xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 6d8e62c3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 	    !(type == BTRFS_ORDERED_NOCOW))
203 		entry->csum_bytes_left = disk_len;
204 	entry->disk_len = disk_len;
205 	entry->bytes_left = len;
206 	entry->inode = igrab(inode);
207 	entry->compress_type = compress_type;
208 	entry->truncated_len = (u64)-1;
209 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 		set_bit(type, &entry->flags);
211 
212 	if (dio)
213 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214 
215 	/* one ref for the tree */
216 	atomic_set(&entry->refs, 1);
217 	init_waitqueue_head(&entry->wait);
218 	INIT_LIST_HEAD(&entry->list);
219 	INIT_LIST_HEAD(&entry->root_extent_list);
220 	INIT_LIST_HEAD(&entry->work_list);
221 	init_completion(&entry->completion);
222 	INIT_LIST_HEAD(&entry->log_list);
223 	INIT_LIST_HEAD(&entry->trans_list);
224 
225 	trace_btrfs_ordered_extent_add(inode, entry);
226 
227 	spin_lock_irq(&tree->lock);
228 	node = tree_insert(&tree->tree, file_offset,
229 			   &entry->rb_node);
230 	if (node)
231 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
232 	spin_unlock_irq(&tree->lock);
233 
234 	spin_lock(&root->ordered_extent_lock);
235 	list_add_tail(&entry->root_extent_list,
236 		      &root->ordered_extents);
237 	root->nr_ordered_extents++;
238 	if (root->nr_ordered_extents == 1) {
239 		spin_lock(&root->fs_info->ordered_root_lock);
240 		BUG_ON(!list_empty(&root->ordered_root));
241 		list_add_tail(&root->ordered_root,
242 			      &root->fs_info->ordered_roots);
243 		spin_unlock(&root->fs_info->ordered_root_lock);
244 	}
245 	spin_unlock(&root->ordered_extent_lock);
246 
247 	return 0;
248 }
249 
250 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
251 			     u64 start, u64 len, u64 disk_len, int type)
252 {
253 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
254 					  disk_len, type, 0,
255 					  BTRFS_COMPRESS_NONE);
256 }
257 
258 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
259 				 u64 start, u64 len, u64 disk_len, int type)
260 {
261 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
262 					  disk_len, type, 1,
263 					  BTRFS_COMPRESS_NONE);
264 }
265 
266 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
267 				      u64 start, u64 len, u64 disk_len,
268 				      int type, int compress_type)
269 {
270 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
271 					  disk_len, type, 0,
272 					  compress_type);
273 }
274 
275 /*
276  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
277  * when an ordered extent is finished.  If the list covers more than one
278  * ordered extent, it is split across multiples.
279  */
280 void btrfs_add_ordered_sum(struct inode *inode,
281 			   struct btrfs_ordered_extent *entry,
282 			   struct btrfs_ordered_sum *sum)
283 {
284 	struct btrfs_ordered_inode_tree *tree;
285 
286 	tree = &BTRFS_I(inode)->ordered_tree;
287 	spin_lock_irq(&tree->lock);
288 	list_add_tail(&sum->list, &entry->list);
289 	WARN_ON(entry->csum_bytes_left < sum->len);
290 	entry->csum_bytes_left -= sum->len;
291 	if (entry->csum_bytes_left == 0)
292 		wake_up(&entry->wait);
293 	spin_unlock_irq(&tree->lock);
294 }
295 
296 /*
297  * this is used to account for finished IO across a given range
298  * of the file.  The IO may span ordered extents.  If
299  * a given ordered_extent is completely done, 1 is returned, otherwise
300  * 0.
301  *
302  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
303  * to make sure this function only returns 1 once for a given ordered extent.
304  *
305  * file_offset is updated to one byte past the range that is recorded as
306  * complete.  This allows you to walk forward in the file.
