1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "super.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 128 u64 file_offset) 129 { 130 struct rb_root *root = &tree->tree; 131 struct rb_node *prev = NULL; 132 struct rb_node *ret; 133 struct btrfs_ordered_extent *entry; 134 135 if (tree->last) { 136 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 137 rb_node); 138 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 139 return tree->last; 140 } 141 ret = __tree_search(root, file_offset, &prev); 142 if (!ret) 143 ret = prev; 144 if (ret) 145 tree->last = ret; 146 return ret; 147 } 148 149 static struct btrfs_ordered_extent *alloc_ordered_extent( 150 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 151 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 152 u64 offset, unsigned long flags, int compress_type) 153 { 154 struct btrfs_ordered_extent *entry; 155 int ret; 156 157 if (flags & 158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 159 /* For nocow write, we can release the qgroup rsv right now */ 160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 161 if (ret < 0) 162 return ERR_PTR(ret); 163 } else { 164 /* 165 * The ordered extent has reserved qgroup space, release now 166 * and pass the reserved number for qgroup_record to free. 167 */ 168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 169 if (ret < 0) 170 return ERR_PTR(ret); 171 } 172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 173 if (!entry) 174 return ERR_PTR(-ENOMEM); 175 176 entry->file_offset = file_offset; 177 entry->num_bytes = num_bytes; 178 entry->ram_bytes = ram_bytes; 179 entry->disk_bytenr = disk_bytenr; 180 entry->disk_num_bytes = disk_num_bytes; 181 entry->offset = offset; 182 entry->bytes_left = num_bytes; 183 entry->inode = igrab(&inode->vfs_inode); 184 entry->compress_type = compress_type; 185 entry->truncated_len = (u64)-1; 186 entry->qgroup_rsv = ret; 187 entry->flags = flags; 188 refcount_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->log_list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 INIT_LIST_HEAD(&entry->work_list); 194 init_completion(&entry->completion); 195 196 /* 197 * We don't need the count_max_extents here, we can assume that all of 198 * that work has been done at higher layers, so this is truly the 199 * smallest the extent is going to get. 200 */ 201 spin_lock(&inode->lock); 202 btrfs_mod_outstanding_extents(inode, 1); 203 spin_unlock(&inode->lock); 204 205 return entry; 206 } 207 208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 209 { 210 struct btrfs_inode *inode = BTRFS_I(entry->inode); 211 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 212 struct btrfs_root *root = inode->root; 213 struct btrfs_fs_info *fs_info = root->fs_info; 214 struct rb_node *node; 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 219 fs_info->delalloc_batch); 220 221 /* One ref for the tree. */ 222 refcount_inc(&entry->refs); 223 224 spin_lock_irq(&tree->lock); 225 node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node); 226 if (node) 227 btrfs_panic(fs_info, -EEXIST, 228 "inconsistency in ordered tree at offset %llu", 229 entry->file_offset); 230 spin_unlock_irq(&tree->lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 240 spin_unlock(&fs_info->ordered_root_lock); 241 } 242 spin_unlock(&root->ordered_extent_lock); 243 } 244 245 /* 246 * Add an ordered extent to the per-inode tree. 247 * 248 * @inode: Inode that this extent is for. 249 * @file_offset: Logical offset in file where the extent starts. 250 * @num_bytes: Logical length of extent in file. 251 * @ram_bytes: Full length of unencoded data. 252 * @disk_bytenr: Offset of extent on disk. 253 * @disk_num_bytes: Size of extent on disk. 254 * @offset: Offset into unencoded data where file data starts. 255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 256 * @compress_type: Compression algorithm used for data. 257 * 258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 259 * tree is given a single reference on the ordered extent that was inserted, and 260 * the returned pointer is given a second reference. 261 * 262 * Return: the new ordered extent or error pointer. 