xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 77d84ff8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu\n", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 	    !(type == BTRFS_ORDERED_NOCOW))
203 		entry->csum_bytes_left = disk_len;
204 	entry->disk_len = disk_len;
205 	entry->bytes_left = len;
206 	entry->inode = igrab(inode);
207 	entry->compress_type = compress_type;
208 	entry->truncated_len = (u64)-1;
209 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 		set_bit(type, &entry->flags);
211 
212 	if (dio)
213 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214 
215 	/* one ref for the tree */
216 	atomic_set(&entry->refs, 1);
217 	init_waitqueue_head(&entry->wait);
218 	INIT_LIST_HEAD(&entry->list);
219 	INIT_LIST_HEAD(&entry->root_extent_list);
220 	INIT_LIST_HEAD(&entry->work_list);
221 	init_completion(&entry->completion);
222 	INIT_LIST_HEAD(&entry->log_list);
223 
224 	trace_btrfs_ordered_extent_add(inode, entry);
225 
226 	spin_lock_irq(&tree->lock);
227 	node = tree_insert(&tree->tree, file_offset,
228 			   &entry->rb_node);
229 	if (node)
230 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 	spin_unlock_irq(&tree->lock);
232 
233 	spin_lock(&root->ordered_extent_lock);
234 	list_add_tail(&entry->root_extent_list,
235 		      &root->ordered_extents);
236 	root->nr_ordered_extents++;
237 	if (root->nr_ordered_extents == 1) {
238 		spin_lock(&root->fs_info->ordered_root_lock);
239 		BUG_ON(!list_empty(&root->ordered_root));
240 		list_add_tail(&root->ordered_root,
241 			      &root->fs_info->ordered_roots);
242 		spin_unlock(&root->fs_info->ordered_root_lock);
243 	}
244 	spin_unlock(&root->ordered_extent_lock);
245 
246 	return 0;
247 }
248 
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 			     u64 start, u64 len, u64 disk_len, int type)
251 {
252 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 					  disk_len, type, 0,
254 					  BTRFS_COMPRESS_NONE);
255 }
256 
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 				 u64 start, u64 len, u64 disk_len, int type)
259 {
260 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 					  disk_len, type, 1,
262 					  BTRFS_COMPRESS_NONE);
263 }
264 
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 				      u64 start, u64 len, u64 disk_len,
267 				      int type, int compress_type)
268 {
269 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 					  disk_len, type, 0,
271 					  compress_type);
272 }
273 
274 /*
275  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276  * when an ordered extent is finished.  If the list covers more than one
277  * ordered extent, it is split across multiples.
278  */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 			   struct btrfs_ordered_extent *entry,
281 			   struct btrfs_ordered_sum *sum)
282 {
283 	struct btrfs_ordered_inode_tree *tree;
284 
285 	tree = &BTRFS_I(inode)->ordered_tree;
286 	spin_lock_irq(&tree->lock);
287 	list_add_tail(&sum->list, &entry->list);
288 	WARN_ON(entry->csum_bytes_left < sum->len);
289 	entry->csum_bytes_left -= sum->len;
290 	if (entry->csum_bytes_left == 0)
291 		wake_up(&entry->wait);
292 	spin_unlock_irq(&tree->lock);
293 }
294 
295 /*
296  * this is used to account for finished IO across a given range
297  * of the file.  The IO may span ordered extents.  If
298  * a given ordered_extent is completely done, 1 is returned, otherwise
299  * 0.
300  *
301  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302  * to make sure this function only returns 1 once for a given ordered extent.
303  *
304  * file_offset is updated to one byte past the range that is recorded as
305  * complete.  This allows you to walk forward in the file.