307  */
308 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
309 				   struct btrfs_ordered_extent **cached,
310 				   u64 *file_offset, u64 io_size, int uptodate)
311 {
312 	struct btrfs_ordered_inode_tree *tree;
313 	struct rb_node *node;
314 	struct btrfs_ordered_extent *entry = NULL;
315 	int ret;
316 	unsigned long flags;
317 	u64 dec_end;
318 	u64 dec_start;
319 	u64 to_dec;
320 
321 	tree = &BTRFS_I(inode)->ordered_tree;
322 	spin_lock_irqsave(&tree->lock, flags);
323 	node = tree_search(tree, *file_offset);
324 	if (!node) {
325 		ret = 1;
326 		goto out;
327 	}
328 
329 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
330 	if (!offset_in_entry(entry, *file_offset)) {
331 		ret = 1;
332 		goto out;
333 	}
334 
335 	dec_start = max(*file_offset, entry->file_offset);
336 	dec_end = min(*file_offset + io_size, entry->file_offset +
337 		      entry->len);
338 	*file_offset = dec_end;
339 	if (dec_start > dec_end) {
340 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
341 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
342 	}
343 	to_dec = dec_end - dec_start;
344 	if (to_dec > entry->bytes_left) {
345 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
346 			"bad ordered accounting left %llu size %llu",
347 			entry->bytes_left, to_dec);
348 	}
349 	entry->bytes_left -= to_dec;
350 	if (!uptodate)
351 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
352 
353 	if (entry->bytes_left == 0) {
354 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
355 		if (waitqueue_active(&entry->wait))
356 			wake_up(&entry->wait);
357 	} else {
358 		ret = 1;
359 	}
360 out:
361 	if (!ret && cached && entry) {
362 		*cached = entry;
363 		atomic_inc(&entry->refs);
364 	}
365 	spin_unlock_irqrestore(&tree->lock, flags);
366 	return ret == 0;
367 }
368 
369 /*
370  * this is used to account for finished IO across a given range
371  * of the file.  The IO should not span ordered extents.  If
372  * a given ordered_extent is completely done, 1 is returned, otherwise
373  * 0.
374  *
375  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
376  * to make sure this function only returns 1 once for a given ordered extent.
377  */
378 int btrfs_dec_test_ordered_pending(struct inode *inode,
379 				   struct btrfs_ordered_extent **cached,
380 				   u64 file_offset, u64 io_size, int uptodate)
381 {
382 	struct btrfs_ordered_inode_tree *tree;
383 	struct rb_node *node;
384 	struct btrfs_ordered_extent *entry = NULL;
385 	unsigned long flags;
386 	int ret;
387 
388 	tree = &BTRFS_I(inode)->ordered_tree;
389 	spin_lock_irqsave(&tree->lock, flags);
390 	if (cached && *cached) {
391 		entry = *cached;
392 		goto have_entry;
393 	}
394 
395 	node = tree_search(tree, file_offset);
396 	if (!node) {
397 		ret = 1;
398 		goto out;
399 	}
400 
401 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
402 have_entry:
403 	if (!offset_in_entry(entry, file_offset)) {
404 		ret = 1;
405 		goto out;
406 	}
407 
408 	if (io_size > entry->bytes_left) {
409 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
410 			   "bad ordered accounting left %llu size %llu",
411 		       entry->bytes_left, io_size);
412 	}
413 	entry->bytes_left -= io_size;
414 	if (!uptodate)
415 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
416 
417 	if (entry->bytes_left == 0) {
418 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
419 		if (waitqueue_active(&entry->wait))
420 			wake_up(&entry->wait);
421 	} else {
422 		ret = 1;
423 	}
424 out:
425 	if (!ret && cached && entry) {
426 		*cached = entry;
427 		atomic_inc(&entry->refs);
428 	}
429 	spin_unlock_irqrestore(&tree->lock, flags);
430 	return ret == 0;
431 }
432 
433 /* Needs to either be called under a log transaction or the log_mutex */
434 void btrfs_get_logged_extents(struct inode *inode,
435 			      struct list_head *logged_list,
436 			      const loff_t start,
437 			      const loff_t end)
438 {
439 	struct btrfs_ordered_inode_tree *tree;
440 	struct btrfs_ordered_extent *ordered;
441 	struct rb_node *n;