263 */ 264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 265 struct btrfs_inode *inode, u64 file_offset, 266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 267 u64 disk_num_bytes, u64 offset, unsigned long flags, 268 int compress_type) 269 { 270 struct btrfs_ordered_extent *entry; 271 272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 273 274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes, 275 disk_bytenr, disk_num_bytes, offset, flags, 276 compress_type); 277 if (!IS_ERR(entry)) 278 insert_ordered_extent(entry); 279 return entry; 280 } 281 282 /* 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 284 * when an ordered extent is finished. If the list covers more than one 285 * ordered extent, it is split across multiples. 286 */ 287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 288 struct btrfs_ordered_sum *sum) 289 { 290 struct btrfs_ordered_inode_tree *tree; 291 292 tree = &BTRFS_I(entry->inode)->ordered_tree; 293 spin_lock_irq(&tree->lock); 294 list_add_tail(&sum->list, &entry->list); 295 spin_unlock_irq(&tree->lock); 296 } 297 298 static void finish_ordered_fn(struct btrfs_work *work) 299 { 300 struct btrfs_ordered_extent *ordered_extent; 301 302 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 303 btrfs_finish_ordered_io(ordered_extent); 304 } 305 306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 307 struct page *page, u64 file_offset, 308 u64 len, bool uptodate) 309 { 310 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 311 struct btrfs_fs_info *fs_info = inode->root->fs_info; 312 313 lockdep_assert_held(&inode->ordered_tree.lock); 314 315 if (page) { 316 ASSERT(page->mapping); 317 ASSERT(page_offset(page) <= file_offset); 318 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 319 320 /* 321 * Ordered (Private2) bit indicates whether we still have 322 * pending io unfinished for the ordered extent. 323 * 324 * If there's no such bit, we need to skip to next range. 325 */ 326 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len)) 327 return false; 328 btrfs_page_clear_ordered(fs_info, page, file_offset, len); 329 } 330 331 /* Now we're fine to update the accounting. */ 332 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 333 btrfs_crit(fs_info, 334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 335 inode->root->root_key.objectid, btrfs_ino(inode), 336 ordered->file_offset, ordered->num_bytes, 337 len, ordered->bytes_left); 338 ordered->bytes_left = 0; 339 } else { 340 ordered->bytes_left -= len; 341 } 342 343 if (!uptodate) 344 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 345 346 if (ordered->bytes_left) 347 return false; 348 349 /* 350 * All the IO of the ordered extent is finished, we need to queue 351 * the finish_func to be executed. 352 */ 353 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 354 cond_wake_up(&ordered->wait); 355 refcount_inc(&ordered->refs); 356 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 357 return true; 358 } 359 360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 361 { 362 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 363 struct btrfs_fs_info *fs_info = inode->root->fs_info; 364 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 365 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 366 367 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL); 368 btrfs_queue_work(wq, &ordered->work); 369 } 370 371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 372 struct page *page, u64 file_offset, u64 len, 373 bool uptodate) 374 { 375 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 376 unsigned long flags; 377 bool ret; 378 379 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 380 381 spin_lock_irqsave(&inode->ordered_tree.lock, flags); 382 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 383 spin_unlock_irqrestore(&inode->ordered_tree.lock, flags); 384 385 if (ret) 386 btrfs_queue_ordered_fn(ordered); 387 return ret; 388 } 389 390 /* 391 * Mark all ordered extents io inside the specified range finished. 392 * 393 * @page: The involved page for the operation. 394 * For uncompressed buffered IO, the page status also needs to be 395 * updated to indicate whether the pending ordered io is finished. 396 * Can be NULL for direct IO and compressed write. 397 * For these cases, callers are ensured they won't execute the 398 * endio function twice. 