306  */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 				   struct btrfs_ordered_extent **cached,
309 				   u64 *file_offset, u64 io_size, int uptodate)
310 {
311 	struct btrfs_ordered_inode_tree *tree;
312 	struct rb_node *node;
313 	struct btrfs_ordered_extent *entry = NULL;
314 	int ret;
315 	unsigned long flags;
316 	u64 dec_end;
317 	u64 dec_start;
318 	u64 to_dec;
319 
320 	tree = &BTRFS_I(inode)->ordered_tree;
321 	spin_lock_irqsave(&tree->lock, flags);
322 	node = tree_search(tree, *file_offset);
323 	if (!node) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 	if (!offset_in_entry(entry, *file_offset)) {
330 		ret = 1;
331 		goto out;
332 	}
333 
334 	dec_start = max(*file_offset, entry->file_offset);
335 	dec_end = min(*file_offset + io_size, entry->file_offset +
336 		      entry->len);
337 	*file_offset = dec_end;
338 	if (dec_start > dec_end) {
339 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
340 		       dec_start, dec_end);
341 	}
342 	to_dec = dec_end - dec_start;
343 	if (to_dec > entry->bytes_left) {
344 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
345 		       entry->bytes_left, to_dec);
346 	}
347 	entry->bytes_left -= to_dec;
348 	if (!uptodate)
349 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
350 
351 	if (entry->bytes_left == 0)
352 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
353 	else
354 		ret = 1;
355 out:
356 	if (!ret && cached && entry) {
357 		*cached = entry;
358 		atomic_inc(&entry->refs);
359 	}
360 	spin_unlock_irqrestore(&tree->lock, flags);
361 	return ret == 0;
362 }
363 
364 /*
365  * this is used to account for finished IO across a given range
366  * of the file.  The IO should not span ordered extents.  If
367  * a given ordered_extent is completely done, 1 is returned, otherwise
368  * 0.
369  *
370  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371  * to make sure this function only returns 1 once for a given ordered extent.
372  */
373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 				   struct btrfs_ordered_extent **cached,
375 				   u64 file_offset, u64 io_size, int uptodate)
376 {
377 	struct btrfs_ordered_inode_tree *tree;
378 	struct rb_node *node;
379 	struct btrfs_ordered_extent *entry = NULL;
380 	unsigned long flags;
381 	int ret;
382 
383 	tree = &BTRFS_I(inode)->ordered_tree;
384 	spin_lock_irqsave(&tree->lock, flags);
385 	if (cached && *cached) {
386 		entry = *cached;
387 		goto have_entry;
388 	}
389 
390 	node = tree_search(tree, file_offset);
391 	if (!node) {
392 		ret = 1;
393 		goto out;
394 	}
395 
396 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 	if (!offset_in_entry(entry, file_offset)) {
399 		ret = 1;
400 		goto out;
401 	}
402 
403 	if (io_size > entry->bytes_left) {
404 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
405 		       entry->bytes_left, io_size);
406 	}
407 	entry->bytes_left -= io_size;
408 	if (!uptodate)
409 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410 
411 	if (entry->bytes_left == 0)
412 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 	else
414 		ret = 1;
415 out:
416 	if (!ret && cached && entry) {
417 		*cached = entry;
418 		atomic_inc(&entry->refs);
419 	}
420 	spin_unlock_irqrestore(&tree->lock, flags);
421 	return ret == 0;
422 }
423 
424 /* Needs to either be called under a log transaction or the log_mutex */
425 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
426 {
427 	struct btrfs_ordered_inode_tree *tree;
428 	struct btrfs_ordered_extent *ordered;
429 	struct rb_node *n;
430 	int index = log->log_transid % 2;
431 
432 	tree = &BTRFS_I(inode)->ordered_tree;
433 	spin_lock_irq(&tree->lock);
434 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
435 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
436 		spin_lock(&log->log_extents_lock[index]);
437 		if (list_empty(&ordered->log_list)) {
438 			list_add_tail(&ordered->log_list, &log->logged_list[index]);
439 			atomic_inc(&ordered->refs);
440 		}
441 		spin_unlock(&log->log_extents_lock[index]);