442 	struct rb_node *prev;
443 
444 	tree = &BTRFS_I(inode)->ordered_tree;
445 	spin_lock_irq(&tree->lock);
446 	n = __tree_search(&tree->tree, end, &prev);
447 	if (!n)
448 		n = prev;
449 	for (; n; n = rb_prev(n)) {
450 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
451 		if (ordered->file_offset > end)
452 			continue;
453 		if (entry_end(ordered) <= start)
454 			break;
455 		if (!list_empty(&ordered->log_list))
456 			continue;
457 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
458 			continue;
459 		list_add(&ordered->log_list, logged_list);
460 		atomic_inc(&ordered->refs);
461 	}
462 	spin_unlock_irq(&tree->lock);
463 }
464 
465 void btrfs_put_logged_extents(struct list_head *logged_list)
466 {
467 	struct btrfs_ordered_extent *ordered;
468 
469 	while (!list_empty(logged_list)) {
470 		ordered = list_first_entry(logged_list,
471 					   struct btrfs_ordered_extent,
472 					   log_list);
473 		list_del_init(&ordered->log_list);
474 		btrfs_put_ordered_extent(ordered);
475 	}
476 }
477 
478 void btrfs_submit_logged_extents(struct list_head *logged_list,
479 				 struct btrfs_root *log)
480 {
481 	int index = log->log_transid % 2;
482 
483 	spin_lock_irq(&log->log_extents_lock[index]);
484 	list_splice_tail(logged_list, &log->logged_list[index]);
485 	spin_unlock_irq(&log->log_extents_lock[index]);
486 }
487 
488 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
489 			       struct btrfs_root *log, u64 transid)
490 {
491 	struct btrfs_ordered_extent *ordered;
492 	int index = transid % 2;
493 
494 	spin_lock_irq(&log->log_extents_lock[index]);
495 	while (!list_empty(&log->logged_list[index])) {
496 		ordered = list_first_entry(&log->logged_list[index],
497 					   struct btrfs_ordered_extent,
498 					   log_list);
499 		list_del_init(&ordered->log_list);
500 		spin_unlock_irq(&log->log_extents_lock[index]);
501 
502 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
503 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
504 			struct inode *inode = ordered->inode;
505 			u64 start = ordered->file_offset;
506 			u64 end = ordered->file_offset + ordered->len - 1;
507 
508 			WARN_ON(!inode);
509 			filemap_fdatawrite_range(inode->i_mapping, start, end);
510 		}
511 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
512 						   &ordered->flags));
513 
514 		if (!test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
515 			list_add_tail(&ordered->trans_list, &trans->ordered);
516 		spin_lock_irq(&log->log_extents_lock[index]);
517 	}
518 	spin_unlock_irq(&log->log_extents_lock[index]);
519 }
520 
521 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
522 {
523 	struct btrfs_ordered_extent *ordered;
524 	int index = transid % 2;
525 
526 	spin_lock_irq(&log->log_extents_lock[index]);
527 	while (!list_empty(&log->logged_list[index])) {
528 		ordered = list_first_entry(&log->logged_list[index],
529 					   struct btrfs_ordered_extent,
530 					   log_list);
531 		list_del_init(&ordered->log_list);
532 		spin_unlock_irq(&log->log_extents_lock[index]);
533 		btrfs_put_ordered_extent(ordered);
534 		spin_lock_irq(&log->log_extents_lock[index]);
535 	}
536 	spin_unlock_irq(&log->log_extents_lock[index]);
537 }
538 
539 /*
540  * used to drop a reference on an ordered extent.  This will free
541  * the extent if the last reference is dropped
542  */
543 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
544 {
545 	struct list_head *cur;
546 	struct btrfs_ordered_sum *sum;
547 
548 	trace_btrfs_ordered_extent_put(entry->inode, entry);
549 
550 	if (atomic_dec_and_test(&entry->refs)) {
551 		if (entry->inode)
552 			btrfs_add_delayed_iput(entry->inode);
553 		while (!list_empty(&entry->list)) {
554 			cur = entry->list.next;
555 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
556 			list_del(&sum->list);
557 			kfree(sum);
558 		}
559 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
560 	}
561 }
562 
563 /*
564  * remove an ordered extent from the tree.  No references are dropped
565  * and waiters are woken up.