399 * 400 * This function is called for endio, thus the range must have ordered 401 * extent(s) covering it. 402 */ 403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 404 struct page *page, u64 file_offset, 405 u64 num_bytes, bool uptodate) 406 { 407 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 408 struct rb_node *node; 409 struct btrfs_ordered_extent *entry = NULL; 410 unsigned long flags; 411 u64 cur = file_offset; 412 413 trace_btrfs_writepage_end_io_hook(inode, file_offset, 414 file_offset + num_bytes - 1, 415 uptodate); 416 417 spin_lock_irqsave(&tree->lock, flags); 418 while (cur < file_offset + num_bytes) { 419 u64 entry_end; 420 u64 end; 421 u32 len; 422 423 node = tree_search(tree, cur); 424 /* No ordered extents at all */ 425 if (!node) 426 break; 427 428 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 429 entry_end = entry->file_offset + entry->num_bytes; 430 /* 431 * |<-- OE --->| | 432 * cur 433 * Go to next OE. 434 */ 435 if (cur >= entry_end) { 436 node = rb_next(node); 437 /* No more ordered extents, exit */ 438 if (!node) 439 break; 440 entry = rb_entry(node, struct btrfs_ordered_extent, 441 rb_node); 442 443 /* Go to next ordered extent and continue */ 444 cur = entry->file_offset; 445 continue; 446 } 447 /* 448 * | |<--- OE --->| 449 * cur 450 * Go to the start of OE. 451 */ 452 if (cur < entry->file_offset) { 453 cur = entry->file_offset; 454 continue; 455 } 456 457 /* 458 * Now we are definitely inside one ordered extent. 459 * 460 * |<--- OE --->| 461 * | 462 * cur 463 */ 464 end = min(entry->file_offset + entry->num_bytes, 465 file_offset + num_bytes) - 1; 466 ASSERT(end + 1 - cur < U32_MAX); 467 len = end + 1 - cur; 468 469 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 470 spin_unlock_irqrestore(&tree->lock, flags); 471 btrfs_queue_ordered_fn(entry); 472 spin_lock_irqsave(&tree->lock, flags); 473 } 474 cur += len; 475 } 476 spin_unlock_irqrestore(&tree->lock, flags); 477 } 478 479 /* 480 * Finish IO for one ordered extent across a given range. The range can only 481 * contain one ordered extent. 482 * 483 * @cached: The cached ordered extent. If not NULL, we can skip the tree 484 * search and use the ordered extent directly. 485 * Will be also used to store the finished ordered extent. 486 * @file_offset: File offset for the finished IO 487 * @io_size: Length of the finish IO range 488 * 489 * Return true if the ordered extent is finished in the range, and update 490 * @cached. 491 * Return false otherwise. 492 * 493 * NOTE: The range can NOT cross multiple ordered extents. 494 * Thus caller should ensure the range doesn't cross ordered extents. 495 */ 496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 497 struct btrfs_ordered_extent **cached, 498 u64 file_offset, u64 io_size) 499 { 500 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 501 struct rb_node *node; 502 struct btrfs_ordered_extent *entry = NULL; 503 unsigned long flags; 504 bool finished = false; 505 506 spin_lock_irqsave(&tree->lock, flags); 507 if (cached && *cached) { 508 entry = *cached; 509 goto have_entry; 510 } 511 512 node = tree_search(tree, file_offset); 513 if (!node) 514 goto out; 515 516 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 517 have_entry: 518 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 519 goto out; 520 521 if (io_size > entry->bytes_left) 522 btrfs_crit(inode->root->fs_info, 523 "bad ordered accounting left %llu size %llu", 524 entry->bytes_left, io_size); 525 526 entry->bytes_left -= io_size; 527 528 if (entry->bytes_left == 0) { 529 /* 530 * Ensure only one caller can set the flag and finished_ret 531 * accordingly 532 */ 533 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 534 /* test_and_set_bit implies a barrier */ 535 cond_wake_up_nomb(&entry->wait); 536 } 537 out: 538 if (finished && cached && entry) { 539 *cached = entry; 540 refcount_inc(&entry->refs); 541 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 542 } 543 spin_unlock_irqrestore(&tree->lock, flags); 544 return finished; 545 } 546 547 /* 548 * used to drop a reference on an ordered extent. This will free 549 * the extent if the last reference is dropped 550 */ 551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 552 { 553 struct list_head *cur; 554 struct btrfs_ordered_sum *sum; 555 556 