442 	}
443 	spin_unlock_irq(&tree->lock);
444 }
445 
446 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
447 {
448 	struct btrfs_ordered_extent *ordered;
449 	int index = transid % 2;
450 
451 	spin_lock_irq(&log->log_extents_lock[index]);
452 	while (!list_empty(&log->logged_list[index])) {
453 		ordered = list_first_entry(&log->logged_list[index],
454 					   struct btrfs_ordered_extent,
455 					   log_list);
456 		list_del_init(&ordered->log_list);
457 		spin_unlock_irq(&log->log_extents_lock[index]);
458 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
459 						   &ordered->flags));
460 		btrfs_put_ordered_extent(ordered);
461 		spin_lock_irq(&log->log_extents_lock[index]);
462 	}
463 	spin_unlock_irq(&log->log_extents_lock[index]);
464 }
465 
466 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
467 {
468 	struct btrfs_ordered_extent *ordered;
469 	int index = transid % 2;
470 
471 	spin_lock_irq(&log->log_extents_lock[index]);
472 	while (!list_empty(&log->logged_list[index])) {
473 		ordered = list_first_entry(&log->logged_list[index],
474 					   struct btrfs_ordered_extent,
475 					   log_list);
476 		list_del_init(&ordered->log_list);
477 		spin_unlock_irq(&log->log_extents_lock[index]);
478 		btrfs_put_ordered_extent(ordered);
479 		spin_lock_irq(&log->log_extents_lock[index]);
480 	}
481 	spin_unlock_irq(&log->log_extents_lock[index]);
482 }
483 
484 /*
485  * used to drop a reference on an ordered extent.  This will free
486  * the extent if the last reference is dropped
487  */
488 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
489 {
490 	struct list_head *cur;
491 	struct btrfs_ordered_sum *sum;
492 
493 	trace_btrfs_ordered_extent_put(entry->inode, entry);
494 
495 	if (atomic_dec_and_test(&entry->refs)) {
496 		if (entry->inode)
497 			btrfs_add_delayed_iput(entry->inode);
498 		while (!list_empty(&entry->list)) {
499 			cur = entry->list.next;
500 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
501 			list_del(&sum->list);
502 			kfree(sum);
503 		}
504 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
505 	}
506 }
507 
508 /*
509  * remove an ordered extent from the tree.  No references are dropped
510  * and waiters are woken up.
511  */
512 void btrfs_remove_ordered_extent(struct inode *inode,
513 				 struct btrfs_ordered_extent *entry)
514 {
515 	struct btrfs_ordered_inode_tree *tree;
516 	struct btrfs_root *root = BTRFS_I(inode)->root;
517 	struct rb_node *node;
518 
519 	tree = &BTRFS_I(inode)->ordered_tree;
520 	spin_lock_irq(&tree->lock);
521 	node = &entry->rb_node;
522 	rb_erase(node, &tree->tree);
523 	tree->last = NULL;
524 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
525 	spin_unlock_irq(&tree->lock);
526 
527 	spin_lock(&root->ordered_extent_lock);
528 	list_del_init(&entry->root_extent_list);
529 	root->nr_ordered_extents--;
530 
531 	trace_btrfs_ordered_extent_remove(inode, entry);
532 
533 	/*
534 	 * we have no more ordered extents for this inode and
535 	 * no dirty pages.  We can safely remove it from the
536 	 * list of ordered extents
537 	 */
538 	if (RB_EMPTY_ROOT(&tree->tree) &&
539 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
540 		spin_lock(&root->fs_info->ordered_root_lock);
541 		list_del_init(&BTRFS_I(inode)->ordered_operations);
542 		spin_unlock(&root->fs_info->ordered_root_lock);
543 	}
544 
545 	if (!root->nr_ordered_extents) {
546 		spin_lock(&root->fs_info->ordered_root_lock);
547 		BUG_ON(list_empty(&root->ordered_root));
548 		list_del_init(&root->ordered_root);
549 		spin_unlock(&root->fs_info->ordered_root_lock);
550 	}
551 	spin_unlock(&root->ordered_extent_lock);
552 	wake_up(&entry->wait);
553 }
554 
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557 	struct btrfs_ordered_extent *ordered;
558 
559 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
561 	complete(&ordered->completion);
562 }
563 
564 /*
565  * wait for all the ordered extents in a root.  This is done when balancing
566  * space between drives.