566  */
567 void btrfs_remove_ordered_extent(struct inode *inode,
568 				 struct btrfs_ordered_extent *entry)
569 {
570 	struct btrfs_ordered_inode_tree *tree;
571 	struct btrfs_root *root = BTRFS_I(inode)->root;
572 	struct rb_node *node;
573 
574 	tree = &BTRFS_I(inode)->ordered_tree;
575 	spin_lock_irq(&tree->lock);
576 	node = &entry->rb_node;
577 	rb_erase(node, &tree->tree);
578 	if (tree->last == node)
579 		tree->last = NULL;
580 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
581 	spin_unlock_irq(&tree->lock);
582 
583 	spin_lock(&root->ordered_extent_lock);
584 	list_del_init(&entry->root_extent_list);
585 	root->nr_ordered_extents--;
586 
587 	trace_btrfs_ordered_extent_remove(inode, entry);
588 
589 	if (!root->nr_ordered_extents) {
590 		spin_lock(&root->fs_info->ordered_root_lock);
591 		BUG_ON(list_empty(&root->ordered_root));
592 		list_del_init(&root->ordered_root);
593 		spin_unlock(&root->fs_info->ordered_root_lock);
594 	}
595 	spin_unlock(&root->ordered_extent_lock);
596 	wake_up(&entry->wait);
597 }
598 
599 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
600 {
601 	struct btrfs_ordered_extent *ordered;
602 
603 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
604 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
605 	complete(&ordered->completion);
606 }
607 
608 /*
609  * wait for all the ordered extents in a root.  This is done when balancing
610  * space between drives.
611  */
612 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
613 {
614 	struct list_head splice, works;
615 	struct btrfs_ordered_extent *ordered, *next;
616 	int count = 0;
617 
618 	INIT_LIST_HEAD(&splice);
619 	INIT_LIST_HEAD(&works);
620 
621 	mutex_lock(&root->ordered_extent_mutex);
622 	spin_lock(&root->ordered_extent_lock);
623 	list_splice_init(&root->ordered_extents, &splice);
624 	while (!list_empty(&splice) && nr) {
625 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
626 					   root_extent_list);
627 		list_move_tail(&ordered->root_extent_list,
628 			       &root->ordered_extents);
629 		atomic_inc(&ordered->refs);
630 		spin_unlock(&root->ordered_extent_lock);
631 
632 		btrfs_init_work(&ordered->flush_work,
633 				btrfs_flush_delalloc_helper,
634 				btrfs_run_ordered_extent_work, NULL, NULL);
635 		list_add_tail(&ordered->work_list, &works);
636 		btrfs_queue_work(root->fs_info->flush_workers,
637 				 &ordered->flush_work);
638 
639 		cond_resched();
640 		spin_lock(&root->ordered_extent_lock);
641 		if (nr != -1)
642 			nr--;
643 		count++;
644 	}
645 	list_splice_tail(&splice, &root->ordered_extents);
646 	spin_unlock(&root->ordered_extent_lock);
647 
648 	list_for_each_entry_safe(ordered, next, &works, work_list) {
649 		list_del_init(&ordered->work_list);
650 		wait_for_completion(&ordered->completion);
651 		btrfs_put_ordered_extent(ordered);
652 		cond_resched();
653 	}
654 	mutex_unlock(&root->ordered_extent_mutex);
655 
656 	return count;
657 }
658 
659 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
660 {
661 	struct btrfs_root *root;
662 	struct list_head splice;
663 	int done;
664 
665 	INIT_LIST_HEAD(&splice);
666 
667 	mutex_lock(&fs_info->ordered_operations_mutex);
668 	spin_lock(&fs_info->ordered_root_lock);
669 	list_splice_init(&fs_info->ordered_roots, &splice);
670 	while (!list_empty(&splice) && nr) {
671 		root = list_first_entry(&splice, struct btrfs_root,
672 					ordered_root);
673 		root = btrfs_grab_fs_root(root);
674 		BUG_ON(!root);
675 		list_move_tail(&root->ordered_root,
676 			       &fs_info->ordered_roots);
677 		spin_unlock(&fs_info->ordered_root_lock);
678 
679 		done = btrfs_wait_ordered_extents(root, nr);
680 		btrfs_put_fs_root(root);
681 
682 		spin_lock(&fs_info->ordered_root_lock);
683 		if (nr != -1) {
684 			nr -= done;
685 			WARN_ON(nr < 0);
686 		}
687 	}
688 	list_splice_tail(&splice, &fs_info->ordered_roots);
689 	spin_unlock(&fs_info->ordered_root_lock);
690 	mutex_unlock(&fs_info->ordered_operations_mutex);
691 }
692 
693 /*
694  * Used to start IO or wait for a given ordered extent to finish.