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 557 558 if (refcount_dec_and_test(&entry->refs)) { 559 ASSERT(list_empty(&entry->root_extent_list)); 560 ASSERT(list_empty(&entry->log_list)); 561 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 562 if (entry->inode) 563 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 564 while (!list_empty(&entry->list)) { 565 cur = entry->list.next; 566 sum = list_entry(cur, struct btrfs_ordered_sum, list); 567 list_del(&sum->list); 568 kvfree(sum); 569 } 570 kmem_cache_free(btrfs_ordered_extent_cache, entry); 571 } 572 } 573 574 /* 575 * remove an ordered extent from the tree. No references are dropped 576 * and waiters are woken up. 577 */ 578 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 579 struct btrfs_ordered_extent *entry) 580 { 581 struct btrfs_ordered_inode_tree *tree; 582 struct btrfs_root *root = btrfs_inode->root; 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 struct rb_node *node; 585 bool pending; 586 bool freespace_inode; 587 588 /* 589 * If this is a free space inode the thread has not acquired the ordered 590 * extents lockdep map. 591 */ 592 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 593 594 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 595 /* This is paired with btrfs_alloc_ordered_extent. */ 596 spin_lock(&btrfs_inode->lock); 597 btrfs_mod_outstanding_extents(btrfs_inode, -1); 598 spin_unlock(&btrfs_inode->lock); 599 if (root != fs_info->tree_root) { 600 u64 release; 601 602 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 603 release = entry->disk_num_bytes; 604 else 605 release = entry->num_bytes; 606 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 607 } 608 609 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 610 fs_info->delalloc_batch); 611 612 tree = &btrfs_inode->ordered_tree; 613 spin_lock_irq(&tree->lock); 614 node = &entry->rb_node; 615 rb_erase(node, &tree->tree); 616 RB_CLEAR_NODE(node); 617 if (tree->last == node) 618 tree->last = NULL; 619 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 620 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 621 spin_unlock_irq(&tree->lock); 622 623 /* 624 * The current running transaction is waiting on us, we need to let it 625 * know that we're complete and wake it up. 626 */ 627 if (pending) { 628 struct btrfs_transaction *trans; 629 630 /* 631 * The checks for trans are just a formality, it should be set, 632 * but if it isn't we don't want to deref/assert under the spin 633 * lock, so be nice and check if trans is set, but ASSERT() so 634 * if it isn't set a developer will notice. 635 */ 636 spin_lock(&fs_info->trans_lock); 637 trans = fs_info->running_transaction; 638 if (trans) 639 refcount_inc(&trans->use_count); 640 spin_unlock(&fs_info->trans_lock); 641 642 ASSERT(trans); 643 if (trans) { 644 if (atomic_dec_and_test(&trans->pending_ordered)) 645 wake_up(&trans->pending_wait); 646 btrfs_put_transaction(trans); 647 } 648 } 649 650 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 651 652 spin_lock(&root->ordered_extent_lock); 653 list_del_init(&entry->root_extent_list); 654 root->nr_ordered_extents--; 655 656 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 657 658 if (!root->nr_ordered_extents) { 659 spin_lock(&fs_info->ordered_root_lock); 660 BUG_ON(list_empty(&root->ordered_root)); 661 list_del_init(&root->ordered_root); 662 spin_unlock(&fs_info->ordered_root_lock); 663 } 664 spin_unlock(&root->ordered_extent_lock); 665 wake_up(&entry->wait); 666 if (!freespace_inode) 667 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 668 } 669 670 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 671 { 672 struct btrfs_ordered_extent *ordered; 673 674 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 675 btrfs_start_ordered_extent(ordered); 676 complete(&ordered->completion); 677 } 678 679 /* 680 * wait for all the ordered extents in a root. This is done when balancing 681 * space between drives. 