567  */
568 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
569 {
570 	struct list_head splice, works;
571 	struct btrfs_ordered_extent *ordered, *next;
572 	int count = 0;
573 
574 	INIT_LIST_HEAD(&splice);
575 	INIT_LIST_HEAD(&works);
576 
577 	mutex_lock(&root->fs_info->ordered_operations_mutex);
578 	spin_lock(&root->ordered_extent_lock);
579 	list_splice_init(&root->ordered_extents, &splice);
580 	while (!list_empty(&splice) && nr) {
581 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
582 					   root_extent_list);
583 		list_move_tail(&ordered->root_extent_list,
584 			       &root->ordered_extents);
585 		atomic_inc(&ordered->refs);
586 		spin_unlock(&root->ordered_extent_lock);
587 
588 		ordered->flush_work.func = btrfs_run_ordered_extent_work;
589 		list_add_tail(&ordered->work_list, &works);
590 		btrfs_queue_worker(&root->fs_info->flush_workers,
591 				   &ordered->flush_work);
592 
593 		cond_resched();
594 		spin_lock(&root->ordered_extent_lock);
595 		if (nr != -1)
596 			nr--;
597 		count++;
598 	}
599 	list_splice_tail(&splice, &root->ordered_extents);
600 	spin_unlock(&root->ordered_extent_lock);
601 
602 	list_for_each_entry_safe(ordered, next, &works, work_list) {
603 		list_del_init(&ordered->work_list);
604 		wait_for_completion(&ordered->completion);
605 		btrfs_put_ordered_extent(ordered);
606 		cond_resched();
607 	}
608 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
609 
610 	return count;
611 }
612 
613 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
614 {
615 	struct btrfs_root *root;
616 	struct list_head splice;
617 	int done;
618 
619 	INIT_LIST_HEAD(&splice);
620 
621 	spin_lock(&fs_info->ordered_root_lock);
622 	list_splice_init(&fs_info->ordered_roots, &splice);
623 	while (!list_empty(&splice) && nr) {
624 		root = list_first_entry(&splice, struct btrfs_root,
625 					ordered_root);
626 		root = btrfs_grab_fs_root(root);
627 		BUG_ON(!root);
628 		list_move_tail(&root->ordered_root,
629 			       &fs_info->ordered_roots);
630 		spin_unlock(&fs_info->ordered_root_lock);
631 
632 		done = btrfs_wait_ordered_extents(root, nr);
633 		btrfs_put_fs_root(root);
634 
635 		spin_lock(&fs_info->ordered_root_lock);
636 		if (nr != -1) {
637 			nr -= done;
638 			WARN_ON(nr < 0);
639 		}
640 	}
641 	list_splice_tail(&splice, &fs_info->ordered_roots);
642 	spin_unlock(&fs_info->ordered_root_lock);
643 }
644 
645 /*
646  * this is used during transaction commit to write all the inodes
647  * added to the ordered operation list.  These files must be fully on
648  * disk before the transaction commits.
649  *
650  * we have two modes here, one is to just start the IO via filemap_flush
651  * and the other is to wait for all the io.  When we wait, we have an
652  * extra check to make sure the ordered operation list really is empty
653  * before we return
654  */
655 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
656 				 struct btrfs_root *root, int wait)
657 {
658 	struct btrfs_inode *btrfs_inode;
659 	struct inode *inode;
660 	struct btrfs_transaction *cur_trans = trans->transaction;
661 	struct list_head splice;
662 	struct list_head works;
663 	struct btrfs_delalloc_work *work, *next;
664 	int ret = 0;
665 
666 	INIT_LIST_HEAD(&splice);
667 	INIT_LIST_HEAD(&works);
668 
669 	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
670 	spin_lock(&root->fs_info->ordered_root_lock);
671 	list_splice_init(&cur_trans->ordered_operations, &splice);
672 	while (!list_empty(&splice)) {
673 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
674 				   ordered_operations);
675 		inode = &btrfs_inode->vfs_inode;
676 
677 		list_del_init(&btrfs_inode->ordered_operations);
678 
679 		/*
680 		 * the inode may be getting freed (in sys_unlink path).
681 		 */
682 		inode = igrab(inode);
683 		if (!inode)
684 			continue;
685 
686 		if (!wait)
687 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
688 				      &cur_trans->ordered_operations);
689 		spin_unlock(&root->fs_info->ordered_root_lock);
690 
691 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
692 		if (!work) {
693 			spin_lock(&root->fs_info->ordered_root_lock);
694 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
695 				list_add_tail(&btrfs_inode->ordered_operations,
696 					      &splice);
697 			list_splice_tail(&splice,
698 					 &cur_trans->ordered_operations);
699 			spin_unlock(&root->fs_info->ordered_root_lock);
700 			ret = -ENOMEM;
701 			goto out;
702 		}
703 		list_add_tail(&work->list, &works);
704 		btrfs_queue_worker(&root->fs_info->flush_workers,
705 				   &work->work);
706 
707 		cond_resched();
708 		spin_lock(&root->fs_info->ordered_root_lock);
709 	}
710 	spin_unlock(&root->fs_info->ordered_root_lock);
711 out:
712 	list_for_each_entry_safe(work, next, &works, list) {
713 		list_del_init(&work->list);
714 		btrfs_wait_and_free_delalloc_work(work);
715 	}
716 	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
717 	return ret;
718 }
719 
720 /*
721  * Used to start IO or wait for a given ordered extent to finish.