695  *
696  * If wait is one, this effectively waits on page writeback for all the pages
697  * in the extent, and it waits on the io completion code to insert
698  * metadata into the btree corresponding to the extent
699  */
700 void btrfs_start_ordered_extent(struct inode *inode,
701 				       struct btrfs_ordered_extent *entry,
702 				       int wait)
703 {
704 	u64 start = entry->file_offset;
705 	u64 end = start + entry->len - 1;
706 
707 	trace_btrfs_ordered_extent_start(inode, entry);
708 
709 	/*
710 	 * pages in the range can be dirty, clean or writeback.  We
711 	 * start IO on any dirty ones so the wait doesn't stall waiting
712 	 * for the flusher thread to find them
713 	 */
714 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
715 		filemap_fdatawrite_range(inode->i_mapping, start, end);
716 	if (wait) {
717 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
718 						 &entry->flags));
719 	}
720 }
721 
722 /*
723  * Used to wait on ordered extents across a large range of bytes.
724  */
725 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
726 {
727 	int ret = 0;
728 	u64 end;
729 	u64 orig_end;
730 	struct btrfs_ordered_extent *ordered;
731 
732 	if (start + len < start) {
733 		orig_end = INT_LIMIT(loff_t);
734 	} else {
735 		orig_end = start + len - 1;
736 		if (orig_end > INT_LIMIT(loff_t))
737 			orig_end = INT_LIMIT(loff_t);
738 	}
739 
740 	/* start IO across the range first to instantiate any delalloc
741 	 * extents
742 	 */
743 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
744 	if (ret)
745 		return ret;
746 
747 	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
748 	if (ret)
749 		return ret;
750 
751 	end = orig_end;
752 	while (1) {
753 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
754 		if (!ordered)
755 			break;
756 		if (ordered->file_offset > orig_end) {
757 			btrfs_put_ordered_extent(ordered);
758 			break;
759 		}
760 		if (ordered->file_offset + ordered->len <= start) {
761 			btrfs_put_ordered_extent(ordered);
762 			break;
763 		}
764 		btrfs_start_ordered_extent(inode, ordered, 1);
765 		end = ordered->file_offset;
766 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
767 			ret = -EIO;
768 		btrfs_put_ordered_extent(ordered);
769 		if (ret || end == 0 || end == start)
770 			break;
771 		end--;
772 	}
773 	return ret;
774 }
775 
776 /*
777  * find an ordered extent corresponding to file_offset.  return NULL if
778  * nothing is found, otherwise take a reference on the extent and return it
779  */
780 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
781 							 u64 file_offset)
782 {
783 	struct btrfs_ordered_inode_tree *tree;
784 	struct rb_node *node;
785 	struct btrfs_ordered_extent *entry = NULL;
786 
787 	tree = &BTRFS_I(inode)->ordered_tree;
788 	spin_lock_irq(&tree->lock);
789 	node = tree_search(tree, file_offset);
790 	if (!node)
791 		goto out;
792 
793 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
794 	if (!offset_in_entry(entry, file_offset))
795 		entry = NULL;
796 	if (entry)
797 		atomic_inc(&entry->refs);
798 out:
799 	spin_unlock_irq(&tree->lock);
800 	return entry;
801 }
802 
803 /* Since the DIO code tries to lock a wide area we need to look for any ordered
804  * extents that exist in the range, rather than just the start of the range.