682 */ 683 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 684 const u64 range_start, const u64 range_len) 685 { 686 struct btrfs_fs_info *fs_info = root->fs_info; 687 LIST_HEAD(splice); 688 LIST_HEAD(skipped); 689 LIST_HEAD(works); 690 struct btrfs_ordered_extent *ordered, *next; 691 u64 count = 0; 692 const u64 range_end = range_start + range_len; 693 694 mutex_lock(&root->ordered_extent_mutex); 695 spin_lock(&root->ordered_extent_lock); 696 list_splice_init(&root->ordered_extents, &splice); 697 while (!list_empty(&splice) && nr) { 698 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 699 root_extent_list); 700 701 if (range_end <= ordered->disk_bytenr || 702 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 703 list_move_tail(&ordered->root_extent_list, &skipped); 704 cond_resched_lock(&root->ordered_extent_lock); 705 continue; 706 } 707 708 list_move_tail(&ordered->root_extent_list, 709 &root->ordered_extents); 710 refcount_inc(&ordered->refs); 711 spin_unlock(&root->ordered_extent_lock); 712 713 btrfs_init_work(&ordered->flush_work, 714 btrfs_run_ordered_extent_work, NULL, NULL); 715 list_add_tail(&ordered->work_list, &works); 716 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 717 718 cond_resched(); 719 spin_lock(&root->ordered_extent_lock); 720 if (nr != U64_MAX) 721 nr--; 722 count++; 723 } 724 list_splice_tail(&skipped, &root->ordered_extents); 725 list_splice_tail(&splice, &root->ordered_extents); 726 spin_unlock(&root->ordered_extent_lock); 727 728 list_for_each_entry_safe(ordered, next, &works, work_list) { 729 list_del_init(&ordered->work_list); 730 wait_for_completion(&ordered->completion); 731 btrfs_put_ordered_extent(ordered); 732 cond_resched(); 733 } 734 mutex_unlock(&root->ordered_extent_mutex); 735 736 return count; 737 } 738 739 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 740 const u64 range_start, const u64 range_len) 741 { 742 struct btrfs_root *root; 743 LIST_HEAD(splice); 744 u64 done; 745 746 mutex_lock(&fs_info->ordered_operations_mutex); 747 spin_lock(&fs_info->ordered_root_lock); 748 list_splice_init(&fs_info->ordered_roots, &splice); 749 while (!list_empty(&splice) && nr) { 750 root = list_first_entry(&splice, struct btrfs_root, 751 ordered_root); 752 root = btrfs_grab_root(root); 753 BUG_ON(!root); 754 list_move_tail(&root->ordered_root, 755 &fs_info->ordered_roots); 756 spin_unlock(&fs_info->ordered_root_lock); 757 758 done = btrfs_wait_ordered_extents(root, nr, 759 range_start, range_len); 760 btrfs_put_root(root); 761 762 spin_lock(&fs_info->ordered_root_lock); 763 if (nr != U64_MAX) { 764 nr -= done; 765 } 766 } 767 list_splice_tail(&splice, &fs_info->ordered_roots); 768 spin_unlock(&fs_info->ordered_root_lock); 769 mutex_unlock(&fs_info->ordered_operations_mutex); 770 } 771 772 /* 773 * Start IO and wait for a given ordered extent to finish. 774 * 775 * Wait on page writeback for all the pages in the extent and the IO completion 776 * code to insert metadata into the btree corresponding to the extent. 777 */ 778 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 779 { 780 u64 start = entry->file_offset; 781 u64 end = start + entry->num_bytes - 1; 782 struct btrfs_inode *inode = BTRFS_I(entry->inode); 783 bool freespace_inode; 784 785 trace_btrfs_ordered_extent_start(inode, entry); 786 787 /* 788 * If this is a free space inode do not take the ordered extents lockdep 789 * map. 790 */ 791 freespace_inode = btrfs_is_free_space_inode(inode); 792 793 /* 794 * pages in the range can be dirty, clean or writeback. We 795 * start IO on any dirty ones so the wait doesn't stall waiting 796 * for the flusher thread to find them 797 */ 798 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 799 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 800 801 if (!freespace_inode) 802 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 803 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 804 } 805 806 /* 807 * Used to wait on ordered extents across a large range of bytes. 