722  *
723  * If wait is one, this effectively waits on page writeback for all the pages
724  * in the extent, and it waits on the io completion code to insert
725  * metadata into the btree corresponding to the extent
726  */
727 void btrfs_start_ordered_extent(struct inode *inode,
728 				       struct btrfs_ordered_extent *entry,
729 				       int wait)
730 {
731 	u64 start = entry->file_offset;
732 	u64 end = start + entry->len - 1;
733 
734 	trace_btrfs_ordered_extent_start(inode, entry);
735 
736 	/*
737 	 * pages in the range can be dirty, clean or writeback.  We
738 	 * start IO on any dirty ones so the wait doesn't stall waiting
739 	 * for the flusher thread to find them
740 	 */
741 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
742 		filemap_fdatawrite_range(inode->i_mapping, start, end);
743 	if (wait) {
744 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
745 						 &entry->flags));
746 	}
747 }
748 
749 /*
750  * Used to wait on ordered extents across a large range of bytes.
751  */
752 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
753 {
754 	int ret = 0;
755 	u64 end;
756 	u64 orig_end;
757 	struct btrfs_ordered_extent *ordered;
758 
759 	if (start + len < start) {
760 		orig_end = INT_LIMIT(loff_t);
761 	} else {
762 		orig_end = start + len - 1;
763 		if (orig_end > INT_LIMIT(loff_t))
764 			orig_end = INT_LIMIT(loff_t);
765 	}
766 
767 	/* start IO across the range first to instantiate any delalloc
768 	 * extents
769 	 */
770 	ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771 	if (ret)
772 		return ret;
773 	/*
774 	 * So with compression we will find and lock a dirty page and clear the
775 	 * first one as dirty, setup an async extent, and immediately return
776 	 * with the entire range locked but with nobody actually marked with
777 	 * writeback.  So we can't just filemap_write_and_wait_range() and
778 	 * expect it to work since it will just kick off a thread to do the
779 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
780 	 * since it will wait on the page lock, which won't be unlocked until
781 	 * after the pages have been marked as writeback and so we're good to go
782 	 * from there.  We have to do this otherwise we'll miss the ordered
783 	 * extents and that results in badness.  Please Josef, do not think you
784 	 * know better and pull this out at some point in the future, it is
785 	 * right and you are wrong.
786 	 */
787 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
788 		     &BTRFS_I(inode)->runtime_flags)) {
789 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
790 					       orig_end);
791 		if (ret)
792 			return ret;
793 	}
794 	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
795 	if (ret)
796 		return ret;
797 
798 	end = orig_end;
799 	while (1) {
800 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
801 		if (!ordered)
802 			break;
803 		if (ordered->file_offset > orig_end) {
804 			btrfs_put_ordered_extent(ordered);
805 			break;
806 		}
807 		if (ordered->file_offset + ordered->len <= start) {
808 			btrfs_put_ordered_extent(ordered);
809 			break;
810 		}
811 		btrfs_start_ordered_extent(inode, ordered, 1);
812 		end = ordered->file_offset;
813 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
814 			ret = -EIO;
815 		btrfs_put_ordered_extent(ordered);
816 		if (ret || end == 0 || end == start)
817 			break;
818 		end--;
819 	}
820 	return ret;
821 }
822 
823 /*
824  * find an ordered extent corresponding to file_offset.  return NULL if
825  * nothing is found, otherwise take a reference on the extent and return it
826  */
827 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
828 							 u64 file_offset)
829 {
830 	struct btrfs_ordered_inode_tree *tree;
831 	struct rb_node *node;
832 	struct btrfs_ordered_extent *entry = NULL;
833 
834 	tree = &BTRFS_I(inode)->ordered_tree;
835 	spin_lock_irq(&tree->lock);
836 	node = tree_search(tree, file_offset);
837 	if (!node)
838 		goto out;
839 
840 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
841 	if (!offset_in_entry(entry, file_offset))
842 		entry = NULL;
843 	if (entry)
844 		atomic_inc(&entry->refs);
845 out:
846 	spin_unlock_irq(&tree->lock);
847 	return entry;
848 }
849 
850 /* Since the DIO code tries to lock a wide area we need to look for any ordered
851  * extents that exist in the range, rather than just the start of the range.