805  */
806 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
807 							u64 file_offset,
808 							u64 len)
809 {
810 	struct btrfs_ordered_inode_tree *tree;
811 	struct rb_node *node;
812 	struct btrfs_ordered_extent *entry = NULL;
813 
814 	tree = &BTRFS_I(inode)->ordered_tree;
815 	spin_lock_irq(&tree->lock);
816 	node = tree_search(tree, file_offset);
817 	if (!node) {
818 		node = tree_search(tree, file_offset + len);
819 		if (!node)
820 			goto out;
821 	}
822 
823 	while (1) {
824 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
825 		if (range_overlaps(entry, file_offset, len))
826 			break;
827 
828 		if (entry->file_offset >= file_offset + len) {
829 			entry = NULL;
830 			break;
831 		}
832 		entry = NULL;
833 		node = rb_next(node);
834 		if (!node)
835 			break;
836 	}
837 out:
838 	if (entry)
839 		atomic_inc(&entry->refs);
840 	spin_unlock_irq(&tree->lock);
841 	return entry;
842 }
843 
844 /*
845  * lookup and return any extent before 'file_offset'.  NULL is returned
846  * if none is found
847  */
848 struct btrfs_ordered_extent *
849 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
850 {
851 	struct btrfs_ordered_inode_tree *tree;
852 	struct rb_node *node;
853 	struct btrfs_ordered_extent *entry = NULL;
854 
855 	tree = &BTRFS_I(inode)->ordered_tree;
856 	spin_lock_irq(&tree->lock);
857 	node = tree_search(tree, file_offset);
858 	if (!node)
859 		goto out;
860 
861 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
862 	atomic_inc(&entry->refs);
863 out:
864 	spin_unlock_irq(&tree->lock);
865 	return entry;
866 }
867 
868 /*
869  * After an extent is done, call this to conditionally update the on disk
870  * i_size.  i_size is updated to cover any fully written part of the file.
871  */
872 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
873 				struct btrfs_ordered_extent *ordered)
874 {
875 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
876 	u64 disk_i_size;
877 	u64 new_i_size;
878 	u64 i_size = i_size_read(inode);
879 	struct rb_node *node;
880 	struct rb_node *prev = NULL;
881 	struct btrfs_ordered_extent *test;
882 	int ret = 1;
883 
884 	spin_lock_irq(&tree->lock);
885 	if (ordered) {
886 		offset = entry_end(ordered);
887 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
888 			offset = min(offset,
889 				     ordered->file_offset +
890 				     ordered->truncated_len);
891 	} else {
892 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
893 	}
894 	disk_i_size = BTRFS_I(inode)->disk_i_size;
895 
896 	/* truncate file */
897 	if (disk_i_size > i_size) {
898 		BTRFS_I(inode)->disk_i_size = i_size;
899 		ret = 0;
900 		goto out;
901 	}
902 
903 	/*
904 	 * if the disk i_size is already at the inode->i_size, or
905 	 * this ordered extent is inside the disk i_size, we're done
906 	 */
907 	if (disk_i_size == i_size)
908 		goto out;
909 
910 	/*
911 	 * We still need to update disk_i_size if outstanding_isize is greater
912 	 * than disk_i_size.
913 	 */
914 	if (offset <= disk_i_size &&
915 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
916 		goto out;
917 
918 	/*
919 	 * walk backward from this ordered extent to disk_i_size.
