473 * in the extent, and it waits on the io completion code to insert 474 * metadata into the btree corresponding to the extent 475 */ 476 void btrfs_start_ordered_extent(struct inode *inode, 477 struct btrfs_ordered_extent *entry, 478 int wait) 479 { 480 u64 start = entry->file_offset; 481 u64 end = start + entry->len - 1; 482 483 /* 484 * pages in the range can be dirty, clean or writeback. We 485 * start IO on any dirty ones so the wait doesn't stall waiting 486 * for pdflush to find them 487 */ 488 filemap_fdatawrite_range(inode->i_mapping, start, end); 489 if (wait) { 490 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 491 &entry->flags)); 492 } 493 } 494 495 /* 496 * Used to wait on ordered extents across a large range of bytes. 497 */ 498 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 499 { 500 u64 end; 501 u64 orig_end; 502 u64 wait_end; 503 struct btrfs_ordered_extent *ordered; 504 int found; 505 506 if (start + len < start) { 507 orig_end = INT_LIMIT(loff_t); 508 } else { 509 orig_end = start + len - 1; 510 if (orig_end > INT_LIMIT(loff_t)) 511 orig_end = INT_LIMIT(loff_t); 512 } 513 wait_end = orig_end; 514 again: 515 /* start IO across the range first to instantiate any delalloc 516 * extents 517 */ 518 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 519 520 /* The compression code will leave pages locked but return from 521 * writepage without setting the page writeback. Starting again 522 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 523 */ 524 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 525 526 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 527 528 end = orig_end; 529 found = 0; 530 while (1) { 531 ordered = btrfs_lookup_first_ordered_extent(inode, end); 532 if (!ordered) 533 break; 534 if (ordered->file_offset > orig_end) { 535 btrfs_put_ordered_extent(ordered); 536 break; 537 } 538 if (ordered->file_offset + ordered->len < start) { 539 btrfs_put_ordered_extent(ordered); 540 break; 541 } 542 found++; 543 btrfs_start_ordered_extent(inode, ordered, 1); 544 end = ordered->file_offset; 545 btrfs_put_ordered_extent(ordered); 546 if (end == 0 || end == start) 547 break; 548 end--; 549 } 550 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 551 EXTENT_DELALLOC, 0, NULL)) { 552 schedule_timeout(1); 553 goto again; 554 } 555 return 0; 556 } 557 558 /* 559 * find an ordered extent corresponding to file_offset. return NULL if 560 * nothing is found, otherwise take a reference on the extent and return it 561 */ 562 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 563 u64 file_offset) 564 { 565 struct btrfs_ordered_inode_tree *tree; 566 struct rb_node *node; 567 struct btrfs_ordered_extent *entry = NULL; 568 569 tree = &BTRFS_I(inode)->ordered_tree; 570 mutex_lock(&tree->mutex); 571 node = tree_search(tree, file_offset); 572 if (!node) 573 goto out; 574 575 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 576 if (!offset_in_entry(entry, file_offset)) 577 entry = NULL; 578 if (entry) 579 atomic_inc(&entry->refs); 580 out: 581 mutex_unlock(&tree->mutex); 582 return entry; 583 } 584 585 /* 586 * lookup and return any extent before 'file_offset'. NULL is returned 587 * if none is found 588 */ 589 struct btrfs_ordered_extent * 590 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 591 { 592 struct btrfs_ordered_inode_tree *tree; 593 struct rb_node *node; 594 struct btrfs_ordered_extent *entry = NULL; 595 596 tree = &BTRFS_I(inode)->ordered_tree; 597 mutex_lock(&tree->mutex); 598 node = tree_search(tree, file_offset); 599 if (!node) 600 goto out; 601 602 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 603 atomic_inc(&entry->refs); 604 out: 605 mutex_unlock(&tree->mutex); 606 return entry; 607 } 608 609 /* 610 * After an extent is done, call this to conditionally update the on disk 611 * i_size. i_size is updated to cover any fully written part of the file. 612 */ 613 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 614 struct btrfs_ordered_extent *ordered) 615 { 616 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 617 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 618 u64 disk_i_size; 619 u64 new_i_size; 620 u64 i_size_test; 621 u64 i_size = i_size_read(inode); 622 struct rb_node *node; 623 struct rb_node *prev = NULL; 624 struct btrfs_ordered_extent *test; 625 int ret = 1; 626 627 if (ordered) 628 offset = entry_end(ordered); 629 630 mutex_lock(&tree->mutex); 631 disk_i_size = BTRFS_I(inode)->disk_i_size; 632 633 /* truncate file */ 634 if (disk_i_size > i_size) { 635 BTRFS_I(inode)->disk_i_size = i_size; 636 ret = 0; 637 goto out; 638 } 639 640 /* 641 * if the disk i_size is already at the inode->i_size, or 642 * this ordered extent is inside the disk i_size, we're done 643 */ 644 if (disk_i_size == i_size || offset <= disk_i_size) { 645 goto out; 646 } 647 648 /* 649 * we can't update the disk_isize if there are delalloc bytes 650 * between disk_i_size and this ordered extent 651 */ 652 if (test_range_bit(io_tree, disk_i_size, offset - 1, 653 EXTENT_DELALLOC, 0, NULL)) { 654 goto out; 655 } 656 /* 657 * walk backward from this ordered