808 */ 809 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 810 { 811 int ret = 0; 812 int ret_wb = 0; 813 u64 end; 814 u64 orig_end; 815 struct btrfs_ordered_extent *ordered; 816 817 if (start + len < start) { 818 orig_end = OFFSET_MAX; 819 } else { 820 orig_end = start + len - 1; 821 if (orig_end > OFFSET_MAX) 822 orig_end = OFFSET_MAX; 823 } 824 825 /* start IO across the range first to instantiate any delalloc 826 * extents 827 */ 828 ret = btrfs_fdatawrite_range(inode, start, orig_end); 829 if (ret) 830 return ret; 831 832 /* 833 * If we have a writeback error don't return immediately. Wait first 834 * for any ordered extents that haven't completed yet. This is to make 835 * sure no one can dirty the same page ranges and call writepages() 836 * before the ordered extents complete - to avoid failures (-EEXIST) 837 * when adding the new ordered extents to the ordered tree. 838 */ 839 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 840 841 end = orig_end; 842 while (1) { 843 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 844 if (!ordered) 845 break; 846 if (ordered->file_offset > orig_end) { 847 btrfs_put_ordered_extent(ordered); 848 break; 849 } 850 if (ordered->file_offset + ordered->num_bytes <= start) { 851 btrfs_put_ordered_extent(ordered); 852 break; 853 } 854 btrfs_start_ordered_extent(ordered); 855 end = ordered->file_offset; 856 /* 857 * If the ordered extent had an error save the error but don't 858 * exit without waiting first for all other ordered extents in 859 * the range to complete. 860 */ 861 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 862 ret = -EIO; 863 btrfs_put_ordered_extent(ordered); 864 if (end == 0 || end == start) 865 break; 866 end--; 867 } 868 return ret_wb ? ret_wb : ret; 869 } 870 871 /* 872 * find an ordered extent corresponding to file_offset. return NULL if 873 * nothing is found, otherwise take a reference on the extent and return it 874 */ 875 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 876 u64 file_offset) 877 { 878 struct btrfs_ordered_inode_tree *tree; 879 struct rb_node *node; 880 struct btrfs_ordered_extent *entry = NULL; 881 unsigned long flags; 882 883 tree = &inode->ordered_tree; 884 spin_lock_irqsave(&tree->lock, flags); 885 node = tree_search(tree, file_offset); 886 if (!node) 887 goto out; 888 889 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 890 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 891 entry = NULL; 892 if (entry) { 893 refcount_inc(&entry->refs); 894 trace_btrfs_ordered_extent_lookup(inode, entry); 895 } 896 out: 897 spin_unlock_irqrestore(&tree->lock, flags); 898 return entry; 899 } 900 901 /* Since the DIO code tries to lock a wide area we need to look for any ordered 902 * extents that exist in the range, rather than just the start of the range. 903 */ 904 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 905 struct btrfs_inode *inode, u64 file_offset, u64 len) 906 { 907 struct btrfs_ordered_inode_tree *tree; 908 struct rb_node *node; 909 struct btrfs_ordered_extent *entry = NULL; 910 911 tree = &inode->ordered_tree; 912 spin_lock_irq(&tree->lock); 913 node = tree_search(tree, file_offset); 914 if (!node) { 915 node = tree_search(tree, file_offset + len); 916 if (!node) 917 goto out; 918 } 919 920 while (1) { 921 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 922 if (range_overlaps(entry, file_offset, len)) 923 break; 924 925 if (entry->file_offset >= file_offset + len) { 926 entry = NULL; 927 break; 928 } 929 entry = NULL; 930 node = rb_next(node); 931 if (!node) 932 break; 933 } 934 out: 935 if (entry) { 936 refcount_inc(&entry->refs); 937 trace_btrfs_ordered_extent_lookup_range(inode, entry); 938 } 939 spin_unlock_irq(&tree->lock); 940 return entry; 941 } 942 943 /* 944 * Adds all ordered extents to the given list. The list ends up sorted by the 945 * file_offset of the ordered extents. 946 */ 947 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 948 struct list_head *list) 949 { 950 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 951 struct rb_node *n; 952 953 ASSERT(inode_is_locked(&inode->vfs_inode)); 954 955 spin_lock_irq(&tree->lock); 956 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 957 struct btrfs_ordered_extent *ordered; 958 959 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 960 961 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 962 continue; 963 964 ASSERT(list_empty(&ordered->log_list)); 965 list_add_tail(&ordered->log_list, list); 966 refcount_inc(&ordered->refs); 967 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 968 } 969 spin_unlock_irq(&tree->lock); 970 } 971 972 /* 973 * lookup and return any extent before 'file_offset'. NULL is returned 974 * if none is found 975 */ 976 struct btrfs_ordered_extent * 977 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 978 { 979 struct btrfs_ordered_inode_tree *tree; 980 struct rb_node *node; 981 struct btrfs_ordered_extent *entry = NULL; 982 983 tree = &inode->ordered_tree; 984 spin_lock_irq(&tree->lock); 985 node = tree_search(tree, file_offset); 986 if (!node) 987 goto out; 988 989 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 990 refcount_inc(&entry->refs); 991 trace_btrfs_ordered_extent_lookup_first(inode, entry); 992 out: 993 spin_unlock_irq(&tree->lock); 994 return entry; 995 } 996 997 /* 998 * Lookup the first ordered extent that overlaps the range 999 * [@file_offset, @file_offset + @len). 