852  */
853 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
854 							u64 file_offset,
855 							u64 len)
856 {
857 	struct btrfs_ordered_inode_tree *tree;
858 	struct rb_node *node;
859 	struct btrfs_ordered_extent *entry = NULL;
860 
861 	tree = &BTRFS_I(inode)->ordered_tree;
862 	spin_lock_irq(&tree->lock);
863 	node = tree_search(tree, file_offset);
864 	if (!node) {
865 		node = tree_search(tree, file_offset + len);
866 		if (!node)
867 			goto out;
868 	}
869 
870 	while (1) {
871 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
872 		if (range_overlaps(entry, file_offset, len))
873 			break;
874 
875 		if (entry->file_offset >= file_offset + len) {
876 			entry = NULL;
877 			break;
878 		}
879 		entry = NULL;
880 		node = rb_next(node);
881 		if (!node)
882 			break;
883 	}
884 out:
885 	if (entry)
886 		atomic_inc(&entry->refs);
887 	spin_unlock_irq(&tree->lock);
888 	return entry;
889 }
890 
891 /*
892  * lookup and return any extent before 'file_offset'.  NULL is returned
893  * if none is found
894  */
895 struct btrfs_ordered_extent *
896 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
897 {
898 	struct btrfs_ordered_inode_tree *tree;
899 	struct rb_node *node;
900 	struct btrfs_ordered_extent *entry = NULL;
901 
902 	tree = &BTRFS_I(inode)->ordered_tree;
903 	spin_lock_irq(&tree->lock);
904 	node = tree_search(tree, file_offset);
905 	if (!node)
906 		goto out;
907 
908 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
909 	atomic_inc(&entry->refs);
910 out:
911 	spin_unlock_irq(&tree->lock);
912 	return entry;
913 }
914 
915 /*
916  * After an extent is done, call this to conditionally update the on disk
917  * i_size.  i_size is updated to cover any fully written part of the file.
918  */
919 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
920 				struct btrfs_ordered_extent *ordered)
921 {
922 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
923 	u64 disk_i_size;
924 	u64 new_i_size;
925 	u64 i_size = i_size_read(inode);
926 	struct rb_node *node;
927 	struct rb_node *prev = NULL;
928 	struct btrfs_ordered_extent *test;
929 	int ret = 1;
930 
931 	spin_lock_irq(&tree->lock);
932 	if (ordered) {
933 		offset = entry_end(ordered);
934 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
935 			offset = min(offset,
936 				     ordered->file_offset +
937 				     ordered->truncated_len);
938 	} else {
939 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
940 	}
941 	disk_i_size = BTRFS_I(inode)->disk_i_size;
942 
943 	/* truncate file */
944 	if (disk_i_size > i_size) {
945 		BTRFS_I(inode)->disk_i_size = i_size;
946 		ret = 0;
947 		goto out;
948 	}
949 
950 	/*
951 	 * if the disk i_size is already at the inode->i_size, or
952 	 * this ordered extent is inside the disk i_size, we're done
953 	 */
954 	if (disk_i_size == i_size)
955 		goto out;
956 
957 	/*
958 	 * We still need to update disk_i_size if outstanding_isize is greater
959 	 * than disk_i_size.
960 	 */
961 	if (offset <= disk_i_size &&
962 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
963 		goto out;
964 
965 	/*
966 	 * walk backward from this ordered extent to disk_i_size.
967 	 * if we find an ordered extent then we can't update disk i_size
968 	 * yet
969 	 */
970 	if (ordered) {
971 		node = rb_prev(&ordered->rb_node);
972 	} else {
973 		prev = tree_search(tree, offset);
974 		/*
975 		 * we insert file extents without involving ordered struct,
976 		 * so there should be no ordered struct cover this offset
977 		 */
978 		if (prev) {
979 			test = rb_entry(prev, struct btrfs_ordered_extent,
980 					rb_node);
981 			BUG_ON(offset_in_entry(test, offset));
982 		}
983 		node = prev;
984 	}
985 	for (; node; node = rb_prev(node)) {
986 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
987 
988 		/* We treat this entry as if it doesnt exist */
989 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
990 			continue;
991 		if (test->file_offset + test->len <= disk_i_size)
992 			break;
993 		if (test->file_offset >= i_size)
994 			break;
995 		if (entry_end(test) > disk_i_size) {
996 			/*
997 			 * we don't update disk_i_size now, so record this
998 			 * undealt i_size. Or we will not know the real
999 			 * i_size.