920 	 * if we find an ordered extent then we can't update disk i_size
921 	 * yet
922 	 */
923 	if (ordered) {
924 		node = rb_prev(&ordered->rb_node);
925 	} else {
926 		prev = tree_search(tree, offset);
927 		/*
928 		 * we insert file extents without involving ordered struct,
929 		 * so there should be no ordered struct cover this offset
930 		 */
931 		if (prev) {
932 			test = rb_entry(prev, struct btrfs_ordered_extent,
933 					rb_node);
934 			BUG_ON(offset_in_entry(test, offset));
935 		}
936 		node = prev;
937 	}
938 	for (; node; node = rb_prev(node)) {
939 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
940 
941 		/* We treat this entry as if it doesnt exist */
942 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
943 			continue;
944 		if (test->file_offset + test->len <= disk_i_size)
945 			break;
946 		if (test->file_offset >= i_size)
947 			break;
948 		if (entry_end(test) > disk_i_size) {
949 			/*
950 			 * we don't update disk_i_size now, so record this
951 			 * undealt i_size. Or we will not know the real
952 			 * i_size.
953 			 */
954 			if (test->outstanding_isize < offset)
955 				test->outstanding_isize = offset;
956 			if (ordered &&
957 			    ordered->outstanding_isize >
958 			    test->outstanding_isize)
959 				test->outstanding_isize =
960 						ordered->outstanding_isize;
961 			goto out;
962 		}
963 	}
964 	new_i_size = min_t(u64, offset, i_size);
965 
966 	/*
967 	 * Some ordered extents may completed before the current one, and
968 	 * we hold the real i_size in ->outstanding_isize.
969 	 */
970 	if (ordered && ordered->outstanding_isize > new_i_size)
971 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
972 	BTRFS_I(inode)->disk_i_size = new_i_size;
973 	ret = 0;
974 out:
975 	/*
976 	 * We need to do this because we can't remove ordered extents until
977 	 * after the i_disk_size has been updated and then the inode has been
978 	 * updated to reflect the change, so we need to tell anybody who finds
979 	 * this ordered extent that we've already done all the real work, we
980 	 * just haven't completed all the other work.
981 	 */
982 	if (ordered)
983 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
984 	spin_unlock_irq(&tree->lock);
985 	return ret;
986 }
987 
988 /*
989  * search the ordered extents for one corresponding to 'offset' and
990  * try to find a checksum.  This is used because we allow pages to
991  * be reclaimed before their checksum is actually put into the btree
992  */
993 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
994 			   u32 *sum, int len)
995 {
996 	struct btrfs_ordered_sum *ordered_sum;
997 	struct btrfs_ordered_extent *ordered;
998 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
999 	unsigned long num_sectors;
1000 	unsigned long i;
1001 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1002 	int index = 0;
1003 
1004 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1005 	if (!ordered)
1006 		return 0;
1007 
1008 	spin_lock_irq(&tree->lock);
1009 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1010 		if (disk_bytenr >= ordered_sum->bytenr &&
1011 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1012 			i = (disk_bytenr - ordered_sum->bytenr) >>
1013 			    inode->i_sb->s_blocksize_bits;
1014 			num_sectors = ordered_sum->len >>
1015 				      inode->i_sb->s_blocksize_bits;
1016 			num_sectors = min_t(int, len - index, num_sectors - i);
1017 			memcpy(sum + index, ordered_sum->sums + i,
1018 			       num_sectors);
1019 
1020 			index += (int)num_sectors;
1021 			if (index == len)
1022 				goto out;
1023 			disk_bytenr += num_sectors * sectorsize;
1024 		}
1025 	}
1026 out:
1027 	spin_unlock_irq(&tree->lock);
1028 	btrfs_put_ordered_extent(ordered);
1029 	return index;
1030 }
1031 
1032 int __init ordered_data_init(void)
1033 {
1034 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1035 				     sizeof(struct btrfs_ordered_extent), 0,
1036 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1037 				     NULL);
1038 	if (!btrfs_ordered_extent_cache)
1039 		return -ENOMEM;
1040 
1041 	return 0;
1042 }
1043 
1044 void ordered_data_exit(void)
1045 {
1046 	if (btrfs_ordered_extent_cache)
1047 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1048 }
1049