1000 * 1001 * The difference between this and btrfs_lookup_first_ordered_extent() is 1002 * that this one won't return any ordered extent that does not overlap the range. 1003 * And the difference against btrfs_lookup_ordered_extent() is, this function 1004 * ensures the first ordered extent gets returned. 1005 */ 1006 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 1007 struct btrfs_inode *inode, u64 file_offset, u64 len) 1008 { 1009 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 1010 struct rb_node *node; 1011 struct rb_node *cur; 1012 struct rb_node *prev; 1013 struct rb_node *next; 1014 struct btrfs_ordered_extent *entry = NULL; 1015 1016 spin_lock_irq(&tree->lock); 1017 node = tree->tree.rb_node; 1018 /* 1019 * Here we don't want to use tree_search() which will use tree->last 1020 * and screw up the search order. 1021 * And __tree_search() can't return the adjacent ordered extents 1022 * either, thus here we do our own search. 1023 */ 1024 while (node) { 1025 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1026 1027 if (file_offset < entry->file_offset) { 1028 node = node->rb_left; 1029 } else if (file_offset >= entry_end(entry)) { 1030 node = node->rb_right; 1031 } else { 1032 /* 1033 * Direct hit, got an ordered extent that starts at 1034 * @file_offset 1035 */ 1036 goto out; 1037 } 1038 } 1039 if (!entry) { 1040 /* Empty tree */ 1041 goto out; 1042 } 1043 1044 cur = &entry->rb_node; 1045 /* We got an entry around @file_offset, check adjacent entries */ 1046 if (entry->file_offset < file_offset) { 1047 prev = cur; 1048 next = rb_next(cur); 1049 } else { 1050 prev = rb_prev(cur); 1051 next = cur; 1052 } 1053 if (prev) { 1054 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1055 if (range_overlaps(entry, file_offset, len)) 1056 goto out; 1057 } 1058 if (next) { 1059 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1060 if (range_overlaps(entry, file_offset, len)) 1061 goto out; 1062 } 1063 /* No ordered extent in the range */ 1064 entry = NULL; 1065 out: 1066 if (entry) { 1067 refcount_inc(&entry->refs); 1068 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1069 } 1070 1071 spin_unlock_irq(&tree->lock); 1072 return entry; 1073 } 1074 1075 /* 1076 * Lock the passed range and ensures all pending ordered extents in it are run 1077 * to completion. 1078 * 1079 * @inode: Inode whose ordered tree is to be searched 1080 * @start: Beginning of range to flush 1081 * @end: Last byte of range to lock 1082 * @cached_state: If passed, will return the extent state responsible for the 1083 * locked range. It's the caller's responsibility to free the 1084 * cached state. 1085 * 1086 * Always return with the given range locked, ensuring after it's called no 1087 * order extent can be pending. 1088 */ 1089 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1090 u64 end, 1091 struct extent_state **cached_state) 1092 { 1093 struct btrfs_ordered_extent *ordered; 1094 struct extent_state *cache = NULL; 1095 struct extent_state **cachedp = &cache; 1096 1097 if (cached_state) 1098 cachedp = cached_state; 1099 1100 while (1) { 1101 lock_extent(&inode->io_tree, start, end, cachedp); 1102 ordered = btrfs_lookup_ordered_range(inode, start, 1103 end - start + 1); 1104 if (!ordered) { 1105 /* 1106 * If no external cached_state has been passed then 1107 * decrement the extra ref taken for cachedp since we 1108 * aren't exposing it outside of this function 1109 */ 1110 if (!cached_state) 1111 refcount_dec(&cache->refs); 1112 break; 1113 } 1114 unlock_extent(&inode->io_tree, start, end, cachedp); 1115 btrfs_start_ordered_extent(ordered); 1116 btrfs_put_ordered_extent(ordered); 1117 } 1118 } 1119 1120 /* 1121 * Lock the passed range and ensure all pending ordered extents in it are run 1122 * to completion in nowait mode. 1123 * 1124 * Return true if btrfs_lock_ordered_range does not return any extents, 1125 * otherwise false. 