1000 			 */
1001 			if (test->outstanding_isize < offset)
1002 				test->outstanding_isize = offset;
1003 			if (ordered &&
1004 			    ordered->outstanding_isize >
1005 			    test->outstanding_isize)
1006 				test->outstanding_isize =
1007 						ordered->outstanding_isize;
1008 			goto out;
1009 		}
1010 	}
1011 	new_i_size = min_t(u64, offset, i_size);
1012 
1013 	/*
1014 	 * Some ordered extents may completed before the current one, and
1015 	 * we hold the real i_size in ->outstanding_isize.
1016 	 */
1017 	if (ordered && ordered->outstanding_isize > new_i_size)
1018 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1019 	BTRFS_I(inode)->disk_i_size = new_i_size;
1020 	ret = 0;
1021 out:
1022 	/*
1023 	 * We need to do this because we can't remove ordered extents until
1024 	 * after the i_disk_size has been updated and then the inode has been
1025 	 * updated to reflect the change, so we need to tell anybody who finds
1026 	 * this ordered extent that we've already done all the real work, we
1027 	 * just haven't completed all the other work.
1028 	 */
1029 	if (ordered)
1030 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1031 	spin_unlock_irq(&tree->lock);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * search the ordered extents for one corresponding to 'offset' and
1037  * try to find a checksum.  This is used because we allow pages to
1038  * be reclaimed before their checksum is actually put into the btree
1039  */
1040 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1041 			   u32 *sum, int len)
1042 {
1043 	struct btrfs_ordered_sum *ordered_sum;
1044 	struct btrfs_ordered_extent *ordered;
1045 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1046 	unsigned long num_sectors;
1047 	unsigned long i;
1048 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1049 	int index = 0;
1050 
1051 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1052 	if (!ordered)
1053 		return 0;
1054 
1055 	spin_lock_irq(&tree->lock);
1056 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1057 		if (disk_bytenr >= ordered_sum->bytenr &&
1058 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1059 			i = (disk_bytenr - ordered_sum->bytenr) >>
1060 			    inode->i_sb->s_blocksize_bits;
1061 			num_sectors = ordered_sum->len >>
1062 				      inode->i_sb->s_blocksize_bits;
1063 			num_sectors = min_t(int, len - index, num_sectors - i);
1064 			memcpy(sum + index, ordered_sum->sums + i,
1065 			       num_sectors);
1066 
1067 			index += (int)num_sectors;
1068 			if (index == len)
1069 				goto out;
1070 			disk_bytenr += num_sectors * sectorsize;
1071 		}
1072 	}
1073 out:
1074 	spin_unlock_irq(&tree->lock);
1075 	btrfs_put_ordered_extent(ordered);
1076 	return index;
1077 }
1078 
1079 
1080 /*
1081  * add a given inode to the list of inodes that must be fully on
1082  * disk before a transaction commit finishes.
1083  *
1084  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1085  * used to make sure renamed files are fully on disk.
1086  *
1087  * It is a noop if the inode is already fully on disk.
1088  *
1089  * If trans is not null, we'll do a friendly check for a transaction that
1090  * is already flushing things and force the IO down ourselves.
1091  */
1092 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1093 				 struct btrfs_root *root, struct inode *inode)
1094 {
1095 	struct btrfs_transaction *cur_trans = trans->transaction;
1096 	u64 last_mod;
1097 
1098 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1099 
1100 	/*
1101 	 * if this file hasn't been changed since the last transaction
1102 	 * commit, we can safely return without doing anything
1103 	 */
1104 	if (last_mod <= root->fs_info->last_trans_committed)
1105 		return;
1106 
1107 	spin_lock(&root->fs_info->ordered_root_lock);
1108 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1109 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1110 			      &cur_trans->ordered_operations);
1111 	}
1112 	spin_unlock(&root->fs_info->ordered_root_lock);
1113 }
1114 
1115 int __init ordered_data_init(void)
1116 {
1117 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1118 				     sizeof(struct btrfs_ordered_extent), 0,
1119 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1120 				     NULL);
1121 	if (!btrfs_ordered_extent_cache)
1122 		return -ENOMEM;
1123 
1124 	return 0;
1125 }
1126 
1127 void ordered_data_exit(void)
1128 {
1129 	if (btrfs_ordered_extent_cache)
1130 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1131 }
1132