extent to disk_i_size. 658 * if we find an ordered extent then we can't update disk i_size 659 * yet 660 */ 661 if (ordered) { 662 node = rb_prev(&ordered->rb_node); 663 } else { 664 prev = tree_search(tree, offset); 665 /* 666 * we insert file extents without involving ordered struct, 667 * so there should be no ordered struct cover this offset 668 */ 669 if (prev) { 670 test = rb_entry(prev, struct btrfs_ordered_extent, 671 rb_node); 672 BUG_ON(offset_in_entry(test, offset)); 673 } 674 node = prev; 675 } 676 while (node) { 677 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 678 if (test->file_offset + test->len <= disk_i_size) 679 break; 680 if (test->file_offset >= i_size) 681 break; 682 if (test->file_offset >= disk_i_size) 683 goto out; 684 node = rb_prev(node); 685 } 686 new_i_size = min_t(u64, offset, i_size); 687 688 /* 689 * at this point, we know we can safely update i_size to at least 690 * the offset from this ordered extent. But, we need to 691 * walk forward and see if ios from higher up in the file have 692 * finished. 693 */ 694 if (ordered) { 695 node = rb_next(&ordered->rb_node); 696 } else { 697 if (prev) 698 node = rb_next(prev); 699 else 700 node = rb_first(&tree->tree); 701 } 702 i_size_test = 0; 703 if (node) { 704 /* 705 * do we have an area where IO might have finished 706 * between our ordered extent and the next one. 707 */ 708 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 709 if (test->file_offset > offset) 710 i_size_test = test->file_offset; 711 } else { 712 i_size_test = i_size; 713 } 714 715 /* 716 * i_size_test is the end of a region after this ordered 717 * extent where there are no ordered extents. As long as there 718 * are no delalloc bytes in this area, it is safe to update 719 * disk_i_size to the end of the region. 720 */ 721 if (i_size_test > offset && 722 !test_range_bit(io_tree, offset, i_size_test - 1, 723 EXTENT_DELALLOC, 0, NULL)) { 724 new_i_size = min_t(u64, i_size_test, i_size); 725 } 726 BTRFS_I(inode)->disk_i_size = new_i_size; 727 ret = 0; 728 out: 729 /* 730 * we need to remove the ordered extent with the tree lock held 731 * so that other people calling this function don't find our fully 732 * processed ordered entry and skip updating the i_size 733 */ 734 if (ordered) 735 __btrfs_remove_ordered_extent(inode, ordered); 736 mutex_unlock(&tree->mutex); 737 if (ordered) 738 wake_up(&ordered->wait); 739 return ret; 740 } 741 742 /* 743 * search the ordered extents for one corresponding to 'offset' and 744 * try to find a checksum. This is used because we allow pages to 745 * be reclaimed before their checksum is actually put into the btree 746 */ 747 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 748 u32 *sum) 749 { 750 struct btrfs_ordered_sum *ordered_sum; 751 struct btrfs_sector_sum *sector_sums; 752 struct btrfs_ordered_extent *ordered; 753 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 754 unsigned long num_sectors; 755 unsigned long i; 756 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 757 int ret = 1; 758 759 ordered = btrfs_lookup_ordered_extent(inode, offset); 760 if (!ordered) 761 return 1; 762 763 mutex_lock(&tree->mutex); 764 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 765 if (disk_bytenr >= ordered_sum->bytenr) { 766 num_sectors = ordered_sum->len / sectorsize; 767 sector_sums = ordered_sum->sums; 768 for (i = 0; i < num_sectors; i++) { 769 if (sector_sums[i].bytenr == disk_bytenr) { 770 *sum = sector_sums[i].sum; 771 ret = 0; 772 goto out; 773 } 774 } 775 } 776 } 777 out: 778 mutex_unlock(&tree->mutex); 779 btrfs_put_ordered_extent(ordered); 780 return ret; 781 } 782 783 784 /* 785 * add a given inode to the list of inodes that must be fully on 786 * disk before a transaction commit finishes. 787 * 788 * This basically gives us the ext3 style data=ordered mode, and it is mostly 789 * used to make sure renamed files are fully on disk. 790 * 791 * It is a noop if the inode is already fully on disk. 792 * 793 * If trans is not null, we'll do a friendly check for a transaction that 794 * is already flushing things and force the IO down ourselves. 795 */ 796 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 797 struct btrfs_root *root, 798 struct inode *inode) 799 { 800 u64 last_mod; 801 802 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 803 804 /* 805 * if this file hasn't been changed since the last transaction 806 * commit, we can safely return without doing anything 807 */ 808 if (last_mod < root->fs_info->last_trans_committed) 809 return 0; 810 811 /* 812 * the transaction is already committing. Just start the IO and 813 * don't bother with all of this list nonsense 814 */ 815 if (trans && root->fs_info->running_transaction->blocked) { 816 btrfs_wait_ordered_range(inode, 0, (u64)-1); 817 return 0; 818 } 819 820 spin_lock(&root->fs_info->ordered_extent_lock); 821 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 822 list_add_tail(&BTRFS_I(inode)->ordered_operations, 823 &root->fs_info->ordered_operations); 824 } 825 spin_unlock(&root->fs_info->ordered_extent_lock); 826 827 return 0; 828 } 829