1126 */ 1127 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1128 struct extent_state **cached_state) 1129 { 1130 struct btrfs_ordered_extent *ordered; 1131 1132 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1133 return false; 1134 1135 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1136 if (!ordered) 1137 return true; 1138 1139 btrfs_put_ordered_extent(ordered); 1140 unlock_extent(&inode->io_tree, start, end, cached_state); 1141 1142 return false; 1143 } 1144 1145 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1146 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1147 struct btrfs_ordered_extent *ordered, u64 len) 1148 { 1149 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1150 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 1151 struct btrfs_root *root = inode->root; 1152 struct btrfs_fs_info *fs_info = root->fs_info; 1153 u64 file_offset = ordered->file_offset; 1154 u64 disk_bytenr = ordered->disk_bytenr; 1155 unsigned long flags = ordered->flags; 1156 struct btrfs_ordered_sum *sum, *tmpsum; 1157 struct btrfs_ordered_extent *new; 1158 struct rb_node *node; 1159 u64 offset = 0; 1160 1161 trace_btrfs_ordered_extent_split(inode, ordered); 1162 1163 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1164 1165 /* 1166 * The entire bio must be covered by the ordered extent, but we can't 1167 * reduce the original extent to a zero length either. 1168 */ 1169 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1170 return ERR_PTR(-EINVAL); 1171 /* We cannot split partially completed ordered extents. */ 1172 if (ordered->bytes_left) { 1173 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1174 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1175 return ERR_PTR(-EINVAL); 1176 } 1177 /* We cannot split a compressed ordered extent. */ 1178 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1179 return ERR_PTR(-EINVAL); 1180 1181 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1182 len, 0, flags, ordered->compress_type); 1183 if (IS_ERR(new)) 1184 return new; 1185 1186 /* One ref for the tree. */ 1187 refcount_inc(&new->refs); 1188 1189 spin_lock_irq(&root->ordered_extent_lock); 1190 spin_lock(&tree->lock); 1191 /* Remove from tree once */ 1192 node = &ordered->rb_node; 1193 rb_erase(node, &tree->tree); 1194 RB_CLEAR_NODE(node); 1195 if (tree->last == node) 1196 tree->last = NULL; 1197 1198 ordered->file_offset += len; 1199 ordered->disk_bytenr += len; 1200 ordered->num_bytes -= len; 1201 ordered->disk_num_bytes -= len; 1202 1203 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1204 ASSERT(ordered->bytes_left == 0); 1205 new->bytes_left = 0; 1206 } else { 1207 ordered->bytes_left -= len; 1208 } 1209 1210 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1211 if (ordered->truncated_len > len) { 1212 ordered->truncated_len -= len; 1213 } else { 1214 new->truncated_len = ordered->truncated_len; 1215 ordered->truncated_len = 0; 1216 } 1217 } 1218 1219 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1220 if (offset == len) 1221 break; 1222 list_move_tail(&sum->list, &new->list); 1223 offset += sum->len; 1224 } 1225 1226 /* Re-insert the node */ 1227 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1228 if (node) 1229 btrfs_panic(fs_info, -EEXIST, 1230 "zoned: inconsistency in ordered tree at offset %llu", 1231 ordered->file_offset); 1232 1233 node = tree_insert(&tree->tree, new->file_offset, &new->rb_node); 1234 if (node) 1235 btrfs_panic(fs_info, -EEXIST, 1236 "zoned: inconsistency in ordered tree at offset %llu", 1237 new->file_offset); 1238 spin_unlock(&tree->lock); 1239 1240 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1241 root->nr_ordered_extents++; 1242 spin_unlock_irq(&root->ordered_extent_lock); 1243 return new; 1244 } 1245 1246 int __init ordered_data_init(void) 1247 { 1248 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1249 sizeof(struct btrfs_ordered_extent), 0, 1250 SLAB_MEM_SPREAD, 1251 NULL); 1252 if (!btrfs_ordered_extent_cache) 1253 return -ENOMEM; 1254 1255 return 0; 1256 } 1257 1258 void __cold ordered_data_exit(void) 1259 { 1260 kmem_cache_destroy(btrfs_ordered_extent_cache); 1261 } 1262